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Abstract We tackle the problem of new users or documents in collaborative filtering. Gen-
eralization over users by grouping them into user groups is beneficial when a rating is to
be predicted for a relatively new document having only few observed ratings. Analogously,
generalization over documents improves predictions in the case of new users. We show that
if either users and documents or both are new, two-way generalization becomes necessary.
We demonstrate the benefits of grouping of users, grouping of documents, and two-way
grouping, with artificial data and in two case studies with real data. We have introduced a
probabilistic latent grouping model for predicting the relevance of a document to a user. The
model assumes a latent group structure for both users and items. We compare the model
against a state-of-the-art method, the User Rating Profile model, where only the users have
a latent group structure. We compute the posterior of both models by Gibbs sampling. The
Two-Way Model predicts relevance more accurately when the target consists of both new
documents and new users. The reason is that generalization over documents becomes bene-
ficial for new documents and at the same time generalization over users is needed for new
users.

Keywords Collaborative filtering · Gibbs sampling · Graphical model · Latent topic model

Editor: Dan Roth.

E. Savia (�) · S. Kaski
Adaptive Informatics Research Centre, Department of Information and Computer Science, Helsinki
University of Technology, P.O. Box 5400, 02015 TKK, Finland
e-mail: eerika.savia@tkk.fi

S. Kaski
e-mail: samuel.kaski@tkk.fi

E. Savia · K. Puolamäki · S. Kaski
Helsinki Institute for Information Technology HIIT, Department of Information and Computer Science,
Helsinki University of Technology, P.O. Box 5400, 02015 TKK, Finland

K. Puolamäki
e-mail: kai.puolamaki@tkk.fi

mailto:eerika.savia@tkk.fi
mailto:samuel.kaski@tkk.fi
mailto:kai.puolamaki@tkk.fi


76 Mach Learn (2009) 74: 75–109

1 Introduction

1.1 Background

This paper addresses the task of predicting relevance values for user–item pairs based on
a set of observed relevance judgments of users for the items. Especially, we study how to
predict relevance when very few relevance judgments, or ratings, are known for each user
or item. The models we discuss are generally applicable, but since our prototype application
area has been information retrieval, we will refer to the items as documents.

Traditionally, user preferences have been predicted using so-called collaborative filtering
methods, where the predictions are based on the opinions of similar-minded users. Collab-
orative filtering is needed when the task is to make personalized predictions, but there is
not yet sufficient amount of data about the user’s personal interests available. Then the only
possibility is to generalize over users, for instance by grouping them into like-minded user
groups.

The early collaborative filtering methods were memory-based; predictions were made
by identifying a set of similar users, and using their preferences fetched from memory.
See, for instance (Konstan et al. 1997; Shardanand and Maes 1995). Model-based ap-
proaches are justified by the poor scaling of the memory-based techniques. Combining a
memory-based technique with a model-based part has been suggested (Yu et al. 2004) to
avoid the problem of new users not having enough ratings for reliable predictions. Recent
work includes probabilistic and information-theoretic models, for instance (Hofmann 2004;
Jin and Si 2004; Wettig et al. 2003; Zitnick and Kanade 2004). An interesting family of
models are the latent component models, which have been successfully used in document
modeling but also in collaborative filtering (Blei et al. 2003; Blei and Jordan 2003; Erosheva
et al. 2004; Hofmann 2004; Keller and Bengio 2004; Marlin 2004; Marlin and Zemel 2004;
McCallum et al. 2004; Popescul et al. 2001; Pritchard et al. 2000; Rosen-Zvi et al. 2004;
Si and Jin 2003; Yu et al. 2005a, 2005b). When applying these models to collaborative fil-
tering, each user is assumed to belong to one or more latent user groups that explain her
preferences.

1.2 Tackling the problem of new users and documents

As a collaborative filtering system has to rely on the past experiences of the users, it will
have problems when assessing new documents not yet seen by most of the users. Making
the collaborative filtering scheme item-based, that is, grouping items or documents instead
of users, would in turn introduce the problem of new users that do not have ratings for many
documents. To tackle this problem of either new users or documents we have proposed
a model that generalizes both ways (Savia et al. 2005). We go one step further from the
common probabilistic models which have a latent structure for the users, and introduce a
similar latent structure for the documents as well. A similar two-way structure has been
suggested by (Si and Jin 2003) with some technical differences that will be discussed in
Sect. 2.3.

This paper is structured as follows. We first present the User Rating Profile Model
(URP; Marlin 2004) from which we go on to introduce our Two-Way Model that generalizes
URP by grouping both users and documents (Sect. 2). After that we discuss the differences
and similarities of our model with other related models.

In our model and URP two major choices in model structure have been made differently.
The first choice is whether to cluster only users or to cluster both users and documents. The
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Table 1 Notation
Symbol Description

u User index

d Document index

r Binary relevance (relevant = 1, irrelevant = 0)

u∗ User group index (attitude in URP)

d∗ Document cluster index

NU Number of users

ND Number of documents

N Number of triplets (u, d, r)

KU Number of user groups

KD Number of document clusters

D Observed data

second choice is whether to generate the users and documents or to treat them as covariates
of the model. In this paper, we study the effects of these two choices on the prediction
performance. In Sect. 3 we introduce one variant of each model to compare whether it is
useful to design the model to be fully generative, or to see users and documents as given
covariates of the model.

We describe the experimental setups and baseline models in Sect. 4. In Sect. 5 we demon-
strate with clearly clustered toy data how the two structural choices make a difference in ac-
tual predictions. Finally, in Sect. 6 we show with two case studies with real-world data that
the proposed method works as expected also in practice, in addition to the toy demonstra-
tions. Since in the work of Marlin the variational URP model outperformed the other latent
topic models, we only had to compare with it. We compared our model to both a URP model
that groups the users and a document-based URP that groups the documents. We computed
the posteriors of all three models by Gibbs sampling.

2 Models

We first introduce the User Rating Profile Model (URP; Marlin 2004) from which we ex-
tend to our Two-Way Model that groups both users and documents. Our main notations are
summarized in Table 1.

2.1 User rating profile model

URP is a generative model which generates a binary rating r for a given (user, document)
pair.1 It was originally optimized with variational Bayesian methods (variational URP; Mar-
lin 2004). We solved the model with Markov chain Monte Carlo sampling from the full
posterior distribution (User URP). This is expected to improve estimates especially for the
small numbers of known ratings in our applications. We estimate the posterior predictive

1Note that the model also allows multiple-valued ratings if the Bernoulli distribution is replaced with a
multinomial.
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Fig. 1 Graphical model
representation of the User Rating
Profile model (URP). The grey
circles indicate observed values.
The boxes are “plates”
representing replicates and the
value at a corner of each plate
indicates the number of
replicates. The rightmost plate is
repeated for each given (u, d)

pair (altogether N pairs). The
upper left plate represents the
multinomial models of different
users. The lower left plate
represents the relevance
probabilities of the different
(user group, document) pairs

distribution P (r|u,d, D) by Gibbs sampling; here D denotes the training data consisting
of observations (u,d, r). The model assumes that there are a number of latent user groups
whose preferences on the documents are different. The users belong to these groups prob-
abilistically, into different groups in different instances. Alternatively, the groups can be
interpreted as different “attitudes” of the user, and the attitude may be different for different
documents. The generative process and the sampling formulas are presented in detail in the
Appendix A, Sect. A.1. See Fig. 1 for a graphical model representation.

2.2 Two-way latent grouping model

We introduce a model that clusters users into user groups and documents into document
clusters, in order to generalize relevance over both groupings. Each user may have several
“attitudes,” that is, belong to different groups during different relevance evaluations, and
likewise each document may have several “aspects.” These are modeled as probabilistic soft
assignments.

The model generates rating triplets (user, document, rating), or (u, d, r), with binary
relevances r . See Fig. 2 for a graphical model representation; the model is presented in
detail in the Appendix A, Sect. A.4.

The obvious difference to URP is that the Two-Way Model extends URP by introducing
the latent grouping also on the document side of the model. Another difference is the genera-
tion of users and documents. In URP the user group is generated for given (user, document)
pairs whereas our model first generates the group and from the group a user/document is
generated. In effect, this also changes the direction in which the users vs. user groups matrix
[βU ] is normalized.

The Two-Way Model could easily be extended to handle multiple-valued ratings, by re-
placing the binary output with a multinomial. Binary responses, however, have the clear
advantage that the ratings have a natural ordering: from the posterior we obtain simple prob-
abilities varying continuously between the extremes, 0 and 1. In comparison, the multino-
mial distribution does not take the ordering of the ratings into account.

2.3 Other related models

The models most closely related to our Two-Way Model are the so-called latent topic mod-
els, especially the Flexible Mixture Model (FMM; Si and Jin 2003) but also Hofmann’s
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Fig. 2 Graphical model
representation of our Two-Way
Model. The grey circles indicate
observed values. The boxes are
“plates” representing replicates;
the value in a corner of each plate
is the number of replicates. The
rightmost plate represents the
repeated choice of N (user,
document, rating) triplets. The
plate labeled with KU represents
the different user groups, and βU
denotes the vector of multinomial
parameters for each user group.
The plate labeled with KD

represents the different document
clusters, and βD denotes the
vector of multinomial parameters
for each document cluster. In the
intersection of these plates there
is a Bernoulli-model for each of
the KU × KD combinations of
user group and document cluster

probabilistic latent semantic analysis (pLSA; Hofmann 2004), Latent Dirichlet Allocation
(LDA; Blei et al. 2003), also known as multinomial PCA or mPCA (Buntine 2002), and the
already introduced URP (Marlin 2004). Most of these models fall into the unifying model
framework called Discrete PCA (Buntine and Jakulin 2006).

The main differences of the proposed Two-Way Model from the one-way grouping mod-
els pLSA, LDA, and URP, and from the two-way grouping FMM are discussed in this sec-
tion.

The three one-way grouping models have subtle differences, but in all of them each user
is assigned an individual multinomial distribution with parameters θ , and the latent user
group u∗ is sampled from this multinomial; the sampling is repeated for each document.2

Each user can therefore belong to many groups with varying degrees. In our model, as well
as in the FMM model, both users and documents can belong to many latent groups, much in
the same way as users do in the three one-way models.

