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SUMMARY

In cold regions the thermal regime is strongly affected by freezing or melting processes,
consuming or releasing large amounts of latent heat. This changes enthalpy by orders of mag-
nitude. We present a numerical approach for the implementation of these effects into a 3-D
finite-difference heat transport model. The latent heat effect can be handled by substituting
an apparent heat capacity for the volumetric heat capacity of unfrozen soil in the heat trans-
fer equation. The model is verified by the analytical solution of the heat transport equation
including phase change.

We found significant deviations of temperature profiles when applying the latent heat effect
on forward calculations of deep temperature logs. Ground surface temperature histories derived
from synthetic data and field data from NE Poland underline the importance of considering
freezing processes. In spite of its limitations, the proposed method is appropriate for the study
of long-period climatic changes.
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1 INTRODUCTION

Frozen soils mainly occur in the polar regions and in the higher
reaches of the mountains. The associated thermal regime is called
‘permafrost’ (Muller 1945). According to the general definition by
Lunardini (1981) the term permafrost is used, if the soil shows a
temperature at or below 0°C continuously for a significantly long
time, but not necessarily for an entire geological period. However,
there is no defined time period during which the temperature of the
material must remain in the mentioned range. Soils freezing in an
exceptional cold winter and persisting over 1 or 2 yr are not classified
as permafrost.

The existence of permafrost is a result of the history and the
present state of the energy balance at the Earth’s surface—measured
by the surface temperature—and the deep Earth heat flow. The dom-
inant physical processes in frozen soils are thawing/freezing of wa-
ter with the release/consumption of latent heat. Furthermore the
hydrology is greatly influenced by the frozen soil as the infiltra-
tion decreases and long-range run-offs are caused. The quantitative
understanding of these mechanism is of paramount importance in
order to forecast the results of a climate change, as well as to im-
prove the parametrization of models describing the soil-atmosphere
interactions.

In this paper we describe a simple but effective method for
modelling of freezing and thawing processes in the subsurface.
This enthalpy method has been used by several authors before
(e.g. Galushkin 1997; Lunardini 1987). We have implemented this
scheme into a general-purpose reactive transport finite-difference
code simulating a wide variety of thermal and hydrogeological prob-
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lems in two and three dimensions. This code, SHEMAT (Simula-
tor for HEat and MAss Transport, Clauser 2003), solves coupled
problems involving fluid flow, heat transfer, species transport and
chemical water—rock interaction in fluid-saturated porous media.
This work extends the application field to thermal systems, where
freezing processes become important. The effects of freezing and
thawing are particularly interesting when studying ground surface
temperature histories (GSTH). Changes in surface temperature with
time diffuse into the subsurface, producing characteristic signatures
in borehole temperature logs. From these signals the original sur-
face temperature changes can be reconstructed by inverse methods
(e.g. Shen & Beck 1991; Mareschal & Beltrami 1992; Beltrami
et al. 1995; Huang et al. 2000). For this purpose we have also used
this approach within an inverse code based on 1-D finite-difference
forward model. Though the effects on flow phenomena have been
included in the SHEMAT modelling code, we will restrict ourselves
to the conductive effects in this article, studying synthetic and real
data. The effects of freezing/thawing on groundwater flow will be
treated in a subsequent article.

2 NUMERICAL MODELLING
OF PERMAFROST

A detailed analysis of freezing processes including coupled heat
and mass transport in soils is very complex and the theory is not yet
fully understood. Because of the non-linearity of the heat transport
equation with phase change, and particularly because of the complex
coupling between thermal and hydrological processes on one hand

© 2005 The Authors
Journal compilation © 2005 RAS



and climatological conditions on the other hand, a simplified model
is presented.

2.1 Frozen soil physics

For study of subsurface heat transport, the variation of temperature
(T) with time (#) can be described by:

aT
V- (AVT - prfTV) + h = E(‘z)pfcf + (1 - ¢)pmcm)~ (1)

The first term on the left describes the transport of heat by conduc-
tion with a thermal conductivity tensor A (W m~' K~'), whereas
the second one specifies advection by motion of pore fluid with a
Darcy velocity v (ms™!). p is density (kgm™), ¢ is heat capac-
ity JK~'kg™"), and 4 is volumetric heat production (W m~3). The
subscripts / and m account for the two-phase mixture between solid
rock (m) and fluid-filled pore space (f)). This mixture is character-
ized by porosity ¢. When modelling the thermal effects of freezing
and thawing, obviously eq. (1) has to include three phases: matrix,
fluid and ice. To achieve this, the following volume fractions are
defined:

where © denotes the fraction of pore space occupied by fluid, and an
additional ice phase is introduced marked by index i. The constraint
¢m + @i + ¢y = 1 implies that pore space is saturated.

