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Abstract

Tumor microenvironmental stresses, such as hypoxia and lactic acidosis, play important roles in tumor progression.
Although gene signatures reflecting the influence of these stresses are powerful approaches to link expression with
phenotypes, they do not fully reflect the complexity of human cancers. Here, we describe the use of latent factor models to
further dissect the stress gene signatures in a breast cancer expression dataset. The genes in these latent factors are
coordinately expressed in tumors and depict distinct, interacting components of the biological processes. The genes in
several latent factors are highly enriched in chromosomal locations. When these factors are analyzed in independent
datasets with gene expression and array CGH data, the expression values of these factors are highly correlated with copy
number alterations (CNAs) of the corresponding BAC clones in both the cell lines and tumors. Therefore, variation in the
expression of these pathway-associated factors is at least partially caused by variation in gene dosage and CNAs among
breast cancers. We have also found the expression of two latent factors without any chromosomal enrichment is highly
associated with 12q CNA, likely an instance of ‘‘trans’’-variations in which CNA leads to the variations in gene expression
outside of the CNA region. In addition, we have found that factor 26 (1q CNA) is negatively correlated with HIF-1a protein
and hypoxia pathways in breast tumors and cell lines. This agrees with, and for the first time links, known good prognosis
associated with both a low hypoxia signature and the presence of CNA in this region. Taken together, these results suggest
the possibility that tumor segmental aneuploidy makes significant contributions to variation in the lactic acidosis/hypoxia
gene signatures in human cancers and demonstrate that latent factor analysis is a powerful means to uncover such a
linkage.
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Introduction

The promise and challenge of cancer genomics
Human cancers are extremely heterogeneous due to multiple

mutations in oncogenes and tumor suppressor genes, varying

environmental conditions, and a huge range of germline and

somatic variations. While the individual effects of a genetic

alteration or environmental factors may be quite subtle, their

combined effects lead to immense natural heterogeneity in tumor

phenotypes, disease outcomes, and response to therapies. The use

of microarrays to capture global gene expression patterns in

human cancers has lead to an explosion of knowledge regarding

the genetic basis of cancer heterogeneity. Experiments that have

previously been performed one gene at a time can now be done on

the entire complement of transcribed genes. However, this leads to

a tremendous challenge of divining meaning behind the vast

amounts of biological data and turning it into hypotheses and new

understanding of the biology behind tumor heterogeneity.

Gene signature approaches for cancer gene expression
In relating tumor gene expression data to tumor heterogeneity,

one powerful approach is the use of gene signatures to dissecting

the complexity of cancer genomic data. These gene signatures

represent a set of genes which are coordinately regulated in

particular biological processes and specific perturbations, first

determined based in cultured cells or other supervised analysis to

represent particular biological processes and [1–8]. The expression

signatures are portable and can be assayed in varied contexts, and

so provide the capacity to link otherwise heterologous systems to

provide a mechanism to link the defined biological processes with

the complex phenotypes of human tumors. These signatures can

then be used to recognize similar molecular features in human

cancer samples in vivo and interrogate the relevance of particular

biological processes and perturbations in human cancer and

evaluate their relationship with other clinical and molecular

features.

There are many different means to quantitatively define

signature activities in human tumor gene expression datasets.

One approach involves extracting the genes in a signature defined

in an experimental setting and examining their co-variation in

other datasets. These genes can then be used to reclassify tumors

based on clustering of the expression of the genes in a pathway

[2,3]. Another approach ignores signatures and simply seeks to

collect genes that demonstrate high levels of correlation across

samples into gene modules. Classification and prediction tasks are

then performed on the expression of modules rather than
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individual genes, leading to re-classification and functional

annotation of human tumors [9]. It is also possible to use Bayesian

statistics to determine the probability of the pathway activities to

avoid the instability of hierarchical clustering [4,10]. Gene set

enrichment analysis (GSEA) seeks to compare observed expression

patterns to pre-defined, curated pathways [11]. Finally, the

connectivity map [12] uses a similar approach to establish

connections with perturbations due to the presence of drugs and

other small molecules. We have also used these and similar

approaches to show that wound healing [2], vascular injury

responses [13] and various oncogenic mutations [4,10,14–17] can

play important roles in tumor progression.

Poorly dissected complex structures of gene signatures
in vivo
Although this projection of various gene signatures onto

heterologous gene expression data of human cancer in vivo has

been quite successful, there are also significant limitations. The

gene signatures which have been defined in vitro using cultured

cells simply cannot fully reflect the complexity of variation seen in

human cancers. This discrepancy can be due to many reasons. For

example, there may be several components of pathway signaling

observed in vitro, but which are subject to multiple regulatory

controls that break down the clear patterns in vivo. Some genes

may be better representatives of pathway activity in vivo because

they are less likely to be involved in other pathways, or because

they react to environmental conditions that are not present in vitro;

others present in the experimental signature may be unexpressed

in vivo. For example, it is known that Ras has at least three major

downstream pathways - Ral, Raf and PI3K. The activation and

role of each pathway may be different under oncogenic

transformation and tumor maintenance [18,19]. Furthermore,

cancer cell genomes have many amplifications, deletions and point

mutations (copy number alterations (CNAs) or aneuploidies), any

subset of which may modulate the pathway activity of both

oncogenic signaling and microenvironmental responses. Since

only normal or cloned cell lines are used to generate in vitro

signatures, the consequences of these complex DNA alterations in

tumors are not observed. Compositions of cell types in tumors also

reflect the continuous evolution and selection of cells fittest to

survive under harsh tumor microenvironmental stresses, possibly

over years of development. In addition, human cancers also

involve heterogeneous cell types with complex intercellular

interactions as well as temporal and spatial variation in expression.

These factors cannot be easily modeled in vitro using cell culture or

captured using microarrays.

Factor analysis to uncover in vivo complexity of original
gene signatures
Our approach to address the limitations of the gene signatures is

to apply statistical latent factor models using in vivo cancer data to

further dissect the in vitro derived ‘‘primary signatures’’ into

components which better represent the complexity and structure

captured by the global gene expression of human cancers in vivo.

Statistical analysis using latent factor models aims to address this

by identifying and estimating potentially many factors in the in

vivo expression patterns of sets of signature genes defined in vitro;

these factors or ‘‘sub-signatures’’ retain their relationship to the

original signature but represent distinct, interacting components of

the biological processes the initial signature. This approach has

been successfully applied to generate an elaborated picture of the

complexity of patterns of variation shown by the signature gene

set, and additional genes apparently related to the gene set, in

observational contexts [14,20–26]. Elaborating the factor profile

underlying the original signature can improve the in vivo

relevance by more fully describing the diversity of in vivo

expression patterns, and may enhance prognostic value and

provide mechanistic insights into how biological processes affect

clinical phenotypes.

Gene signature of tumor microenvironmental stresses
The tumor microenvironment is characterized by many

chemical stresses, such as oxygen depletion (hypoxia), high lactate

and extracellular acidosis (lactic acidosis) [27]. Given the

importance of these stresses to cancer phenotypes and the recent

efforts to develop therapeutic strategies targeting hypoxia

pathways, a detailed understanding of the mechanisms and

influences of these stresses in tumors will be of significant interest.

