
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH 2010 1

Latent Log-Linear Models
for Handwritten Digit Classification

Thomas Deselaers, Member, IEEE , Tobias Gass, Georg Heigold,
and Hermann Ney, Member, IEEE

Abstract—We present latent log-linear models, an extension of log-linear models incorporating latent variables and we propose
two applications thereof: log-linear mixture models and image deformation-aware log-linear models. The resulting models are fully
discriminative, can be trained efficiently, and the model complexity can be controlled. Log-linear mixture models offer additional flexibility
within the log-linear modeling framework. Unlike previous approaches, the image deformation-aware model directly considers image
deformations and allows for a discriminative training of the deformation parameters. Both are trained using alternating optimization.
For certain variants convergence to a stationary point is guaranteed and in practice even variants without this guarantee converge
and find models that perform well. We tune the methods on the USPS dataset and evaluate on the MNIST dataset demonstrating
the generalization capabilities of our proposed models. Our models, although using significantly fewer parameters, are able to obtain
competitive results with models proposed in the literature.

Index Terms—Log-linear models, latent variables, conditional random fields, OCR, image classification

✦

1 INTRODUCTION

INCORPORATING latent, or hidden, variables into a
model is a well-known means of increasing its expres-

siveness. Latent variables are not directly observed from
the data but inferred from other variables. In machine
learning and pattern recognition, latent variables are
for example used in speech recognition to account for
temporal variabilities [32], in information retrieval and
natural language processing to analyze the relationships
between terms and concepts [23], and in object recogni-
tion to model the positions of object parts [8].

We develop two log-linear models incorporating latent
variables: log-linear mixture models and deformation-
aware log-linear models. In general the training of
models with latent variables is hard. Therefore many
approaches restrict their choice of models to those for
which efficient and optimal algorithms exist. In order
to improve the expressiveness of such models often the
kernel trick is applied, e.g. in support vector machines
(SVMs) [35]. To train an SVM, a convex optimization
problem is solved, which can be done optimally and
efficiently. The resulting classifiers are linear hyperplanes
and the kernel trick allows for complex models by
optimizing the decision hyperplane implicitly in a very
high (possibly infinite) dimensional space. For many

• Thomas Deselaers and Tobias Gass are with the Computer Vision Labora-
tory, Department of Information Technology and Electrical Engineering,
ETH Zurich, Zurich, Switzerland. E-mail: thomas@deselaers.de,
gass@vision.ee.ethz.ch

Georg Heigold and Hermann Ney are with the Human Language Tech-
nology and Pattern Recognition group, Computer Science Department of
RWTH Aachen University in Aachen, Germany. E-mail: {heigold,
ney}@cs.rwth-aachen.de
The research presented in this work has been performed while all authors
were with the Human Language Technology and Pattern Recognition
group, Computer Science Department of RWTH Aachen University in
Aachen, Germany.

applications, kernel methods have been able to obtain
very good results in the last years.

In this work we present extensions to log-linear mod-
els. Starting from a conventional log-linear model, we
develop

• log-linear mixture models which increase the flexi-
bility of the model in general;

• deformation-aware log-linear models which in-
crease the flexibility of the model by incorporating
prior knowledge about image deformations.

Although the function to be optimized during train-
ing of our proposed models is not convex, we present
an efficient training algorithm, which is guaranteed to
converge to a stationary point and finds models that
perform well in practice. To the best of our knowl-
edge, the deformation-aware log-linear model is the
first model which jointly (and discriminatively) trains
the deformation parameters with the remaining model
parameters. We carefully evaluate the proposed models
on two public OCR datasets.

1.1 Related Work

Discriminative Modeling

The aim of this work is to add flexibility and to learn
parameters that reflect domain specific prior knowledge
into a discriminative classification framework. In kernel
methods, additional flexibility is obtained through the
kernel trick [35], e.g. deformation invariance [13, 14].
However, it is not easy to learn kernel parameters and
thus these are often tuned using cross validation [5].
Gehler and Nowozin [10] propose a method to implicitly
learn the kernel parameters while training the classifica-
tion model by selecting kernels from a potentially infinite
set of base kernels.