As an result of the complicated processes in the porous medium,
thawing cannot be considered as a simple discontinuity. ® is gener-
ally assumed to be a continuous function of temperature in a speci-
fied interval (Lunardini 1987), for example,

T-1\
o= exp|:—( wL)] if T <T. 3)

1 if T>T.

This function is shown in Fig. 1, and is characterized by a thawing
temperature 7' (liquidus, usually 0°C) and a parameter w (usually
>1 K). This corresponds to a freezing interval AT =T — T's =
2 K, where T g is the freezing temperature (solidus), at which almost
all fluid is frozen (dotted line in Fig. 1). However, this range is a
user specified parameter, making it possible to analyse a variety of
ground conditions. Fig. 2 shows an example for the variation of
the temperature with time. Here, the surface is exposed to a fixed
temperature of 3°C, resulting in a cooling of the soil below the initial
temperature of 0°C. As the freezing occurs within the temperature
range 7' — T's the phase transition is not isothermal.

2.2 Apparent heat capacity

Usually the concept of an apparent or effective heat capacity is in-
voked in order to account for the latent heat associated with thawing
and freezing by adding a term to eq. (1) (Kukkonen & Safanda 2001).
On the right-hand side the contribution by fluid and ice, subscript
f and i, respectively, can (more generally) be written as the time
derivative of fluid enthalpy H;. During thawing, this fluid enthalpy
per unit volume changes according to

AH; = /(d’fﬂfcf +¢ipici)dT — / il de;, 4)

where ¢ ; and ¢; are the relative volumes occupied by free and
frozen fluid, respectively. L is the specific latent heat (for water
~333.6kJ kg™!). Obviously, a volumetric apparent specific heat
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Figure 1. Smooth partition function ® (top) and its derivative with respect
to 7' (bottom) according to eqs (3) and (8) for several values of the thawing
interval w. The area below the curves in the bottom figure are equal, which
satisfies the latent heat condition eq. (9).

capacity (pc), can be defined, which includes additional energy
sources or sinks due to latent heat and replaces the fluid contribu-
tion of the term in parentheses on the right-hand side of eq. (1):
piLde;
. 5

T &)
The total derivative in the last term of eq. (5) is usually approximated
by a ratio of finite differences, resulting in a constant apparent spe-
cific heat:

Ad; iL — Qi L'
L_¢:L¢,L ¢.s:_. ©)

AT AT AT
The freezing range is thus described by the temperature interval
AT =T — T with fixed temperatures T's and 7' at which all of
the fluid is frozen or unfrozen, respectively (see Section 2.1). This
choice leads to an apparent heat capacity of

(pC)a = Grprcy + Pipici —

(f)f,Ofo T > TL
pil’
(00)a = § rpsrcy + Gipici — AT Is<T=<T (7
@i pici T <Ts.
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Figure 2. Freezing of soil: an example for a non-isothermal cooling curve
due to latent heat, as opposed to instantaneous freezing. The curves show
the temperature at 50 cm depth in a homogenous porous medium (¢ = 0.4,
A=25Wm~! K). Here, T's = 2.5°C.

Table 1. Temperature, density, specific heat capacity and thermal conduc-
tivity of ice at some temperatures (from Miller 1982).

T (°C) p (kgm™3) cp (kI kg ' K1) A(Wm™ K1
0 916.7 2.11 2.14
—10 918.7 2.03 230
—20 920.3 1.96 2.40
—-30 921.6 1.88 2.50
—40 922.8 1.80 2.60

Ineq. (7), p and ¢ are functions of temperature. For the fully unfrozen
state the variation with temperature of these are as described in
Clauser (2003) and for the fully frozen state properties of ice at
different temperatures are taken from Miller (1982) and Lide (2000).
Table 1 lists some values for water and ice for comparison. Fig. 3
illustrates, how (pc), varies with temperature. This approximation
of a constant apparent heat capacity is consistent with assuming a
ramp function for ©.