We have previously used gene signature approaches to estimate

the role of hypoxia [3] and lactic acidosis [8,25] in the

heterogeneity and clinical phenotypes of human cancer. The

hypoxia signature obtained in cultured cells exposed to hypoxia

allows the recognition of the molecular features common to

multiple cancer types – in turn permitting the identification of

patients with high clinical risks due to strong hypoxia response [3].

Additionally, linking prognostic molecular signatures of human

cancers to ex vivo experimental cell culture models provides a

relevant and controlled system that can be used in mechanistic

studies. Patients who are most likely to benefit from targeted

therapeutics can then be recognized by the high expression of the

hypoxia gene signatures. Therefore, substantial synergy and the

potential for novel biological insights can be obtained by

reciprocal flow of information between the in vitro and in vivo

systems. However, the basis for variation in the hypoxia and lactic

acidosis signatures in tumors is entirely unknown.

Due to increased proliferation and defective mechanisms for

monitoring genome integrity, one of the hallmarks of cancer is the

presence of with alterations of single nucleotides or CNAs with the

amplification/deletion of regions of chromosomes of various

lengths. These mutations and CNAs are likely to contribute to

the variations of the gene signatures of tumor microenvironmental

stresses. For example, it is known that HIF transcriptional

Author Summary

Gene signatures are a powerful tool to investigate
biological processes in human cancer. However, it is clear
that these gene signatures do not fully reflect the
complexity of human cancer. Here we demonstrate how
a latent factor model can improve the in vivo relevance of
these pathway-associated gene signatures by dissecting
them into co-regulated transcriptional components which
better represent the structure in human cancer. We use
this approach to analyze hypoxia and lactic acidosis gene
signatures to identify latent factors that represent distinct,
interacting components of the various biological processes
which are in the initial gene signatures but poorly
dissected. Some factors are clustered in small chromo-
somal regions and their expression values are highly
correlated with their DNA copy number in both cancer cell
lines and human tumors. Therefore, the gene dosage at
the DNA levels may explain the differences in gene
expression. Several factors contain genes which are known
to directly modulate the hypoxia response and allow us to
generate testable hypotheses regarding particular copy
number changes and hypoxia signatures. Therefore, the
use of latent factor analysis is a powerful means to identify
pathway-associated changes in the DNA copy number and
gene dosage.

Factor Models to Discover Sub-Signatures
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complexes and hypoxia pathways are constitutively activated in

the patients with von Hippel-Lindau disease, a genetic disease in

which the VHL gene is either inactivated or deleted [28]. In

addition, tumor microenvironmental stresses may also select

cancer cells with particular CNAs with strong metastasis

phenotypes and invasive behaviors [27,29,30]. It is therefore

interesting to identify CNAs associated with the hypoxia and lactic

acidosis pathways in human cancers.

In this study, we seek to use sparse latent factor analysis to

identify CNAs associated with the hypoxia and lactic acidosis

response in human cancers. The work that we present here is

based on the model described in [20], but should be repeatable

with any version of factor models. Specifically, we fit a latent factor

model of the gene signatures of hypoxia and lactic acidosis in one

data set of 251 breast tumors (Miller) from [20] to generate 56

latent factors. These factors then allow for connections to be made

between a numbers of different data sets, which can be used to

generate biological hypotheses regarding the basis for the variation

in the gene expression signatures of hypoxia and lactic acidosis.

We have identified variation in the expression of several factors on

the RNA level which are highly associated with CNAs in similar or

distinct chromosomal regions. Our findings lead to multiple, easily

testable hypotheses about some critical genes in relation to the

dyregulation of the hypoxia pathway in human cancers. Taken

together, these results suggest the possibility that tumor segmental

aneuploidy makes a significant contribution to the variation in the

hypoxia and lactic acidosis gene signatures seen in human cancers

and demonstrates that latent factor analysis is a powerful means to

uncover such a linkage.

Results

Identify the BAC clones associated with the hypoxia and
lactic acidosis gene signatures
Chromosomal aneuploidy and CNAs are known to lead to

changes in the RNA expression levels of genes in the correspond-

ing chromosomal regions and contributes to the altered gene

expression deregulation of myriad pathways during oncogenesis.

Given the potential contribution of the CNAs to variation in gene

expression, and the likely survival advantages (to the tumor cells)

under selection due to microenvironmental stresses, we seek to

identify the CNAs associated with the expression of hypoxia and

lactic acidosis gene signatures in tumors. In a previous study, the

gene expression of wound signatures was used to identify CNAs in

breast cancers as potential regulators of such gene expression

program [31]. We used similar approach to identify tumor CNAs

associated with the hypoxia/lactic acidosis gene signatures by

examining a breast cancer expression dataset (Chin) with both

gene expression and CNAs variations based on comparative

genomic hybridization (CGH) [32]. We projected the hypoxia and

lactic acidosis gene expression onto the Chin data set and

calculated the Pearson correlation against the measurements of

each of the 2150 BAC clones for these tumors (Figure 1). There

are some chromosomal locations that show associations between

the hypoxia and lactic acidosis signatures, such as 1p and 7p for

lactic acidosis and 1q, 5q and 13p for hypoxia. But we found no

statistically significant associations between signatures and CNAs

at any locations in the genome after using the strict alpha level of

0.01 after Bonferroni correction.

Use of human cancers to dissect the gene signatures into
multiple latent factors
The modest correlation between the BAC clones with the

hypoxia and lactic acidosis signatures may be due to the complex

composition of gene signatures in human tumors and other

confounding factors. In order to further dissect such complexity,

we used a latent factor model to break these signatures down based

on coherent expression in tumor tissue and to test for association

between components (sub-signatures) of the gene signatures and

CNAs. Factor analysis is becoming a standard technique for the

analysis of microarray expression data. In general, it is a simple

Figure 1. The association of BAC clones with the hypoxia and lactic acidosis gene signatures. The correlation between signature –
hypoxia (A) and lactic acidosis (B) - and copy number change in the breast cancer data set from Chin. The x-axis shows the location along the genome
of the different CGH clones, and the y-axis shows the level of association (2ln(p-value) of Pearson correlation). Dashed lines are drawn at alpha = .05
after Bonferroni correction for multiple testing (2150 tests, one for each CGH clone). We note that the signatures alone do not show strong
correlation with any particular genomic location, which makes it impossible to assess relationships between signatures and CNA without some way
to break up the signatures into smaller groups.
doi:10.1371/journal.pcbi.1000920.g001

Factor Models to Discover Sub-Signatures
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factorization of a matrix of data into the product of two other

matricies. In our case, if X is a PxN-dimensional matrix of

expression values, then we write

X~ALze ð1Þ

A is called the factor loadings matrix (a matrix of regression

coefficients) and L is a matrix of factor scores (this may also contain

design vectors). Finally, e is the PxN-dimensional matrix of

idiosyncratic errors. We assume ei,j,N(0,si
2) which implies that

the corresponding PxP covariance matrix, which we label V, is

diagonal with s2
i in the ith position. While this may seem restrictive,

it is exactly the covariance structure in X that is being described by

the latent factors, and therefore more complex covariance structure

in e would be redundant and potentially lead to issues with

identifiability. There are multiple versions latent factor models in

the published literature, including principal components [33], non-

negative matrix approximation [34], sparse latent factor models

[20] and partial least squares [35]. We utilized the version from [20]

called Bayesian factor regression models (BFRM), but our general

approach can be applied using any version of factor modeling.