Instead of using a kernel, we start from a conventional
discriminative log-linear model and incorporate latent

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH 2010 2

variables to extend its flexibility. The resulting models
can be seen as conditional random fields (CRFs) [22] with
latent variables [12, 31], where the latent variables ac-
count for the assignment of observations to the mixture
components in the first case and for the deformations in
the second case. Heigold et al. [16] and Gunawardana
et al. [12] use log-linear models within hidden Markov
models (HMMs) for speech recognition. An approach
similar to the log-linear mixtures presented here was
used for local-feature-based object classification in [38].

Deformation Modeling

To model image deformations, conventional approaches
can be split into two groups:
Approaches that directly incorporate invariance: Haas-
donk and Keysers [15] incorporate the tangent distance
into support vector machines. DeCoste and Schölkopf [7]
use kernel jittering to obtain translated support vectors
in a two-step training approach. Keysers et al. [19,
20] use transformation invariant distance measures in
a nearest neighbor framework. They also propose a
deformation-aware Gaussian model but do not train the
deformation parameters.
Approaches that implicitly incorporate invariance: An-
other approach is not to incorporate the deformation
invariance into the model but to use a huge amount
of synthetically deformed data during training. LeCun
et al. [25] and Simard [36] train multi-layer convolutional
neural networks that implicitly learn the occurring de-
formations from training data.

The first approach has the disadvantage that during
testing a large amount of potentially computationally
expensive image comparisons have to be performed
whereas in the second approach the training procedure
may become very expensive. None of these approaches
explicitly learns the parameters of the allowed defor-
mations but the deformation model was hand-coded by
the system developers, either in designing the distance
function or in generating the deformed training sam-
ples. In contrast to these approaches to transformation
invariant classification, Memisevic and Hinton [27] pro-
posed an approach to learn image transformations from
corresponding image pairs using conditional restricted
Boltzmann machines. This approach can also be used
for classification, but the deformation and classification
parameters are decoupled.

In our deformation-aware log-linear model, we aim at
training

• a small (in the number of parameters) model that
• directly models deformations,
• automatically learns which deformations are al-

lowed (and desired), and
• is efficient to train and apply.

We build our approach around the image distortion
model (IDM) [20], a zero-order, non-linear deformation
model, which we briefly describe in Section 5. A prelim-
inary version of the part on deformation-aware models
was published in [9].

Structure

The remainder of this paper is structured as follows:
In Section 3 we present how log-linear models are ex-
tended to incorporate latent variables and how this is
applied to create log-linear mixture models (Section 4)
and deformation-aware log-linear models (Section 5).
In Section 6 we experimentally evaluate the proposed
approaches on two standard datasets. We tune and
evaluate both models on the USPS dataset for optical
character recognition (OCR). Then, we use the settings
that worked best on the USPS dataset to train and to
evaluate a model on the MNIST dataset. Finally the
paper is summarized and concluded.

2 LOG-LINEAR MODELS

LOG-LINEAR models [6, 21] are discriminative classi-
fication models that have been used successfully in

many applications, such as natural language processing
[3, 30]. Log-linear models are closely related to other
machine learning techniques such as perceptrons and
SVMs. In a log-linear model the posterior probability for
class c is given directly as

pθ(c|X) =
exp(gθ(c,X))

∑

c′ exp(gθ(c
′, X))

, (1)

where gθ(c,X) is a linear function of the input vector X ,
i.e. gθ(c,X) = αc + λT

c X with parameters θ = {αc, λc}
for c = 1, . . . , C. X is a feature vector to be classified.
The parameters θ are estimated in training. As such, log-
linear models do not incorporate invariance with respect
to any variabilities in the input data explicitly but are
able to learn which variations occur in their training data
implicitly.

The input vectors X can be represented by (pos-
sibly non-linear) functions f(c,X) of c and X . This
allows for great flexibility in this type of model and
the incorporation of higher order features. Analogously,
a discriminant function gθ which is non-linear in the
input vectors X can be used. The resulting models are
called generalized log-linear models. A special case are
models with a quadratic (in X) discriminant function
gθ(c,X) = αc+λT

c X +XTΛcX . These are called second-
order log-linear models and can be trained efficiently
analogously to the linear case. We also refer to the
experimental evaluation (Section 6.2) where we use a
kernelized log-linear model for comparison.

