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Robust cross-subject emotion recognition based on multichannel EEG has always

been hard work. In this work, we hypothesize that there exist default brain variables

across subjects in emotional processes. Hence, the states of the latent variables

that relate to emotional processing must contribute to building robust recognition

models. Specifically, we propose to utilize an unsupervised deep generative model

(e.g., variational autoencoder) to determine the latent factors from the multichannel

EEG. Through a sequence modeling method, we examine the emotion recognition

performance based on the learnt latent factors. The performance of the proposed

methodology is verified on two public datasets (DEAP and SEED) and compared

with traditional matrix factorization-based (ICA) and autoencoder-based approaches.

Experimental results demonstrate that autoencoder-like neural networks are suitable for

unsupervised EEGmodeling, and our proposed emotion recognition framework achieves

an inspiring performance. As far as we know, it is the first work that introduces variational

autoencoder into multichannel EEG decoding for emotion recognition. We think the

approach proposed in this work is not only feasible in emotion recognition but also

promising in diagnosing depression, Alzheimer’s disease, mild cognitive impairment, etc.,

whose specific latent processes may be altered or aberrant compared with the normal

healthy control.

Keywords: latent factor decoding, emotion recognition, EEG, deep learning, variational autoencoder

1. INTRODUCTION

In recent years, affective computing has started to become an active research topic in fields
of pattern recognition, signal processing, cognitive neuropsychology, etc. Its main objective is
exploring effective computer-aided approaches in recognizing a person’s emotions automatically by
utilizing explicit or implicit body information, e.g., through facial expressions or voices. It has wide
application prospects within the field of human-computer interaction (e.g., intelligent assistants
and computer games) (O’Regan, 2003; Moshfeghi, 2012) and psychological health care (Sourina
et al., 2012) the WHO estimates that depression, as an emotional disorder, will soon be the second
leading cause of the global burden of disease (WHO, 2017).
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Considering that facial or vocal muscle activity can
be deliberately controlled or suppressed, researchers are
currently starting to explore this question through implicit
neural activities, particularly through the multichannel EEG
(electroencephalograph). The neural oscillations revealed
by the EEG are highly correlated with various dynamic
cognitive processes (Ward, 2004), including the emotional
processes. Hence, its multichannel monitoring and high
temporal resolution provide us with possibilities in exploring
robust indicators and computational methods for EEG-based
emotion recognition.

Nevertheless, there exist some major problems with regards to
multichannel EEG-based emotion recognition that need to deal
with, such as the poor generalization of data across subjects and
the limitations in designing and extracting handcrafted emotion-
related EEG features. Further, in medical data-mining tasks,
acquiring enough manually labeled data for training supervised
models remains a problem. How to fully utilize the limited data
to enhance the model performance is worthy of exploration.
Hence, unsupervised and handcrafted featured non-dependent
modeling methods are worth in-depth exploration.

In this work, we have utilized the findings of prior related
works (Adolphs et al., 1994; Vytal and Hamann, 2014) and raised
the hypothesis that, though differences exist between individuals,
there exist also intrinsic default variables (e.g., brain networks
or intracranial current sources) that take part in emotional
processes. Then, the characteristics of these intrinsic variables can
be utilized for analyzing different emotional states. Specifically, in
this work, three unsupervised autoencoder-like neural network
models have been utilized to model the multichannel EEGs and
infer the state space of the latent factors. Based on the state
sequences of the factors, the participants’ emotional status can be
estimated by applying a contextual modeling method. According
to the experimental results, the unsupervised neural network
models are effective and feasible in modeling multichannel
EEG, and the inferred factors indeed contain emotion-related
information that are beneficial for further emotion recognition.

2. MATERIALS AND METHODS

2.1. An Overview of the Framework
Emotional processes are higher-order cognitive processes that
are produced by the collaborative involvement of various latent
brain factors, including different brain areas and physical or
functional brain networks. The status information of the latent
factors contains emotion-related information that contribute to
estimating the emotional status. Hence, how to effectively and
precisely infer the latent factors is the core issue that we have
been concerned with in this work. As the EEG is the external
manifestation of the latent brain factors’ activities, the recorded
EEGs of different scalp locations having internal associations, it
has provided us with a way to infer the latent factors from the
external multichannel EEGs.

In this work, we have studied and compared three kinds
of autoencoder-form neural network models, including the
traditional autoencoder (AE), the variational autoencoder (VAE),
and the restricted Boltzmann machine (RBM) to determine the

latent factors from the multichannel EEG data. Furthermore, for
estimating the emotional status, after training, the state sequences
of the latent factors were modeled by contextual learning models
(e.g., the LSTM unit-based recurrent neural network); at the
same time, the emotional status can be estimated based on
the contextual information. The entire method framework is
illustrated in the flow chart as in Figure 1.

2.2. Neural Network-Based Latent Factor
Decoding Models
Latent factor decoding from a brain activity signal is a key
tool for studying cognitive task performance and impairment
(Calhoun and Adali, 2012). The decoded factors can be further
utilized to locate the intracranial current sources or identify
intrinsic brain networks. Most of the popular methods for
inferring latent factors have the core assumption of the existence
of hidden factors that are mixed to produce the observed data
(Calhoun et al., 2010).