BFRM tries to make choices of A and L such that there are a large

number of zeros in the matrix A, thereby creating a parsimonious

model of the variation seen in X.

One of the key features of factor models is the ability to project

factors discovered in one data set onto another. This allows the

comparison of phenotypes across different data sets, such as

hypoxia linked to expression in one data set and CNA linked to

expression in another data set. In order to assess the relationship

between derived latent factors and interventions/variables from

other experiments, we need to be able to estimate L in a new data

set, given a previously discovered loadings matrix, A. This is a well

known problem of inverse regression and we will utilize the

approach described in [36]. We define Y to be a new set of

expression data, and suppose we wish to estimate the factor scores

on this data set, Ly. Then if A is the matrix of factor loadings

(regression coefficients) from model fitting and V is a diagonal

matrix containing the gene by gene variance estimators, we

compute

Ly~ IkzA0V{1A
� �{1

A0V{1Y : ð2Þ

(In this equation, Ik is a k-dimensional identity matrix.) This allows

us to build a factor model on any data set and project those factors

onto any other data set in which we have measurements of all of

the relevant probe sets.

The ability to project factor models onto different data sets

allows the possibility of comparing new experimental data sets,

such as the hypoxia and lactic acidosis signature experiment, to

any of the thousands of publically available data sets with different

levels of information, including CNAs from array CGH. The

overall analysis scheme of our approach for the rest of the paper

is presented in Figure 2. We note that there is an important

assumption which is implicit in equation 2. We assume that the

factor loadings obtained from the analysis of the first data set are

valid for the analysis of the second data set. In the context of sparse

factor modeling, we know that genes that share non-zero loadings

for a specific factor also share elements of the expression pattern

described by that factor. The assumption that the loadings matrix

remains unchanged from data set to data set translates into the

assumption that genes which show co-expression in one data set

will continue to show co-expression in a new data set. It is evident

that the extent to which this will hold true is dependent on the

character of the two data sets in question. However, Figure 3 and

its accompanying analysis demonstrate that this paradigm may

hold true in a larger array of data sets than one might expect, such

as across different tumor types.

Because we are interested in the relationships between gene

expression and the tumor microenvironmental stresses, we

restricted our attention to a set of 2984 genes whose expression

were found to be affected under conditions of hypoxia and lactic

acidosis [25]. The matricies (A and L) that are derived in this

analysis, along with the parameter file used by BFRM, are

included in the statistical supplement (Text S1). Fitting the latent

factor model to these genes in a breast tumor expression dataset

(Miller) [37] of 251 tumors, we obtained 56 latent factors (genes in

each factors presented in supplementary Text S2). The expression

of these factors is largely coordinately expressed across tumors in

the Miller dataset, as exemplified for factor 26 in Figure 3A. In

addition, the relationship of these genes is mostly conserved in an

independent dataset of 118 breast tumors [32] (Figure 3B, labeled

as Gray dataset, p = 2.2610215). The estimation of the statistical

significance of coordinate expression in different tumor expression

data sets is discussed in the methods section. Although we don’t

expect coordinate gene expression to persist in other tumor types,

we find that coherent expression of the genes in factor 26 is also

preserved in lung (p= 7.361028) and ovarian cancers

(p = 7.6610210) (Figure 3C, D) [1,38], but is largely lost in brain

cancers (p = .10) (Figure 3F) [39]. We find that this is generally the

rule, and not the exception, for most factors. Figures showing the

expression of the genes in all 56 latent factors in these five human

tumor datasets are included in the Figure S1.

Biological annotation of the latent factors in human
cancers
To further functionally annotate these coordinately expressed

genes in the discovered latent factors, we used a web-based

statistical tool Gather [40] to test whether the genes in each factor

are significantly enriched in Gene Ontology (GO) or chromosomal

locations. This analysis found that 30 latent factors are

significantly enriched in at least one GO (p,0.001). These

factor-enriched GO terms include glycolysis/gluconeogenesis

(factor 9), unfolding protein response (factor 10), neoplasm

metastasis (factor 15), TGF-b (factor 19) and immune response

(factor 6 and 16) (Table S1, Table S2, Table S3). Interestingly,

many of these biological processes have been previously shown to

be linked with hypoxia and/or lactic acidosis in many studies. For

example, hypoxia is known to trigger gene expression pathways

related to glycolysis as well as genes in the TGF-b pathway and

epithelial-mesenchymal transition [41–43]. Additionally, hypoxia

and acidosis are also known to trigger tumor metastasis [44,45]

and the ‘‘unfolding proteins response’’ [46–48]. The discovery of

factors representing these processes is encouraging and indicates

that factor analysis has the potential to uncover links between these

processes and the influence of hypoxia and lactic acidosis in

human cancers.

Statistics to evaluate chromosomal enrichment of genes
in factors – local enrichment ratio
In addition to enrichment for biological processes, gather

analysis indicates that 22 latent factors also exhibit significant

spatial basis with significant enrichment (p,0.001) in different

chromosomal locations (Table S1). Such spatial enrichment

suggests that events in these chromosomal regions may contribute

to their coordinated expression in tumors. We devised a separate

measurement and statistic, the local enrichment ratio (LER), to

Factor Models to Discover Sub-Signatures
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assess the enrichment of latent factors for location specific

chromosomal association. Given a set of genes, the statistic is

based on the ratio of two distributions: 1) the distribution along the

genome of the genes in the set and 2) the distribution along the

genome of the collection of all possible genes that might have been

in the list. In our case, the gene subset will consist of genes in a

factor and the full list will consist of the 2984 genes from which we

built our factor model (detailed in the methods section).

This is a similar approach to that taken in KC-SMART [49] for

the analysis of CGH data with two key differences. First, we are

applying our approach to specific subsets of genes (each of our 56

factors) and testing the hypothesis that those subsets are enriched

for a particular location. This is in contrast to KC-SMART [49],

which is a general test designed to identify regions of CNA, and as

such is not directly applicable. Second, we are applying our model

to genes that have been grouped based on mRNA coexpression,

thus our test is performed completely independent of data on copy

number variation such as array CGH.

When we plot the calculated LER for the genes in each latent

factor along the 23 chromosomes, we observe prominent peaks

for several spatially-biased latent factors (Figure 4A, C, D) in

one or two chromosomal locations against the background of

noise in other locations. In contrast, factors without any

significant chromosomal enrichment produce broad, non-

specific peaks with low scores (Figure 4B). We find that the

genes in 18 out of the 56 discovered factors exhibit local

enrichment ratios of over 3 for particular chromosomal

locations (Table S1). This independent measurement of

chromosomal enrichment shows a high degree of agreement

with gather analysis. We do not have a theoretical distribution

for random draws of this ratio under conditions of no CNA.