In pLSA and URP, each user group has a set of multinomials Mult(β), one for each
document—these multinomials immediately determine the probabilities of ratings once the
user group has been generated. Each mPCA user group, on the contrary, has a multino-
mial Mult(β) over the documents (Blei et al. 2003). Hence, mPCA could be seen as a
model where the occurrence probabilities of documents are interpreted as probabilities of
relevance. Thus, multinomial PCA can be interpreted as a binary relevance model, which
cannot, as a side note, explicitly represent multiple-valued ratings. URP can be seen as an
extension to mPCA with one extra dimension in the matrix of parameter vectors β to rep-
resent the different rating values. In our model and in the FMM model, the relevance is
assumed to depend only on the latent groups, that is, there is a probability distribution of
different ratings, Mult(θR), for each (user group, document cluster) pair.

2Note that in text modeling this corresponds to sampling a “topic” Z for each word or token. In such a
framework each document has a multinomial distribution Mult(θ) over topics.
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In addition to being two-way, our model and FMM differ from URP in that the users
u and documents d are explicitly generated. In other words, the marginals P (u) and P (d)

are estimated from data. In contrast, URP contains no generative process for the users or
documents.

The difference between our two-way model and Flexible Mixture Model is that our model
defines Dirichlet priors for all the multinomial model parameters, and is computed by sam-
pling from the posterior distribution. FMM simply finds the easily overfitting maximum
likelihood solution with the EM algorithm.

Finally, although our model is not far from the diverse set of so-called biclustering models
(Madeira and Oliveira 2004; Tanay et al. 2006; Wettig et al. 2003), we aim at prediction
instead of clustering, and therefore it is enough that the latent structure makes the predictions
accurate. Because the model is computed by sampling, we do not obtain a single explicit set
of clusters.

3 Choices in the model structure

In this section, we analyze the differences in model structure between the User Rating Profile
Model (URP) and the Two-Way Latent Grouping Model (Two-Way Model). We introduce
two variants of the models in order to study in Sect. 5 how the choices in model structure
are reflected in the performance.

3.1 Main choices

There are two main differences between the model structures of URP and the Two-Way
Model:

(i) One-Way or Two-Way Grouping
In URP, only users are clustered and there is no generalization over documents. An

alternative is to use URP to cluster documents but then there is no generalization over
users. In the Two-Way Model both users and documents are grouped for generalization.

(ii) Generation of Users and Documents from Marginals
In URP, the users and documents are assumed to be given and the user groups are

generated from multinomials given the users. In the Two-Way Model, users and doc-
uments are generated from the user groups and document clusters, which in turn are
generated from their marginal distributions. This difference also affects the normaliza-
tion of the users vs. user groups matrix [βU ] containing the parameter vectors βU .

3.2 Model variants

First, we introduce a slightly different variant of URP, by introducing a mechanism for gen-
erating users and documents. This means we are making the model choice number (ii) in the
same way it is done in the Two-Way Model. This implies changing the direction of normal-
ization of the matrix [βU ] (user groups vs. users). We call this model URP with Generation
of Users and Documents (URP-GEN). A graphical model representation is given in Fig. 3.
A detailed description of the model including the generative process and the sampling for-
mulas can be found in the Appendix A, Sect. A.2.

We expect this model to work better than the original URP because it takes the probabili-
ties of different users appearing in the data into account. However, if the frequencies of users
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Fig. 3 A graphical model representation of User Rating Profile Model with generation of users and docu-
ments (URP-GEN). The rightmost plate represents the repeated choice of N (user, document, rating) triplets.
The plate labeled with KU represents the different user groups, and βU denotes the vector of multinomial
parameters for each user group. The plate labeled with ND represents the documents. In the intersection of
these plates there is a Bernoulli-model for each of the KU × ND combinations of user group and document.
Since αD and θD are conditionally independent of all other parameters given document d , they have no effect
on the predictions of relevance P(r | u,d) in this model. They only describe how documents d are assumed
to be generated

as such are disinformative of the relevance, the original URP should be better. We study the
validity of this assumption with toy data in Sect. 5.2.

Second, we introduce a slightly different variant of the Two-Way Model, by assuming
the users and documents to be given as in URP. This means we are making the model choice
number (ii) in the same way it is done in URP. Both the user groups u∗ and the docu-
ment clusters d∗ are now generated from the multinomials of matrices [βU ] (users vs. user
groups) and [βD] (documents vs. document clusters), which implies changing the direc-
tion of normalization of the matrices. This means that the multinomials for user groups θU

and document clusters θD become obsolete. We call this model Two-Way Grouping Model
Without Generation of Users and Documents (Two-Way NO-GEN). A graphical model rep-
resentation is given in Fig. 4. A detailed description of the model including the generative
process and the sampling formulas can be found in the Appendix A, Sect. A.3.

We expect this model to generally perform worse than the original Two-Way Model
because it does not take into account the probabilities of different users and documents
appearing in the data.

3.3 Computational complexity

The number of observed (u, d, r) triplets is denoted by N and it dominates the complexities
of all the presented models. The time complexity of computing one iteration of Gibbs sam-
pling with the Two-Way Model is O(N(K2

U + K2
D) + NUKU + NDKD + KUKD), whereas

for User URP the complexity is O(NK2
U + NUKU + NDKU) per iteration, where NU =

number of users, ND = number of documents, KU = number of user groups, and KD =
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Fig. 4 A graphical model
representation of the Two-Way
Grouping Model without
generation of users and
documents (Two-Way NO-GEN).
The rightmost plate represents
the repeated choice of N (user,
document, rating) triplets. The
plate labeled with NU represents
the different users, and βU
denotes the vector of multinomial
parameters for each user. The
plate labeled with ND represents
the different documents, and βD
denotes the vector of multinomial
parameters for each document. In
the plate labeled with KU × KD

there is a Bernoulli-model for
each of the combinations of user
group and document cluster

number of document clusters.3 The complexity remains the same, regardless of whether one
chooses to generate the users and documents.

In principle the complexity is too high for online computation. However, an approximate
prediction for a new user or document can be made efficiently as follows: one could keep
a set of randomly selected posterior samples and use it to represent all other users, while
sampling only the parameters of the new incoming user.

4 Technical details of experiments

4.1 Evaluation of models by Gibbs sampling

The parameters of all the models were computed with Gibbs sampling. As a very brief tuto-
rial, the model parameters are sampled one at a time, conditional on the current values of all
the other parameters. One iteration step consists of sampling all the parameters once, in a
fixed order. The observed data consists of triplets (u, d, r). For each iteration step m of sam-
pling, we get a sample of all the parameters of the model, denoted by ψ (m). Asymptotically,
the sampled parameters ψ (m) satisfy ψ (m) ∼ P (ψ | D).

Each sample of parameters generates a matrix of probabilities P(r, u, d | ψ (m)). The pre-
diction of relevance, P(r | u,d,ψ (m)), can be computed from these by the Bayes rule. As the
final prediction we use the mean of the predictions over the M Gibbs iterations,

P(r | u,d, D) = EP(ψ |D)

[
P(r | u,d,ψ)

]

≈ 1

M

M∑

m=1

P(r | u,d,ψ (m)). (1)

3The complexity of Document URP is analogous to User URP, where the role of users and documents is

reversed, that is, O(NK2
D

+ NDKD + NU KD) per iteration.
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4.2 Metropolis-Hastings sampling of priors

The Dirichlet priors of multinomials that generate user groups or document clusters, were
sampled with the Metropolis-Hastings algorithm (Hastings 1970; Metropolis et al. 1953)
with a flat prior in the interval [1,10] and a Gaussian proposition distribution.

4.3 Monitoring of convergence

We sampled three MCMC chains in parallel and monitored the convergence of the predic-
tions. First, each of the chains were run for 100 iterations of burn-in, with tempering like
in (Koivisto 2004). After that, the burn-in period was continued for another 50 iterations
without the tempering, to burn in the actual posterior distribution.

Convergence of the Markov chain Monte Carlo simulations was measured as follows. At
the end of the burn-in period, the squared Hellinger distance H2 between the chains (details
below) was used as a convergence check: it was required to achieve the limit of 10−3. The
definition of squared Hellinger distance between two discrete probability distributions p and
q is

H2(p, q) = 1

2

∑

i

(√
pi − √

qi

)2 = 1 −
∑

i

√
pi

√
qi, (2)

where pi and qi denote the probabilities of the elementary events. We evaluated the squared
Hellinger distance between the conditional distributions P (r | u,d) produced by the 3
chains, pairwise between all chain pairs. The average of the Hellinger distances between
the conditional distributions given by the chains measures the expected uncertainty in the
prediction of relevance. Various figures of realized convergence of the chains are presented
in Sect. 5.3.

After the burn-in period, each chain was run for another n iterations, and finally those
3 × n samples were averaged to estimate expectations of P (r | u,d). The number of needed
iterations n depended on the data set and the complexity of the model.

4.4 Baseline models

We implemented three simple models to give baseline results. The Naive Model always
predicts the same relevance value for r , according to the more frequent value in the training
set.

The Document Frequency Model does not take into account differences between users
or user groups at all. It simply models the probability of a document being relevant as the
frequency of r = 1 in the training data for the document:

P (r = 1 | d) =
∑

u #(u, d, r = 1)
∑

u,r #(u, d, r)
. (3)

The User Frequency Model, in its turn, does not take into account differences between
documents or document groups. It simply models the probability of a user assigning docu-
ments relevant as the frequency of r = 1 in the training data for the user:

P (r = 1 | u) =
∑

d #(u, d, r = 1)
∑

d,r #(u, d, r)
. (4)
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4.5 Experimental scenarios

In this section we introduce different types of experimental scenarios that were studied both
with artificial and real data. The scenarios have various levels of difficulty for models that
group only users, only documents, or that group both. The first two cases favor models that
either group only users or only documents. The next two cases favor models that group both
users and documents.

