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Abstract

Identifying suspects based on impressions of fingers

lifted from crime scenes (latent prints) is extremely impor-

tant to law enforcement agencies. Latents are usually par-

tial fingerprints with small area, contain nonlinear distor-

tion, and are usually smudgy and blurred. Due to some of

these characteristics, they have a significantly smaller num-

ber of minutiae points (one of the most important features

in fingerprint matching) and therefore it can be extremely

difficult to automatically match latents to plain or rolled

fingerprints that are stored in law enforcement databases.

Our goal is to develop a latent matching algorithm that uses

only minutiae information. The proposed approach consists

of following three modules: (i) align two sets of minutiae by

using a descriptor-based Hough Transform; (ii) establish

the correspondences between minutiae; and (iii) compute a

similarity score. Experimental results on NIST SD27 show

that the proposed algorithm outperforms a commercial fin-

gerprint matcher.

1. Introduction

The practice of using latent fingerprint for identifying

suspects is not new. According to Cummins and Midlo [2],

the first publication in modern literature related to finger-

print identification appeared in Nature, in 1880. This pub-

lication was entitled “On the Skin-furrows of the Hand,”

authored by Faulds [3]. In this article, Faulds suggested

that fingerprints left on crime scenes could be used to iden-

tify criminals or to exclude suspects. Soon after this article

was published, a letter written by Herschel was published

in Nature [5] stating that he had been using fingerprint as

a method of identification in India for about 20 years, with

different applications such as to avoid personification.
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Figure 1. Types of Fingerprints obtained by different acquisition

methods. (a) Rolled (ink) (NIST SD27), (b) plain (live-scan)

(FVC2002), and (c) latent (NIST SD27).

In 1893, the acceptance of the hypothesis by the Home

Ministry Office, UK, that any two individuals have different

fingerprints made many law enforcement agencies aware

of the potential of using fingerprints as a mean of identi-

fication [8]. Some law enforcement agencies started col-

lecting fingerprints from offenders so that they could iden-

tify them later in case they changed their names to evade

harsher penalties. Also, fingerprints collected from crime

scenes were compared to fingerprints collected from previ-

ous offenders so that they could identify repeat offenders,

criminals who have been previously arrested.

Fingerprint identification started as a completely manual

approach. Due to growing demands on fingerprint recog-

nition, research was initiated to automate fingerprint recog-

nition, which led to the development of Automated Finger-

print Identification Systems (AFIS).These systems are used

worldwide not only by law enforcement agencies but also

in many other government and commercial applications.

Nowadays fingerprint recognition is routinely used in civil-

ian applications that have stringent security requirements.

There are three types of fingerprints: rolled, which is a

print obtained by rolling the finger “nail-to-nail” on a paper

or the platen of a scanner; plain, which is a print obtained by

placing the finger flat on a paper or the platen of a scanner

without rolling; and latents, which are lifted from surfaces

of objects that are inadvertently touched or handled by a
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person typically at crime scenes (see Fig. 1). Lifting of la-

tents may involve a complicated process, and it can range

from simply photographing the print to more complex dust-

ing or chemical processing.

Rolled prints contain the largest amount of informa-

tion about the fingerprint since they contain information

from nail-to-nail; latents usually contain the least amount

of information for matching or identification. Compared to

rolled or plain fingerprints, latents are smudgy and blurred,

capture only a small finger area, and have large nonlinear

distortion due to pressure variations. Due to their poor qual-

ity and small area, latents have a significantly smaller num-

ber of minutiae compared to rolled or plain prints (the aver-

age number of minutiae in NIST Special Database 27 (NIST

SD27) [12] images is 21 for latents versus 106 for the cor-

responding rolled prints). Those characteristics make the

latent fingerprint matching problem very challenging.