However, simulation studies using random draws from the

2984 hypoxia/lactic acidosis genes, using a kernel standard

deviation of 5% of the length of the chromosome, suggests that

the probability of generating a maximum local enrichment

ratio over 3 across the whole genome, given the null hypothesis,

is less than 161024. Matlab code for computing the local

enrichment ratio is included in the statistical supplement (Text

S1). Figures showing LER for all 56 latent factors are included

in the Figure S2. We have tested various window sizes and have

determined that these findings are relatively insensitive to

kernel width (Figure S3).

Figure 2. The flow chart of integrative genomic analysis. The flow chart shows the myriad data sets and data types that we integrate to
generate the use cases outlined in this section. All case studies utilize a set of 56 factors built with sparse latent factor models from the Miller breast
tumor data or the two signatures generated from the Chi data set. The red arrows represent the training of a model with a given data set. Green
arrows represent projection of a set of factors or signatures onto a new data set, and the black arrow represents a visualization technique (shown in
Figure 2). The fat gray arrows represent Pearson correlation calculations.
doi:10.1371/journal.pcbi.1000920.g002

Factor Models to Discover Sub-Signatures
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The association of CNAs with expression of latent factors
in tumors
The association of many factors with particular chromosomal

locations suggests that their co-variation in cancer gene

expression may be due to gene dosage caused by CNAs or other

spatially-biased gene regulations in those chromosomal regions.

To test these possibilities, we project our factors into a breast

cancer data set (Chin et al) [32] as well as breast tumor cell lines

(Neve et al) [50] both with both gene expression and CNA data.

The expression scores of the 56 latent factors were assessed on

both tumors samples and cancer cell lines. These were then

compared with the 2150 CGH clones in the corresponding tumor

and cell line samples using Pearson correlation. Plots showing the

strength of correlation for two of these factors are shown in

Figure 5. Although many factors show no particular association,

approximately 1/3 factors do show a significant degree of

association between factor expression and BAC clones in small

chromosomal regions in both tumors and cell lines. Using a

filtering criteria of minimum p-value less than .01 after

Bonferroni correction for 2150 hypothesis tests in both tumor

and cell line data sets, and requiring the genes defining the factor

to show a significant overabundance in the same chromosomal

region, we identified 17 factors both statistically and structurally

associated with CNA regions of different sizes (Figure 5A, B and

Figure S4). This high degree of association in both tumors and

cancer cell lines strongly suggests that these 17 factors are indeed

related to CNAs such as segmental aneuploidies. For example,

factor 26 is shown to be linked to CNA on chromosome 1 in

human tumors (Figure 5A) with the strongest association between

the factor and BAC clone RMC01P074 (Figure 5B). Similarly,

among breast cancer cell lines, the expression of factor 26 is

shown to be linked to CNAs on chromosome 1q (Figure 5C), with

the highest association with BAC clone RP11-57I17 (Figure 5D).

These results are entirely consistent with the results of enrichment

in 1q from the analysis using both Gather and LER. Taken

together, the variation in the expression of the genes comprising

factor 26 are highly associated with the gene dosages and

chromosome 1q CNA. Amplification of 1q has been previously

noted in breast cancer and is associated with important clinical

outcomes [32]. The re-discovery of this CNA associated with

factor 26 validates our approach. Another example is that the

expression of factor 30 is highly associated with segmental

aneuploidies in 8p21–23 in both tumors (Figure 5E, F) and

cancer cell lines (Figure 3G, H). It is interesting to note that many

genes in the factor 30 are known to be hypoxia-inducible (e.g.,

clusterin [51] and stanniocalcin 1 [52,53]) and may represent the

CNAs of HIF-1a target genes. Among the CNAs associated with

the 17 latent factors (included in Text S3), many have been

previously recognized as high copy amplification regions in the

original study of array CGH (Table S1). It is interesting that three

of these CNA-associated factors – 8q21–24 (factor 35), 17q21–25

(factor 5, 17), 20q13 (factor 46)—are also reported to be linked

with poor prognosis in another independent breast cancer study

using a spatial enrichment of gene expression [54].

Figure 3. The coordinated gene expression of latent factors in various human tumors. The expression of genes in the factor 26 in the Miller breast
cancer datasets from which the factor was first derived (panel A). Similar coordinated expression is also found for expression data of another breast cancers
(Gray - panel B), Lung (Nevins - panel C) and Ovarian (Burchurk - panel D) cancers. But such coordinated expression is not found in the brain (Frejie - panel D)
cancers. Ordering of the rows (bottom to top) is increasing in the loading of the first principal component in the Miller data set. This row order is retained in all
five heatmaps. Ordering of the columns (from left to right) is increasing in the first principal component. This is recalculated for each heat map.
doi:10.1371/journal.pcbi.1000920.g003

Factor Models to Discover Sub-Signatures
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The incorporation of the coordinated gene expression pattern in

latent factors may allow the recognition of CNAs with a higher

confidence due to their impact on gene expression than from the

mere use of BAC data or the examination of the spatial bias of

gene expression. Such an approach is especially of value in the

instances of low level of amplification and may explain the

confident identification of several new putative CNAs (Table S1).

Of these, 3q21–25 (factor 7) has been reported to be linked with

poor prognosis in breast cancers [54].

Several factors found to be enriched in chromosomal locations

based on the Gather and LER analysis did not show similar

significant correlation with CNAs in the tumors and cancer cell

datasets. This discrepancy may be due to the inconsistency

between different datasets or tumors from the cell lines or clustered

chromosomal locations in the same biological pathways show

clustered in chromosomal location.

Latent factors reflect potential trans-relationships
between CNAs and expression
Most of the factors are associated with the CNAs in the

chromosomal regions where the genes in the factors reside and

suggest that such variations in ‘‘cis’’ are due to the variations in

gene dosage caused by CNAs. We also detect a strong relationship

between the expression of both factor 12 and 16 with CNA in a

small region in the center of chromosome 12q in both tumors

(Figure 6A, D) and cancer cell lines (Figure 6B, E). In contrast to

the significant LER enrichments for other ‘‘cis-’’association factors

(Figure 4), the genes in these two factors show no spatial bias and

enrichment by either GATHER or LER (Figure 6C, F). Instead,

the genes in these two factors are scattered along various

chromosomes without significant clustering (Figure 6C, F). It is

not clear how the CNAs in particular chromosomal regions can

lead to the coordinated expression of genes in these two factors

without any chromosomal spatial bias. One possible explanation is

that factors 12 and 16 may represent instances of ‘‘trans’’-

regulation in which segmental aneuploidies leads to transcriptional

responses of these genes in the factors, instead of gene dosage

effects in most other factors. It is also relevant to point out that

factor 12-asscoated CNAs in 12q14–q15 has been noted to be

prominent in other tumors, such as liposarcomona [55], glioma

[56] and rhabdomyosarcoma[57]. This region contains HMGA2,

a well known factor involved in the transcriptional regulation of

Figure 4. The local enrichment ratios as measures of chromosomal enrichments of latent factors. Local enrichment ratios (y-axis) for the
genes in latent factor 7, 32, 23 and 26 (A,B,C and D respectively) along the 23 autosomes (X-axis). Chromosomes are colored alternately blue and
black for visualization. The red crosses designate the physical locations of the genes in the respective factor with vertical jitter added to allow
visualization. A local enrichment ratio over 5 is considered significant, therefore we conclude that factors 7, 23 and 26 demonstrate significant
enrichment for genes in specific chromosomal regions. While 32 demonstrates no local enrichment.
doi:10.1371/journal.pcbi.1000920.g004
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oncogenesis [58].In addition, two closely located genes, MDM2,

YEAST4, are critical to the p53 pathway. Although this is a

possible explanation, this possibility remains to be experimentally

tested.