4.5.1 Only “new” documents

We constructed this experiment to correspond to the prediction of relevances for new doc-
uments in information retrieval. We took care that each of the randomly selected test docu-
ments had only few relevance judgments, in our case 3 ratings, in the training data. (Tests
with other numbers of known ratings were run, too.) The rest of the ratings for these docu-
ments were left to the test set. For the rest of the documents, all the ratings were included
in the training set. These documents represented the “older” documents in an information
retrieval application; many users have already seen and revealed their opinion on them. This
way all the tested documents are “new” in the sense that we only know 3 users’ opinions of
them. However, we are able to use “older” documents (for which users’ opinions are already
known) for training the user groups and document clusters.

We expected that this experiment should be hard for the URP models that group users,
but on the other hand easy for the document-based URP that groups documents. The two-
way grouping models’ performance should lie between the user-based and document-based
URP models.

4.5.2 Only “new” users

The experimental setting for new users was constructed in exactly the same way as the
setting for new documents but the roles of users and documents were reversed.

We expected that this experiment should be hard for the document-based URP that groups
documents but on the other hand easy for the user-based URP models that group users. Also
in this case the two-way grouping models’ performance should lie between the user-based
and the document-based URP models.

4.5.3 Scenario where either user or document is “new”

In an even more general scenario either the users or the documents can be “new.” We con-
structed a setting in which the test set consists of user-document pairs where either the user
is “new” and the document is “old” or vice versa. Again, “new” meant having 3 ratings in
the training set.

We expected that this scenario should bring out the need for two-way generalization; the
two-way models were expected to perform better than URP models of any kind.

4.5.4 Scenario where both user and document are “new”

In this setting all the users and documents appearing in the test set were “new,” having only
3 ratings in the training set. This case is similar to the previous setting, but much harder,
even for the two-way grouping models.

We expected that this experiment should resemble the results of the previous case but
with considerably worse levels of performance.
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4.6 Measures of performance

For all the models, except the naive model, we used the log-likelihood of the test data set as
a measure of performance, written in the form of perplexity,

perplexity = e− L
N , where L =

N∑

i=1

logP (ri | ui, di, D). (5)

Here D denotes the training set data, and N is the size of the test set. Gibbs sampling gives
an estimate for the table of relevance probabilities over all (u, d) pairs, P (r | u,d, D), from
which the likelihood of each test pair (ui, di) can be estimated as P (ri | ui, di, D). The
best possible performance yields perplexity = 1 and binary random guessing (coin flipping)
yields perplexity = 2. If perplexity is greater than 2 the model is performing worse than
random guessing. Theoretically, perplexity can grow without a limit if the model predicts
zero probability for some element in the test data set. However, we clipped the probabilities
to the range [e−10,1] implying maximum perplexity of e10 ≈ 22,000.

We further computed the accuracy, that is, the fraction of the triplets in the test data set for
which the prediction was correct. For the naive model, the prediction accuracy was the only
performance measure used since, unlike the other models, it does not produce a probability
of the relevance. For the other models we took the predicted relevance to be

arg max
r∈{0,1}

P (r | u,d, D), (6)

where P (r | u,d, D) is the probability of relevance given by (1). In all the experiments,
statistical significance was tested with the Wilcoxon signed rank test.

5 Demonstrations with artificial data

We present two different demonstrations with artificial data to show the effect of choices in
model selection. Table 2 summarizes the choices made in the models.

1. Demonstration 1. We demonstrate the performance of the different models in the task
of finding biclusters when there are new users, new documents, or both. We expect all
the topic models to succeed in this task but when there are new documents(/users/both)
generalization over documents(/users/both) should be helpful.

2. Demonstration 2. We show how a misleading data set can favor a model which does
not generate users and documents, while we normally would expect the models that do
generate them to perform better.

Table 2 Summary of the models
(u = user, d = document) Model Abbreviation Generates u, d Groups u Groups d

Two-Way Model • • •
Two-Way NO-GEN – • •
User URP – • –

User URP-GEN • • –

Variational URP – • –

Document URP – – •
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Fig. 5 Focused biclusters data. The matrix consists of 200 users and 300 documents and the ratings are
missing for 70% of the (user, document) pairs. The corners of the matrix are clearly distinguishable biclusters
and in the middle the ratings are uniformly random noise. Most of the data is in the corners: 2/3 of all the
ratings are included in the corners while only 1/4 of the possible (user, document) pairs lie there. The density
of observed ratings is six times as high in the corners as in the rest of the matrix

5.1 Demonstration 1: when do different generalizations help

We demonstrate the task of finding biclusters with an artificial dataset that has clear known
cluster boundaries, sketched and explained in Fig. 5. By biclusters we mean a division of
users and documents into subsets such that the users within each subset have similar ratings
within each subset of documents. We expect that when there are new documents generaliza-
tion over documents should be helpful, and analogously for new users. So, when there are
both new users and new documents, two-way models should outperform URP models, both
user-based and document-based.

We constructed four different settings as described in Sect. 4.5, namely

i) Only New Documents Case,
ii) Only New Users Case,

iii) Either New User or New Document Case, and
iv) Both New User and New Document Case.

We produced 10 artificial data sets of 18,000 ratings each, that followed the pattern of
Fig. 5. All the models were trained with the known true numbers of clusters (KU = KD = 3).
Details about the demonstration experiments can be found in Appendix B, Sect. B.2.

5.1.1 Results of demonstration 1

In the “New Documents” case, there is reason to believe that there would not be enough
training data to learn the relevances correctly without generalization over documents. As
expected, the Two-Way Model and Document URP performed better than the user-based
URP models (see Table 3, column New d). The same phenomenon can be also seen between
the baseline models. The Document Frequency Model clearly performs worse than the User
Frequency Model in the “New Documents” case, since it tries to model each document
individually, whereas the User Frequency Model generalizes over documents.

In the “New Users” case, there is reason to believe that there would not be enough training
data to learn the relevances correctly without generalization over users. As expected, the
Two-Way Model and the user-based URP models achieved better results than Document
URP (see Table 3, column New u). Also, the roles of the baseline models have become
interchanged.



Mach Learn (2009) 74: 75–109 87

Table 3 Perplexity of the
various models in
Demonstration 1. Smaller
perplexity is better and 2.0
corresponds to random guessing.
The best result of each column is
underlined. The best result differs
statistically significantly with
P-value ≤ 0.01 from the second
best one (u = user,
d = document)

Method New d New u Either New Both New

Two-Way Model 1.52 1.54 1.53 1.70

Two-Way NO-GEN 1.91 1.88 1.89 1.97

User URP 1.69 1.68 1.68 1.88

User URP-GEN 1.68 1.58 1.62 1.83

Variational URP 6.74 2.23 3.50 10.7

Document URP 1.64 1.74 1.68 1.86

User Freq. 2.02 5.65 3.25 4.99

Document Freq. 5.29 2.01 3.21 5.92

In the “Either New” case, we expected the difference between one-way grouping and
two-way grouping to become obvious. The difference is rather subtle, however, though sta-
tistically significant (see Table 3, column Either New).

Finally, in the “Both New” case we expected the two-way grouping to again improve
results compared to one-way grouping URPs, but with the results being worse overall. This
effect can be seen in Table 3, column Both New.

Variational URP4 has the property of overestimating the confidence in its predictions, re-
sulting in extreme probabilities near 0 or 1. When the prediction is incorrect, this is strongly
penalized in the perplexity, and hence the performance of Variational URP is quite unstable
when measured with perplexity. This is seen in Table 3.

It can also be noticed that the generation of users and documents seems useful with this
kind of data; Two-Way Model has consistently lower perplexity than Two-Way NO-GEN
(P-value = 0.002 in all cases), and User URP-GEN has lower perplexity than User URP
(P-value = 0.01 in the case New d, P-value = 0.002 in other cases).

The prediction accuracy of the best model varied between 83–84%, while the prediction
accuracy of the best baseline model varied between 50–52%. The accuracies can be found
in the Appendix C, in Table 14, Sect. C.1.

5.1.2 Effect of the amount of rating information about new users and documents

The differences between models are naturally largest when a very small amount of informa-
tion about “new” users and documents is available. When the amount of information is in-
creased, more complex models are expected to gradually become better than models that try
to generalize over many users and documents. With increasing amount of information, one
is able to train a model for each user (or document) separately with less need for generaliza-
tion. In Figs. 6–8 we show how the differences gradually change as a function of number of
known ratings for “new” users/documents, in one of the datasets from demonstration 1. The
number of known ratings for “new” users/documents was varied within {3,5,10,20}. All the
perplexity and accuracy values can be found in the Appendix C, Sect. C.2, Tables 17–22. As
we here know the true model that was used to generate the data, we can also compare the
results to the theoretically derived optimal perplexity (1.26) achieved with the true model,
shown as a horizontal line in the figures.

4We only show the performance of Variational URP for the artificial data since our implementation is too
inefficient for larger data sets.



88 Mach Learn (2009) 74: 75–109

Fig. 6 Perplexity as a function
of the amount of rating
information about “new”
documents in the “New
Documents” case

Fig. 7 Perplexity as a function
of the amount of rating
information about “new” users in
the “New Users” case

5.2 Demonstration 2: when does generation of users/documents not help

We demonstrate that there are cases where generation of users and documents is not helpful
because the data is misleading. For this, we use artificial data, which is intended to mislead
the models which generate users/documents; a large proportion of the data lies in an area
where the relevances are not predictable (random). The data is sketched and explained in
Fig. 10. We apply the two user-based URP models, User URP and User URP-GEN, to
demonstrate the effect of generating the marginals in this case.

We generated 10 artificial data sets of 18,000 ratings each, and in each set we randomly
assigned one half of the data triplets to the test set and the rest to the training set. Both
models were trained with the known true number of clusters (KU = 4).
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Fig. 8 Perplexity as a function
of the amount of rating
information about “new”
users/documents in the “Either
New” case

Fig. 9 Perplexity as a function
of the amount of rating
information about “new”
users/documents in the “Both
New” case

The difference between this data and the Focused biclusters type of data (Sect. 5.1) is that
the density of (u, d) pairs is very different in the “clusterable” area; in a Focused biclusters
type of data set, the relevant information about the biclusters lies in the same area where most
of the data lies, whereas in a Misleading biclusters type of data set, the relevant information
is in the area where the data is at its sparsest. With this type of data set, it makes a difference
whether the model generates the users and documents from the marginals, because ignoring
the generation essentially equals to assuming that all (u, d) pairs carry equal amount of
information about the relevance r .