Traditionally, in order to model latent factors, we first
need to determine the independent components (ICs) from
the multichannel brain signals by solving a blind source
separation (BSS)/single matrix factorization (SMF) problem,
among which the independent component analysis (ICA) is the
most commonly used method (Chen et al., 2013). Specifically,
the multichannel EEGs are expressed as a channels-by-time data
matrix En×t , where the t is the number ofmeasured time points of
a signal, and the n is the number of electrodes (channels). Solving
the BSS/SMF problem is to discover the underling latent source
factors Sm×t from the external multichannel EEG signals, where
them is the number of hypothesized factors, and t is the number
of data points in one source signal. The relationship between the
multichannel EEGs and the latent source factors is expressed in
Formula 1:

E
n×t ≈ M

n×m
S
m×t , (1)

where the channels-by-sources matrix M is the unknown
“mixing” matrix. Hence, for determining the latent factors, we
need to find the “demixing” matrix D, which is the inverse of the
matrixM that satisfies S ≈ DE.

In the above latent factor decoding studies, the “demixing”
matrix D and the ICs are determined through some methods
based on matrix factorization (e.g., the ICA). However, the
utilization of ICA has been limited by its flexibility and
representation ability (Choudrey, 2002). Hence, its effectiveness
in the scenario of cross-subject decoding and recognition is
questionable. Currently, various deep learning (DL) models
have been applied to solve supervised or unsupervised learning
problems in fields of computer vision and natural language
processing. Besides, DL-based approaches can learn intermediate
concepts, which could yield better transfer across source and
target domains (Glorot et al., 2011). Recent works have
verified that the fMRI volume-based DL approach can identify
comparable latent factors to the ICA-based approach (Huang
et al., 2016). Hence, this inspires us to introduce neural network
models to solve the problem of latent factor decoding from
emotional EEG data.
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FIGURE 1 | The decoded EEG factors and recurrent neural network-based emotion recognition approach framework.

2.2.1. Traditional Autoencoder-Based Decoding

Approach

The basic autoencoder model is a feedforward neural network
that consists of symmetrical network structures: the “encoder”
and “decoder.” To be more specific, consider one dataset X =

{x(t)}Nt=1 of variable x. As in Formula 2, the encoder is responsible
for encoding the input into a higher-level (and generally
compressed) representation, which we call the “bottleneck.”
Then, as in Formula 3, the decoder is responsible for
reconstructing the input data based on the hidden representation.
The parameters of the AE are optimized by minimizing the
difference (reconstruction error) between the output data and
input data, as in Formula 4.

h
(t)
j = f (

∑

i

W1
ijx

(t)
i + b1) (2)

x
(t)
i = f (

∑

j

W2
ijh

(t)
j + b2) (3)

L(W1,W2, b1, b2;X ) =
∑

x(t)∈X

‖ x(t) − x(t) ‖ (4)

The AE is generally trained through a back propagation (BP)
method. As we can see, the AE shares some practical similarities

with the SMF models. To some extent, the weight matrices W1

and W2 can also been regarded as “demixing” and “mixing”
secret keys, respectively. Then, the relationship between the
observed EEGs and the latent factors can be determined by them.

2.2.2. Restricted Boltzmann Machine-Based

Decoding Approach

A restricted Boltzmann machine (RBM) is a kind of undirected
probabilistic graph model with no connections between units
of the same layer. It provides the possibility of constructing
and training deeper neural networks (Hinton and Salakhutdinov,
2006). From a probabilistic modeling perspective, the latent
factors learned in an RBM give a description of the distribution
over the observed data. Specifically, an RBM specifies the
distribution over the joint space [x, h] via the Boltzmann
distribution, as in Formula 5:

p(x, h; θ) =
1

Zθ

exp(−εRBMθ (x, h)) (5)

in which Zθ is the normalization term, and εRBMθ (x, h) is the
system energy function, namely:

εRBMθ (x, h) = −xTWh− aTx− bTh (6)
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where θ = {W, a, b} are the model parameters that respectively
encode the visible-to-hidden interactions (W), the visible self-
connections (a), and the hidden self-connections (b). The visible
and hidden nodes of RBM are typically binary statistic units.
Nevertheless, for EEG data, the visible nodes need to model a
distribution that is an approximately real value and Gaussian.
Hence, the RBM adopted here is the Gaussian RBM, where the
conditional distribution of a single hidden and visible node is
given by:

P(hj = 1|x) = σ (
∑

i

Wijxi + bj) (7)

and

xi ∼ N (σi
∑

i

Wijhj + ai, σi) (8)

where σ (.) is the logistic function and N (µ, σ ) is the normal
distribution with mean µ and standard deviation σ . Further, we
make a corresponding modification for the energy function, as in
Formula 9:

εRBMθ (x, h) = −
∑

ij

xi

σi
Wijhj −

∑

i

(ai − xi)
2

σ 2
−

∑

j

bjhj (9)

The parameters θ = {W, a, b} are optimized by training
the RBM to maximize the likelihood of the observed data:
∑N

t=1 P(x
(t); θ). The traditional gradient descent-based method

to maximize the likelihood is intractable in the RBM based
approach. This problem is solved by approximating the gradient
through Markov Chain Monte Carlo (MCMC) where contrastive
divergence (CD) with truncated Gibbs sampling is applied to
improve computational efficiency (Hinton, 2002). The model
is further unrolled to a symmetrical auto-encoder structure,
whose parameters, as was discovered in the CD process, are
fine-tuned with a back-propagation (BP) process, much like the
traditional auto-encoders.

