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Abstract

Analyzing the evolution of dialects remains a

challenging problem because contact phenom-

ena hinder the application of the standard tree

model. Previous statistical approaches to this

problem resort to admixture analysis, where

each dialect is seen as a mixture of latent an-

cestral populations. However, such ancestral

populations are hardly interpretable in the con-

text of the tree model. In this paper, we pro-

pose a probabilistic generative model that rep-

resents latent factors as geographical distribu-

tions. We argue that the proposed model has

higher affinity with the tree model because a

tree can alternatively be represented as a set

of geographical distributions. Experiments in-

volving synthetic and real data suggest that

the proposed method is both quantitatively and

qualitatively superior to the admixture model.

1 Introduction

How languages have changed over time is a ques-

tion that has attracted a lasting interest. Observing

the present state of a language, we typically want to

trace it back to the past. Historical–comparative lin-

guists have done this by systematically comparing

related languages and representing them as a tree.

The success of this approach led to the establish-

ment of language families such as Indo-European

and Austronesian (Campbell, 2004). The recent

adoption of computer-intensive statistical methods

offer additional insights (Gray and Atkinson, 2003;

Bouckaert et al., 2012; Chang et al., 2015).

When it comes to dialects, or closely-related lan-

guages,1 the situation is very different. When we

draw an isogloss, or the geographical boundary of

a linguistic feature, and collect such isoglosses,

it often happens that they conflict with each

other (Kalyan and François, 2018). Conflicting

1The language/dialect distinction is not clear-cut. In this
paper, the two terms are used interchangeably.

isoglosses violate the assumption of the tree model,

where after a branching event, two daughter lan-

guages evolve without any contact.

Nevertheless, some historical–comparative lin-

guists have recently tried to apply the tree model to

dialects in intense contact, with the assumption that

at least some portion of observed data reflects tree-

like vertical inheritance while the rest may result

from horizontal contact (Lawrence, 2006; Pellard,

2009; Igarashi, 2017). While these efforts have

been met with some success, it seems to us that the

inherent difficulty in disentangling the two modes

of transmission remains unresolved. This motivates

us to turn to statistical modeling because computers

are better at handling uncertainty than humans.

As a statistical model to analyze the evolution

of dialects, admixture analysis has received atten-

tion in recent years (Bowern, 2012; Syrjänen et al.,

2016; Cathcart, 2020). It assumes that each di-

alect is generated from a mixture of latent ancestral

populations. Unfortunately, such ancestral popula-

tions can hardly be used for humans to infer a tree.

Covering all the dialects with varying degrees of

membership, an ancestral population only offers

vague information about subgrouping if it does.

In this paper, we propose a probabilistic gener-

ative model that represents latent factors as geo-

graphical distributions (Figure 1). The geographi-

cal distribution of an observed feature is assumed

to be stochastically generated from a weighted com-

bination of the latent geographical factors. These

factors are much more easier to interpret in the

context of the tree model than latent ancestral pop-

ulation of the admixture model because an internal

node of a tree can be geographically represented as

the set of its descendant leaves. Some latent factors

may be associated with vertical inheritance while

others reflect horizontal transfer. We revisit this

point in Section 5.3.

To evaluate the proposed method, we begin by
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Figure 1: An overview of the proposed method. There are L = 4 dialects, A, B, C, and D, on the island. The figure

focuses on one of N features, for which each dialect takes the value 4, 6, or 8 (bottom right). The proposed method

decomposes the observed data into K = 10 latent factors and the corresponding weights. Each latent factor has its

own geographical distribution (top). Filled circles indicates the dialects are covered by the latent factor, while the

dialects represented by hollow circles are not. Each feature value is tied to K weights (bottom left). Multiplying

the binary factors by the weights and normalizing the resultant scores, we obtain a probability distribution for each

dialect (bottom center). The value of each dialect is assumed to be drawn from the categorical distribution.

simulation experiments, where we know the ground

truth. We demonstrate that the proposed method

recovers tree-based and geographical clusters bet-

ter than the admixture model. We then switch to a

basic vocabulary database of Fijian dialects, whose

evolutionary history is yet to be uncovered. We

confirm that the proposed method detects major di-

alect groups. Although the proposed method in its

current form focuses on spatial inference, the quan-

tification it offers shows the potential of making

temporal reasoning. The code is available at https:

//github.com/murawaki/dialect-latgeo.

2 Background

2.1 Dialectology

It is important to note that although we

work on dialects, we methodologically lean to-

ward historical–comparative linguistics. While

historical–comparative linguistics is known for the

Neogrammarian doctrine of exceptionless sound

laws, dialectology is dominated by the dictum, “ev-

ery word has its own history.” In fact, the Atlas

linguistique de la France (Gilliéron and Edmont,

1902–1910) and subsequent linguistic atlases that

have been produced by dialectologists elaborate

“the geography not of dialects but of linguistic

traits” (Goebl, 2018).

Nevertheless, there have been several attempts

in dialectology to aggregate over a large set of

features (see Nerbonne and Wieling (2018) for an

overview). Among the most popular ones are di-

mensionality reduction techniques such as principal

component analysis (PCA) and multidimensional

scaling (MDS). PCA is also routinely employed

in population genetics to infer population structure

from recombining genetic markers (Menozzi et al.,

1978; Patterson et al., 2006). For visualization,

each language is colored according to the value of

a selected principal component (PC). In typical ap-

plications, at most the first three PCs are examined

because subsequent PCs are hardly interpretable.