To train a log-linear model given a set of training
observations {X1, . . . , XN} with labels {c1, . . . , cN}, we
maximize the (regularized) maximum mutual informa-
tion (MMI) criterion over the parameters θ1 [18]

FMMI(θ) =
1

N

∑

n

log pθ(cn|Xn)− γ||θ||2 (2)

where γ > 0 is the regularization factor, and ||θ||2 is
the L2 norm over all model parameters θ. The training
of log-linear models according to this criterion is a

1. also referred to as maximum-likelihood over the posteriors

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH 2010 3

convex optimization problem leading to a linear decision
boundary and several algorithms exist that allow for
effectively finding the globally optimal model [6, 26, 28].

The class posterior of a single Gaussian classifier can
be expressed in log-linear form [1]. Heigold et al. [16]
showed that training Gaussian models and log-linear
models according to the same criterion leads to the same
classifier. Experimentally, it was observed that training a
log-linear model may be numerically more stable, since
the inversion of the covariance matrix is not required.
This is particularly interesting for Gaussian models with
full covariance which correspond to second-order log-
linear models.

3 LOG-LINEAR MODELS WITH LATENT VARI-
ABLES

IN this section, we describe a general approach of
incorporating latent variables into log-linear models to

better model the variability of the data to be recognized.
In Sections 4 and 5 we present applications that use
latent variables to extend the capabilities of log-linear
models.

To integrate a discrete latent variable A into a log-
linear model, we sum over the joint probability of the
newly introduced latent variable:

pθ(c|X) =
∑

A

pθ(c, A|X) =

∑

A exp(gθ(c, A,X))
∑

c′

∑

A′ exp(gθ(c′, A′, X))

(3)

Training such a model according to the MMI criterion
(eq. (2)) is not a convex problem anymore due to the
sum in the numerator and is NP-hard. In Section 3.2
we present a training algorithm which in practice finds
good models and for which under certain circumstances
convergence can be guaranteed.

3.1 Maximum Approximation

The joint probability for a given configuration A of the
latent variable and a class is in the form of a regular
log-linear model over pseudo-classes (c, A):

pθ(c, A|X) =
exp(gθ(c, A,X))

∑

(c′,A′) exp(gθ(c
′, A′, X))

(4)

This means that given a configuration A for each train-
ing sample such models can be trained efficiently and
optimally. However, the correct configuration of A is not
known and thus we approximate A using the configura-
tion Ac(X) which maximizes the discriminant function
for an observation X :

Ac(X) = argmax
A

{gθ(c, A,X)} = argmax
A

{pθ(c, A|X)}

(5)

We expect the maximum approximation, pθ(c|X) ≈
pθ(c, Ac|X) to be a good approximation because the
approximated function exponentially decreases from its
maximum [2].

Combining these observations, we derive a training
algorithm that is guaranteed to improve the training
criterion FMMI in every iteration; when the criterion
cannot be improved anymore, the algorithm converges
(cf. Section 3.2). Analogously to applying the maximum
approximation in the numerator, it can also be applied in
the denominator. Therefore, a configuration of the latent
variables has to be determined for each class for each ob-
servation independently: AC

1 (X) = (A1(X), . . . , AC(X))
is determined according to Eq. (5) and used in the
posterior:

pθ(c, A
C
1 |X) =

exp(gθ(c, Ac, X))
∑

c′ exp(gθ(c
′, Ac′ , X))

(6)

Each Ac maximizes its respective class-specific discrimi-
nant function: Ac = argmaxA {gθ(c, A,X)} (for all classes
c = 1, . . . , C).

In the following, we refer to the model without
the maximum approximation as SUMSUM (eq. (3)), the
model with the maximum approximation in the numer-
ator only is denoted as MAXSUM (eq. (4)), and the model
with the maximum approximation in numerator and
denominator is denoted MAXMAX (eq. (6)). An overview
of the different model variants is given in Table 1 along
with the latent variables that have to be pre-determined,
and the derivatives required for training.

3.2 Training Method

To train the models we apply gradient descent methods.
For the SUMSUM model, the gradients can be calculated
directly. For the MAXSUM method, the configuration Acn

of the correct class cn is fixed for each observation Xn.
For the MAXMAX method, the configurations Ac for all
classes c = 1, . . . , C are fixed for each observation Xn.
The models are then iteratively trained, alternating be-
tween reestimating the model parameters and updating
the configuration of the latent variables.