Manual latent fingerprint identification is performed fol-

lowing a procedure referred to as ACE-V (analysis, com-

parison, evaluation and verification) and it requires a large

amount of human intervention. Because this procedure is

quite tedious and time consuming for latent examiners, la-

tents are usually matched against full prints of a small num-

ber of suspects identified by other means. With the in-

vention of AFIS, fingerprint examiners identify latents us-

ing a semi-automatic procedure that consists of following

stages: (i) manually mark the features (minutiae and singu-

lar points) in the latent, (ii) launch an AFIS search, and (iii)

visually verify each of the candidate fingerprints returned

by AFIS. The accuracy and speed of this procedure is still

not satisfactory.

Recent studies on latent fingerprints can be classified

into two categories according to their objective: higher

matching accuracy [4, 6, 7] or higher degree of automa-

tion [15, 13]. Improved latent matching accuracy has been

reported by using extended features which are manually

marked for latents [6, 7]. However, marking extended fea-

tures (orientation field, ridge skeleton, etc.) in poor quality

latents is very time-consuming and might be only feasible

in rare cases.

NIST has been conducting a multi-phase project on Eval-

uation of Latent Fingerprint Technologies (ELFT) to eval-

uate automatic latent feature extraction and matching tech-

niques [10]. In Phase I, the most accurate system showed

a rank-1 accuracy of 80% (100 latents against 10, 000
rolled prints). In Phase II, the rank-1 accuracy of the most

accurate system was 97.2% (835 latents against 100, 000
rolled prints). These accuracies cannot be directly com-

pared since the Phase I and Phase II evaluations used dif-

ferent databases. Also, the quality of latents used in Phase

II is better compared to Phase I. Fig. 2 shows three latents of

different quality in NIST SD27. The impressive matching

accuracy reported in ELFT does not mean that the current

(a) (b) (c)

Figure 2. Latent fingerprints of three different quality levels in

NIST SD27. (a) Good, (b) Bad, and (c) Ugly.

practice of manually marking minutiae in latents should be

changed.

The goal of this work is to develop a latent fingerprint

matching algorithm that is solely based on minutiae. Since

manually marking minutiae in latents is a common practice

in the latent fingerprint community, the proposed matcher

can be directly used in operational settings.

The rest of the paper is organized as follows: in Section

2, all steps of our proposed method are described; in Section

3, our experimental results are presented and discussed; in

Section 4, we present our conclusions and future work.

2. Latent Matching Approach

There are three main steps in fingerprint matching: align-

ment (or registration) of the fingerprints, pairing of the

minutiae, and score computation. In our approach, we use

a Descriptor-based Hough Transform to align two finger-

prints. Given two sets of aligned minutiae, two minutiae are

considered as a matched pair if their Euclidean distance and

direction difference are less than pre-specified thresholds.

Finally, a score is computed based on a variety of factors

such as the number of matched minutiae and the similarity

between the descriptors of the matched minutiae pairs. Fig-

ure 31 shows an overview of the proposed approach. It is

important to emphasize that while latents are manually en-

coded (namely marking minutiae), minutiae in rolled prints

are automatically extracted.

2.1. Local Minutia Descriptor

Minutia Cylinder-Code (MCC) is a minutiae representa-

tion based on 3D data structures [1]. In the MCC represen-

tation, a local structure is associated to each minutia. This

local structure is represented as a cylinder, which contains

information about the relationship between a minutia and

its neighboring minutiae. The base of the cylinder is related

to the spatial relationship, and its height is related to the di-

rectional relationship. Each cell in the cylinder accumulates

contributions from each minutia in the neighborhood. The

resulting cylinder can be viewed as a vector, and therefore

the similarity between two minutia descriptors can be easily

1Local minutia descriptors shown in Figure 3 is from [1].



Figure 3. Overview of the proposed approach.

computed as a vector correlation measure. A more detailed

description of the cylinder generation and of the similarity

between two cylinders can be found in [1]. This representa-

tion presents some advantages, such as: invariant to trans-

lation and rotation; robust against small skin distortion and

missing or spurious minutiae; and of fixed length.

2.2. Fingerprint Alignment

Fingerprint alignment or registration consists of estimat-

ing the parameters (rotation, translation and scale) that align

two fingerprints. There are a number of features that may

be used to estimate alignment parameters between two fin-

gerprints, including orientation field, ridges and minutiae.