(pC)a
(po);

Freezing Range
(pe);

Ts Temperature T

Figure 3. Apparent heat capacity (oc), as a function of temperature below
or above the solidus or liquidus temperature 71, — T's, respectively. © is
assumed as a ramp function, leading to a piecewise constant (pc).

As we have chosen a smoother function, we can simply differen-
tiate eq. (3)

2(T-T0) T-1\"| .
o | - M| (= f T<n
o _ w? eXp[ ( w ) AT

0 if T>T1

and use this in eq. (5) instead of the approximation in eq. (6). The
function ® and its derivative are shown in Fig. 1.

According to Bonacina & Comini (1973) the actual shape of
this curve is not important with regard to the temperature fields
calculated, but it must satisfy the latent heat condition,

s
L= (ondr, ©)
Ts
which is clearly fulfilled for both choices. The apparent specific
heat capacity is a function of temperature, however. Therefore, this
approach requires a non-linear solution scheme. For this reason
smoother functions for ® generally improve the convergence of
the solution.

2.3 Thermal conductivity

In case of a phase change at a single temperature, thermal con-
ductivity is not continuous with respect to temperature. However,
considering the freezing range in rocks, we use eqs (2) and (3) for
taking into account the contributions of the fluid and the ice phase.
For temperatures below T's thermal conductivity of ice is assumed
to vary linearly with temperature. All other temperature dependen-
cies are accounted for in the original codes. Since the materials are
assumed to be randomly distributed, the weighting between them is
realized by the square-root mean, which is believed to have a greater
physical basis than the geometric mean (Roy et al. 1981):

M ris T) = [du/2n(T) + /3 (T) + 6/ M(D]. (10)

Values for the properties of ice are taken from Miller (1982). Note
that other mixing laws may be employed, leading to an correspond-
ing change in eqs (14) and (15).

3 MODEL VERIFICATION

We compare our solutions to a very special case where an analyt-
ical solution exists as well as to a more general cases, using other
numerical models. All models are purely conductive.

3.1 Analytical solution

The solutions to conductive heat transfer problems with solidifica-
tion phase change—often referred to as ‘Stefan problems’ (Stefan
1891)—are inherently non-linear and thus, solution methods are
very restricted. A classical solution for a semi-infinite medium with
constant temperature undergoing a step change of surface temper-
ature was given by Neumann (ca. 1860) and has been expanded by
Carslaw & Jaeger (1959). It is called the Neumann solution and
specifies the location X(7) of the phase front (i.e. the isotherm 7" =
Ts) as a function of time. At time # = 0 the surface x = 0 is exposed
to a temperature lower than 7'g, and itis 7 = 7' for x > 0. Hence
it results for the temporal change of the phase front and with it the
isotherm 7' = T'g (see Fig. 4)

X(t) =2y Jait, (11)

here and in eq. (12) «;, s indicates the thermal diffusivity of ice and
water, respectively. The parameter y must be determined from the
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Figure 4. The Neumann problem: location X(#) of the phase front 7' = T's.

Table 2. The parameter y for different widths of freez-

ing range.

4 AT (°0)
0.039 4

0.041 3

0.043 2

following equation (Carslaw & Jaeger 1959) that results from the
boundary conditions of the associated differential equation (with
the thermal conductivities A; , of both materials):

exp [(a,- — ozf)yz/otf]erfc[y oti/otf] B (TL = Ts)hpfor
erfy (Ts — To)h; Joiy
(12)
The latent heat effect is considered approximately in eq. (12) by

adding the expression of eq. (6) to the thermal diffusivity of the
liquid:

Ay

Prer t ar

(13)
Table 2 lists some computed values of y for several values of the
temperature difference AT.

3.1.1 Model properties

A horizontal domain of 20 x 100 nodes and a mesh size of 1 cm
is chosen as an approximation for the semi-infinite half-space. The
model is purely conductive. Since the analytical solution (eq. 11)
is strictly valid only for a homogeneous fluid, the porosity must be
chosen as large as possible. Here, in a first approximation, a value of
0.95 is chosen. Later, a more realistic porosity of 0.05 will be used,
which requires a modification of the analytical solution. The initial
temperature of the half-space is the top of the freezing range (7' =
0°C). At ¢t = 0 the surface x = 0 exposed to a temperature of 7 =
—3°C < Ts. The other parameters are summarized in Table 3.
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Table 3. Verification model parameters.