2.2.3. Variational Autoencoder-Based Decoding

Approach

Very recently, the variational autoencoder (VAE) was introduced
as a powerful DL model for some problem scenarios that needed
modeling of the data’s probability distribution (Kingma and
Welling, 2014). The objective function of traditional AE only
measures the value difference between the input and output
vector. The difference in distribution cannot be reflected and
controlled. Compared with the traditional AE model, the VAE
model provides a closed-form representation of the distribution
underling the input data, which is quite suitable for unsupervised
learning of the latent factors.

It hypothesizes that all the data are generated by one random
process that involves an unobservable latent variable z. The latent
variable is generated from one prior distribution pθ (z), and the
x is determined by the conditional distribution pθ (x|z). Both
the parameters θ and the latent variable z are unknown to us.
The direct inference of the latent variable pθ (z|x) is intractable.
Hence, in the design of the VAE, one recognition model qφ(z|x)

is introduced to approximate the true posterior pθ (z|x). The
VAE utilizes the probabilistic encoder structure to encode the
input into latent variables (qφ(z|x)), and it further utilizes the
probabilistic decoder structure to map the latent variables to
reconstructed input (pθ (x|z)). The optimization objective of the
VAE is expressed in Formula 10:

maxEqφ (z|x)[log pθ (x|z)]− DKL(qφ(z|x)||pθ (z)) (10)

This is also referred to as the variational lower bound.
The first term Eqφ (z|x)[log pθ (x|z)] is the expectation of the

logarithmic likelihood with regard to the approximate posterior
qφ(z|x). It can be obtained through Monte Carlo estimate,
namely through sampling L times, as in Formula 11:

1

L

L
∑

l=1

log pθ (x
(t)|z

(t)
l
) (11)

The second term −DKL(qφ(z|x)||pθ (z)) is the KL divergence of
the approximate posterior qφ(z|x) from the true prior pθ (z). It is
computed through Formula 12:

1

2

J
∑

j=1

(1+ log(σ
(t)2
j )− µ

(t)2
j − σ

(t)2
j ) (12)

Let J be the dimensionality of z.
To sum up, the prior variational lower bound can be further

transformed into the following form in Formula 13:

L(θ ,φ; x(t)) ≃
1

2

J
∑

j=1

(1+ log(σ
(t)2
j )− µ

(t)2
j − σ

(t)2
j )

+
1

L

L
∑

l=1

log pθ (x
(t)|z

(t)
l
)

(13)

where the z is sampled with a reparameterization trick, namely

z
(t)
l

= µ(t) + σ (t) ⊙ ǫl and ǫl ∼ N (0, I), and the ⊙ refers
to the element-wise product. Both the qφ(z|x) and pθ (z) are
assumed to obey the centered isotropic multivariate Gaussian,
namely qφ(z|x

(t)) = N (z;µ(t), σ (t)2I), where the mean µ(t)

and standard deviation σ (t) are the computation outputs of the
encoder network with respect to the input x(t) and the variational
parameter φ. The VAE is trained through stochastic gradient
descent and back-propagation (BP) method. Compared with
the traditional matrix factorization-based approach, the VAE is
formulated as a density estimation problem. The structure and
mechanism of the three autoencoder-like neural network models
are illustrated in Figure 2.

2.3. Contextual Learning From Latent
Factors for Emotion Recognition
According to some studies, the generation of the emotional
experience generally lags behind the activity of the brain
neural systems (Krumhansl, 1997). The recurrent neural network
(RNN), meanwhile, has the ability to accumulate useful
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FIGURE 2 | The neural network-based multichannel EEG fusion and latent factor decoding method.

information at each time step, by which the influence of the lag-
effect can be eliminated. This is important when we do not know
which moment plays the most important role in the subject’s
final evaluation of the specific emotion they experienced in a
trial. In view of this, we have considered adopting the RNN
model to perform sequence modeling on the decoded latent
factor sequences; meanwhile, the subjects’ emotional status can
be estimated, as shown in Figure 1, whereas traditional RNN’s
practical application is limited by the “gradient vanish” in back-
propagation when its dependencies is too long. Some rectified
recurrent units have been adopted in the RNN model, in which
the LSTM unit that contains a “gate” structure has gained great
success in various sequence-modeling tasks, such as speech
recognition (Graves et al., 2013). The popular LSTM unit-based
RNN model was therefore selected in this work.

Specifically, in this work, we have fed the multichannel EEGs
into the “encoder” part of the trained models to obtain the
corresponding latent factor sequences, namely the independent
components (ICs): IC = {IC(t)}Nt=1. The high sampling rate EEG
signal also corresponds to the high sampling rate ICs, which will
lead to the high computational cost in sequence modeling. Here
we need sampling from the entire ICs to construct samples for
LSTM training. For the m sampled elements from the entire ICs,
the mechanism of the recognition model can be formulated as:

< IC(1), ..., IC(t), ..., IC(m) >7→ L(m) 7→ L (14)

which follows the “many-to-one” mode.

2.4. Experimental Dataset
We examined the proposed approach on two publicly accessible
datasets, including DEAP (Koelstra et al., 2011) and SEED

(Zheng and Lu, 2015). DEAP included 32-channel EEG data

collected from 32 subjects, and the subjects rated their emotional
experience on a two-dimensional emotional scale, namely
Arousal (which ranges from relaxed to aroused) and Valence
(which ranges from unpleasant to pleasant). The higher the
specific rating was, the more intense the emotion was in
a specific dimension. SEED included 62-channel EEG data
collected from 15 subjects. After data acquisition, some basic
preprocessing processes were conducted, such as removing the
electrooculogram (EOG) and electromyogram (EMG) artifacts.