Factor 26 as a predictor of low hypoxia response
In the sections below, we will present several examples of

biological hypotheses resulting from our analysis. It is important to

note that these hypotheses will still need to be validated. However,

it is the ability to generate hypotheses by bringing together

disparate data sets that represents the power and novelty of our

approach.

Given that these factors are identified from the hypoxia gene

signature, we examined the relationship between these factors and

the hypoxia gene signature. Such analysis identifies a significantly

negative relationship between factor 26 and the predicted hypoxia

pathways in both Miller and Chin breast cancer (Figure 7A, B)

[32,50]. These results suggest that a high level of expression of

factor 26 is associated with a lower level of hypoxia response. It is

interesting to note that the breast tumors labeled as 1q/16q CNA

based on cluster analysis of array CGH data in the Chin data have

a more favorable clinical outcome [32]. Given that a strong

hypoxia signature is associated with poor clinical outcome [3,25],

the link between 1q CNA and low hypoxia response is also

consistent with better clinical outcomes. Therefore, we postulate

that a high expression level of factor 26 in human cancer is

probably associated with 1q CNA and significantly negatively

associated with hypoxia pathways in human breast cancer

(Figure 7A, B).

Among the genes contained in the factor 26, there is one known

negative regulators of HIF-1a proteins – Egl Nine Homolog 1

(EGLN1 or PHD2). The high levels of EGLN1 are known to

suppress HIF-1a transcriptional activity [59] since it encodes a

protein that catalyzes the post-translational formation of 4-

hydroxyproline of the proline residues of HIF-1a and targets it

for degradation via the von Hippel-Lindau ubiquitylation

complex. Additionally, fumarate hydratase (FH) encodes a protein

that is an enzymatic component of the tricarboxylic acid (TCA)

cycle and its deactivating mutations lead to high level of HIF-1a

and tumor formation [60]. Thus, the high expression level of

EGLN1 (and maybe FH) in factor 26 due to local segmental

aneuploidy may contribute to lower HIF-1a activities. When the

HIF-1a protein level in the several breast cancer cell lines was

cultured under ambient air, we found that variation in HIF-1a

protein levels were inversely correlated with factor 26 expression

(p = 0.0092) in a group of breast cancer cell lines [50] (Figure 7C–

E). This result is consistent with a previous study [61] showing that

MDA-MB-435S and MDA-MB-231 (with low level of factor 26)

having a high glycolytic phenotype with elevated HIF-1a protein

and glucose uptake. In contrast, MCF-7 has a relatively high factor

26 activity and is found to be lacking glycolytic phenotypes [61].

Taken together; these data suggest that CNAs in 1q leads to the

Figure 5. The association of mRNA gene expression and DNA copy numbers of latent factors. The degree of association (2log (p value)
of Pearson correlation, Y-axis) between the expression of factor 26 with the BAC clones along the 23 chromosomes (X-axis) in breast tumors, A, and
cancer cell lines, C, with the significant association with indicated BAC clones in 1q (panels B and D). Similar analysis has been performed for genes in
factor 23 in breast tumors (panels E and F) and cancer cell lines (panels G and H) with indicated BAC clones in 22q.
doi:10.1371/journal.pcbi.1000920.g005
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variation in the expression of factor 26, thus modulating the

hypoxia pathway and aerobic glycolytic phenotypes. These results

highlight the potential of our approach to elucidate the

mechanisms underlying the hypoxia pathway and the aerobic

glycolytic phenotypes of human cancers.

Discussion

The role of DNA copy number alterations in the gene
expression
Cancer genome aneuploidies, characterized by mutations,

duplications and deletions, play an important role in oncogenesis.

Various microarray technologies have been used to perform

genome-wide investigations of copy-number changes through

array CGH [62,63] to identify many putative oncogenes and

tumor suppressor genes. These changes in DNA copy number or

gene dosage often lead directly to changes in expression levels of

the RNAs for the relevant genes (cis-covariations) or indirectly

other genes outside of DNA CNAs (potential trans-covariations).

These changes in gene expression may contribute to transforma-

tion and progression along with oncogenic processes. Therefore,

correlation between chromosomal abnormalities and gene expres-

sion levels may provide a powerful means to identify tumor

aneuploidies.

Although array CGH is a powerful tool for documenting DNA

copy number on the genomic landscape, the routine application of

array CGH to every tumor tissue used in gene expression studies is

not feasible. Theoretically, candidate segmental aneuploidy in

human cancers can be detected based on the spatial bias of gene

expression without the need for the actual array CGH microarray

data. For example, a previous study using gene expression to

identify segmental aneuploidy had identified MTDH as candidate

oncogene in 8q22 amplified (factor 35) in a small region in breast

cancers [54]. In addition, it is still challenging to identify

functionally relevant aneuploidy with confidence as well as the

insight into the biological mechanism and clinical relevance of

CNAs. In addition, these methods may identify only the cis-

covariations in which the variations in gene expression are

physically located on the chromosomal regions with segmental

aneuploidy. It will be difficult to identify trans-covariations as

Figure 6. The association distant DNA copy numbers with the gene expression two latent factors. The degree of association in p value
(Y-axis) is plotted between the expression of factor 12 with the BAC clones along the 23 autosomes (X-axis) in the breast tumors, A, and cancer cell
lines, B, with the significant association with indicated BAC clones in 12q. Similar figures for factor 16 are shown in D and E. The red crosses in C and F
designate the physical locations of the genes in latent factor 12 along the 23 autosomes (X-axis) with the degree of spatial enrichment (LDR) shown
as a density ratio (Y-axis).
doi:10.1371/journal.pcbi.1000920.g006
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illustrated in the involvement of CNAs in the gene expression of

wound signature [31].

Our study, presented in this manuscript, presents a novel

approach – the use of sparse factor analysis to identify CNAs in

human cancers which are associated with biological processes as

captured in the in vitro derived gene signatures. We reason that the

CNAs may lead to the coordinated expression of genes within

these (cis-covariations) or other distant chromosomal regions (trans-

covariations), and thus identifiable as factor components across

different human cancer datasets. Since this method is initiated by

pathway-specific gene signatures, which can later be linked to

latent factors and then CNAs in specific chromosomal regions with

high confidence, the discovered association can better enable us to

gain biological insights into these pathway-associated CNAs to

enable better development of hypotheses in terms of the causes

and consequences. Finally, the overall approach provides a generic

framework for the joint analysis of disparate data sets and for the

generation of hypotheses based on data collected at many different

experimental systems and in various biological contexts.