Table 1 shows the derivatives used for the training.
The alternating training procedure works as follows:

1) For each training sample Xn estimate the configu-
ration A of the latent variable according to Eq. (5)
for

• class c = cn, when training a MAXSUM-model.
• each class c = 1, . . . , C, when training a MAX-

MAX-model.

2) Optimize FMMI(θ) with fixed configuration A using
a gradient descent method. We use the limited-
memory BFGS (LBFGS) Newton method [26].

3) if not converged, go back to 1.

When training a MAXSUM-model, step 2 is identical to
training a conventional log-linear model over pseudo-
classes (c, A) (cf. eq. (4)). This is a convex optimization
problem where LBFGS [26] will converge to the global
optimum for the parameters θ given the configuration
of the latent variables A. Given this set of parameters
θ, the algorithm goes back to step 1 and chooses the
configuration of latent variables A that maximizes the
training criterion (2). A will only be changed if it can be

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH 2010 4

TABLE 1: Overview on the variants of the maximum approximation in comparison to conventional log-linear models
along with the derivatives of the training criterion (Eq. (2)). The column “latent” specifies which latent variables
need to be pre-determined to calculate p(c|X). These variables also have to be pre-determined for each training

observation to calculate the derivative (note p(A|cn, Xn) =
p(cn,A|Xn)∑
A′ p(cn,A′|Xn)

).

Model p(c|X) latent ∂
∂θ

∑

n

log pθ(cn|Xn)

log-lin. mod. exp(gθ(c,X))∑

c′
exp(gθ(c,X))

–
∑

n

∑

c

[δ(c, cn)− pθ(c|Xn)]
∂
∂θ

gθ(c,Xn)

log-linear model with latent variables

SUMSUM

∑
A

exp(gθ(c,A,X))

∑

c′

∑

A′

exp(gθ(c
′,A′,X))

all free
∑

n

∑

c

∑

A

[δ(c, cn)pθ(A|cn, Xn)− pθ(c, A|Xn)]
∂
∂θ

gθ(c, A,Xn)

MAXSUM
exp(gθ(c,Ac(X),X))∑

c′

∑

A′

exp(gθ(c
′,A′,X))

Ac(X)
∑

n

∑

c

∑

A

[δ(c, cn)δ(Acn(Xn), A)− pθ(c, A|Xn)]
∂
∂θ

gθ(c, A,Xn)

MAXMAX
exp(gθ(c,Ac(X),X))∑

c′
exp(gθ(c′,Ac′ (X),X))

A1(X) . . . AC(X)
∑

n

∑

c

[δ(c, cn)− pθ(c, Ac(Xn)|Xn)]
∂
∂θ

gθ(c, Ac(Xn), Xn)

improved, since otherwise it would remain constant. If
it is changed, in step 2, the parameters are re-learned.
Otherwise, in step 2 no parameter update is performed
and training is converged to a stationary point(neither
changing A nor θ can improve the criterion (2)). That
is at this point we either have a local optimum or a
stationary point with two configurations A of the latent
variable that have the same criterion. Furthermore, the
MMI criterion (2) is bounded from above [4, 11].

Unfortunately, such a guarantee cannot be shown for
training MAXMAX or SUMSUM models. For MAXMAX

models, changing A may lead to a deterioration of the
training criterion. However, in practice training also
converges for these models (cf. Section 6.1.1).

4 LOG-LINEAR MIXTURE MODELS

M IXTURE models, such as Gaussian mixture distri-
butions (GMDs), are a standard technique to allow

for modeling complex data in Gaussian approaches.
Analogously to the way Gaussian mixtures extend single
Gaussians, we extend log-linear models toward log-
linear mixture models (LLMMs). In this case, the con-
figuration of the latent variable models the alignment of
observations to the model components (densities). The
posterior is given as

pθ(c|X) =
∑

i

pθ(c, i|X) (7)

=

∑

i pθ(c, i,X)
∑

c′

∑

i′ pθ(c
′, i′, X)

(8)

=

∑

i exp(gθ(c, i,X))
∑

c′

∑

i′ exp(gθ(c
′, i′, X))

(9)

where gθ is chosen as gθ(c, i,X) = αci + λT
ciX and θ =

{αci, λci}.
LLMMs are the discriminative counterpart of Gaussian

mixture models analogously to the relationship between
log-linear models and single Gaussian classifiers [33].
This relationship allows for transforming one into the

other and e.g. to use a GMD model to initialize an LLMM
or vice versa.