The samples of DEAP were divided into positive and negative
samples according to the ratings on the Valence and Arousal
emotional dimensions. A sample with score over five points was
considered to be a positive class, while a sample with a score
below five points was considered a negative class. The SEED
dataset had pre-defined negative and positive emotional classes
for the samples that we did not need to conduct label processing.

3. RESULTS AND DISCUSSION

3.1. EEG Decoding Method Settings
In addition to removing EEG artifacts, we conducted z-score
method-based normalization for each subject’s channel data.
For comparison, we built a one-hidden-layer structure for the
neural network models, and the number of hidden nodes was
set according to the number of latent factors we set in advance
(DEAP: 2–16, SEED: 2–31). Both of the two datasets were
acquired with high sampling rate. Take the DEAP dataset for
example; the number of samples of one subject was over 320,000.
Hence, considering the training speed, we set the batch size for
unsupervised latent factor learning as 500. The loss functions
were selected and set according to the descriptions in section
2.2. We selected the Adam and RMSprop method for AE and
VAE training, respectively. According to the experiments, the
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loss function can converge to the minimum within 20 training
epoches. The RBM model-based approach was realized through
the Matlab DeeBNet V3.0 deep belief network toolbox, whereas
the AE- and VAE-based approaches were realized through the
deep learning framework–Keras based on Tensorflow backend.
More experimental setting details can be accessed in the source
codes located in the following repository: https://github.com/
muzixiang/LatentFactorDecodingEEG.

TABLE 1 | Three main categories of EEG features that we extracted for baseline

methods.

Feature Type Extracted Features

Time-frequency 1. Peak-Peak Mean. 2. Mean Square Value.

domain features 3. Variance. 4. Hjorth Parameter:Activity.

5. Hjorth Parameter: Mobility.

6. Hjorth Parameter: Complexity.

7. Maximum Power Spectral Frequency.

8. Maximum Power Spectral Density.

9. Power Sum.

Non-linear dynamical 1. Approximate Entropy. 2. C0 Complexity.

system features 3. Correlation Dimension.

4. Kolmogorov Entropy.

5. Lyapunov Exponent.

6. Permutation Entropy. 7. Singular Entropy.

8. Shannon Entropy. 9. Spectral Entropy.

Asynchronous brain 1. Fp1-Fp2. 2. AF3-AF4. 3. F3-F4.

activity features 4. F7-F8. 5. FC5-FC6. 6. FC1-FC2.

7. C3-C4. 8. T7-T8. 9. CP5-CP6.

10. CP1-CP2. 11. P3-P4. 12. P7-P8.

13. PO3-PO4. 14. O1-O2.

For comparison, we also set an experiment of an ICA-based
decoding approach, and selected FastICA as the implementation
method, which is most widely used and accepted in the
resolution of EEG source localization and blind source separation
problems. This is due to the fact that the ICA-based approach
has problems in determining the specific order of the latent
components as well as the reconstructed multi-channel EEGs.
In this work, we also took this problem into consideration.
Specifically, for each original channel EEG, we measured
the correlation between it and each reconstructed signal.
We supposed that the reconstructed signal with the highest
correlation was the counterpart of the specific original EEG,
and the highest correlation was adopted here to measure the
reconstructed performance of the ICA-based approach. Besides,
the reconstruction experiment and performance measurement
were conducted 10 times to increase the reliability of the results,
and the average performance was reported in this paper. Though
we know this is a crude approach, and there may be some
mistakes in determining the counterpart for the original EEG,
the reported results here were indeed the best estimation and
constituted the performed upper bound for ICA.

Besides, the performance of the PCA-based approach was also
presented. Nevertheless, the PCA and ICA were totally different
in theory and application scenarios. The PCA-based approach
was generally used as a dimension reduction method, which is
not to mine the underling random processing but try to extract
the most important information that can best represent the
original data. In this work, we were interested in the EEG latent
factors-based approaches. Anyway, as a classic method, the PCA
was also worth exploring, and we also added experiments when
the PCA approach was adopted.

3.2. Emotion Recognition Method Settings
Although LSTM unit-based RNN has the ability to process long-
term sequences, in the case of high-sampling rate EEG signals,

FIGURE 3 | The reconstruction performance (mean Pearson correlation coefficient) of different decoding models when assuming a different number of latent factors.
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signal sequences with hundreds of thousands of data points can
introduce significant time overhead in sequence learning. Hence,
as shown in Figure 1, the training sequences were constructed
based on the sampling step size, and the data were sampled
from the sequence at equal intervals according to the step size.
This strategy was good for quickly verifying the experimental
results. In the experiment, we set the sampling step size as 0.25
s. The number of input layer nodes of the LSTM unit were
determined by the number of latent factors. The number of
output hidden layer nodes was set to 200, and the output nodes
were fully connected with one hidden layer containing 100 Relu-
type nodes. At the end of the model, a decision-making layer with
Softmax-type nodes that represent different emotional state was
connected. Besides, the Dropout operation was set for the last two
fully connected layers. The model loss function was set to binary
cross entropy, the batch size was set to 50, and the RMSprop
algorithm was selected as the optimization method.