We expect the models with user/document generation to be misled by the large random
clusters, and hence assume the non-generating models to improve their relative performance
with Misleading biclusters data.



90 Mach Learn (2009) 74: 75–109

Fig. 10 Misleading biclusters data. The matrix consists of 200 users and 300 documents and the ratings
are missing for 70% of the (user, document) pairs. The “random corner” misleads the models: 1/3 of all the
ratings are in the random corner while only 1/6 of the possible (user, document) pairs lie there. Only 40%
of the ratings are missing in the random corner while 76% of the ratings are missing in the rest of the data
matrix

Table 4 Demonstration 2. The
results of the two URP models
differ from each other
statistically significantly with
P-value < 0.01. Small perplexity
and large accuracy are better. The
best result of each column is
underlined (u = user,
d = document)

Method Perplexity Accuracy %

User URP 1.54 83

User URP-GEN 1.61 78

User Frequency Model 1.93 63

Document Frequency Model 2.04 49

Naive Model – 50

5.2.1 Results of demonstration 2

As expected, this misleading data caused the non-generative version of URP to outperform
the generative one (Table 4). On the other hand, in normal circumstances, generation of
users and documents should be beneficial, which is shown nicely in all the results of the first
demonstration, in Table 3.

5.3 Convergence of sampling

As described in Sect. 4.3, we used a Hellinger distance based measure for monitoring
the convergence of MCMC chains. Figure 11 shows an example of how the convergence
measure behaved during sampling. These values are from a dataset in demonstration 1. In
general, generation of users and documents improved convergence compared to the non-
generating counterpart. Additionally, one-way grouping models converged faster than two-
way grouping models.

In order to assess how fast the chains actually converged to the final results (as opposed to
converging only to each other) we show in Fig. 12 how the perplexity of the test set evolved
with increasing number of samples for the Two-way model. Each of the ten curves shows
one independent sampling chain.

Since we average over parallel chains, we finally studied the effect of the number of
chains in Fig. 13. As we can see, averaging over only three chains achieves almost the same
result as averaging over ten chains in this case.
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Fig. 11 Hellinger-based
convergence measure between 3
chains as a function of sampling
iterations for Two-Way Model
with a dataset from
demonstration 1. This measure
was used for convergence
monitoring. The first vertical
dotted line shows when
tempering was finished, and the
second vertical dotted line shows
when the burn-in period was
finished and the gathering of
samples was started. Smaller
values correspond to better
convergence

Fig. 12 Perplexity of the test set
as a function of samples gathered
from 10 independent chains. The
first vertical dotted line shows
when tempering was finished,
and the second vertical dotted
line shows when burn-in period
was finished and the gathering of
samples was started. Smaller
perplexity is better

6 Case studies

In this chapter we show, with two case studies, how the Two-Way Model compares with the
other models on real-world data, in the same way we compared them in Demonstration 1.

6.1 Experimental setup in case studies

To validate the parameters, we constructed the validation set and the initial training set for
the validation phase, in the same way as described in Sect. 4.5. The new documents or users
included in the final test set were not used in the validation phase. Details of the experimental
setup can be found in the Appendix B, Sect. B.3.

The latent topic models were evaluated in the validation phase for a range of cluster
numbers. The trained models were tested on the validation set, and the lowest perplexity
was used as a performance criterion for choosing the cluster numbers. For the final results
the models were trained with all the training data with the validated cluster numbers, and
tested with the final test data set.
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Fig. 13 Perplexity of the test set
for averages over different
numbers of parallel chains. The
first vertical dotted line shows
when tempering was finished,
and the second vertical dotted
line shows when burn-in period
was finished and the gathering of
samples was started. Smaller
perplexity is better

Table 5 The validated cluster
numbers in the parliament case
study

Method KU KD

Two-Way Model 4 2

Two-Way NO-GEN 4 2

User URP 3 –

User URP-GEN 3 –

Document URP – 2

6.2 Case study I: parliament data

We predicted votes of the British Parliament using a publicly available data set (British
Parliament data 1997–2001). The data set consisted of 514,983 votes given by the members
of parliament on 1,272 issues. We predicted the votes for previously unseen (user, issue)
pairs, where the “users” are the members of the parliament (MP).

We selected the cluster numbers using a validation set described in more detail in the
Appendix B, Sect. B.3. The choices from which the cluster numbers were selected were
KU ∈ {1,2,3,4,5,10,20,50} for the user groups and KD ∈ {1,2,3,4,5,10,20} for the
document clusters. The selected cluster numbers are shown in Table 5. These values were
used in all experimental scenarios.

6.2.1 Missing votes in parliament data

The parliament data does not contain a “yes” or “no” answer for all the (user, issue) pairs;
about 40% of all possible votes are missing. The fact that a member of parliament has not
voted “yes” or “no” on a particular issue may either be due to her not being present at the
voting, or her tactical reasons not to take a stand in the matter. In either case, the vote is not
missing at random. From the modeling perspective we could assign a “rating,” say −1, to
all the missing votes and make the sparse data matrix full, which would, however, notably
increase the computational load. Fortunately, some of this information is effectively taken
into account by modeling the user margins P(u | D) and the document margins P(d | D).
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Table 6 Parliament Data.
Comparison between the models
by perplexity over the test set. In
each column, the best model
(underlined) differs statistically
significantly from the second best
one (P-value ≤ 0.01). Smaller
perplexity is better; 2.0
corresponds to binary random
guessing and 1.0 to perfect
prediction (u = user,
d = document)

Method New d New u Either New Both New

Two-Way Model 1.37 1.40 1.38 1.62

Two-Way NO-GEN 1.62 1.62 1.62 1.86

User URP 1.48 1.45 1.46 1.73

User URP-GEN 1.50 1.44 1.47 1.74

Document URP 1.32 1.53 1.42 1.67

User Freq. 2.00 5.68 3.32 4.78

Document Freq. 5.36 1.76 3.12 5.85

In collaborative filtering setting the missing at random assumption has been studied by
Marlin et al. (2005, 2007), and it has been found that when users give ratings to music pieces
the missing ratings have a different distribution than the ratings that were actually given.

6.2.2 Results with parliament data

The results are summarized in Table 6. The prediction accuracy of the best model varied
between 86–95%, while the prediction accuracy of the best baseline model varied between
64–71%. The accuracies can be found in the Appendix C (Sect. C.1, Table 15). We discuss
the findings together with the second case study in Sect. 6.4.

6.3 Case study II: scientific articles data

In our second case study we used data gathered in a controlled experiment, where the test
subjects browsed through a set of titles of scientific articles and chose the most interesting
ones via a web form (Puolamäki et al. 2005). The test subjects were shown 80 lists with
six article titles each. The subjects participating in the experiment were researchers in either
vision research, artificial intelligence, or machine learning. The browsed lists consisted of
titles of scientific articles published during autumn 2004 in major journals in the fields of
vision research, artificial intelligence, machine learning, and general science. On each page
there was a randomly generated list of titles always containing titles from each discipline. On
each page the subjects were to choose the two most interesting titles according to their own
preferences. Altogether, the data consisted of 25 users’ opinions on 480 titles of scientific
articles (“documents”).

Again, we selected the cluster numbers using a validation set described in more detail
in the Appendix B, Sect. B.3. The choices from which the cluster numbers were selected
for the scientific articles data were KU ∈ {1,2,3,4,5,10,15,20} for the user groups and
KD ∈ {1,2,3,4,5,10,20,50} for the document clusters. The selected cluster numbers are
shown in Table 7. These values were used in all experimental scenarios.

6.3.1 Results with scientific articles data

The results of comparing the perplexities of the models on test data set are summarized
in Table 8. Since there was such a small number of users, we proceeded in leave-one-out
fashion, making one user at a time the “new” user who had only 3 ratings in the training set,
and the rest of her ratings in the test set. The results are averages over these 25 leave-one-out
runs.
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Table 7 The validated cluster
numbers in the scientific articles
case study

Method KU KD

Two-Way Model 5 3

Two-Way NO-GEN 5 3

User URP 2 –

User URP-GEN 2 –

Document URP – 2

Table 8 Scientific articles data. Comparison between the models by perplexity. Average over 25 test set
likelihoods, presented here in the form of perplexity. The best result of each column is underlined and the
values that do not differ from the best value statistically significantly (P-value ≤0.01) are marked with bold-
face. Smaller perplexity is better; 2.0 corresponds to binary random guessing and 1.0 to perfect prediction
(u = user, d = document)

Method New d New u Either New Both New

Two-Way Model 1.74 1.73 1.73 1.85

Two-Way NO-GEN 1.80 1.77 1.79 1.88

User URP 1.76 1.69 1.73 1.85

User URP-GEN 1.77 1.70 1.73 1.85

Document URP 1.76 1.89 1.82 1.92

User Freq. 1.89 5.39 3.18 4.84

Document Freq. 3.74 1.78 2.59 3.76

The averaged prediction accuracy of the best model varied between 67–74%, while the
prediction accuracy of the best baseline model varied between 67–70%. The accuracies can
be found in the Appendix C (Sect. C.1, Table 16).

6.4 Conclusions of the case studies

6.4.1 Generalization over “new” users or documents is needed

In the Only New Documents Case for the parliament case study, the document-based URP
model performs best, as expected (see Table 6, column New d). The reason for the clearly
worse performance of the user-based URP models can be explained with the fact that the
number of “bins” is large compared to the number of training data samples. User-based
one-way models do not generalize over documents, so for each test document they may
have, for instance, KU = 3 bins and 3 data samples. Thus, for each test document there
are only 3 training samples to estimate the parameters of the KU bins, which is generally
not enough. In document-based URP the bins are distributed in the other direction, so each
“new” document gets grouped with other similar documents. Therefore, there would only
be problems in the case of new users for this kind of model.