4.1 Initialization

Since training of these models is not convex, the result
may depend on the initialization of the model. We
investigate three different initializations:

4.1.1 Initialization from a Gaussian Mixture Model

We train a Gaussian mixture for each of the classes
c using the EM algorithm. Therefore we start from a
single Gaussian, which is then incrementally split and
re-estimated, until the desired number of densities is ob-
tained. This algorithm is known to lead to stable results,
and unlike the k-means algorithms does not depend on
a random initialization. The Gaussian mixture densities
are then converted into an LLMM following [16, 33].

4.1.2 Initialization by Incremental Splits

Analogously to our GMD training algorithm, we itera-
tively split the LLMM until the desired number of com-
ponents is obtained: We start from a simple log-linear
model. Then, we iteratively split the model components
by duplicating and disturbing using a small ε. After each
split, we perform the normal training procedure until
convergence. Once the desired amount of densities is
obtained and converged, training terminates.

4.1.3 Random Initialization

We start with the desired number of densities where all
model parameters are initialized with random numbers
between 0 and 1.

5 DEFORMATION-AWARE LOG-LINEAR MOD-
ELS

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH 2010 5

H ERE we use the configuration of the latent variable
to model the deformation of an image as an align-

ment of its individual pixels to the pixels of the model.
Deformation-invariance for handwritten character

recognition has been thoroughly investigated for various
distance functions in the context of nearest neighbor
classification [20, 37]. Our deformation model is inspired
by the IDM which has been proposed by several authors
independently under different names. For example, it
has been described as “local perturbations” [37] and as
“shift similarity” [29].

Here, we follow the formulation of [20]. The IDM
aligns an image pixel-wise to a prototype image. To
allow for efficient computation, no dependencies be-
tween alignments of neighboring pixels are considered.
An image alignment (xy)IJ11 maps each pixel ij of image
A of size I ×J to a pixel (xy)ij in the prototype (image)
B:

(xy)IJ11 : (ij) 7→ (xy)ij , ∀i = 1, . . . , I, j = 1, . . . , J. (10)

To restrict the number of possible alignments, a maximal
warp-range W , i.e. the maximal displacement between
ij and (xy)ij , is defined. An example alignment is shown
in Figure 1. For nearest neighbor classification, a distance
didm between two images A and B is defined as:

didm(A,B) = min
(xy)ij

∑

ij

dlocal(Aij , B(xy)ij)

. (11)

To compute didm(A,B), a minimizing alignment

(̂xy)IJ11 = argmin(xy)IJ
11

{

∑

ij dlocal(Aij , B(xy)ij)
}

is

computed. The alignment of a pixel ij to a pixel (xy)ij
is restricted by warp-range W to a local image region:

|i−W | ≤ W and |j −W | ≤ W (12)

dlocal is a local distance function comparing pixel (ij)
in image A and pixel (xy)ij in image B by comparing
pixels values or features thereof from local image regions
around ij and (xy)ij . A small example alignment is
shown in Figure 1.

The deformation-aware log-linear models consider the
full image alignment (xy)IJ11 as a latent variable which is
marginalized out:

pθ(c|X) =
∑

(xy)IJ
11

pθ(c, (xy)
IJ
11 |X) (13)

=

∑

(xy)IJ
11

pθ(c, (xy)
IJ
11 , X)

∑

c′

∑

(x′y′)IJ
11

pθ(c′, (x′y′)IJ11 , X)
(14)

=

∑

(xy)IJ
11

exp
(

gθ(c, (xy)
IJ
11 , X)

)

∑

c′

∑

(x′y′)IJ
11

exp
(

gθ(c′, (x′y′)IJ11 , X)
) (15)

We define the discriminant function gθ(c, (xy)
IJ
11 , X) for

class c, a given image alignment (xy)IJ11 , and image X as

gθ(c, (xy)
IJ
11 , X)=αc+

∑

ij

(

αcij(xy)ij+λT
c(xy)ij

Xij

)

, (16)

where θ = {αc, αcij(xy)ij , λc(xy)ij} and αc is a class
bias. The αcij(xy)ij correspond to class-, position, and