We also set baseline methods based on handcrafted features
for comparison with our framework. We choose the support
vector machine (SVM) combined with the L1-norm penalty-
based feature selection method (SVM-L1). Besides, random
forests (RF), K-nearest neighbors (KNN), logistic regression

(LR), naive bayes (NB), and the feed-forward deep neural
network (DNN) were also examined. As listed in Table 1, three
main categories of EEG features were extracted for Theta rhythm,
Alpha rhythm, Beta rhythm, and Gamma rhythm, including nine
kinds of time-frequency domain features (TFD features), nine
kinds of non-linear dynamical system features (NDS features),
and 14 pairs of brain hemisphere asynchronous activity features
(BHAA features). Hence, For the DEAP dataset, the total number
of feature dimensions for one trial was 2360 (4_rhythms ×

32_channels × (9_TFfeatures + 9_NDSfeatures) + 4_rhythms ×
14_BHAAfeatures). For the SEED dataset, the total number
of features extracted for one trial was 4520 (4_rhythms ×

62_channels × (9_TFfeatures + 9_NDSfeatures) + 4_rhythms ×
14_BHAAfeatures). Besides, several related representative works
in recent years are also compared.

3.3. Evaluation Metrics
For evaluating the reconstruction performance, we adopted
the Pearson correlation coefficient as the metric to measure
the difference between the input original channel signal and
the output reconstructed signal, as in Formula 15. In other
words, high r-value indicated the model has good ability in

FIGURE 4 | The reconstruction performance (mean Pearson correlation coefficient) of different subjects when assuming a different number of latent factors (take the

DEAP for example).
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reconstructing the time series. This metric gave us a general view
of the feasibility and effectiveness of the model in modeling the
multichannel EEG data.

rxinxout =

∑n
t=1(x

(t)
in − xin)(x

(t)
out − xout)

√

∑n
t=1(x

(t)
in − xin)2

√

∑n
t=1(x

(t)
out − xout)2

(15)

For evaluating the emotion recognition performance, we chose
to leave one subject’s data out of the cross-validation method to
compare our framework with the baseline methods. Every time,
we left one subject’s data out as the test set and adopt the other
subjects’ data as the training set. Considering the problem of
unbalanced classes, the model performance was evaluated on the
test set based on the F1-score metric, as in Formula 16. This
procedure iterates until each subject’s data has been tested.

Pf 1 = 2 ·
Precision · Recall

Precision+ Recall
(16)

3.4. Evaluation on EEG Modeling and
Reconstruction
The reconstruction performance under different assumed
number of latent factors was of interest. In this work, we
examined the reconstruction performance with varying number
of latent factors. Specifically, considering the experimental cost,
we only examined the number of latent factors from two to
half the number of EEG channels. As shown in Figure 3, the
performance was gradually improved with the increased number
of latent factors for all the approaches. It can be found that,
with the increase of the number of latent factors, the AE
and RBM even obtained an approximate 100% reconstruction

performance on the DEAP dataset. Nevertheless, it should be
noted that the VAE-based modeling method was special, and
its reconstruction performance did not always improve with the
increase of the number of latent factors. The mean correlation
coefficient gradually stabilized at around 0.9. Besides, when tested
on the SEED dataset, the VAE-based method could achieve
a better reconstruction performance than other methods with
fewer hidden layer node settings, which indicated that the
method had the ability to mine the most important latent
factors from multichannel EEGs. The PCA performed well on
both datasets, as expected; however, the PCA-based approach
was a kind of dimension reduction method, which was not to
mine the underling random process. We still need to examine
their effectiveness in recognizing subjects’ emotions by further
utilizing the pattern recognition methods.

Whether the reconstruction performance was consistent
across subjects when assuming different latent factors is worth
exploring. As shown in Figure 4, we presented the AE model-
and VAE model-based reconstruction performance with varying
number of latent factors on each subject’s data. The experimental
results indicated that, for each subject’s data, the performance
improves gradually with the increase of the number of latent
factors, and we obtain relatively smooth curves on each of
the subjects’data. Though, for the VAE model, there was
a little fluctuation, the performance on all subjects’ data
eventually stabilized.

As shown in Figure 3, the reconstruction performance of
the ICA-based method was always much lower than the neural
network-based modeling method. This suggested that neural
network based approaches are more suitable for modeling
and decoding brain neural signals than ICA based method.
According to the Universal Approximation Theorem, a neural

FIGURE 5 | Pearson correlation coefficient between the reconstructed EEG signal and the original EEG signal for each channel. (A) The reconstruction performance

of different methods on DEAP dataset. (B) The reconstruction performance of different methods on SEED dataset.
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network structure with a single hidden layer can approximate
any function. In other words, even if we restrict our networks to
have just a single layer intermediate between the input and the
output neurons–a so-called single-hidden-layer network–such
a simple network architecture can be extremely powerful.
Hence, it is not surprising that the neural networks adopted in
this work can achieve a good reconstruction performance. As
illustrated in Figure 4, the neural network obtained a relatively
stable reconstruction performance on each subject’s data. The
performance increased gradually and achieved a sufficiently good
performance when setting proper number of latent factors. It also
indicated the effectiveness and robustness of the neural networks
in decoding and reconstructing multichannel EEGs.

Besides, as shown in Figure 5, we illustrated the performance
of eachmethod in reconstructing themultichannel EEGs through

TABLE 2 | Recognition performance on subject data of DEAP dataset (Valence).