In the Only New Users Case in both case studies, the user-based URP models (User URP
and User URP-GEN) clearly perform better than the document-based URP (see Tables 6
and 8, column New u). The reason is the same as in the previous paragraph, only this time
the experiment favors grouping of users.
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In our Two-Way Model, there are KU bins per document cluster, not per document,
which makes the model more robust to variation caused by the small number of training
data samples, and this works regardless of whether it is the documents or users that are
“new.”

6.4.2 Two-way generalization is needed when both users and documents are “new”

Our model is at least as good as one-way grouping models in the cases where we expected
two-way generalization to be needed, namely columns Either New and Both New in Tables 6
and 8. In the parliament case study, the expected differences are shown clearly. In the scien-
tific articles case, the user-based one-way models (User URP and User URP-GEN) reached
the same level of performance.

7 Discussion

We have introduced a latent grouping framework which extends a state-of-the-art method,
the User Rating Profile model (URP), by introducing a two-way latent grouping. Our Two-
Way Model assumes that both the users and the documents have a latent group structure. We
compared the model against the user-based URP (which groups users) and the document-
based URP (which groups documents) on two real-world data sets. The predictions of all
these models were computed with Gibbs sampling. In addition, we analyzed the structural
choices in URP and our model and demonstrated the effects of the different choices with
artificial data sets.

We compared the models in different types of tasks. In the case of New Documents,
the task was to predict users’ subjective relevances for new documents, with only very few
existing ratings—still being able to utilize information about relevances of documents seen
earlier by a mass of users. The task resembles collaborative filtering where relevance of a
new document is to be predicted. In this task, the available information about the attitudes of
users towards the new documents is very limited, and generalizing over similar documents
proved to be beneficial, as was expected. Obviously, this kind of generalization is available in
the document-based URP model, but the document group structure of our Two-Way Model
enables such generalization, too. In the case of New User, the task was to predict relatively
new users’ subjective relevances for documents, with only very few existing ratings from
this particular user. The task turns the roles of users and documents the other way around,
and hence the user-based URP model outperformed the document-based URP in this case.
For the Two-Way Model there is no difference in these situations, because the model is
symmetric with respect to users and documents.

The case New Users and Documents demonstrated a task where prediction of new users’
relevances for new documents makes generalization in both ways necessary. Our Two-Way
Model gives better relevance predictions than either of the one-way URP models in this task.
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Appendix A: Generative process and sampling formulas of the models

In this appendix we give a detailed description of the generative models presented in this
article, and the Gibbs sampling formulas for the posterior distributions for each variable
relating to the user clusters. The formulas are analogous for document clusters. In our nota-
tion n denotes an index for the observed (user, document, rating) triplets (n ∈ {1,2, . . . ,N}),
D denotes all the observed data, and ψ denotes all the parameters of the model.

A.1 User URP with Gibbs

The generative process proceeds according to the following steps (see also Fig. 1 and sum-
mary of notation in Tables 1 and 9):

1) For each user u, a vector of multinomial parameters βU(u) is drawn from Dirichlet(αU ).
This is denoted by the plate with NU repetitions in the graphical model representation.
Each parameter vector βU(u) contains the probabilities for a user u to have different
attitudes u∗, that is, to belong to different user groups u∗.

2) For each (user group, document) pair (u∗, d), a vector of Bernoulli parameters θR(u∗, d)

is drawn from Dirichlet(αR(u∗, d)). This is denoted by the plate with KU × ND repeti-
tions in the graphical model representation. Each parameter vector θR(u∗, d) defines the
probability of the user group u∗ to consider document d relevant (or irrelevant).

The rest of the steps are repeated for each of the N rating triplets:

3) From the given set of N (u,d)-pairs, user u and document d are picked.
4) As the user u and document d are fixed, a user group or attitude u∗ is drawn for docu-

ment d , from the selected user’s Multinomial(βU(u)). The (u∗, d)-pair in effect selects
the parameter vector θR(u∗, d) from the set of KU × ND vectors in the node labeled by
θR in Fig. 1.

5) For the generated pair (u∗, d), a binary relevance value r is drawn from the
Bernoulli(θR(u∗, d)).

A.1.1 Likelihood and posterior of user URP model

The likelihood function of the model is

P (D | ψ) =
∏

n

P (rn | un, dn,ψ)

=
∏

n

∑

u∗
P (u∗ | un,βU)P (rn | u∗, dn, θR), (7)

Table 9 Notation specific to
URP model Symbol Description

βU (u) Vector of multinomial parameters defining the probabilities
of certain user u to belong to different user groups

θR(u∗, d) Vector of Bernoulli parameters defining the probabilities of
certain user group u∗ to consider document d relevant or
irrelevant

αU Dirichlet prior parameters for all βU

αR Dirichlet prior parameters for all θR
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where the distributions are
{

P (u∗ | u) ∼ Multinomial(βU(u))

P (r | u∗, d) ∼ Bernoulli(θR(u∗, d)).
(8)

The posterior probability is proportional to the product of the likelihood and the priors,

P (ψ | D,priors) = P (βU , θR | D,αU ,αR)

∝ P (βU | αU)P (θR | αR)P (D | ψ), (9)

where the prior distributions are
{

P (βU(u)) ∼ Dirichlet(αU)

P (θR(u∗, d)) ∼ Dirichlet(αR).
(10)

A.1.2 Sampling formulas of user URP moel

Sampling formula for user group u∗ is

P (u∗
n | un, dn, rn,ψ) ∝ θR(u∗

n, dn)rnβU(un)u∗
n∑

u∗ θR(u∗, dn)rnβU(un)u∗
. (11)

Sampling formula for each parameter vector βU in the users vs. user groups matrix [βU ] is

P (βU(u)|{un}, {u∗
n},ψ)

∝ Dir(nuu∗1 + αU(u)1, . . . , nuu∗KU + αU(u)KU
), (12)

where nuu∗k = #{Ratings with un = u ∧ u∗
n = k}.

Sampling formula for each Bernoulli parameter vector θR(u∗, d) is

P (θR(u∗, d)|{dn}, {rn}, {u∗
n},ψ)

∝ Dir(αR(0) + nu∗d0,αR(1) + nu∗d1), (13)

where nu∗dr = #{Ratings with rn = r ∧ u∗
n = u∗ ∧ dn = d}.

A.2 User URP with generation of users and documents

The generative process of URP-GEN proceeds is given below (see Fig. 3 and summary of
notation in Tables 1 and 10).

Note, that since parameters αD and θD are conditionally independent of all other para-
meters given document d , they have no effect on the predictions of relevance P (r | u,d) in
this model. So, θD is not sampled when modeling the conditional distribution P (r | u,d).
However, for completeness we describe the full generative process of the model.

1) For each user group u∗, a vector of multinomial parameters βU(u∗) is drawn from
Dirichlet(αU ). This is denoted by the plate with KU repetitions in the graphical model
representation. Each parameter vector βU(u∗) contains the probability for the users to
belong to a user group u∗.

2A) For the whole user collection, a vector of multinomial parameters θU is drawn from
Dirichlet(αu∗ ). The parameter vector θU contains the probabilities of different user
groups u∗ to occur.
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Table 10 Notation specific to
URP Model with Generation of
Users/Documents (URP-GEN)

Symbol Description

βU (u∗) Vector of multinomial parameters defining the probabil-
ities of certain user group u∗ to contain each user

θU Multinomial probabilities of user groups u∗ to occur

θD Multinomial probabilities of documents d to occur
(needed only for the generative process)

θR(u∗, d) Vector of Bernoulli parameters defining the probabilities
of certain user group u∗ to consider document d relevant
or irrelevant

αU Dirichlet prior parameters for all βU

αu∗ Dirichlet prior parameters for θU

αD Dirichlet prior parameters for θD (needed only for the
generative process)

αR Dirichlet prior parameters for all θR

2B) Symmetrically, for the whole document collection, a vector of multinomial parameters
θD is drawn from Dirichlet(αD). The parameter vector θD contains the probability for
each document d to occur.

3) For each (u∗, d) pair, a vector of Bernoulli parameters θR(u∗, d) is drawn from
Dirichlet(αR). This is denoted by the plate with KU × ND repetitions in the graphi-
cal model representation. Each parameter vector θR(u∗, d) defines the probability of
the user group u∗ to consider document d relevant (or irrelevant).

The rest of the steps are repeated for each of the N rating triplets:

4A) A user group u∗ is drawn from Multinomial(θU ). As the user group is fixed the
corresponding multinomial parameter vector βU(u∗) can be selected from the set
of KU vectors in the node labeled by βU in Fig. 3. Then, a user u is drawn from
Multinomial(βU(u∗)).

4B) A document d is drawn from Multinomial(θD).
5) For the generated pair (u∗, d), a binary relevance r is drawn from Bernoulli(θR(u∗, d)).

A.2.1 Likelihood and posterior of user URP with generation of users/documents

The likelihood function of the model is

P (D | ψ) =
∏

n

P (rn | un, dn,ψ)P (un | ψ)P (dn | ψ)

=
∏

n

P (dn | θD)
∑

u∗
P (rn | u∗, dn, θR)P (un | u∗,βU)P (u∗ | θU), (14)

where the distributions are
⎧
⎪⎪⎨

⎪⎪⎩

P (u∗) ∼ Multinomial(θU)

P (d) ∼ Multinomial(θD)

P (u | u∗) ∼ Multinomial(βU(u∗))
P (r | u∗, d) ∼ Bernoulli(θR(u∗, d)).

(15)
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The posterior probability is proportional to the product of the likelihood and the priors,

P (ψ | D,priors) = P (βU , θU , θD, θR | D,αU ,αD,αu∗ ,αR)

∝ P (βU | αU)P (θU | αu∗)P (θD | αD)P (θR | αR)P (D | ψ), (16)

where the prior distributions are
⎧
⎪⎪⎨

⎪⎪⎩

P (θU) ∼ Dirichlet(αu∗)
P (θD) ∼ Dirichlet(αD)

P (βU(u∗)) ∼ Dirichlet(αU)

P (θR(u∗, d)) ∼ Dirichlet(αR).