The advantages and limitations of factor analysis to
discover CNAs in human cancers
In the effort to identify the CNAs from array CGH data, it is

sometimes difficult to draw the most appropriate filtering criteria.

This issue is especially exacerbated by the issue of variations in the

degree of DNA aneuploidies among different tumors and cancer

cells, the contaminating normal cells and the differing spatial

resolution for the microarray formats for array CGH. For

example, the large sizes of the BAC clones make it especially

challenging to distinguish authentic signals from noise. Our

alternative approach, starting from gene expression data, is likely

to identify those CNAs which are functionally relevant in terms of

significant variation in gene expression. For example, many

segmental DNA aneuploidies found in our analysis may not have

been previously recognized with confidence due to their modest

and inconsistent deviation from the array CGH. But their

variations have led to significant and consistent changes in the

expression of the genes which allows their confident recognition

using our approach. Thus, latent factors may present an

Figure 7. The inverse relationship of factor 26 with the hypoxia response and HIF-1a protein levels. The degree of the association
between factor 26 (Y-axis) and hypoxia gene signature (X-axis) is shown for the Miller, A, and Chin, B, breast cancer dataset. Panel C shows the level of
HIF-1a proteins under ambient air of various indicated breast cancer cell lines are determined by Western blots. These cells are shorted based on the
normalized level of HIF-1a protein and correlate with the expression level of factor 26 (panels D and E).
doi:10.1371/journal.pcbi.1000920.g007
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alternative and complimentary approach to identifying DNA

aneuploidies which are associated with particular biological

processes.

Since this approach focuses on gene expression, the identified

segmental aneuploidies may agree or disagree with the quantita-

tive analysis from the measurement of DNA copy number. For

example, our approach has identified many high copy amplifica-

tion regions found in the original study of array CGH in breast

cancers. However, in addition we have identified several

additional CNAs with confidence. The identification of these

factors from the latent factor model indicate that our approach

may help to incorporate coordinated gene expression patterns

which leads to a higher confidence in the interpretation of CNA

than that derived from the use of BAC data alone or the

incorporation of gene expression data from single genes. This is

especially of value in instances of low level amplification. There

are also several CNAs which we did not discover through our

factor analysis, such as the recurrent CNA in 11q13, 21q22 and

17q12. This may be due to the fact some of these CNAs do not

lead to significant gene expression in the factors or their effects on

the gene expression are not significantly correlated with the

hypoxia or lactic acidosis.

Examples for the improved understanding from the
factor analysis of gene signatures
The use of factor analysis to dissect the original gene signatures

has shown its utility in several biological contexts. The combination

of signature-derived latent factors has been shown to improve the

prognostic value and predictive power of the original hypoxia and

lactic acidosis signatures [26]. A recent analysis of the prognostic

factors in breast cancer has highlighted the importance of a

glycolytic enzyme PGK1 and tumor glycolysis in the prognostic

value of stress signatures [64]. In addition, factor analysis has

allowed the molecular dissection of the Ras pathways into individual

components [14]. In this study, we have further identified the

potential role of 1q CNA in the degree of hypoxia response in the

breast cancers. This finding has suggested a role of the gene dosage

of two HIF-1a negative regulators (ELGN1 and FH) as determinant

of tumor hypoxia responses as discussed below.

The link of CNAs to the variations in hypoxia/lactic
acidosis response in human cancers
There are three reasonable possibilities; variation in the hypoxia

response program might reflect: (1) actual variations in oxygen

tension in the tumors; (2) cell type-specific variations in the

magnitude of, or threshold for, the response to bona fide hypoxia,

similar to those seen in our analysis of different normal cells; or (3)

inappropriate activation of the hypoxia response resulting from

genetic and/or epigenetic alterations in cancers. Although the

hypoxia response in tumors is usually thought to be caused by the

first mechanism, evidence suggests contributions from the second

and third mechanisms as well. For example, activation of the

hypoxia response program in clear-cell RCC is almost certainly

caused by loss of VHL [4] rather than by low oxygen tension. In

breast cancer, the over-representation of p53 loss-of-function

mutations in the tumors with elevated hypoxia responses suggests

that the loss of the p53’s role in inhibiting HIF-1a protein stability

and hypoxia-induced cell death [4,55–57] may be a factor in these

tumors. Other oncogenic alterations in regulatory systems [3–7]

might also play a role in triggering or modifying the hypoxia

response in human cancers; a dissection of the contributions of

tumor oxygen levels and disordered regulation of the hypoxia

response in individual tumors will, therefore, be important in

developing therapeutic strategies based on exploitation or

inhibition of this program. Our results clearly demonstrate that

a significant amount of tumor CNAs are associated with the

hypoxia and lactic acidosis responses in human cancers and these

CNAs may contribute to variations in the hypoxia and lactic

acidosis gene sigantures. For example, the amplification of 1q

(factor 26) is often observed in subsets of breast cancers and is

associated with a group of breast cancers with more favorable

clinical outcomes [32]. The identification of negative correlation

between factor 26 (1q CNA) and the hypoxia response in breast

tumor and cell lines may help to explain such observations. Our

analysis has pointed out additional associated relationship between

particular CNAs and the hypoxia/lactic acidosis signatures to

allow the development of hypothesis on the mechanistic basis for

such association for experimental validation.

Tumor microenvironmental stresses as selection pressure
for CNAs
It is possible that the hypoxia, lactic acidosis and other tumor

microenvironmental stresses play a direct role in selecting for the

cancer cells with particular CNA. Such concepts have been

suggested by many reviews on the ability of hypoxia and acidosis

to select for tumor cells with strong metastasis phenotypes and

invasive behaviors [27,29,30]. Many of the breast tumor CNAs

observed in the Chin studies are also found in the cultured cells

undergoing telomere crisis and immortalization [32]. These

possibilities are also suggested by the CNAs we have identified

to be associated with hypoxia and lactic acidosis. For example we

have identified a strong positive correlation between the CNA in

22q11–13 associated with factor 23. Among the genes in this CNA

region is ATF4, a master regulator of transcriptional response of

unfolding protein response (UPR). It is known that hypoxia stresses

lead to the UPR and that the proper transcriptional module of

UPR is essential for cellular survival under hypoxia [65,66]. We

hypothesize that amplification of ATF4 and adjacent regions leads

to constitutive and strong UPR, conferring a survival advantage

for cells under hypoxia stresses.

Future direction and perspective
The strategy presented in this paper will be developed for

multiple sets of factors generated across the range of biological

pathways resulting from other microenvironmental stresses and

oncogenic signaling events. Further, the availability of both

sequencing data and gene expression data for sets of human

cancers from the Cancer Genomics Atlas Project will allow further

exploration of genetic changes identified as linked to dysregulated

expression of these gene signatures in human cancers. In one

sense, the dysregulated gene expression can be used as a biological

phenotype to help interpret and decipher the consequences of

genetic changes of different sizes, either on the amplification/

deletions of chromosomal regions of varying sizes or single base

mutations in human cancers. Such an integrative genomic

approach is likely to help unravel the enormous complexity of

human cancers and allow more precise and personalized

therapeutic strategies.