Recent applications of NLP techniques to dialec-

tology and sociolinguistics (Eisenstein et al., 2010,

2014) make use of geotagged social media. While

the big data allow us to analyze language variation

and language change to the fine details, our inter-

est lies in (1) applicability to unwritten languages

and (2) language change on the order of hundred

years or more. For these reasons, we work on data

manually complied by field linguists.

2.2 Historical–Comparative Linguistics

Historical–comparative linguistics is characterized

by careful manual selection of features (Sagart et al.

https://github.com/murawaki/dialect-latgeo
https://github.com/murawaki/dialect-latgeo
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(2019) is a recent example). If two languages are

phylogenetically closely related, they must be sim-

ilar to each other, but not vice versa. It is because

there are at least four ways to explain the fact that

two languages share the same feature value: (1) in-

herited from a common ancestor (vertical inheri-

tance), (2) borrowed from one language into an-

other (horizontal transfer), (3) reflecting universal

tendencies, and (4) coincidence. Only the first

factor is a genuine phylogenetic signal. In order

to establish phylogenetic relationships, linguists

carefully count out features that have potential con-

nections to the remaining three factors.

When three or more languages are involved, their

subgroups need to be determined. To do so, lin-

guists focus on shared innovations (Hoenigswald,

1966). A shared innovation is a change that oc-

curred in an intermediate descendant from which

a subset of modern languages have descended and

that is not shared by the remaining languages. In

other words, shared retentions, or feature values in-

herited from the common ancestor, are disregarded

because they cannot be used as a criterion for sub-

grouping.

When the above-mentioned principle is applied

to dialects in intense contact, an even more strin-

gent feature selection is performed.2 For example,

Lawrence (2006) and Pellard (2009) discard a set

of regular sound changes in favor of a conflicting

irregular sound change, arguing that the former

is more likely to occur in parallel (i.e., universal

tendencies). However, they appear to have so much

trouble distinguishing vertical inheritance from hor-

izontal transfer. In addition, a large number of dis-

carded features must constitute an important aspect

of evolutionary history that awaits description. For

these reasons, we choose a setting where no man-

ual feature selection is performed. At this stage of

research, our model is agnostic as to which factor

has led to the current distribution of a given feature

although we are much interested in tying some of

the latent factors to the tree model.

Igarashi (2017) manually searched for

matryoshka-like geographical distributions of

shared innovations to construct a phylogenetic

tree of dialects, with the assumption that if the

distribution of one innovation is nested inside that

2Ignoring the methodology of historical–comparative lin-
guistics, Lee and Hasegawa (2011) applied a computer-
intensive phylogenetic method to a lexical dataset of dialects.
Not surprisingly, the resulting phylogenetic tree is judged
totally unreliable by an expert linguist (Pellard, 2018).

of another, it reflects a branching event within the

tree. We concur with his idea that spatial inference

forms the basis for temporal reasoning. We note

that an innovation that occurred in the past is not

necessarily directly observable because it can

be overshadowed by subsequent changes. As a

probabilistic model, the proposed method has the

potential to recover the original pattern given that

it is supported by other observed features.

2.3 Admixture Analysis

Originally borrowed from population genet-

ics (Pritchard et al., 2000; Alexander et al., 2009),

what we collectively refer to as admixture anal-

ysis has been employed in recent studies on di-

alects (Bowern, 2012; Syrjänen et al., 2016; Cath-

cart, 2020). The same technique was also used to

analyze typological features (Reesink et al., 2009;

Longobardi et al., 2013).

Like the more familiar latent Dirichlet allocation

(LDA) (Blei et al., 2003), an admixture model as-

sumes that each individual (document) is stochas-

tically generated from a mixture of K ancestral

populations (topics). A major difference is that

while LDA ties a single vocabulary distribution to

each topic, each ancestral population has N dis-

crete distributions, one per feature type.

We argue that this is not a natural assumption

for languages although it is for genetic data. A

population (a collection of individuals) normally

maintains multiple values for a genetic marker. In

contrast, a speech community would have trou-

ble communicating if it uses multiple values for

a single feature (e.g., multiple words for a given

concept). To guarantee efficient communication,

a language must take a single value for each fea-

ture, except for transitional periods. To address

this problem, Cathcart (2020) explicitly imposes

sparsity on his model.

2.4 Phylogenetic Networks

When horizontal transfer is non-negligible, a net-

work model is often used as an alternative to the

tree. NeighborNet (Bryant and Moulton, 2004) is

arguably the most famous implementation of the

idea and has been applied to dialect data (Lee and

Hasegawa, 2011; Saitou and Jinam, 2017).

However, it must be noted that NeighborNet

does not explicitly indicate any single evolutionary

scenario but simply visualizes multiple conflicting

trees as a single network. Nichols and Warnow
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(2008) give warning against applying the model to

dialects under intense contact.