Parameter Value

Grid size; Resolution 20 x 100; 1 cm
Temperature 0°C (—3°Catx =0)
Porosity 0.95 and 0.05

Matrix thermal capacity 206 MIm—3 K~!
Matrix thermal conductivity 29Wm! K~!

Time step size; Total simulation time 864 s; 100 days and 1.8 days

3.1.2 Results and discussion

Fig. 5 shows the evolution of the phase front X (7). The crosses show
the numerical values, the line the analytical solution. In the begin-
ning the numerical solution overestimates the location of the freez-
ing front, but the error decreases with time, becoming lower than
5 per cent after 10 days. At longer times the difference between an-
alytical and numerical solution is even less. The initially significant
deviation is due to the rough discretization of the grid and bound-
ary effects, which decrease as the phase front propagates. The error
decreases also for smaller time steps. Additional error sources arise
from the fact that a porosity of 1.0 cannot be simulated in SHEMAT
and the approximation inherent in the choice of the function ® shown
in Fig. 1. Table 4 lists some values of the analytical and numerical
solution, as well as the percentage deviation.

Next, the heterogeneous soil structure is taken into account. The
thermal conductivity is weighted by the square-root mean (see Sec-
tion 2.3) and the thermal capacity by the arithmetic mean. Since the
properties in eq. (12) refer only to the fully unfrozen (f) or the fully
frozen (i) state, it is sufficient to use the porosity ¢ as in eq. (1).
Thus, the thermal diffusivity of the fluid becomes from eq. (12)

(/s + (1 — )in)

O[f e d O[ﬁm = - (14)
drorcr + (1 —@)omen + %
and the thermal diffusivity of ice becomes
2
(A + (1 = $)h)
A — Qg = (15)

¢iloicw + (1 - ¢)pmcm '

Fig. 6 shows the evolution of the phase front for a porosity of 0.05
using the modified analytical solution compared to the previous case
(¢ = 0.95). The front propagates faster, because of the lower water

30
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Figure 5. Propagation of the phase front X(#) for the Neumann problem
and a porosity ¢ = 0.95.
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Table 4. Location X(¢) of the isotherm I = T'g at different times for ¢ =
0.95 obtained from the analytical and numerical solution.

Time (d) Xanalyt (cm) X qum (cm) Per cent deviation
5 54 6 10
20 12.6 13 3.5
50 19.6 20 2.2
80 24.6 25 1.5
99 26.9 27 0.035
14 T T T T T T T
X Numerical solution
= analytical solution
12+ .
~ 10 8
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Figure 6. Propagation of the phase front X(#) for the Neumann problem
and a porosity ¢ = 0.05.

content an thus the less latent heat released. Table 5 lists some values
of the analytical and numerical solution for comparison.

3.2 Comparison with numerical models

We compare our model to an existing software, GeoStudio™ by
GEO-SLOPE International. The module TEMP/W described in
GEO-SLOPE™ (2004) is developed for finite element geothermal
analysis. It includes Neumann thaw and freeze analysis, for which
a similar verification example is given as we have presented in Sec-
tion 3. Table 6 illustrates the selected parameters for the verification
example for TEMP/W. The volumetric water content is idealized and
setto 1. The analytical solution assumes a single temperature step for
the phase change at 0°C. Since this numerically critical, in TEMP/W
a near-perfect stepped function is used, that is, within 0.001°C at
temperatures below 0°C the volumetric water content changes from
1 to 0. We keep our model containing a freezing interval from 0°C
to —2°C, since we found this method much more numerically stable
and define the thaw depth as the —1°C isotherm. Fig. 7 shows the
results: the analytical solution given in GEO-SLOPE™ (2004), the

Table 5. Location X(¢) of the isotherm I = T'g at different times for ¢ =
0.05 obtained from the analytical and numerical solution.

Time (h) Xanalyt (cm) Xnum (cm) Per cent deviation
8 5.9 6 1.5
18 8.9 9 1.4
22 9.9 10 1.4
27 10.9 11 1.4
32 11.8 12 1.4

Table 6. Parameters of the verification example adapted from TEMP/W.