Subject No. ICA+LSTM PCA+LSTM AE+LSTM RBM+LSTM VAE+LSTM

s01 0.5818 0.6296 0.6207 0.6296 0.6552

s02 0.5882 0.6897 0.6885 0.7018 0.7213

s03 0.7097 0.6897 0.7241 0.7097 0.7097

s04 0.4444 0.5455 0.5490 0.5000 0.5818

s05 0.5965 0.7000 0.7302 0.7500 0.7541

s06 0.7241 0.7500 0.7419 0.8529 0.8182

s07 0.7368 0.7619 0.7586 0.8065 0.8125

s08 0.6071 0.6415 0.6545 0.6780 0.7213

s09 0.5217 0.4898 0.5926 0.6545 0.6552

s10 0.6207 0.6182 0.6441 0.6441 0.7059

s11 0.6909 0.6552 0.7097 0.7419 0.7500

s12 0.6667 0.6909 0.6552 0.6885 0.7000

s13 0.4186 0.5714 0.6182 0.5882 0.6182

s14 0.4444 0.5926 0.6182 0.6429 0.6780

s15 0.5200 0.6143 0.6667 0.6441 0.6667

s16 0.4706 0.5217 0.5306 0.5385 0.5660

s17 0.6786 0.6552 0.6885 0.6897 0.7097

s18 0.6667 0.6983 0.7407 0.7213 0.7500

s19 0.7059 0.6697 0.7302 0.7302 0.7419

s20 0.7018 0.7119 0.7097 0.7302 0.7719

s21 0.6667 0.6600 0.6441 0.6780 0.6667

s22 0.5306 0.5333 0.5965 0.6207 0.6207

s23 0.7000 0.7170 0.7119 0.7241 0.8000

s24 0.5106 0.5714 0.6207 0.5714 0.6316

s25 0.4889 0.5532 0.6441 0.6441 0.6441

s26 0.6415 0.7619 0.7333 0.7692 0.7813

s27 0.8060 0.8309 0.8125 0.8235 0.8529

s28 0.6786 0.7070 0.7241 0.7692 0.7619

s29 0.6667 0.6667 0.7097 0.7143 0.7541

s30 0.7742 0.7241 0.7813 0.8125 0.8182

s31 0.6667 0.6897 0.7018 0.7302 0.7213

s32 0.6441 0.5769 0.6538 0.6667 0.6897

Mean Pf1 0.6303 0.6528 0.6783 0.6927 0.7167

1number of latent factors: 16.

a channel layout heatmap format. The mean Pearson correlation
coefficient over all the subjects is presented. The greater the
value, the darker the color. Specifically, the figure shows the
reconstructed performance when the number of latent factors
is set as half the number of electrode channels (DEAP: 16
latent factors, SEED: 31 latent factors), which achieve the
best reconstruction performance, as shown in Figure 3, and
the averaged r-values are presented. It can be seen that the
AE- and RBM-based methods on both datasets achieved the
best reconstruction effect. Nevertheless, the frequently used
ICA-based method was obviously inferior to other methods on
the whole, and there existed significant performance imbalance
in different brain regions. It indicated that the ICA-based EEG
modeling approach was not robust compared to the neural
network-based approaches.

TABLE 3 | Recognition performance on subject data of DEAP dataset (Arousal).

Subject No. ICA+LSTM PCA+LSTM AE+LSTM RBM+LSTM VAE+LSTM

s01 0.6545 0.7241 0.7419 0.7419 0.7500

s02 0.7119 0.7018 0.7458 0.7500 0.7619

s03 0.2791 0.3182 0.3043 0.3111 0.3478

s04 0.4138 0.5714 0.5106 0.5660 0.5714

s05 0.5600 0.6441 0.6316 0.6316 0.6441

s06 0.5200 0.6182 0.5818 0.5818 0.6275

s07 0.7213 0.7338 0.7541 0.7500 0.7869

s08 0.6667 0.6667 0.7213 0.7018 0.7333

s09 0.6885 0.7302 0.7419 0.7213 0.7636

s10 0.5660 0.6154 0.6667 0.6667 0.7097

s11 0.5217 0.4898 0.5455 0.5306 0.5556

s12 0.8000 0.8732 0.8889 0.8889 0.9041

s13 0.5385 0.7125 0.7419 0.9041 0.8889

s14 0.7241 0.7385 0.7619 0.7937 0.8060

s15 0.5882 0.6316 0.6545 0.6552 0.6667

s16 0.6273 0.6296 0.6545 0.6667 0.6667

s17 0.6667 0.7302 0.7241 0.7333 0.7869

s18 0.7541 0.7500 0.7692 0.7500 0.7742

s19 0.7213 0.7213 0.8060 0.7097 0.8065

s20 0.7879 0.8060 0.8235 0.8657 0.8732

s21 0.8529 0.8406 0.8732 0.8696 0.9014

s22 0.7241 0.7458 0.7500 0.7500 0.7500

s23 0.3673 0.3404 0.3750 0.4000 0.4000

s24 0.8358 0.8889 0.8696 0.8732 0.9041

s25 0.7500 0.7458 0.8182 0.8406 0.8406

s26 0.5714 0.5769 0.5769 0.5965 0.6071

s27 0.6780 0.7797 0.8060 0.7879 0.8060

s28 0.6071 0.6071 0.6154 0.6207 0.6545

s29 0.7018 0.7000 0.7458 0.7419 0.7586

s30 0.6182 0.5769 0.6207 0.6207 0.6441

s31 0.5769 0.6182 0.6316 0.6316 0.6552

s32 0.7213 0.7419 0.7692 0.7541 0.8148

Mean Pf1 0.6418 0.6741 0.6944 0.7002 0.7243

1number of latent factors: 16.
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TABLE 4 | Recognition performance on subject data of SEED dataset.