3 Proposed Method

3.1 Basic Idea

The key insight behind the proposed method is that

both vertical and horizontal signals can be repre-

sented as geographical distributions. If horizontal

contact occurs in a certain area, leading to multiple

feature values being shared by the dialects there, we

can identify the corresponding geographical clus-

ter. Similarly, a group of dialects that exclusively

share the same ancestor usually occupies a con-

tinuum geographical space. Because their shared

evolutionary history results in many shared feature

values, the corresponding geographical subspace

can be identified. Note, however, that we do not

necessarily observe geographical distributions in

their original forms because a state in the past can

be overshadowed by subsequent changes. There-

fore, our goal is to induct latent, typically clearer

geographical factors from observed geographical

distributions, as illustrated in Figure 1.

Each latent geographical factor is responsible for

spreading certain feature values. Ideally, a binary

variable should indicate the presence or absence

of a feature value in the latent geographical fac-

tor. However, observed data are too complex and

noisy to be explained by a deterministic generative

process, and we want to reserve clear-cutness for

latent geographical distributions. For these reasons,

we introduce soft membership to feature values:

A non-negative continuous weight indicates how

strong the feature value is associated with the latent

geographical factors.

3.2 Bayesian Generative Model

The proposed method is a Bayesian generative

model that is based on the model of Murawaki

(2019) even though at first glance, our task has

little in common with that of Murawaki (2019).

The differences between the two are summarized

in Appendix A.

Formally, the observed data3 are an L×N matrix

X , where L is the number of languages and N is

the number of features. Its element xl,n represents

language l’s n-th feature. Features are categorical

and feature n takes one of Fn values.

We assume that X can be reorganized into an

L × K binary matrix Z, where K is the number

3To be precise, a language can have missing features.

of latent factors and is specified a priori. The la-

tent factor k is represented by the vector z∗,k =
(z1,k, · · · , zL,k), in which zl,k ∈ {0, 1} indicates

whether the latent factor k is active for language l.
Each latent factor has a geographical interpreta-

tion. Filled and hollow circles in the top of Figure 1

indicate one- and zero-valued zl,k’s, respectively.

To incorporate our prior expectation that nearby

languages are likely to take the same value for

each k, we use an autologistic model (Besag, 1974;

Towner et al., 2012). Relationships between lan-

guages are represented as a neighbor graph, which

is indicated by edges between dialects in Figure 1.

We use a weighted variant of the graph. The

probability of language l taking the value b ∈
{0, 1}, conditioned on the rest of the languages,

z−l,k = (z1,k, · · · , zl−1,k, zl+1,k, · · · , zL,k), is

P (zl,k = b | z−l,k, hk, uk) ∝

exp



hk
∑

l′∈G(l)

ωl,l′I(zl′,k = b) + ukb



 . (1)

The parameter hk > 0 controls the degree of in-

fluence from neighboring languages while uk ∈
(−∞,+∞) serves as a bias term. Their prior dis-

tributions are: hk ∼ Gamma(κ, θ) and uk ∼
N (0, σ2). G(l) returns a set of l’s neighbors and

ωl,l′ > 0 indicates how strongly the pair is con-

nected. Both G(l) and ωl,l′ are given a priori.

Eq. (1) encodes our assumption that the more neigh-

boring languages take the value b, the more likely

language l also takes the value b.
This model is called an autologistic model be-

cause the target variable zl,k depends on explana-

tory variables of the same kind, zl′,k’s. To solve

the chicken-and-egg problem, we define a joint

distribution, P (z∗,k | hk, uk) (Besag, 1974).

The generation of Z is followed by that of

the weight matrix W ∈ R
K×M
>0 , where M =

∑N
n=1 Fn. Suppose that feature n’s i-th value cor-

responds to the m-th weight. We map the two

indexes using f(n, i) = m. An element of W ,

wk,m, is drawn from Gamma(1, 1).
Next, we compute Θ̃ = ZW ∈ R

L×M
≥0 and then

normalize Θ̃ for each feature n using the softmax

function:

θl,f(n,i) = softmaxi(θ̃l,f(n,1), · · · , θ̃l,f(n,Fn))

=
exp(θ̃l,f(n,i))

∑Fn

i′=1 exp(θ̃l,f(n,i′))
. (2)
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Finally, xl,n is drawn from the corresponding cate-

gorical distribution:

xl,n ∼ Categorical(θl,f(n,1), · · · , θl,f(n,Fn)).
(3)

To see how Z and W affect the generation of X ,

we should note that θl,f(n,i) indicates how likely

language l takes the value i for feature n. Re-

call that θ̃l,f(n,i), the unnormalized counterpart of

θl,f(n,i), is calculated as

θ̃l,f(n,i) =

K
∑

k=1

zl,kwk,f(n,i). (4)

If zl,k = 0, the latent factor k has no effect on

θl,f(n,i); otherwise wk,f(n,i) raises the probability

of language l’s taking the value i for feature n. Let

θ̃∗,f(n,i) = (θ̃1,f(n,i), · · · θ̃L,f(n,i)). For each latent

factor k, wk,f(n,i) is added to the vector θ̃∗,f(n,i),
but zero-valued zl,k’s mask the operation.