Parameter Value
Grid size; Resolution 10 x 500; 1 cm
Ground temperature —-3°C
Surface temperature 5°C
Porosity 0.99
Matrix thermal capacity 20MIm—3 K!
Matrix thermal conductivity LI5SWm™ ' K™!
Total simulation time 1200 d
160 T T T T T
TEMP/W Analytical Solution
& TEMP/W (no finite element)
1401 % TEMP/W (finite element) 1
x SHEMAT
120 1
E 100 1
=
S sof 1
o
5
S eof 8
-
40 - . . .
20 . . .
0 i i i i i
0 200 400 600 800 1000 1200
Time (days)

Figure 7. Comparison between SHEMAT and a verification example of the
TEMP/W module within GeoSlope™.

numerical solution of TEMP/W, where in one case infinite elements
are applied, which is in better agreement with the analytical solution
as the latter one assumes a semi-infinite column.

Another comparison with an existing model considers variations
in permafrost thickness in response to changes in palaecoclimate.
Osterkamp & Gosink (1991) use a step palaeotemperature model
for the surface temperature of permafrost for Prudhoe Bay, Alaska,
modified from a model by Brigham & Miller (1973). As far as
initial and boundary conditions are stated (see Table 7), we imple-
mented them in a SHEMAT model and calculated the permafrost
depth, which is defined by Osterkamp & Gosink (1991) as the —1°C
isotherm. Since initial and boundary conditions could not be recon-
structed completely, there is an absolute shift between both vari-
ations of permafrost thickness, which is 200 m. This value was
subtracted from the original data of Osterkamp & Gosink (1991),
to visualize the good (relative) agreement between the two models;
see Fig. 8. According to Osterkamp & Gosink (1991) the observed
current thickness of permafrost in Prudhoe Bay is about 600 m, so
that our model underestimates the thickness by 14 per cent whereas

Table 7. Parameters of the model adapted from Osterkamp & Gosink
(1991).

Parameter Value
Grid size; Resolution 10 x 900; I m
Basal heat flow 0.06 W m—2

Porosity 0.04

Matrix thermal capacity 206 MIm—3 K~!
Matrix thermal conductivity 339Wm ! K!
Total simulation time 100 ka
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Figure 8. Comparison between the permafrost depth model by Osterkamp
& Gosink (1991) and SHEMAT.

the model of Osterkamp & Gosink (1991) yields an 18 per cent
higher value. The uncertainty of heat flow is 15 per cent, thus both
results are more or less still within the error range.

4 PERMAFROST AND THE
RECONSTRUCTION OF PAST SURFACE
TEMPERATURES

The inclusion of the latent heat effects is of outstanding importance
when analysing the signal of palaeoclimate. This can be done by
inverting for GSTH. Here we apply an inversion scheme based on
non-linear Tikhonov inversion. Regularization achieved by mini-
mizing the (semi-) norm of a roughening operator applied to the
discrete series of temperatures representing GST. The details of this

Depth (m)

0.2 -
0.15
0.1

(a) Porosity (-)

Latent heat effects 241
approach are given in a accompanying paper Rath & Mottaghy (in
preparation). To deal with permafrost effects, the forward modelling
code used in this inversion was replaced with a 1-D implementation
of the algorithm described in Section 2.

4.1 Synthetic example

To give a simple example, we used a boxcar time function charac-
terized by a temperature decrease of —9 K (from 1°C) at 65 000 yr
before present, returning to 1°C at 15 000 yr before present, marking
the fast warming at the end of the last glaciation. The subsurface
was assumed to be uniform with respect to petrophysical properties.
Fig. 9 shows synthetic temperature logs for different porosities, as
well as the maximum deviation induced by the inclusion of per-
mafrost effects.

To demonstrate the effect on palacoclimate inversions, we chose
a high porosity of 30 per cent. As pointed out above, the existence of
high porosities are essential for significant permafrost effects. The
results are shown in Fig. 10. It is clearly visible from both panels,
that under favourable conditions, the effects of permafrost from the
last glacial should be visible at depth even now. A recent example for
this is given by Safanda et al. (2004), where also independent data
are presented supporting the deep occurrence of palacopermafrost.