Fig. 1: Image alignment. Two images A and B of size
2×2 pixels and an alignment (xy)IJ11 between them.
(xy)IJ11 specifies for every pixel (ij) in image A a location
(xy)ij in image B; e.g. the dark gray pixel in image A at
position (i, j) = (2, 1) is mapped to the dark-gray pixel
(x, y) = (2, 2) in image B.

alignment depending deformation priors. A high value
of αcij(xy)ij means that a pixel at position (i, j) is likely
to be aligned to position (x, y) in class c. The alignment
(xy)IJ11 aligns the observation X to the class-dependent
weight vector λc(xy)ij which can be considered the nor-
mal of the decision hyperplane in a two class problem.
In this model, the full alignment between the image X

and the model parameters α and λ is considered as a
latent variable (e.g. the entire alignment (xy)IJ11 at the
right of Figure 1 is a latent variable). In the experiments,
we show a visualization of the α and the λ parameters
in Figure 8 and 9.

Note, that each pixel (i, j) in image X is represented
by a D-dimensional feature vector which can e.g. con-
sist of Sobel features extracted from a square local
neighborhood around position (ij) (cf. Figure 2). The
corresponding weight vectors λc(xy)ij are of the same
dimensionality D. For each class c, we train D×IJ many
λ-parameters.

This formulation involves a huge number of potential
configurations of the latent variable (image alignments)
but can be evaluated efficiently in the IDM since the
alignments of the individual pixels are modeled inde-
pendently. Starting from a sum over all possible defor-
mations (denoted by [(xy)IJ11]), we rewrite the posterior
such that the contributions of the individual pixels are

Fig. 2: Each pixel can be represented by a descriptor
of Sobel features extracted from a local neighborhood
(Figure from [20]).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH 2010 6

evaluated independently:
∑

[(xy)IJ
11

]

p
(

c, (xy)IJ11 |X
)

(17)

=

∑

[(xy)IJ
11

]

exp(αc) exp(
∑

ij αcij(xy)ij + λT
c(xy)ij

Xij)

∑

c̃

∑

[(̃xy)
IJ

11
]

exp(αc̃) exp(
∑

ij αc̃ij(̃xy)ij
+ λT

c̃(̃xy)ij
Xij)

(18)

=

exp(αc)
∑

[(xy)IJ
11

]

∏

ij exp(αcij(xy)ij + λT
c(xy)ij

Xij)

∑

c̃

exp(αc̃)
∑

[(̃xy)
IJ

11
]

∏

ij exp(αc̃ij(̃xy)ij
+ λT

c̃(̃xy)ij
Xij)

(19)

=

exp(αc)
∏

ij

∑

(xy)ij∈W(ij)

exp(αcij(xy)ij + λT
c(xy)ij

Xij)

∑

c̃

exp(αc̃)
∏

ij

∑

(̃xy)ij∈W(ij)

exp(α
c̃ij(̃xy)ij

+ λT

c̃(̃xy)ij
Xij)

(20)

This transformation reduces the complexity to evaluate
this from summing over |W(i, j)|W ·H products of H ·W
terms to H · W sums of |W(i, j)| terms, where W(i, j)
is the area which has to be considered for potential
alignments of the pixel at position (i, j). Using the
default warp-range W = 2 of the IDM [20] this relates to
evaluating a product over 256 sums of 25 terms instead
of evaluating a sum over 25256 products of 256 terms for
16× 16 pixel images.

To the best of our knowledge this is the first model
in which all model parameters, including deformation
priors αcij(xy)ij can be trained jointly with the other
model parameters. This allows the model to learn which
deformations are valid for which of the classes to account
for intra-class variability and which deformations should
not be allowed because they would allow for bridging
the inter-class variability. In Figure 9 we visualize the
learned αcij(xy)ij and it can e.g. be seen that it is possible
to make a “0” wider and narrower but that it must not
become too narrow (because otherwise it might turn into
a “1”).

To avoid evaluating a sum over the latent variable, we
use the maximum approximation: to train a model with
the maximum approximation, we apply the algorithm
described in section 3.2. For the MAXSUM case, in step

1 for each training sample Xn the alignment ̂(xy)IJ11 cn
is

determined that maximizes the discriminant function for
the correct class:

(̂xy)IJ11 cn
:= arg max

(xy)IJ
11

{

gθ(cn, (xy)
IJ
11 , Xn)

}

(21)

This is efficient since the alignment can be computed for
each pixel independently.