To complete the generative story, we define the

joint distribution (hyperparameters are omitted for

brevity):

P (A,Z,W,X)=P (A)P (Z|A)P (W )P (X|Z,W ),
(5)

where A = (H,U), H = (h1, · · · , hK) and U =
(u1, · · · , uK).

3.3 Inference

Following Murawaki (2019), we use Gibbs sam-

pling to perform posterior inference. Given ob-

served values xl,n, we iteratively update zl,k, hk,

uk, and wk,∗ = (wk,1, · · · , wk,M ), and missing

values xl,n.

Update xl,n xl,n is sampled from Eq. (3).

Update zl,k and xmis
l,∗ We use the Metropolis-

Hastings algorithm to update zl,k and xmis
l,∗ , the

missing portion of xl,∗ = (xl,1, · · · , xl,N ). We

find that jointly updating xmis
l,∗ drastically improves

the mobility of zl,k.

Update hk and uk We want to sample hk
(and uk) from P (hk | −) ∝ P (hk)P (z∗,k |
hk, uk). Since this belongs to a class of problems

known as sampling from doubly-intractable distri-

butions (Møller et al., 2006; Murray et al., 2006),

we adopt an approximate sampler (Liang, 2010).

Update wk,∗ We block-sample wk,∗ =
(wk,1, · · · , wk,M ) using Hamiltonian Monte Carlo

(HMC) (Neal, 2011).

4 Simulation Experiments

4.1 Synthetic Data

Evaluating the proposed method is a tough chal-

lenge. Here we turn to synthetic data. While rare

in NLP, simulation is an established practice in

evolutionary biology as a means of quantitatively

evaluating statistical models.

Specifically, we consider a general scenario

where dialects follow tree-shaped evolutionary

paths but a high degree of borrowing obscures the

phylogenetic signal. The resultant leaf nodes (mod-

ern dialects) are given to the proposed model to per-

form inference while the tree is used for evaluation.

Our simulator is similar in spirit to the TraitLab

software package extended with lateral transfer,4

which is used extensively to test the robustness

of the tree model with respect to contact phenom-

ena (Greenhill et al., 2009; Kelly and Nicholls,

2017). There are, however, two important differ-

ences that make our simulation more realistic:

1. Instead of independently simulating the birth

and death of each trait along branches, we group

traits into features. Having a new trait born at a

branch, we randomly choose a feature type and

update the feature value of the dialect in question

to the new one (i.e., the old value dies there).

2. We simulate spatial diffusion using a 2D Brow-

nian random walk process. While the local borrow-

ing variant of the TraitLab model makes dialects

borrow traits from phylogenetically close dialects,

we control the degree of borrowing according to

spatial proximity.

We set the number of observed dialects to 50,

the number of features to 100, and the root date

to 1,000 BP (before present). The simulation was

repeated 5 times using different random seeds. We

removed features that had only one value (i.e., no

variation) and merged dialects that were too similar

to each other to be documented separately.

To make simulation experiments realistic, we

tuned hyperparameters by manually checking

neighbor-joining trees (Saitou and Nei, 1987) and

NeighborNets (Bryant and Moulton, 2004) drawn

from generated data, in addition to monitoring sev-

eral statistics. We found that only a small subspace

in the hyperparameter space led to realistic-looking

data. As a result, we obtained 44.4±2.6 languages

4https://github.com/lukejkelly/

TraitLabSDLT

https://github.com/lukejkelly/TraitLabSDLT
https://github.com/lukejkelly/TraitLabSDLT
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and 92.4± 3.0 features with 524.6± 86.8 unique

values.

To assess how realistic the synthetic data were,

we checked the δ score (Holland et al., 2002).

Ranging from 0 to 1, the δ score indicates how

tree-like the data are (lower is more tree-like). We

obtained the score of 0.246 ± 0.057, which was

roughly comparable to those calculated from real

datasets known for non-tree-like evolution (Mu-

rawaki, 2015).

4.2 Model Settings and Evaluation Metric

We compared the proposed method with an admix-

ture model. The settings for the proposed method is

described in detail in Appendix B. We implemented

a simple, fully Bayesian variant of admixture anal-

ysis, which is explained in Appendix C. For both

models, we varied the number of latent factors, K,

to be 2, 3, 4, 5, 10, and 20.

As the evaluation metric, we used a variant of

many-to-one mapping accuracy. The induced la-

tent factors were compared against gold standard

clusters, and more than one latent factor may be

mapped to the same gold standard cluster. Each

latent factor was first mapped to the gold standard

cluster that had the highest similarity score. We

used the Jaccard index as the similarity score. The

accuracy was then obtained by averaging each la-

tent factor’s score.

We considered two types of gold standard clus-

ters: (1) phylogenetic tree and (2) spatial hierarchi-

cal clustering. For the ground-truth phylogenetic

tree, each node was mapped to the set of its de-

scendant leaves, and it was used as a gold standard

cluster if it covered at least 10% of the leaves. We

also conducted spatial hierarchical clustering using

the UPGMA algorithm with the Euclidean distance,

and generated clusters in the same manner.