Subject No. ICA+LSTM PCA+LSTM AE+LSTM RBM+LSTM VAE+LSTM

s01 0.6753 0.7195 0.7368 0.7677 0.8308

s02 0.6897 0.7636 0.7386 0.7721 0.8504

s03 0.7255 0.7259 0.7674 0.8018 0.8741

s04 0.6434 0.6495 0.6677 0.6915 0.7012

s05 0.6683 0.7221 0.7323 0.7552 0.8027

s06 0.7321 0.7333 0.7733 0.8054 0.8904

s07 0.7143 0.7713 0.7525 0.7953 0.8600

s08 0.7053 0.7479 0.7488 0.7897 0.8571

s09 0.6912 0.7080 0.7430 0.7759 0.8538

s10 0.6677 0.7599 0.7264 0.7452 0.7931

s11 0.7295 0.7548 0.7696 0.8026 0.8827

s12 0.6776 0.7095 0.7373 0.7718 0.8320

s13 0.7168 0.7894 0.7560 0.7962 0.8676

s14 0.6939 0.7586 0.7442 0.7876 0.8565

s15 0.7608 0.7699 0.7844 0.8079 0.8908

Mean Pf1 0.6994 0.7389 0.7452 0.7777 0.8429

1number of latent factors: 31.

TABLE 5 | Performance comparison between this work and the baseline

methods.

Approach/Model

Performance (Pf1)

DEAP
SEED

Valence Arousal

L1-SVM (kernel=“linear”) + handcrafted features 0.7134 0.7154 0.8234

RF (n_estimators=100) + handcrafted features 0.5870 0.5754 0.7680

KNN (n_neighbors=7) + handcrafted features 0.6406 0.5890 0.6763

LR + handcrafted features 0.5757 0.5614 0.7649

NB + handcrafted features 0.6903 0.6989 0.6666

DNN (hidden_layer_sizes={100, 100, 100}) +

handcrafted features

0.6183 0.6593 0.7219

ICA+LSTM 0.6303 0.6418 0.6994

PCA+LSTM 0.6528 0.6741 0.7389

AE+LSTM 0.6783 0.6944 0.7452

RBM+LSTM 0.6927 0.7002 0.7777

VAE+LSTM 0.7167 0.7243 0.8429

3.5. Evaluation on Latent Factor-Based
Emotion Recognition
As mentioned above, the performance of each unsupervised
modeling method on EEG reconstruction cannot be used as a
criterion for judging whether the model successfully deciphers
latent factors that contribute to emotion recognition. It is
necessary to apply pattern recognition methods on those mined
factors, and conduct a comparison based on the recognition
performance. Specifically, the LSTM takes charge of modeling
the latent factor sequence decoded by the ICA-, AE-, RBM-,
and VAE-based approaches and also inferred the emotional
state. Besides, the performance, when applying the LSTM to
the principle components mined by the PCA method, has also
been reported.

The classification performance is evaluated when the number
of the latent factor is set as half of the number of total electrodes.
Namely, for the DEAP dataset, the number of latent factors used
for sequence modeling and classification was 16, whereas, for
the SEED dataset, the number of latent factors was set as 31.
We think the emotion recognition performance must closely
related to the EEG reconstruction performance. In other words,
the latent factors with low reconstruction performance were not
an accurate reflection of the latent EEG process and could not
lead to an ideal emotion classification result. Hence, the emotion
recognition experiments on both datasets were conducted on
the latent factors with the high reconstruction performance,
namely 16 and 31. Besides, the datasets were recorded with
very high sampling rate; take the DEAP dataset for example,
the total number of EEG samples of just one subject was over
320,000 the experimental cost for training, evaluating themodels,
and storing the decoded latent factors are high. Evaluating
on more parameter settings is somewhat impractical in our
current experimental conditions, e.g., for the SEED dataset, a
total of 5 methods × 62 factors × 15 subjects = 4,650 different
experimental settings were needed. Furthermore, the purpose
of this work was to verify the effectiveness of the EEG latent
factor-based emotion recognition method and was not to find the
best parameter settings; the reconstruction performance achieved
when the number of latent factor was half of the number of
electrodes was good enough to test our idea.

We adopted a “leave one subject’s data out” cross-validation
method. For the DEAP dataset, Tables 2, 3 summarize the
recognition performance on the emotional dimension of Valence
and Arousal, respectively. Table 4 summarizes the recognition
performance on SEED dataset. Considering the problem of
unbalanced classes, the recognition performance was measured
and compared with each other using the F1 score.

It is found from the table that the ICA-LSTM-based method
on both datasets exceeds 0.5, indicating that the traditional ICA-
based method can still decipher emotion-related information
from the multichannel EEG. It also indicates that the latent factor
decoding combined with sequence modeling-based approach is
suitable for emotion recognition from multichannel EEG. In
general, the ICA-based approach did not perform as well as other
neural network-based approaches, confirming the conclusion
that ICA has limitations in representation ability (Choudrey,
2002). The RBM- and VAE-based approaches are better than the
ICA- andAE-based approaches. This indicates that the generative
models are more suitable in the current scenario.

min
ω0 ,ω

n
∑

i=1

[1− yi(ω0 +

q
∑

j=1

ωjxi,j)]+ C‖ω‖1 (17)

Table 5 lists the performance comparison between the baseline
methods and the proposed approaches in this paper. Among the
several baseline methods, the SVM combined with the L1-norm
penalty-based feature selection method (L1-SVM) achieved the
best performance when applying the optimum parameter. As
shown in Formula 17, this method introduced the L1-norm
regularization term ‖ω‖1 into the objective function to induce
sparsity by shrinking the weights toward zero. It is natural for
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FIGURE 6 | Mean cross-subject recognition performance with different settings when L1-SVM based approach is applied.

features with 0 weights to be eliminated from the candidate set.
The parameter “C” controls the trade-off between the loss and
penalty. Hence, the results of the performance when a different
penalty parameter “C” was tested are shown in Figure 6. Then
the best performances on DEAP and SEED datasets are reported
in Table 5.