Analogously, in the MAXMAX-case, the alignment
̂(xy)IJ11 c maximizing the discriminant function has to be

determined for each class independently. After these
alignments have been determined for each training sam-
ple Xn, the training algorithm proceeds to step 2 (Sec-
tion 3.2).

5.1 Deformation Prior Sharing

In our initial formulation, the αcij(xy)ij model the de-
formation priors separately for each class and pixel
position. This leads to a large number of parameters
modeling similar properties. To reduce the number of
parameters and allow for sharing deformation informa-
tion we propose five parameter sharing strategies over
classes, positions, and deformations, respectively:
Full alpha. Deformation parameters are trained for each
class, position, and possible deformation independently,
i.e. α(c, i, j, i − x, j − y) is a function of the class c, the
position (i, j) in the test image, and the deformation (i−
x, j−y). In this setup, we have a total of C(IJ)(2W +1)2

deformation priors α to be trained.
Position independent. Deformation parameters are
shared among the positions in the test image. In this
case, α(c, i− x, j − y) is a function of the class c and the
deformation (i− x, j − y). In this setup, we have a total
of C(2W + 1)2 deformation priors α.
Deformation independent. Deformation parameters are
shared among the deformations, i.e. α(c, i, j, δ(x = i∧y =
j)) is a function of the class c and the position (i, j) in the
test image, furthermore it is only distinguished between
no-deformation (i − x = 0 ∧ j − y = 0) and deformation
(i − x 6= 0 ∨ j − y 6= 0). In this setup, we have 2C(IJ)
deformation priors α.
Position and deformation independent. Deformation
parameters are shared among positions in the test im-
age and deformations. This is a combination of “po-
sition independent” and “deformation independent”. Here,
α(c, δ(x = i∧y = j)) is a function only of the class c and
the question whether it there is a deformation or not. In
this case, we only have 2C deformation priors α, one for
deformation and one for no-deformation per class.
Class independent. Deformation parameters are shared
among the classes. This can be combined with any of
the previous schemes. For the first case of full, but class-
independent α(i, j, i − x, j − y) is a function of image
position and every possible deformation, but independet
of the class resulting in (IJ)(2W+1)2 deformation priors
α.

6 EXPERIMENTAL ANALYSIS

W E evaluated our methods on two well-known
databases: The USPS dataset [34] and the MNIST

dataset [24]. We used the smaller USPS dataset to tune
our methods and thoroughly investigated the effects of
different settings. Then we performed experiments on
the MNIST dataset with the settings that turned out
to work best on the USPS dataset. This allowed us (a)
to reduce the required computations and (b) to avoid
overfitting to a particular dataset.

The USPS Dataset.

The US Postal Service task is still one of the most widely
used reference data sets for handwritten character recog-
nition and allows for fast experiments due to its small
size. The test set contains a large amount of image

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH 2010 7

variability and is considered to be a ‘hard’ recognition
task. The training and test sets consist of 7,291 and 2,007
observations respectively. All images are of size 16× 16
pixels and scaled between 0.0 and 1.0.

The MNIST Dataset.

The modified NIST (MNIST) database can be consid-
ered the standard benchmark for handwritten character
recognition. A large number of reference results are
available. The MNIST data set is larger in size than the
USPS data set. The training and test sets consist of 60,000
and 10,000 images of size 28 × 28 pixels, respectively.
Also, all pixel values are scaled between 0.0 and 1.0.

Example images for both the USPS and the MNIST
dataset are shown in Figure 3.

In the following we first present experimental results
on the USPS dataset using LLMMs (Section 6.1) and
using the deformation-aware log-linear models (Sec-
tion 6.2). We tuned all model settings on the USPS
dataset and then transfered these to the MNIST dataset
(Section 6.3) to show the generalization capabilities and
avoid tuning on the MNIST test set.

These datasets are well suited for this transfer since
both are 10-class handwritten digit classification tasks on
gray value images. The images in the MNIST dataset are
slightly larger (20×20 pixels centered in a 28×28 pixel)
and in MNIST there are more training and test images.
While the larger image size might justify a larger warp-
range, we did not observe big changes in informal exper-
iments (which was also observed by Keysers et al. [20]).
For significantly larger images, we would expect a larger
warp-range to be appropriate. Note that we consider
our experiments on the USPS dataset as preparatory
experiments for the experiments on the MNIST data.