Although the proposed method assumes clear-

cut latent geographical distributions, posterior in-

ference entails uncertainty about membership. To

determine hard membership, we applied the thresh-

old of 0.5 to the posterior probability P (zl,k | −).
Obtaining clusters with hard membership from the

admixture model is non-straightforward because it

assumes soft membership by design. For each l, we

averaged the ancestral population assignment zl,n
over N and over posterior samples, and applied the

threshold of 0.2. We confirmed that changing the

threshold did not have much impact on accuracy.
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(a) Phylogenetic tree.
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(b) Spatial hierarchical clustering.

Figure 2: Many-to-one mapping accuracy of the in-

duced latent factors, with varying K.

4.3 Results

The results are shown in Figure 2. We can con-

firm that the proposed method consistently outper-

formed the admixture model. The proposed method

was particularly better at recognizing spatial pat-

terns. It is understandable given that the geography

is explicitly encoded to the proposed method while

it is ignored by the admixture model.

For the admixture model, the accuracy dropped

more noticeably as K increased. In contrast, the

proposed method retained a relatively high accu-

racy even with K = 20. It used additional latent

factors to capture minor but genuine patterns.

5 Analysis of Real Data

5.1 Fijian Basic Vocabulary Database

Next, we analyzed a dataset of Fijian dialects,

which was originally collected by Paul Geraghty

and is in process of digitization by the Fijian Lan-

guage GIS Project.5 The details of the dataset will

be published in the near future. We combined a

lexical dataset with coordinate data. For each di-

alect, the dataset contains word form(s) that de-

scribe each of 100 basic concepts. Coordinate data

were based on the Fiji Map Grid system, where the

5https://fijigis.github.io/

https://fijigis.github.io/
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Viti Levu

Vanua Levu

Kadavu

Lau
Islands

Western Eastern

(a)

Feature 4: he/she/it

(b)

Figure 3: Linguistic maps of Fiji. (a) Locations of Fijian dialects, with an approximate boundary between Eastern

and Western Fijian. (b) An example of features (seven more are shown in Figure A.1). The shape and color of a

language indicates the value it takes. We can see that the feature value indicated by cyan down-pointing triangles

(word form ka) transgresses the east–west boundary.

x- and y-axes correspond to local horizontal, and

local vertical coordinates, respectively. As a result

of preprocessing described in Appendix D.1, we

obtained data with L = 106 and N = 97. The δ
score was 0.286.

Figure 3(a) shows the locations of Fijian dialects

in the dataset. It is well known that two major

dialect groups, Eastern and Western Fijian, are de-

marcated by a boundary crossing the largest island

of Viti Levu (Geraghty, 1983). As exemplified

by Figure 3(b), however, features do not necessar-

ily align with the boundary. Although Geraghty

(1983) proposed multiple subgroups of Fijian by

identifying shared innovations, he refrained from

constructing a phylogenetic tree, arguing that they

were likely to have resulted from intense contact. In

short, no ground-truth is known for Fijian language

history.

5.2 Qualitative Analysis

Due to lack of gold standard for the Fijian data,

we chose to perform qualitative analysis. To do

this, we first identify several desiderata for a model:

(d1) intuitive geographical visualization of patterns,

(d2) identification of Eastern and Western Fijian,

(d3) identification of many more common patterns,

and (d4) identification of conflicting patterns.

We performed posterior inference in the same

manner as in Section 4. Figures 4 and A.3 visual-

ize latent factors induced by the proposed method

(K = 20). The visualization is intuitive (d1)

and latent factors 20 and 6 (Figures 4(a–b)) cor-

rectly identified Western and Eastern Fijian, re-

spectively (d2). At the same time, latent factor 2

(Figures 4(c)) covers Western Fijian and Kadavu

in the southwest, transgressing the the east–west

boundary (d4).

Impressionistically, other latent factors also ap-

pear to capture genuine patterns (d3), but the pro-

posed model’s superior performance with respect

to desideratum 3 becomes more apparent when it is

compared against other methods (Appendix D.2).

Most importantly, admixture analysis was inter-

pretable only with K ≤ 4. Indeed, it is a standard

practice in admixture analysis that K is carefully in-

cremented from 2 until the output becomes uninter-

pretable. Confirming the result of the quantitative

evaluation, the proposed method had no problem

with K = 20. Although how to determine the

optimal number of latent factors is an unresolved

question, the proposed method safely allows us to

try a large K. It is also worth noting that in ad-

mixture analysis, ancestral populations obtained

with different Ks are routinely compared although

they cannot necessarily be aligned in a consistent

manner. In contrast, the proposed method does not

necessitate incremental exploration.

In summary, only the proposed method satisfied

the four desiderata at the same time. Although this

does not necessarily guarantee the correctness of

the model, we believe that the proposed method is

worth further exploration.

5.3 Discussion

Our ultimate goal is to uncover spatio-temporal

dynamics of languages although in this paper we
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(a) Latent factor 20. (b) Latent factor 6.

(c) Latent factor 2. (d) Latent factor 19.

Figure 4: The visualization of four latent factors induced by the proposed method (K = 20). Other eight latent

factors are shown in Figure A.3. The warmest color indicates that the latent factor k is active for language l
(zl,k = 1) while the coolest color corresponds to the opposite (zl,k = 0). Intermediate colors indicate uncertainty.

concentrate on spatial inference. How does the

proposed method provide a basis for temporal rea-

soning? To gain a toehold on this question, recall

that the proposed method piles up multiple, po-

tentially conflicting geographical clusters for each

feature n. Since their relative strengths are con-

trolled by wk,f(n,i)’s, we expect that in case of

conflict, a newer feature value gets a larger weight

to supersede an older one.