There are also a number of ways of aligning two finger-

prints: Generalized Hough Transform, local descriptors, en-

ergy minimization, etc.

In the latent fingerprint case, singularities are not al-

ways present, making it difficult to base the alignment of

the fingerprint on singular points alone. To obtain manu-

ally marked orientation field is expensive, and to automati-

cally extract orientation field from a latent image is a very

challenging problem. Since manually marking minutiae is a

common practice for latent matching, our approach to align

two fingerprints is based on minutiae.

Ratha et al. introduced an alignment method for minu-

tiae matching that estimates rotation, scale, and transla-

tion parameters using a Generalized Hough Transform [14].

Given two sets of points (minutiae), a matching score is

computed for each transformation in the discretized set of

all allowed transformations. For each pair of minutiae, one

minutia from each set, and for given scale and rotation pa-

rameters, unique translation parameters can be computed.

Each parameter receives “a vote” proportional to the match-

ing score for the corresponding transformation. The trans-

formation that gives the maximum score is considered the

best one. In our approach, the alignment is conducted in

a very similar way, but the evidence for each parameter is

accumulated based on the similarity between the local de-

scriptors of the two involved minutiae, with the similarity

and descriptor being the ones described in Section 2.1.

Given two sets of minutiae, one from the latent and the

other from the rolled print being compared, translation and

rotation parameters can be obtained for each possible minu-

tiae pair (one minutia from each set). Let {(��, ��, ��)}
and {(��, ��, ��)} be the minutiae sets for latent and rolled

prints, respectively, centered at their means. Then, for each

pair of minutiae, we have

� = min (∥�� − ��∥, 360− ∥�� − ��∥), (1)
(

Δ�

Δ�

)

=

(

��

��

)

−

(

cos � sin �
− sin � cos �

)(

��

��

)

. (2)

Since it is not necessary to consider the scale parame-

ter in fingerprint matching, unique translation parameters



can be obtained for each pair based on the rotation dif-

ference between the minutiae in the pair. The translation

and rotation parameters need to be quantized to the clos-

est bins. After the quantization, evidence is accumulated in

the correspondent bin based on the similarity between the

local minutiae descriptors. The assumption here is that true

mated minutiae pairs will vote for very similar sets of align-

ment parameters, while non-mated minutiae pairs will vote

randomly throughout the parameter space. As a result, the

set of parameters that presents the highest evidence is con-

sidered the best one. For robustness, more than one set of

alignment parameters with high evidence are considered.

In order to make the alignment computationally efficient

and also more accurate, we use a two-stage approach for

the Descriptor-based Hough Transform. We first perform

the voting in a relatively coarse parameter space. Based on

the peaks in the Hough space, we repeat the voting inside a

neighborhood around the peaks, but with a more refined set

of parameter range. We also keep track of the points that

contribute to the peaks and then compute a rigid transfor-

mation matrix from those points.

2.3. Minutiae Pairing

After aligning two sets of minutiae, we need to find the

minutiae correspondences between the two sets, i.e. minu-

tiae need to be paired. The pairing of minutiae consists of

finding minutiae that are sufficiently close in terms of loca-

tion and direction. Let �� = (��, ��, ��) be a minutia from

the aligned latent and �� = (�� , �� , ��) be a minutia from

the rolled print. Then, �� and �� are considered paired or

matched minutiae if

�(��,��) =
√

(�� − ��)2 + (�� − ��)2 ≤ �0 (3)

��� = min (∥�� − ��∥, 360− ∥�� − ��∥) ≤ �0, (4)

In aligning two sets of minutiae, this is the most natural

way of pairing minutiae. We use a one-to-one matching,

which means each minutia in the latent can be matched to

only one minutia in the rolled print. Ties are broken based

on the closest minutia.