(17)

A.2.2 Sampling formulas of user URP with generation of users/documents

Sampling formula for user group u∗ is

P (u∗
n | un, dn, rn,ψ) ∝ βU(u∗

n)unθR(u∗
n, dn)rnθU(u∗

n)∑
u∗ βU(u∗)unθR(u∗, dn)rnθU(u∗)

. (18)

Sampling formula for each parameter vector βU in the users vs. user groups matrix [βU ]
is

P (βU(u∗) | {un}, {u∗
n},ψ)

∝ Dir(nu∗u1 + αU(u∗)1, . . . , nu∗uNU + αU(u∗)NU
), (19)

where nu∗uq = #{Samples with u∗
n = u∗ ∧ un = q}.

Sampling formula for the parameter vector of user group probabilities θU is

P (θU | {u∗
n},ψ) ∝ Dir(nu∗1 + αu∗(1), . . . , nu∗KU + αu∗(KU)), (20)

where nu∗k = #{Samples with u∗
n = k}.

Sampling formula for each Bernoulli parameter vector θR(u∗, d) is

P (θR(u∗, d) | {dn}, {rn}, {u∗
n},ψ)

∝ Dir(αR(0) + nu∗d0,αR(1) + nu∗d1), (21)

where nu∗dr = #{Samples with u∗
n = u∗ ∧ dn = d ∧ rn = r}.

A.3 Two-way model without generation of users/documents

The model generates ratings r given pairs of users and documents, or (r | u,d), with binary
relevances r as follows (see Fig. 4 and summary of notation in Tables 1 and 11):

1A) For each user u, a vector of multinomial parameters βU(u) is drawn from Dirichlet(αU ).
This is denoted by the plate with NU repetitions in the graphical model representation.
Each parameter vector βU(u) contains the probabilities for a user u to have different
attitudes u∗, that is, to belong to different user groups u∗.

1B) Symmetrically, for each document d , a vector of multinomial parameters βD(d) is
drawn from Dirichlet(αD). This is denoted by the plate with ND repetitions in the
graphical model representation. Each parameter vector βD(d) contains the probabilities
for a document d to belong to different document clusters d∗.
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Table 11 Notation specific to
Two-Way Grouping Model
without generation of users and
documents (Two-Way NO-GEN)

Symbol Description

βU (u) Vector of multinomial parameters defining the probabil-
ities of certain user u to belong to different user groups

βD(d) Vector of multinomial parameters defining the probabil-
ities of certain document d to belong to different docu-
ment clusters

θR(u∗, d∗) Vector of Bernoulli parameters defining the probability
of user group u∗ to consider document cluster d∗ rele-
vant or irrelevant

αU Dirichlet prior parameters for all βU

αD Dirichlet prior parameters for all βD

αR Dirichlet prior parameters for all θR

2) For each cluster pair (u∗, d∗), a vector of Bernoulli parameters θR(u∗, d∗) is drawn
from Dirichlet(αR). This is denoted by the plate with KU ×KD repetitions in the graph-
ical model representation. Each parameter vector θR(u∗, d∗) defines the probability of
the user group u∗ to consider the document cluster d∗ relevant (or irrelevant).

The rest of the steps are repeated for each of the N rating triplets:

3) From the given set of (u, d)-pairs user u and document d are picked. (The set consists
of N such pairs.)

4A) As the user u is fixed the corresponding parameter vector βU(u) can be selected from
the set of NU vectors in the node labeled by βU in Fig. 4. Then, a user group u∗ is
drawn from Multinomial(βU(u)).

4B) As the document d is fixed the corresponding parameter vector βD(d) can be selected
from the set of ND vectors in the node labeled by βD in Fig. 4. Then, a document
cluster d∗ is drawn from Multinomial(βD(d)).

5) For the generated cluster pair (u∗, d∗), a binary relevance r is drawn from
Bernoulli(θR(u∗, d∗)).

A.3.1 Likelihood and posterior of two-way model without generation of users/documents

The likelihood function of the model is

P (D | ψ) =
∏

n

P (rn | un, dn,ψ)

=
∏

n

∑

u∗
P (u∗ | un,βU)

∑

d∗
P (d∗ | dn,βD)P (rn | u∗, d∗, θR), (22)

where the distributions are
⎧
⎨

⎩

P (u∗ | u) ∼ Multinomial(βU(u))

P (d∗ | d) ∼ Multinomial(βD(d))

P (r | u∗, d∗) ∼ Bernoulli(θR(u∗, d∗)).
(23)
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The posterior probability is proportional to the product of the likelihood and the priors,

P (ψ | D,priors) = P (βU ,βD, θR | D,αU ,αD,αR)

∝ P (βU | αU)P (βD | αD)P (θR | αR)P (D | ψ), (24)

where the prior distributions are
⎧
⎨

⎩

P (βU(u)) ∼ Dirichlet(αU)

P (βD(d)) ∼ Dirichlet(αD)

P (θR(u∗, d∗)) ∼ Dirichlet(αR).

(25)

A.3.2 Sampling formulas of two-way model without generation of users/documents

Sampling formula for user group u∗ is

P (u∗
n | un, rn, d

∗
n ,ψ) ∝ θR(u∗

n, d
∗
n)rnβU(un)u∗

n∑
u∗ θR(u∗, d∗

n)rnβU(un)u∗
. (26)

Sampling formula for each parameter vector βU in the users vs. user groups matrix [βU ] is

P (βU(u)|{un}, {u∗
n},ψ)

∝ Dir(nuu∗1 + αU(u)1, . . . , nuu∗KU + αU(u)KU
), (27)

where nuu∗k = #{Ratings with un = u ∧ u∗
n = k}.

Sampling formula for each Bernoulli parameter vector θR(u∗, d∗) is

P (θR(u∗, d∗)|{rn}, {u∗
n}, {d∗

n},ψ)

∝ Dir(αR(0) + nu∗d∗0,αR(1) + nu∗d∗1), (28)

where nu∗d∗r = #{Ratings with rn = r ∧ u∗
n = u∗ ∧ d∗

n = d∗}.
Sampling formulas for the document-related variables d∗ and βD(d) can be derived anal-

ogously (u ↔ d).

A.4 Two-way latent grouping model

The generative process proceeds according to the following steps (see also Fig. 2 and sum-
mary of notation in Tables 1 and 12):

1A) For the whole user collection, a vector of multinomial parameters θU is drawn from
Dirichlet(αu∗ ). The parameter vector θU contains the probabilities of different user
groups u∗ to occur.

2A) For each user group u∗, a vector of multinomial parameters βU(u∗) is drawn from
Dirichlet(αU ). This is denoted by the node βU in Fig. 2. The parameter vector βU(u∗)
contains the probability for each user to belong to user group u∗.

1B) Symmetrically, for the whole document collection, a vector of multinomial parameters
θD is drawn from Dirichlet(αd∗ ). The parameter vector θD contains the probabilities of
different document clusters d∗ to occur.

2B) For each document cluster d∗, a vector of multinomial parameters βD(d∗) is drawn
from Dirichlet(αD). The parameter vector βD(d∗) contains the probability for each
document to belong to the document cluster d∗.
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Table 12 Notation specific to Two-Way model

Symbol Description

θU Multinomial probabilities of user groups u∗ to occur

βU (u∗) Vector of multinomial parameters defining the probabilities of certain user group u∗ to
contain each user

θD Multinomial probabilities of document clusters d∗ to occur

βD(d∗) Vector of multinomial parameters defining the probabilities of certain document cluster
d∗ to contain each document

θR(u∗, d∗) Vector of Bernoulli parameters defining the probabilities of certain user group u∗ to
consider document cluster d∗ relevant or irrelevant

αU Dirichlet prior parameters for all βU

αu∗ Dirichlet prior parameters for θU

αD Dirichlet prior parameters for all βD

αd∗ Dirichlet prior parameters for θD

αR Dirichlet prior parameters for all θR

3) For each cluster pair (u∗, d∗), a vector of Bernoulli parameters θR(u∗, d∗) is drawn from
Dirichlet(αR). This is denoted by θR residing within both the plate of KU and repetitions
and the plate of KD repetitions, thus going through all the KU × KD cluster pairs. Each
parameter vector θR(u∗, d∗) defines the probability of the user group u∗ to consider the
document cluster d∗ relevant (or irrelevant).

The rest of the steps are repeated for each of the N rating triplets:

4A) A user group u∗ is drawn from Multinomial(θU ). As the user group is fixed the corre-
sponding parameter vector βU(u∗) can be selected from the set of KU vectors in the
node labeled by βU in Fig. 2. Then, a user u is drawn from Multinomial(βU(u∗)).

4B) A document cluster d∗ is drawn from Multinomial(θD). As the document cluster is
fixed the corresponding parameter vector βD(d∗) can be selected from the set of
KD vectors in the node labeled by βD in Fig. 2. Then, a document d is drawn from
Multinomial(βD(d∗)).

5) For the generated cluster pair (u∗, d∗), a binary relevance r is drawn from
Bernoulli(θR(u∗, d∗)).

A.4.1 Likelihood and posterior of two-way latent grouping model

The likelihood function of the model is

P (D | ψ) =
∏

n

P (rn | un, dn,ψ)P (un | ψ)P (dn | ψ) (29)

=
∏

n

∑

u∗
P (un | u∗,βU)P (u∗ | θU)

×
∑

d∗
P (dn | d∗,βD)P (d∗ | θD)P (rn | u∗, d∗, θR), (30)
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where the distributions are
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P (u∗) ∼ Multinomial(θU)

P (d∗) ∼ Multinomial(θD)

P (u | u∗) ∼ Multinomial(βU(u∗))
P (d | d∗) ∼ Multinomial(βD(d∗))
P (r | u∗, d∗) ∼ Bernoulli(θR(u∗, d∗)).

(31)

The posterior probability is proportional to the product of the likelihood and the priors,

P (ψ | D,priors) = P (βU ,βD, θU , θD, θR | D,priors)

∝ P (βU | αU)P (θU | αu∗)P (βD | αD)P (θD | αd∗)P (θR | αR)P (D | ψ),

(32)

where the prior distributions are
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P (θU) ∼ Dirichlet(αu∗)

P (θD) ∼ Dirichlet(αd∗)

P (βU(u∗)) ∼ Dirichlet(αU)

P (βD(d∗)) ∼ Dirichlet(αD)

P (θR(u∗, d∗)) ∼ Dirichlet(αR).