Figure 6 shows a portion of the weight matrix W
corresponding to feature 4 in Figure 3(b). We can

see that although we did not explicitly impose spar-

sity on W , the overwhelming majority of elements

in it were close to zero.

The feature value indicated by gray diamonds

(word form i) was used by many, but not all, di-

alects on the southwestern island of Kadavu. Not

surprisingly, this group gave the largest weight to

latent factor 19, which also concentrated on Ka-

davu (Figures 4(d)). Interestingly, this conflicted

with the feature value indicated by red circles (word

form e) because it assigned a relatively large weight

to latent factor 18, which covered Kadavu in ad-

dition to southeastern Viti Levu, Vanua Levu and

some other small islands (Figure A.3(b)). However,

latent factor 19 for i had a much larger weight than

latent factor 18 for e, and as a result, the former

overwhelmed the latter.

This seems to suggest that e was once widely

used in Kadavu but was later replaced by i. Need-

less to say, however, a different run of the model

may provide a different interpretation. We need to

devise a statistical measure to quantify how likely

the hypothesis is.

At this stage of research, temporal reasoning is

left to human interpretation. Can we directly incor-
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Figure 5: A geographical representation of a phylogenetic tree. We assume that the four modern dialects in Figure 1

have followed evolutionary paths shown on the left. We label internal nodes as E, F, and G. Each node X in the tree

can be uniquely mapped to the set of its descendant leaves, which we denote as X̄ . A dotted arrow corresponds to

a branch in the tree.
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Figure 6: A portion of the weight matrix W correspond-

ing to feature 4 in Figure 3(b).

porate it to the model? A hint is given in Figure 5.

A node in a tree can be reinterpreted as a latent

factor of the proposed method because it can be

mapped to the set of its descendant leaves. All

we have to do is to force the set of latent factors

to satisfy the tree constraint: The two sets of ac-

tive dialects in the children are a partition of the

set of active dialects in their parent. As such, the

proposed model has the potential of incorporating

the tree model. With additional latent factors that

are outside of the tree, the extended model can

straightforwardly capture contact phenomena.6

Incorporating the tree constraint into the pro-

posed method, especially as a hard constraint, is

highly challenging. It is because each latent fac-

tor alone forms so complex a network that we re-

sort to approximate sampling (Møller et al., 2006;

Murray et al., 2006). However, this extension de-

6To analyze typological data, Daumé III (2009) presented a
mixture model of a phylogenetic tree and a set of areal clusters.
Although we share similar motivations with Daumé III (2009),
our key idea is to represent vertical and horizontal signals in a
unified manner, rather than given them completely different
representations.

serves further investigation. If a trait is observed in

geographically fragmented regions and the possi-

bility of parallel innovation is ruled out, linguists

assume that it once had a wider geographical distri-

bution connecting them. The proposed method in

its present form has no mechanism to favor such a

scenario, but the tree constraint does.

A caveat is that the proposed model does not

keep track of the birth and death (or replacement by

a new trait) of traits but lets multiple layers of his-

torical changes simply pile up. This means that the

state of an ancestral node cannot be reconstructed.

This limitation appears inevitable especially if we

want to model both vertical inheritance and hori-

zontal contact, because it is hard to date contact

events relative to an ancestral node.

6 Conclusions

In this paper, we proposed a Bayesian generative

model to analyze dialectal variation. With this

model, we successfully induced a large number

of latent factors from a set of noisy surface features.

Each latent factor is associated with an intuitively

appealing geographical interpretation.

In the experiments, we used synthetic data and

Fijian lexical data. Future directions include the

incorporation of phonological and morphosyntactic

features, application to other languages, and most

importantly, a model extension to infer temporal

ordering.

Acknowledgments

We thank Paul Geraghty, John Lowry, Ritsuko

Kikusawa, Susumu Okamoto, Fumiya Sano, and

the itaukei ni vosa (owners of the language) for pro-

viding the Fijian lexical/GIS data. We also thank

Chundra A. Cathcart for valuable comments and

suggestions on an earlier draft of this paper. This

work was partly supported by JSPS KAKENHI

Grant Numbers 18K18104 and 18KK0012.



968

References

David H. Alexander, John Novembre, and Kenneth
Lange. 2009. Fast model-based estimation of an-
cestry in unrelated individuals. Genome Research,
19(9):1655–1664.

Julian Besag. 1974. Spatial interaction and the sta-
tistical analysis of lattice systems. Journal of the
Royal Statistical Society. Series B (Methodological),
36(2):192–236.

Balthasar Bickel, Johanna Nichols, Taras Zakharko,
Alena Witzlack-Makarevich, Kristine Hildebrandt,
Michael Rießler, Lennart Bierkandt, Fernando
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Appendix A A Comparison between the

Model of Murawaki (2019)

and the Proposed Method

The proposed method is a Bayesian generative

model that is based on the model proposed by

Murawaki (2019) even though at first glance, our

task has little in common with that of Murawaki

(2019). Table A.1 summarizes key differences be-

tween the two models. The most obvious differ-

ence is scale. While Murawaki (2019) worked on

languages around the world, our target is a group

of closely related dialects that usually occupies a

relatively small area of the globe.