2.4. Score Computation

Score computation is a very important step in the match-

ing process. A straightforward approach to compute the

matching score consists of the number of matched minutiae

divided by the average number of minutiae in the two finger-

prints. This is not appropriate for latent matching because

the number of minutiae in different latents varies substan-

tially. One solution to modify the above scoring method is

to divide the number of matched minutiae by the number of

minutiae in the latent, which is almost always smaller than

the number of minutiae in the rolled print.

In our approach, we use minutiae similarity to weigh

the contribution of each pair of matched minutiae. Given

a search fingerprint (latent) and a template fingerprint

(rolled), and considering that the fingerprints are already

aligned, let 	 be the set of 
 matched minutiae pairs be-

tween the two fingerprints, {��}
�
�=1

be matched minutiae

pairs in 	 , {��}
�
�=1

be their respective similarities, and �

be the number of minutiae in the latent. Then, the matching

score between the two aligned fingerprints is given by:

���� =

∑

∀��∈� ��

�
. (5)

To further improve the matching performance, we com-

bine the scores based on matched minutiae from two dif-

ferent pairing thresholds by their weighted sum; we assume

equal weights. Since we perform 10 different alignments,

we compute 10 different matching scores between two fin-

gerprints; the final score between the two fingerprints is the

maximum among the 10 scores computed from different hy-

pothesized alignments.

3. Experimental Results

Matching experiments were conducted on the NIST Spe-

cial Database 27, which consists of 258 latent fingerprint

images. The background database consists of 258 mated

rolled prints from NIST SD27, and the first 2, 000 rolled

impressions from NIST SD14 [11]. So, the total number

of background prints is 2, 258. NIST SD27 contains latent

prints of three different qualities, termed “good”, “bad”, and

“ugly”, which were classified by latent examiners. Some

examples of latents from those three qualities are shown

in Fig. 2. Although this classification of latent prints as

“good”, “bad”, and “ugly” is subjective, it has been shown

that such a classification is correlated with the matching per-

formance [6].

Another indicator of fingerprint quality that affects the

matching performance is the number of minutiae in the la-

tent print [6]. Based on the number of minutiae 
 in la-

tents in NIST SD 27, Jain and Feng [6] classified latents in

NIST SD 27 into three groups: large (
 > 21), medium

(13 < 
 < 22), and small (
 ≤ 13), containing 86, 85, and

87 prints, respectively. We present our experimental results

for each of the six quality groups. We also show results

of the commercial matcher VeriFinger [9] for the purpose

of performance comparison. Although VeriFinger was not

designed specifically for latent matching case, it should be

noted that there is no latent fingerprint matcher SDK nor

forensic AFIS available for individual use. VeriFinger is

widely used as a benchmark in fingerprint publications.

We use manually marked minutiae (provided with NIST

SD 27) as features in latent fingerprints. For rolled finger-

print images, only minutiae are needed for matching and

they are automatically extracted using VeriFinger SDK.

Minutia Cylinder Code (MCC) is used as local descrip-

tors for minutiae. MCC parameters are set as suggested in
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Figure 4. Alignment Accuracy: percentage of correctly aligned

latents vs. alignment error.

[1], with the number of cells along the cylinder diameter

as 8 (�	). However, we consider all cells in a cylinder as

valid cells. For Euclidean distance pairing, we use two dif-

ferent thresholds, 15 and 25 pixels, and direction difference

threshold of 20 degrees.

In order to estimate the alignment error, we use ground

truth mated minutiae pairs, which are marked by finger-

print examiners, to compute the average distance of the true

mated pairs after alignment. If the average Euclidean dis-

tance for a given latent is less than a pre-specified number of

pixels in at least one of the ten best alignments (peaks of the

DBHT), then we consider it a correct alignment. This per-

formance is shown in Figure 4. The x-axis shows the align-

ment error, and the y-axis shows the percentage of correctly

aligned latent fingerprints in at least one of the ten align-

ments. For comparison, we also show VeriFinger alignment

accuracy, as well as the accuracy of aligning the minutiae

sets based on the most similar minutiae pair (according to

the MCC similarity) - in this case, each alignment is based

on one of the ten most similar minutiae pairs.