(33)

A.4.2 Sampling formulas of two-way model latent grouping model

Sampling formula for user group u∗ is

P (u∗
n | un, rn, d

∗
n ,ψ) ∝ βU(u∗

n)unθR(u∗
n, d

∗
n)rnθU(u∗

n)∑
u∗ βU(u∗)unθR(u∗, d∗

n )rnθU(u∗)
. (34)

Sampling formula for each parameter vector βU in the users vs. user groups matrix [βU ]
is

P (βU(u∗) | {un}, {u∗
n},ψ)

∝ Dir(nu∗u1 + αU(u∗)1, . . . , nu∗uNU + αU(u∗)NU
), (35)

where nu∗uq = #{Samples with u∗
n = u∗ ∧ un = q}. Sampling formula for the user group

probability parameters θU is

P (θU | {u∗
n},ψ) ∝ Dir(nu∗1 + αu∗(1), . . . , nu∗KU + αu∗(KU)), (36)

where nu∗k = #{Samples with u∗
n = k}.

Sampling formula for each Bernoulli parameter vector θR(u∗, d∗) is

P (θR(u∗, d∗)|{rn}, {u∗
n}, {d∗

n},ψ)

∝ Dir(αR(0) + nu∗d∗0,αR(1) + nu∗d∗1), (37)

where nu∗d∗r = #{Samples with u∗
n = u∗ ∧ d∗

n = d∗ ∧ rn = r}.
Sampling formulas for the document-related variables d∗, βD(d∗), and θD can be derived

analogously (u ↔ d).
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Table 13 The numbers of documents and users in different data sets

Data Ndtest Ndtrain Nutest Nutrain ND NU

Artificial 15 285 10 190 300 200

Parliament 65 1207 35 644 1272 679

Scientific articles 22 458 1 24 480 25

Appendix B: Details of experiments

B.1 Construction of test set in “new” users and “new” documents cases

We randomly selected Ndtest documents to be the “new” documents. Of the ratings for these
documents, we randomly selected 3 ratings per document to be assigned to the training set
and the rest of the ratings were assigned to the test set. The other Ndtrain documents appeared
only in the training set. In the same way, we randomly selected Nutest users to be the “new”
users. Of the ratings of these users, 3 randomly selected ratings per user were assigned to
the training set and the rest of the ratings were left to the test set. The other Nutrain users
appeared only in the training set.

− Only New Documents Case. Those ratings where the user was new were discarded from
the test set.

− Only New Users Case. Those ratings where the document was new were discarded from
the test set.

− Either New User or New Document Case. Those ratings where both user and document
were new were discarded from the test set.

− Both New User and New Document Case. Only those ratings where both user and docu-
ment were new were included in the test set.

The rest of the preliminary test set became the final test set.

B.2 Demonstrations with artificial data

We produced 10 artificial data sets in both demonstrations. All the models were trained with
the known true numbers of clusters. The trained models were tested with separate test sets
to produce 10 perplexity values, and the final result was the mean of the perplexities.

We sampled three MCMC chains in parallel and monitored the convergence as described
in Sect. 4.3. After the burn-in period, each chain was run for another 400 or more itera-
tions,5 and finally the samples of all three chains were averaged to estimate expectations
of P (r | u,d).

B.3 Experimental setup in case studies

For the validation of cluster numbers we used the training set to construct a validation set
and a preliminary training set, in a similar manner as for the artificial data above. “New”
documents or users included in the test set were not used in the validation. From the rest of
the documents we again randomly selected Ndvalid documents to be the “new” documents of
the validation set (Ndvalid = 65 in parliament data and Ndvalid = 48 in the scientific articles
data). In the same way we randomly selected Nuvalid users to be the “new” users (Nuvalid = 35
in the parliament data and Nuvalid = 2 in the scientific articles data).

5At most 20,000 iterations were run, depending on the convergence.
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Our Two-Way Model, user-based User URP and document-based Document URP were
trained with the training set from the validation phase for a range of cluster numbers. The
trained models were tested with the validation set, and the lowest perplexity was used as
the performance criterion for choosing the cluster numbers. For the final results, the models
were trained with all the training data using the validated cluster numbers and tested with
the test data set.

We sampled three MCMC chains in parallel and required the convergence check de-
scribed in Sect. 4.3. After the burn-in period, each chain was run for another n = 400 or
more iterations, and finally all the 3 × n samples were averaged to estimate expectations of
P (r | u,d).

The prediction of the naive model was r = 0 for the scientific articles and r = 1 for the
parliament votings.

Appendix C: The supplementary results

C.1 Prediction accuracies

Table 14 Demonstration 1.
Accuracy, large values are better.
The best result of each column is
underlined and the values that do
not differ from the best value
statistically significantly (P-value
≤ 0.01) are marked with boldface
(u = user, d = document)

Method New d New u Either New Both New

Two-Way Model 83 83 84 84

Two-Way NO-GEN 60 67 64 56

User URP 77 83 81 72

User URP-GEN 78 83 81 75

Variational URP 76 79 78 75

Document URP 83 78 81 77

User Freq. 45 50 47 52

Document Freq. 50 49 49 50

Naive Model 50 50 50 48

Table 15 Parliament Data.
Comparison between the models
by prediction accuracy over the
test set. The best result of each
column is underlined and the
values that do not differ from the
best value statistically
significantly (P-value ≤ 0.01) are
marked with boldface. Large
accuracy is better (u = user,
d = document)

Method New d New u Either New Both New

Two-Way Model 95 95 95 86

Two-Way NO-GEN 94 71 83 69

User URP 90 94 92 82

User URP-GEN 91 96 93 83

Document URP 97 84 91 87

User Freq. 54 50 52 52

Document Freq. 66 71 68 64

Naive Model 54 52 53 55
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Table 16 Scientific articles data.
Comparison between the models
by prediction accuracy over the
test set. The best result of each
column is underlined and the
values that do not differ from the
best value statistically
significantly (P-value ≤ 0.01) are
marked with boldface. Large
accuracy is better (u = user,
d = document)

Method New d New u Either New Both New

Two-Way Model 72 71 72 67

Two-Way NO-GEN 68 70 69 65

User URP 73 74 74 66

User URP-GEN 73 74 73 67

Document URP 72 64 68 59

User Freq. 67 57 62 57

Document Freq. 65 70 68 63

Naive Model 67 67 67 65

C.2 Performance with more information about new users/documents

In Sect. 5.1.2 we showed graphs about how the results change when varying the amount of
information about “new” users or documents. In this section we list the actual result values
for those curves. The perplexities are shown in Tables 17–19. Additionally, the correspond-
ing accuracy values are listed in Tables 20–22.

Table 17 With information
about 5 ratings for new
users/documents: Perplexity of
the various models in
Demonstration 1. Smaller
perplexity is better and 2.0
corresponds to random guessing.
The best result of each column is
underlined and the values that do
not differ from the best value
statistically significantly
(P-value ≤ 0.01) are marked with
boldface (u = user,
d = document)

Method New d New u Either New Both New

Two-Way Model 1.45 1.53 1.48 1.65

Two-Way NO-GEN 1.86 1.89 1.87 1.98

User URP 1.58 1.65 1.61 1.82

User URP-GEN 1.57 1.57 1.56 1.77

Document URP 1.52 1.72 1.61 1.86

User Freq. 2.02 3.76 2.66 4.63

Document Freq. 2.64 2.02 2.00 3.05

Table 18 With information
about 10 ratings for new
users/documents: Perplexity of
the various models in
Demonstration 1. Smaller
perplexity is better and 2.0
corresponds to random guessing.
The best result differs statistically
significantly with P-value ≤ 0.01
from the second best one
(u = user, d = document)

Method New d New u Either New Both New

Two-Way Model 1.35 1.40 1.37 1.54

Two-Way NO-GEN 1.73 1.77 1.75 1.92

User URP 1.44 1.49 1.46 1.66

User URP-GEN 1.44 1.43 1.43 1.61

Document URP 1.41 1.53 1.46 1.69

User Freq. 2.01 2.20 2.09 2.16

Document Freq. 2.15 2.03 2.09 2.14
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Table 19 With information
about 20 ratings for new
users/documents: Perplexity of
the various models in
Demonstration 1. Smaller
perplexity is better and 2.0
corresponds to random guessing.
The best result differs statistically
significantly with P-value ≤ 0.01
from the second best one
(u = user, d = document)

Method New d New u Either New Both New

Two-Way Model 1.22 1.34 1.26 1.47

Two-Way NO-GEN 1.55 1.64 1.59 1.82

User URP 1.28 1.40 1.32 1.55

User URP-GEN 1.27 1.37 1.30 1.52

Document URP 1.26 1.43 1.33 1.55

User Freq. 2.02 2.07 2.04 2.06

Document Freq. 2.06 2.03 2.05 2.07

Table 20 With information
about 5 ratings for new
users/documents: Accuracy over
test set of the various models in
Demonstration 1. The best result
of each column is underlined and
the values that do not differ from
the best value statistically
significantly (P-value ≤ 0.01) are
marked with boldface. Large
accuracy is better (u = user,
d = document)

Method New d New u Either New Both New

Two-Way Model 83 79 81 77

Two-Way NO-GEN 66 63 65 57

User URP 81 78 80 75

User URP-GEN 81 79 81 75

Document URP 83 75 80 67

User Freq. 46 50 48 48

Document Freq. 50 47 54 48

Dumb 50 50 55 47

Table 21 With information
about 10 ratings for new
users/documents: Accuracy over
test set of the various models in
Demonstration 1. The best result
of each column is underlined and
the values that do not differ from
the best value statistically
significantly (P-value ≤ 0.01) are
marked with boldface. Large
accuracy is better (u = user,
d = document)

Method New d New u Either New Both New

Two-Way Model 85 82 84 77

Two-Way NO-GEN 85 83 84 74

User URP 85 82 84 78

User URP-GEN 85 81 83 78

Document URP 85 82 84 75

User Freq. 47 49 48 46

Document Freq. 49 45 47 53

Dumb 49 50 49 49
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Table 22 With information
about 20 ratings for new
users/documents: Accuracy over
test set of the various models in
Demonstration 1. The best result
of each column is underlined and
the values that do not differ from
the best value statistically
significantly (P-value ≤ 0.01) are
marked with boldface. Large
accuracy is better (u = user,
d = document)

Method New d New u Either New Both New

Two-Way Model 90 83 87 75

Two-Way NO-GEN 90 83 87 79

User URP 90 83 87 78

User URP-GEN 90 83 87 78

Document URP 90 84 88 78

User Freq. 43 50 46 50

Document Freq. 49 46 48 49

Dumb 50 50 50 54

References

Blei, D. M., & Jordan, M. I. (2003). Modeling annotated data. In Proceedings of the 26th annual international
ACMSIGIR conference on research and development in information retrieval (pp. 127–134). New York:
Assoc. Comput. Mach..