Synthetic borehole temperature logs were generated from this
simulation, adding normal random noise with a standard deviation
of 0 = 0.25K and a mean of zero. We inverted the resulting data
set with, and without permafrost effects included. The difference
between including and excluding the latent heat effect in the inver-
sion algorithm is shown in Fig. 11: the sharp increase due to the step
function is much better reproduced when inverting with freezing.
It has to be remarked, however, that the porosity assumed is rather
high. In practice, effects may be smaller or even negligible in crys-
talline areas. The boxcar forcing function used for the simulation is
a hard case for straightforward smoothing inversions, like the one
applied here.

T, (°C)

<
=
)
s
>
(]
©
©
= .05 1 .15 2 .25
(c) Porosity (-)

5 T (°C)

— latent heat effects included
— |atent heat effects excluded
initial model (t=0)

Figure 9. Influence of permafrost formation on ground temperatures for a simple homogeneous model. (a) Temperature profiles for different porosities; (b)
Boxcar palaeoclimate forcing function and (c) maximum deviation between models considering and ignoring latent heat effects for different porosities.

© 2005 The Authors, GJI, 164, 236-245
Journal compilation © 2005 RAS




242 D. Mottaghy and V. Rath

10" 0
Time B.P. (a)

0.8

0.8

0.7

0.6

40.3

Fl

¢
TmeBl@

Figure 10. Influence of permafrost formation on ground temperatures for a simple homogeneous model. Left: temperatures in the top 500 m of the model.
Right: ice content of the porous medium. A value of 1 implies that all porosity is filled up with ice. It is very clear, that a significant temperature signal or even

ice relics can be expected in areas of high porosity.
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Figure 11. Inversion of a synthetic temperature log, featuring the palaeo-
climatic signal of a step function (grey line). Porosity is ¢ = 0.3.

4.2 Field example

We used this method interpreting temperature data from a bore-
hole, UDRYN IG-8, located in NE Poland. In this borehole not only
temperature data were available, but also porosities and thermal con-
ductivities reconstructed from borehole wireline logging. We used a
simple layered model compiled by Majorowicz (private communi-
cation, 2005). The data for this borehole is shown in Fig. 12. From
this figure it becomes obvious that porosity is high enough to expect
a significant impact of the thawing/freezing process. For the inver-
sion we had to set the extent of the forward model to a depth of 5000
m, assuming the properties below the depth of the borehole to be
mean bedrock properties as found in the borehole below 900 m.
For the temperature dependence of the thermal properties we
adopted the formulations given by Haenel et al. (1988) for thermal
conductivity, and Herrmann (1999) for heat capacity. Water prop-
erties were calculated as a function temperature and pressure. Ice
properties and the freezing function are the same as in the forward
code presented above. Boundary conditions were set as follows. At

the top we assumed a variable GSTH. The best fit to the borehole
data was obtained with a recent mean annual temperature of 7°C,
which is slightly above the mean annual air temperature (2 m height)
at the location of the borehole (26°C). As we took the thermal con-
ductivity to be basically correct, there is not much freedom to vary
the basal heat flow, which is 38.4 mW m~2 at a depth of 5000 m, ac-
counting for heat production. This corresponds to a surface heat flow
of 41.4 mW m~2, which has been determined by Majorowicz (per-
sonal communication, 2005). The temperature data were smoothed
and interpolated to the grid used for the modelling. We assumed a
logarithmic temporal grid, starting with large time steps in the past
from 150 ky to small steps up to the present.

From the experience with the inversions we found that the best fit
we could obtain increased systematically with depth (see Fig. 13).
This suggests that some depth dependent petrophysical parameter
variations have not been sufficiently determined. For instance, we
used a general relationship for crustal-scale studies for the temper-
ature dependence of thermal conductivity and capacity. The coeffi-
cients of these polynomial representations should be adapted to the
sedimentary environment at the UDRYN site. Also, heterogeneities
at larger depths should be taken into consideration. For this reason,
we only used the data above 1500 m of the borehole.