Methods

Statistical model specification
In general, for experiments performed on clones under strictly

controlled conditions, such as that, our models utilize multivariate

regression and analysis of variance with a fixed known design to

describe observed expression patterns. Suppose that we have p

isotope groups and n samples. We define X to be the p6n matrix of
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log-intensity values with elements xg,i. Let H be the r6n matrix,

with elements hj,I, whose columns consist of the r known design

vectors. We model the measured expression values as:

xg,i~mgz
X

r
j~1bg,jhj,izng,i where ng,i are iid N 0,yg

� �

or, in matrix form,

X*N m10zBH,Yð Þ

where 1’ is the n-dimensional column vector of 1’s and

Y= diag(y1:g).

Depending on the experimental context, the rows of H may

include entries reflecting treatment effects, environmental inter-

ventions, or clinical variables for which we want to control.

Sparsity priors
Because we are dealing with very high dimensional genomic

assays, we expect that most genes (probe sets) will not show

differential expression in relation to a particular design vector.

Mathematically, this statement is equivalent to the assumption that

the matrix B will be sparse (for most i and g we will have bg,i=0).

We reflect this assumption with the standard point mass mixture

distribution on the coefficients bg,i:

bg,i* 1{pj
� �

d0 bg,i
� �

zpjN bg,i D0,tj
� �

Our assumption is that the probability of any particular probe

associating with a given design vector is quite low, so we assign p a

low mean Beta prior. This structure leads to models for intensity

values that are as parsimonious as possible while still identifying

isotope groups that are related to the design vectors.

Latent factors
We have previously performed genomic analysis of Human

Mammary Epithelial Cells (HMEC) which have been exposed to

lactate, acidosis and combined lactic acidosis for 24 hours (GEO

accession number GSE9649) [25]. We fit the sparse regression

model described above to this data, and from this analysis, we

selected a set of 2984 genes based on the posterior probability of

differential expression – the posterior distribution for p – for any of

experimental groups being greater than .99.

The latent factors model as described thus far assumes that all

sources of variation in intensity are known and represented by a

fixed design. An important feature of the modeling formulation is

the ability to account for unknown sources of variation such as the

activity of various biological pathways. These sources would be

reflected in common intensity patterns across multiple subsets of

isotope groups, and will be described by the identification of

various factors.

Extending the model to include factors can be expressed as

X*N m10zBHzAL,Yð Þ

Where the k6n matrix L represents the realized values of k latent

factors across the n samples, having elements lj,i for factor j = 1:k

on sample i = 1:n. L is an analogue to the known matrix H (though

it contains unknown vectors to be learned). The columns of the

p6k factor loadings matrix A= ag,j are the coefficients of isotope

groups on factors (these are analogous to regression coefficients

in B.

We again make use of sparsity priors for the elements of A (the

same as those used for b). The elements of L may be given

standard normal prior distributions. The properties of this model

have been fully laid out fully in [3] along with details of

implementing the Markov Chain Monte Carlo (MCMC) algo-

rithm for fitting the parameters. Details on the use of this model in

the setting of predicting factor scores and pathway activity are laid

out in [1]. We make use of software which implements the MCMC

algorithm of [3] and is freely available to the public. The details of

using this software are described in [2].

We fit this factor model to the 251 samples from the Miller data

set and the 2984 genes from [25], resulting in the 56 factors that

we have described herein.

Enrichment in gene ontology and chromosomal
locations among the factors genes
Gather is a fully developed software product described [40]. To

assess enrichment for specific lists of probe sets, we simply drop the

list into the web based interface and all associations are tested and

reported.

Local enrichment ratio
We note that one of the features of the Bayesian sparse latent

factor model that we use is the estimation of posterior probabilities

for each gene and each factor, p*g,j. This parameter is interpreted

to be the posterior probability that gene g influences factor j or

alternatively the posterior probability that factor j is important for

describing the variation observed across samples for gene g. Now,

given a list of posterior probabilities for factor j we are faced with

the challenge of assessing the extent to which the genes with high

posterior probability cluster in a specific region of the genome. We

treat each factor independently, therefore for the purposes of

reducing notational complexity, we will drop the factor index, j.

Define xg to be the start location of a gene observed to be in the

factor and let kg(t) be a kernel function associated with genome

location xg. Because we know that CNA can occur across regions

of the genome that are relatively large compared to the length of a

gene, we approximate gene location with a point mass at its start

site. Using this approximation, we define kh(t) to be a discretized

normal distribution with mean h and variance t2, truncated at the

edge of the chromosome on which h resides and properly scaled (to

add to 1). This function serves to distribute a gene observed to be

in the factor across a large set of locations across the genome.

We define the local enrichment ratio at a point t along the

genome as

g tð Þ~ 1=M
X

g
pg�kg tð Þ

h i

,

1=M0

X

g
kg tð Þ

h i

Where M and M0 are integration constants, such that

M=gggtpg
*kg(t) and M0=gggtkg(t). This is a ratio of kernel

smoothed empirical distributions similar to that developed in [49]

and many other places. Kernel smoothers have a long history,

including their use in likelihood ratio tests. Some theory on the

properties of the ratios of kernel smoothed empirical distributions

has been worked out in [67] and their use in the context of partial

linear regression is described in [68]. However, literature on their

use in the context of gene expression data is minimal and their

application to posterior latent factor inclusion probabilities is

novel. For the purposes of this analysis, we are analyzing a set of

2984 genes, and this will limit our resolution to regions that are

significantly larger than the length of a gene. In general, the

appropriate kernel width (t2) will depend on the number of genes

Factor Models to Discover Sub-Signatures

PLoS Computational Biology | www.ploscompbiol.org 12 September 2010 | Volume 6 | Issue 9 | e1000920



in the gene lists (with a longer list of possible genes allowing for a

smaller sandard deviation in the kernel). For this paper, we utilize

a standard deviation of approximately 5% of the length of a

chromosome. However, testing across a wide range of sizes

demonstrates a relative insensitivity to this parameter (Figure S3).

In order to estimate an appropriate significance level for the

local enrichment ratio for a particular factor, we simulate from the

null distribution by permuting the posterior probabilities. Thus, if

s(g) is a permutation, then a sample LER from the null hypothesis

is generated as follows:

g tð Þ~ 1=M
X

g
ps gð Þ

�kg tð Þ
h i

,

1=M0

X

g
kg tð Þ

h i

Repeated simulations, using multiple different permutations across

all factors demonstrates that a significant LER varies according to

the window size of the kernel. However, at a kernel width that is

5% the size of a chromosome, the probability of a maximum

LER.3 across the entire genome is less than 1/10,000. Similar

significance levels for kernel widths of .5%, 2%, 8% and 11% are

2.3, 2.6, 4.5 and 6.