Compared to the baseline methods, the VAE-based approach
achieved higher performance on both datasets. It should be
pointed out that, though the performance shown here was not
good enough compared with the L1-SVM method, it avoided
the problems of high computational cost when calculating the
handcraft features, especially for the Non-linear Dynamical
System Features (e.g., the Lyapunov exponent). Besides, the
effectiveness of the features highly depends on the parameter
settings (e.g., the setting of the number of the embedding
dimension when calculating the Lyapunov exponent). When
extracting the features from multichannel EEGs, the cost will
multiply. This issue hampers the practical usage of the EEG-
based emotion recognition. Hence, compared to the traditional

handcraft feature-based methods, the proposed neural network-
based approach was advantageous in terms of data-processing
speed when the trained network was provided in advance.
The process of latent factor decoding, sequence modeling, and
classification can be conducted and completed at a very fast
speed. In addition, the experimental settings and parameters
of our approach were not fully tested. On the whole, the
approach proposed in this paper is also valuable and has great
potential in this field. The AE has shown excellent ability in
reconstructing the multichannel EEG; however, according to
the recognition performance, its decoded factors were not an
accurate reflection of the brain cognitive state compared to
the RBM- and VAE-based approaches. Hence, in cognition
research-oriented neural signal computing, the generative
model-based approaches are more advisable. Finally, despite the
excellent performance the PCA obtained in reconstructing the
multichannel EEGs, the principle components mined by it do
not contribute to promoting the performance in recognizing
subjects’ emotions.
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TABLE 6 | List of related works in recent years and the corresponding performance obtained.

Approach/Model Performance

Valence Arousal

Pacc Pf1 Pacc Pf1

DEAP

Ontology-based storage and representation, feature selection and decision tree

based recognition method (Chen et al., 2015)

0.6783 N/A 0.6896 N/A

Minimum-redundancy-maximum-relevance (MRMR) based feature selection

combined with the statistical features, band power features, Hjorth parameters

and fractal dimension (Atkinson and Campos, 2016)

0.7314 N/A 0.7306 N/A

Integrated classifier based on multi-layer stacking autoencoder combined with

time domain features and PSD features (Yin et al., 2017)

0.7617 0.7243 0.7719 0.6901

Multivariate empirical mode decomposition (MEMD) based feature extraction

combined with ANN (Mert and Akan, 2018)

0.7287 N/A 0.7500 N/A

Generative adversarial network (WGANDA) based transfer learning combined

with differential entropy feature (Luo et al., 2018)

0.6799 N/A 0.6685 N/A

The VAE based approach proposed in this work 0.7623 0.7167 0.7989 0.7243

Pacc Pf1

SEED

Dynamical graph CNN (DGCNN) learns from the DE, PSD, DASM, RASM and

DCAU features based adjacency matrix representation (Song et al., 2018)

0.7995 N/A

Extracting differential entropy features to construct 2D sparse graph

representation, then combining CNN for classification (Li et al., 2018)

0.8820 N/A

Transfer learning methods combined with differential entropy features and

logistic regression based classification (Lan et al., 2018)

0.7247 N/A

Generative adversarial network (WGANDA) based transfer learning combined

with differential entropy feature (Luo et al., 2018)

0.8707 N/A

Spatial-temporal recurrent neural network (STRNN) combined with differential

entropy feature (Zhang et al., 2018)

0.8950 N/A

The VAE based approach proposed in this work 0.8581 0.8429

As shown in Table 6, we furthermore list the highly cited
related works in recent years and the corresponding performance
obtained. Though the performance obtained in this work was
slightly inferior to some related works, it verified the effectiveness
of the proposed approach and inspires us to do further research,
such as finding the best model parameters and studying the brain
functions based on the decoded latent factors.

4. CONCLUSION

This paper explored EEG-based emotion identification methods
that were not restricted to handcrafted features. Brain cognition
research finds that “there exists cross-user, default intra-brain
variables involved in the emotional process.” Hence, the status of
the brain hidden variables is closely related with the emotional
psychophysiological processes and can be utilized to infer the
emotional state. In this work, artificial neural networks are
used for unsupervised modeling of the state space of the latent
factors from themultichannel EEGs, and LSTM-based supervised
sequence modeling is further performed on the decoded latent
factor sequences to mine the emotion related information, which
is used for inferring the emotional states. It has been verified that
the neural network models are more suitable for modeling and
decoding brain neural signals than the independent component
analysis (ICA) method, which is widely used in brain cognitive
research. Although, from the perspective of data reconstruction,
the VAE cannot achieve the same performance as that of the
traditional AE, we obtained a better recognition performance

on the latent factors decoded by the VAE. It indicated that
VAE, as a kind of generative model, can truly model the hidden
state space of the brain in cognitive processes. The decoded
latent factors contain the relevant and effective information
for emotional state inference. This approach is also promising
in diagnosing depression, Alzheimer’s disease, mild cognitive
impairment, etc., whose specific brain functional networks may
have been altered or could be aberrant compared with the normal
healthy control. In future work, we will study the influence
of a different sampling step size in latent factor sequence
modeling and emotion recognition. Other directions deserving
of exploration in future works include source localization and
functional network analysis based on the decoded latent factors.
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