We parametrized the GSTH by a piecewise constant function,
with a logarithmic decreasing interval. For the particular inversions
shown we limited the degrees of freedom to 64. A logarithmic grid is
well adapted for the fact that the temporal resolution of borehole data
decreases with age. We ran the inversion with different smoothness
constraints which determine the balance between roughness and data
fit (Rath & Mottaghy, in preparation). For the results shown below,
we chose the regularization parameters to the values corresponding
to lowest values producing a stable result. As using a constant prior
implies an unrealistic assumption of mean temperatures before the
initiation of the simulation, we chose a smooth transition from the
recent GST of 7°C to a initial value of —9°C. This particular prior
model entering the regularization was inspired by the results of
Safanda ef al. (2004).

The results from our inversions are given in Fig. 14. Although
these inversions may be improved following the suggestions given
above, several conclusions can be drawn: given a fixed regular-
ization, the inclusion of latent heat effects improves the data fit
significantly. Additionally, the resulting GSTH appears to be more
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Figure 12. Temperature, porosity, and thermal conductivity from the UDRYN IG-8 borehole. We calculated the matrix thermal conductivity from the available

effective property by a geometric mixing law.
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Figure 13. Comparison of inversions of truncated logs from the UDRYN
borehole. The best fit could be obtained from the shortest logs. Data fit is
)2

measured by RMS = % %

consistent with our knowledge on the timing of the end of the Weich-
selian glaciation some 14—15 ka ago (Hartmann 1994). The lowest
temperature resulting from the inversion is about —10°C. From these
results we calculated the history of subsurface temperatures and the
amount of ice content.

In general, our findings in this study agree well with the results of
Safanda et al. (2004), who present forward modelling results includ-
ing permafrost for the same borehole. The minimum temperature
obtained by our inverse model (—10°C) is nearly the same as the one
given by these authors. As in their model, permafrost disappeared
about 4 ka BP (see Fig. 15). The maximum permafrost depth de-
fined by the —1°C isotherm, however, is larger in our model (2650 m
in contrast to ~520 m). This is probably due to differences in the
assumed temperature dependencies in the thermophysical rock and
fluid properties. Additionally, the partition function in eq. (3) is
different from the one used by Safanda ef al. (2004).
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Figure 14. Comparison of the results from the palaeoclimatic inversions
for GST from the UDRYN borehole. The black curve represents the results
including latent heat effects, while the grey line is the result obtained from
standard assumptions. The former shows a better fit to the data, indicated by
a much lower RMS. The large effect is mainly due to the very high porosity
in the upper 900 m (see Fig. 12). Both curves refer to baseline of 7°C, that
is, the zero level corresponds to this value.

5 CONCLUSION

The model presented includes latent heat effects due to freezing
and melting processes in a heat transport model for porous media.
In order to facilitate the complex behaviour of freezing processes,
various assumptions had to be made. First simulations of heat trans-
port based on this method reveal a considerable influence on thermal
properties of soil. It becomes evident that the influence of permafrost
development can play a significant role on the subsurface thermal
regime, depending on porosity.

The thermal signal of past climate can be reconstructed from re-
cent deep borehole temperatures for the last few ten thousand years.
This implies that many areas no longer showing signs of permafrost
have seen low temperatures and possibly permafrost during this
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Figure 15. Permafrost formation at the UDRYN site from the inversion model shown in Fig. 14. Left: Temperatures (°C) in the top 800 m of the model. Right:
Ice content of the porous medium. A value of 1 implies that all porosity is filled up with ice. Defining permafrost thickness by the —1°C isotherm (white line),
it reaches a maximum depth of 650 m shortly after the beginning of the simulation. No ice is present after 24 ka BP. The ice content is defined as in Fig. 10. In
contrast to this homogenous model, the actual amount of ice and latent heat here depends on the variable porosity.

period. Therefore, the inclusion of the thermal effects of permafrost
is essential when aiming at the reconstruction of consistent spatial
distributions of past temperatures over large regions. We tested our
model on field data, confirming that the freezing/thawing effects
yields significantly different results for the inversion results. This
implies that wherever high porosities exist, latent heat effects must
be considered.

Regional and local fluid flow plays an important role in permafrost
regimes. Therefore, in order to be able to investigate these situations,
it is also necessary to include flow into our simulations. Only in this
way it will be possible to study effects of the coupled influences of
forcing climate and fluid flow, which has been shown to be impor-
tant for a consistent reconstruction of palacotemperatures (e.g. Kohl
1998).
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