The difference in scale leads to the difference in

the choice of features. In order to compare any pair

of languages, which may have no known phyloge-

netic relationships, one has a limited choice. For

this reason, Murawaki (2019) used features of lin-

guistic typology (Haspelmath et al., 2005; Bickel

et al., 2017). In contrast, we have a wide range

of options for comparing dialects. While we used

lexical features in the experiments, phonological

and morphosyntactic features can readily be incor-

porated into the model although these features may

be more prone to parallel innovation.

Both models encode our assumption that lan-

guages related to each other in some way tend to

take the same feature value. However, whereas

Murawaki (2019) used two neighbor graphs, one

for phylogenetic relations and the other for spatial

relations, we only use a spatial neighbor graph. It is

because we are interested in cases where no ground

truth is available for the internal phylogenetic clas-

sification of the languages in question.

The weight matrix W , which connects latent and

surface representations, also differs slightly. We

constrain wk,m to be positive whereas in Murawaki

(2019), wk,m can be negative. Negative weights

are hard to interpret in our task because we assume

that multiple layers of historical changes simply

pile up.

Finally, we look at Θ̃ from a different angle.

Murawaki (2019) interpreted Θ̃ row-wise (fixing

language l and discussing how the feature values

(n1, i1) and (n2, i2) depend on each other). On the

other hand, we present a column-wise interpreta-

tion (fixing the feature value (n, i) and discussing

how l’s get their probabilities).

Appendix B Settings of the Proposed

Method

We constructed the neighbor graph as follows. First,

we connected any pair of languages that are within

the distance of 300 km. The edge weight ωl1,l2 for

the pair of languages l1 and l2 was then given as

max(dl1,l2/3, 1)
−1/2.

σ2, the hyperparameter for uk, was set to 5. Re-

call that hk is drawn from Gamma(κ, θ). We set

κ = ĥ/5 and θ = 5. This means that the gamma

distribution had mean ĥ and variance 5ĥ. Using the

Fijian data, we estimated ĥ using the autologistic

models for N surface features (Murawaki and Ya-

mauchi, 2018), with the assumption that the range

of the parameter for latent factors should not devi-

ate too much from the range for surface features.

Specifically, we tied a single single parameter h
to N autologistic models, sampled h’s using an

MCMC algorithm, and calculated their geometric

mean. As a result, we obtained ĥ ≈ 0.009.

Before collecting posterior samples, we ran

1,000 burn-in iterations. Following Murawaki

(2019), we applied simulated annealing to the sam-

pling of zl,k and xmis
l,∗ . For the first 100 iterations,

the inverse temperature was increased from 0.1 to

1.0. After the burn-in iterations, we collected 100
samples, one per iteration.

Appendix C Admixture Model

We implemented a simpler version of admixture

analysis (Pritchard et al., 2000; Alexander et al.,

2009). While population geneticists have devoted

much effort to make inference scale to large ge-

netic data, linguistic data are so small that a naı̈ve

Markov chain Monte Carlo algorithm suffices.

The generative story of the admixture model is

as follows:

1. For each ancestral population k ∈
{1, · · · ,K}:

(a) For each feature type n ∈ {1, · · · , N}:

i. Draw a categorical distribution from

a symmetric Dirichlet distribution

φk,n ∼ Dir(βn).

2. For each language l ∈ {1, · · · , L}:

(a) Draw a mixing proportion from a

symmetric Dirichlet distribution θl ∼
Dir(α).
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Murawaki (2019) Proposed method

Target Worldwide Dialects

Linguistic domain Typology Lexicon

Neighbor graphs 2 1

Weight range (−∞,+∞) (0,+∞)

Interpretation of Θ̃ Row-wise Column-wise

Table A.1: A summary of key differences between the model of Murawaki (2019) and the proposed method.

(b) Then for each feature type n ∈
{1, · · · , N}:

i. Draw an ancestral population assign-

ment zl,n ∼ Categorical(θl).

ii. Draw a feature xl,n ∼
Categorical(φzl,n).

We marginalize out φk,n and θl and run a col-

lapsed Gibbs sampler (Griffiths and Steyvers, 2004)

to draw posterior samples. In the experiments, we

ran 1,000 burn-in iterations and after that, collected

500 samples, one per iteration. As routinely done

in population genetics (Jones et al., 2015), we in-

creased the number of ancestral populations, K,

one by one, starting from 2.

Appendix D Fijian Dataset

D.1 Details of Preprocessing

The lexical data of Fijian dialects7 covered 100
basic concepts. The list was inspired by but is

not identical with Swadesh’s famous list (Swadesh,

1952) since it was tailored to Fijian.

We converted word forms into categorical fea-

tures. To do this, we adopted a sequence compari-

son tool named LingPy (List et al., 2018). For each

concept, it automatically clustered word forms into

cognate groups, to which we assigned unique num-

bers. We discarded 3 concepts that were covered

by single cognate groups. This means that each lan-

guage was represented as a sequence of 97 lexical

features. Note that since the proposed method only

requires features to be discrete, it can also deal with

phonological and morphosyntactic features.