The projections of factors into other datasets to
investigate relationship with CNA
In order to assess the relationship between derived latent factors

and interventions/variables from other experiments, we need to be

able to estimate L, given A, in new data sets. That is, we have a new

data set, Y, and we wish to estimate the factor scores on this data set,

Ly. This is a well known problem of inverse regression; however,

because we are in the situation of very high dimensional data, we

know that A’A will not be invertible. This means that we cannot

simply apply the least squares estimator, Ly= (A’V21A)21A’V Y. We

address this issue by utilizing a Bayesian framework for the

estimation of Ly. In particular, we use the prior distribution

p Ly

� �

!exp {1=2 L0Lf g

This is a simplified version of a more general prior described in [36].

Then if A is the matrix of factor loadings (regression coefficients)

from model fitting and V is a diagonal matrix containing variances

for each gene, we estimate

Ly~ IkzA0V{1A
� �{1

A0V{1Y : ð2Þ

(In this equation, Ik is a k-dimensional identity matrix.) The

derivation of this posterior from the prior and likelihood are

discussed in both [36] and [69]. Goldstein et al. also discusses the

relationship of this estimator to ridge regression estimators [69].

The use of this solution to the inverse regression problem allows

us to build a factor model on any data set and project those factors

onto any other data set in which we have measurements of all of

the relevant probe sets. To test association between factors and

CGH, we project the factors discovered in [37] onto the data sets

from [32] and [50]. We then compare the 56 factor vectors to the

BAC clones from these data sets using Pearson correlation. This is

the same approach taken to project our factors onto the cell line

data from [25].

Estimation of the statistical significance of conserved
coordinate expression
We are interested in estimating whether a particular collection

of genes, showing coexpression in one data set, shows the same

type of coexpression patterns in a new data set. In essence, we

want to quantify the level of similarity between Figure 3A and

Figures 3B, C, D and E. It is first important to understand how

these figures were generated.

Note that, in this context, neither samples nor genes have a

canonical order, thus we may reorder both the rows and columns

of these heatmaps in order to make coherent expression more

clear. Thus, for visualization, we compute the first principal

component, u1, of the data matrix. Define rj to be the correlation

between u1 and row j of the data matrix and r to be the vector of

those correlations. Define |r|+ to be the number of rows, j, in the

data matrix for which rj.0 and |r|2 to be the number of rows

for which rj,0. We choose the sign of u1 so that |r|
+
.|r|2. The

columns are then sorted so that u1 is decreasing and the rows are

sorted so that r is decreasing.

One of the challenges inherent in assessing the extent to which a

particular expression pattern is conserved is due to the fact that the

samples are completely different. We note that the procedure

outlined in the previous paragraph can be used to sort a collection

of genes based on coexpression, and that it is entirely internal to

the data matrix. Thus, given a fixed set of genes and two

completely independent samples, we may use each data set to

perform this sorting. The rows of the five data matricies depicted

Figure 3 are all sorted according rmiller in order to enhance

interpretability.

We test the significance of conserved coordinate expression by

computing the Kendall correlation of two different methods of

sorting. Thus, from Figure 3, the Kendall correlation of rmiller and

rgray is .67, and the p-value associated with this correlation is

2.2610215. Note that, by default, the computation of the Kendall

correlation statistic involves first replacing the elements of rmiller
and rgray with their ranks. Thus, this is a non-parametric, rank

based correlation. Scatterplots of the ranks, comparing Miller to

each of Gray, Nevins, Berchuck and Freije are shown in Figure S5.

The relationship between the factor expression and
hypoxia and lactic acidosis signatures
This equation described above is used to project both signatures

and factors – using B instead of A in the case of signatures. Thus to

assess both signature and factor expression levels on an n-

dimensional data set, one first projects the relevant factors and

signatures, then compares the obtained n-dimensional vectors to

each other with whatever test is relevant. In this paper, we use

Pearson correlation to assess significance of association. The

procedure for comparing signatures to array CGH is, thus, exactly

analogous to that used for comparing factors to array CGH.

HIF-1a proteins and association with factor 26
The indicated breast cancer cell lines were cultured under

ambient air, lysed and supplemented with protease inhibitor

cocktail (Roche Applied Science) followed by sonication and cold

centrifugation. Equal volumes of sample buffer were added to

20 ug of proteins, boiled, resolved on a 10% Tris-HCl gel (Bio-

Rad), and transferred onto polyvinylidene fluoride (PVDF)

membrane (Hybond-P, GE Healthcare). HIF-1a protein was

detected using anti-HIF-1a monoclonal antibody (cell signaling)

followed by horseradish peroxidase (HRP)-conjugated goat anti-

rabbit IgG antibody (Abcam). The western blot was then

visualized by enhanced chemoluminoscence (Western Lightning-

ECL Plus, PerkinElmer) and exposure to film. Images were

digitized by scanner. To control for protein loading, the

membranes were stripped (Restore Plus, Thermo Scientific) and

reprobed with goat anti-rabbit antibody to beta-tubulin (Abcam).

Densitometric measurements were performed with ImageJ
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software (http://rsb.info.nih.gov/ij/). The correlation between the

normalized HIF-1a with tubulin signals with factor 26 was

calculated by GraphPAD Prisms.

Supporting Information

Figure S1 The coordinated expression of the latent factors in the

five indicated cancer datasets of breast, lung, ovarian and brain

cancers.

Found at: doi:10.1371/journal.pcbi.1000920.s001 (5.76 MB ZIP)

Figure S2 The local enrichment ratios (LER) for chromosomal

enrichment of the latent factors.

Found at: doi:10.1371/journal.pcbi.1000920.s002 (0.86 MB ZIP)

Figure S3 The local enrichment ratios (LER) for chromosomal

enrichment of the latent factor 26 using different amount of

Kernel widths.

Found at: doi:10.1371/journal.pcbi.1000920.s003 (0.25 MB TIF)

Figure S4 The association of the BAC clones with the

expression of CNA-associated factors.

Found at: doi:10.1371/journal.pcbi.1000920.s004 (2.15 MB ZIP)

Figure S5 Scatterplots comparing the ranking of genes in factor

26 as computed with each of the 5 different data sets. High levels

of correlation indicate a factor that is conserved between the two

data sets.

Found at: doi:10.1371/journal.pcbi.1000920.s005 (0.09 MB TIF)

Table S1 The gather analysis of the GO enrichments and

enrichment for all in their chromosomal locations based on gather,

local enrichment ratio (LER) and association with BAC clones for

the 56 latent factors.

Found at: doi:10.1371/journal.pcbi.1000920.s006 (0.03 MB XLS)

Table S2 Full gather analysis of chromosome location for each

factor.

Found at: doi:10.1371/journal.pcbi.1000920.s007 (0.08 MB ZIP)

Table S3 Full gather analysis of gene ontology for each factor.

Found at: doi:10.1371/journal.pcbi.1000920.s008 (0.43 MB ZIP)

Text S1 Statistical supplement - matlab code and parameter files

for duplicating results.

Found at: doi:10.1371/journal.pcbi.1000920.s009 (10.99 MB ZIP)

Text S2 The lists of the probsets in each of the latent factors.

Found at: doi:10.1371/journal.pcbi.1000920.s010 (0.02 MB ZIP)

Text S3 The lists of the BAC clones associated with expression

of CNA-associated factors.

Found at: doi:10.1371/journal.pcbi.1000920.s011 (0.01 MB ZIP)
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