Blei, D., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Re-
search, 3, 993–1022.

British Parliament data. Votings of the British Parliament. (1997–2001). http://www.publicwhip.org.uk/
project/data.php.

Buntine, W. (2002). Variational extensions to EM and multinomial PCA. In T. Elomaa, H. Mannila, & H.
Toivonen (Eds.), Proceedings of the thirteenth European conference on machine learning, ECML’02
(Vol. 2430, pp. 23–34). Berlin: Springer.

Buntine, W., & Jakulin, A. (2006). Discrete components analysis. In C. Saunders, M. Grobelnik, S. Gunn, &
J. Shawe-Taylor (Eds.), Subspace, latent structure and feature selection techniques. Berlin: Springer.

Erosheva, E., Fienberg, S., & Lafferty, J. (2004). Mixed membership models of scientific publications. Pro-
ceedings of the National Academy of Sciences, 101, 5220–5227.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Bio-
metrika, 57(1), 97–109.

Hofmann, T. (2004). Latent semantic models for collaborative filtering. ACM Transactions on Information
Systems, 22(1), 89–115.

Jin, R., & Si, L. (2004). A Bayesian approach towards active learning for collaborative filtering. In Proceed-
ings of the twentieth conference on uncertainty in artificial intelligence, UAI’04 (pp. 278–285). AUAI
Press.

Keller, M., & Bengio, S. (2004). Theme topic mixture model: A graphical model for document representation.
In PASCAL workshop on text mining and understanding.

Koivisto, M. (2004). Sum-product algorithms for the analysis of genetic risks. Doctoral dissertation, Depart-
ment of Computer Science, University of Helsinki.

Konstan, J., Miller, B., & Maltz, D., Herlocker, J. (1997). GroupLens: Applying collaborative filtering to
usenet news. Communications of the ACM, 40(3), 77–87.

Madeira, S. C., & Oliveira, A. L. (2004). Biclustering algorithms for biological data analysis: a survey.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1, 24–45.

Marlin, B. (2004). Modeling user rating profiles for collaborative filtering. In Advances in neural information
processing systems (Vol. 16, pp. 627–634). Cambridge: MIT Press.

Marlin, B., Roweis, S. T., & Zemel, R. S. (2005). Unsupervised learning with non-ignorable missing data.
In R.G. Cowell, & Z. Ghahramani (Eds.), Proceedings of the tenth international workshop on artificial
intelligence and statistics, AISTATS’05 (pp. 222–229). Society for Artificial Intelligence and Statistics.
(Available electronically at http://www.gatsby.ucl.ac.uk/aistats/).

Marlin, B., Zemel, R. S. (2004). The multiple multiplicative factor model for collaborative filtering. In
ICML’04: Proceedings of the 21th international conference on machine learning (p. 73). New York:
Assoc. Comput. Mach. Press.

Marlin, B. M., Zemel, R. S., Roweis, S., & Slaney, M. (2007). Collaborative filtering and the missing at
random assumption. In Proceedings of the 23rd conference on uncertainty in artificial intelligence,
UAI’07.

http://www.publicwhip.org.uk/project/data.php
http://www.publicwhip.org.uk/project/data.php
http://www.gatsby.ucl.ac.uk/aistats/


Mach Learn (2009) 74: 75–109 109

McCallum, A., Corrada-Emmanuel, A., & Wang, X. (2004). The author-recipient-topic model for topic and
role discovery in social networks: Experiments with Enron and Academic Email (Technical Report).

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state
calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092.

Popescul, A., Ungar, L., Pennock, D., & Lawrence, S. (2001). Probabilistic models for unified collaborative
and content-based recommendation in sparse-data environments. In Proceedings of the 17th conference
on uncertainty in artificial intelligence, UAI’01 (pp. 437–444). San Mateo: Morgan Kaufmann.

Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus
genotype data. Genetics, 155, 945–959.

Puolamäki, K., Salojärvi, J., Savia, E., Simola, J., & Kaski, S. (2005). Combining eye movements and collab-
orative filtering for proactive information retrieval. In G. Marchionini, A. Moffat, J. Tait, R. Baeza-Yates,
& N. Ziviani (Eds.), SIGIR’05: proceedings of the 28th annual international ACM SIGIR conference on
research and development in information retrieval (pp. 146–153). New York: Assoc. Comput. Mach.
Press.

Rosen-Zvi, M., Griffiths, T., Steyvers, M., & Smyth, P. (2004). The author-topic model for authors and doc-
uments. In Proceedings of the 20th conference on uncertainty in artificial intelligence, UAI’04 (pp.
487–494). AUAI Press.

Savia, E., Puolamäki, K., Sinkkonen, J., & Kaski, S. (2005). Two-way latent grouping model for user prefer-
ence prediction. In F. Bacchus, & T. Jaakkola (Eds.), Proceedings of the 21st conference on uncertainty
in artificial intelligence, UAI’05 (pp. 518–525). AUAI Press.

Shardanand, U., & Maes, P. (1995). Social information filtering: Algorithms for automating ‘word of mouth’.
In Proceedings of the ACM CHI95 human factors in computing systems conference (pp. 210–217).
Cambridge: Assoc. Comput. Mach.

Si, L., & Jin, R. (2003). Flexible mixture model for collaborative filtering. In T. Fawcett & N. Mishra (Eds.),
Proceedings of the twentieth international conference on machine learning, ICML’03 (pp. 704–711).
Menlo Park: AAAI Press.

Tanay, A., Sharan, R., & Shamir, R. (2006). Biclustering algorithms: A Survey. In Handbook of computa-
tional molecular biology. London: Chapman & Hall.

Wettig, H., Lahtinen, J., Lepola, T., Myllymäki, P., & Tirri, H. (2003). Bayesian analysis of online newspaper
log data. In Proceedings of the 2003 symposium on applications and the Internet workshops (pp. 282–
278). Los Alamitos: IEEE Comput. Soc.

Yu, K., Schwaighofer, A., Tresp, V., Xu, X., & Kriegel, H.-P. (2004). Probabilistic memory-based collabora-
tive filtering. IEEE Transactions on Knowledge and Data Engineering, 16(1), 56–69.

Yu, K., Yu, S., & Tresp, V. (2005a). Dirichlet enhanced latent semantic analysis. In R.G. Cowell, & Z. Ghahra-
mani (Eds.), Proceedings of the tenth international workshop on artificial intelligence and statistics,
AISTATS’05 (pp. 437–444). Society for Artificial Intelligence and Statistics.

Yu, S., Yu, K., Tresp, V., & Kriegel, H.-P. (2005b). A probabilistic clustering-projection model for discrete
data. In A. Jorge, L. Torgo, P. Brazdil, R. Camacho, & J. Gama (Eds.), Proceedings of the 9th European
conference on principles and practice of knowledge discovery in databases, PKDD’05 (Vol. 3721, pp.
417–428). Berlin: Springer.

Zitnick, C., & Kanade, T. (2004). Maximum entropy for collaborative filtering. In Proceedings of the 20th
conference on uncertainty in artificial intelligence, UAI’04 (pp. 636–643). AUAI Press.


	Latent grouping models for user preference prediction
	Abstract
	Introduction
	Background
	Tackling the problem of new users and documents

	Models
	User rating profile model
	Two-way latent grouping model
	Other related models

	Choices in the model structure
	Main choices
	Model variants
	Computational complexity

	Technical details of experiments
	Evaluation of models by Gibbs sampling
	Metropolis-Hastings sampling of priors
	Monitoring of convergence
	Baseline models
	Experimental scenarios
	Only ``new'' documents
	Only ``new'' users
	Scenario where either user or document is ``new''
	Scenario where both user and document are ``new''

	Measures of performance

	Demonstrations with artificial data
	Demonstration 1: when do different generalizations help
	Results of demonstration 1
	Effect of the amount of rating information about new users and documents

	Demonstration 2: when does generation of users/documents not help
	Results of demonstration 2

	Convergence of sampling

	Case studies
	Experimental setup in case studies
	Case study I: parliament data
	Missing votes in parliament data
	Results with parliament data

	Case study II: scientific articles data
	Results with scientific articles data

	Conclusions of the case studies
	Generalization over ``new'' users or documents is needed
	Two-way generalization is needed when both users and documents are ``new''


	Discussion
	Acknowledgements
	Appendix A: Generative process and sampling formulas of the models
	User URP with Gibbs
	Likelihood and posterior of user URP model
	Sampling formulas of user URP moel

	User URP with generation of users and documents
	Likelihood and posterior of user URP with generation of users/documents
	Sampling formulas of user URP with generation of users/documents

	Two-way model without generation of users/documents
	Likelihood and posterior of two-way model without generation of users/documents
	Sampling formulas of two-way model without generation of users/documents

	Two-way latent grouping model
	Likelihood and posterior of two-way latent grouping model
	Sampling formulas of two-way model latent grouping model


	Appendix B: Details of experiments
	Construction of test set in ``new'' users and ``new'' documents cases
	Demonstrations with artificial data
	Experimental setup in case studies

	Appendix C: The supplementary results
	Prediction accuracies
	Performance with more information about new users/documents

	References