Finally, we removed languages for which we

were unable to determine coordinates. As a result,

we chose 106 languages for further analysis. The

ratio of missing features was 17.4%.

The Fijian dataset is still a work in progress, and

a finished version is expected to be published in

the near future. Needless to say, automatic cognate

7Called communalects in Fijian language studies (Ger-
aghty, 1983).

detection was not without errors, and the alignment

between lexical and coordinate data was a source of

additional complications. Nevertheless, we believe

that the result of preprocessing was good enough

to evaluate the proposed method, even if it may be

too early to draw Fijian-specific linguistic insights.

Figure A.1 visualizes the dataset. A high de-

gree of contact is evident from the NeighborNet

analysis (Bryant and Moulton, 2004).

D.2 Additional Analysis with Baseline

Methods

In addition to NeighborNet, several baseline meth-

ods were used to analyze the Fijian dataset.

Isogloss bundles The map is partitioned using a

Voronoi diagram. An edge is drawn between two

nearby languages, and its width is proportional to

the number of features over which they disagree.

Thus, thick lines indicate major dialect boundaries.

PCA Principal component analysis maps lan-

guages into lower dimensions (Nerbonne and Wiel-

ing, 2018). We visualize the first two principal

components (PCs).

Admixture The admixture model used in simu-

lation experiments in Section 4.

In NeighborNet (Figure A.1(a)), we can recog-

nize Eastern Fijian (right) and Western Fijian (left),

and also some of their subgroups. However, it is

not easy to draw insights from reticulations, except

for the obvious fact that the tree model does not fit

well. Also, since NeighborNet visualizes clusters

without reference to location, it does not provide

any intuitive geographical interpretation.

Isogloss bundles in Figure A.2(a) illuminated

so many dialect boundaries that even the most im-

portant east–west boundary got buried. The result

partly explains why dialectologists are reluctant to

generalize.

As for PCA, the first PC shown in Figure A.2(b)

clearly identified the east–west boundary. The in-
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NeighborNet Isoglosses PCA Admixture Proposed

Aggregate & geographical ✗ ✓ ✓ ✓ ✓

Detect the east–west boundary ✓ ? ∼ ✓ ✓ ✓ ✓

Detect many more factors ? ∼ ✓ ? ∼ ✓ ✗ ✗∼ ✓ ✓

Detect conflicts ✓ ? ∼ ✓ ✗ ✗ ✓

Table A.2: A summary of the comparison of various methods.

termediate colors found in the middle of Viti Levu

suggest that the two groups are in contact. They

explain why isoglosses were not clearly bundled

together. It turns out, however, that PCA uncovered

only one factor since the second PC, visualized in

Figure A.2(c), discouraged any geographical inter-

pretation.

In admixture analysis (Figure A.2(d–f)), each

language is given a pie chart indicating the mixing

proportion of ancestral populations. At first glance,

admixture analysis generated a beautiful high-level

picture of the dataset although the outputs with

K ≥ 5 were hard to interpret. With K = 2, it

identified Eastern and Western Fijian, again with

traces of contact in the middle of Viti Levu. With

K = 3, Eastern Viti Levu was separated from the

rest of Eastern Fijian, and with K = 4, Eastern Viti

Levu was further divided into the northeast and the

southeast.

However, a close examination reveals that ad-

mixture analysis went against our intuition. As Fig-

ure A.1 demonstrates, non-overlapping isoglosses

were the norm in the dataset, but admixture analysis

far too often assigned a single ancestral population

to a language. We conjecture that most conflicts

were absorbed by over-expressive ancestral popula-

tions and escaped detection.

Recall that in Section 5.2, we enumerated several

desiderata: (d1) intuitive geographical visualiza-

tion of patterns, (d2) identification of Eastern and

Western Fijian, (d3) identification of many more

common patterns, and (d4) identification of con-

flicting patterns. Based on the discussion above, we

summarize the comparison of various methods in

Table A.2. Now we can see that only the proposed

method satisfies all of the four desiderata.
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(a)

Feature 2: I
(b)

Feature 7: want to
(c)

Feature 11: down
(d)

Feature 22: the
(e)

Feature 29: us inc
(f)
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Feature 49: stomach
(g)

Feature 61: bamboo
(h)

Figure A.1: (a) NeighborNet analysis visualizes the non-tree-like nature of the data. Leaves represent modern

languages. Branch lengths are proportional to distances, and reticulations indicate conflicting signals. (b–h) Seven

more examples of features, in addition to one shown in Figure 3(b). The shape and color of a language indicates

the value it takes.
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(a) Isogloss bundles.
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(c) PCA (color indicates the value of PC2). (d) Admixture analysis (K = 2).

(e) Admixture analysis (K = 3). (f) Admixture analysis (K = 4).

Figure A.2: The visualization of baseline methods.
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(a) Latent factor 1. (b) Latent factor 18.

(c) Latent factor 7. (d) Latent factor 11.

(e) Latent factor 9. (f) Latent factor 17.

(g) Latent factor 8. (h) Latent factor 5.

Figure A.3: The visualization of eight latent factors induced by the proposed method (K = 20). Figure 4 visualized

four other latent factors.