There are very few errors in alignment if we consider

the average alignment error of less than 25 pixels. The

main reason for these failure cases is there are a very small

number of true mated minutia pairs in the overlapping area

between the latent and mated rolled print, so there are not

many true mated pairs voting for the correct alignment pa-

rameters. The absence of true mated pairs is due to limited

number of minutiae in latents and the poor quality region in

the rolled print. One such example is shown in Fig. 5. Blue

squares are manually marked minutiae in the latent print

(left) and automatically extracted minutiae in the rolled

print (right). Red triangles indicate ground truth minutiae

pairs, and the yellow lines indicate true mated pairs.

Although the minutiae pairing based on Euclidean dis-

Figure 5. Example of alignment error due to the small number of

true mated minutia pairs in the overlapping area between a latent

and its mated rolled print.

Table 1. Rank-1 accuracies for various subjective qualities of la-

tents in NIST SD27.
Quality VeriFinger (%) Proposed Matcher (%)

All 51.2 62.4

Good 75.0 78.4

Bad 47.0 55.3

Ugly 30.6 52.9

Table 2. Rank-1 accuracies for various objective qualities of latents

in NIST SD27.
Quality VeriFinger (%) Proposed Matcher (%)

All 51.2 62.4

Large 79.0 81.4

Medium 50.6 67.0

Small 24.1 39.0

tance and direction difference is relatively simple, it works

well after the fingerprints are aligned using the Descriptor-

based Hough Transform. Our approach performs better than

the commercial matcher VeriFinger on manually marked

minutiae; performance of both these matchers are shown

in Fig. 6. We also show our results for latents of six differ-

ent quality levels (good, bad, ugly; large, medium, small)

separately. The rank-1 accuracies for the proposed matcher

and VeriFinger are shown in Table 1 for the three subjective

qualities and Table 2 for the three objective qualities.

Figure 6 shows that the advantage of our algorithm over

the commercial matcher is consistent throughout the match-

ing ranks. We can also notice that the improvement is

more clearly observed on latents of poor quality and with

small number of minutiae. The improvement of the pro-

posed matcher over VeriFinger at rank-1 accuracy varies

from 2.3% for latents with a large number of minutiae to

22% for latents of ugly quality. Figure 7 shows examples

of latent prints of good (medium) and ugly (small) qualities

correctly identified at rank-1, and Fig. 8 shows examples of

latent prints incorrectly identified at higher ranks because
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(d) Ugly Quality
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(e) Large Quality
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(f) Medium Quality
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Figure 6. Overall matching performance (in terms of ROC curves) for latents with different subjective and objective qualities. Manually

marked minutiae in latents are used as input for both the matchers (proposed and VeriFinger).

of the alignment errors — there are not enough matching

minutiae pairs in the overlapping area between the latent

and its mated rolled print.

4. Conclusions and Future Work

We have presented a fingerprint matching algorithm de-

signed for matching latents to rolled/plain fingerprints. Our

algorithm outperforms the commercial matcher VeriFinger

over all qualities of latents in NIST SD27. The improve-

ment in the rank-1 accuracy of the proposed algorithm over

VeriFinger varies from 2.3% for latents with relatively large

number of minutiae to as high as 22% for latents with

the subjective quality “ugly”. These results show that our

matcher is more suitable for latent fingerprints.

The proposed alignment method performs very well even

on latents that contain small number of minutiae. In our al-

gorithm we take the maximum score from several hypoth-

esized alignments based on different alignment parameters.

Sometimes, the maximum score does not correspond to the

correct alignment. We plan to improve the score computa-

tion by applying learning methods. Extended features man-

ually marked by latent examiners have been shown to be

beneficial for improving latent matching accuracy. We plan

to incorporate extended features which are automatically

extracted from the image into the current matcher to further

improve the matching accuracy.



(a) (b)

Figure 7. Latent prints correctly identified at rank-1.

(a) (b)

Figure 8. Latent prints that were not successfully matched. These two latents were matched to their true mates at ranks 1253 and 1057,

respectively.
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