6.1 Log-linear Mixture Models

First we present experiments directly comparing the per-
formance of Gaussian and LLMMs. The Gaussian mix-
tures were used to initialize the LLMMs following [16,
33]. We first trained a Gaussian mixture model, then
transformed this into log-linear form, and then trained

Fig. 3: Example images for (a) the USPS and (b) the
MNIST dataset.

this model until convergence using the alternating op-
timization techniques. The results of these experiments
are given in Figure 4, where the “0 split/1 density”
per class results correspond to single Gaussians and
plain log-linear models, accordingly. The experiments
were performed with regularization factor γ = 10−6

on untransformed pixel values as features. It can be
observed that for both models the error rate decreases
with increasing numbers of densities. This effect is much
stronger for the generative GMD model. For the LLMM a
slight overfitting effect can be observed for high numbers
of densities. However, the error rates of the LLMM
clearly outperform the GMD even with far smaller
models due to the discriminative training criterion. The
GMD-models were trained generatively following the
maximum likelihood approach and the LLMMs were
trained according to the MMI criterion. Since these ex-
periments suggest that more than “5 splits/32 densities”
per class are not helpful, we restricted most of the
upcoming experiments to 32 densities.

6.1.1 Maximum Approximation

In the experiments described above, we used the MAX-
MAX variant. During training we alternated between
updating the latent density alignments and reestimating
the model parameters θ using 20 iterations of LBFGS.

We investigated the impact of the maximum approxi-
mation. The results of the experiments using the three
different approaches (MAXMAX, MAXSUM, and SUM-
SUM) are shown in Figure 5. Interestingly the use of
the maximum approximation has a positive impact on
the results. The results of the MAXMAX experiments
are best. The results from the MAXSUM experiments
are also better than those from using SUMSUM. This
is an interesting result since for the MAXMAX case no
theoretical convergence guarantee can be given.

To obtain more insight into the convergence of the
training using the three different approaches to the
maximum approximation, we measured the error rate
and the score of the optimized training criterion as a
function the first 20 iterations. Figure 6 shows the plot
for the three variants of the maximum approximation
using 16 model components per class. It can be ob-
served that for the SUMSUM and the MAXSUM case
the training criterion improves monotonously while it
goes up and down for the MAXMAX case. However,
even for the MAXMAX case, training converges because
the improvements when updating the parameters θ are
consistently larger than the deteriorations of the criterion
when updating the assignment of training observations
to model components. Over all the training using the
maximum approximation in numerator and denomina-
tor converges faster and leads to better results. Therefore,
in all succeeding experiments we use the MAXMAX

approach.

6.1.2 The Effect of Initialization

So far, we initialized the LLMMs using a mixture of
Gaussians with the appropriate number of densities.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH 2010 8

 0

 5

 10

 15

 20

 1 2 4 8 16 32 64 128 256 512

E
R

 [%
]

number of densities per class

GMD training
GMD test

LLMM training
LLMM test

GMD ER [%] LLMM ER [%]

split dens.
class

training test training test

0 1 16.5 19.4 1.1 8.9
1 2 12.6 16.4 0.1 7.6
2 4 10.6 14.4 0.0 6.3
3 8 7.4 12.3 0.0 6.2
4 16 5.5 10.7 0.0 5.6
5 32 3.9 9.4 0.0 5.5
6 64 2.6 8.7 0.0 6.0
7 128 2.4 8.8 0.0 6.0
8 256 2.3 8.1 0.0 6.0
9 512 2.2 7.8 0.0 6.0

Fig. 4: Training and test error rates [%] using Gaussian mixtures and LLMMs on the USPS dataset with different
numbers of densities.

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8 16 32 64 128 256 512

E
R

 [%
]

number of densities per class

SumSum
MaxSum
MaxMax

ER [%]

split dens.
class

SUMSUM MAXSUM MAXMAX

0 1 8.5 8.5 8.9
1 2 8.2 9.0 7.6
2 4 8.7 8.4 6.3
3 8 8.6 8.3 6.2
4 16 8.8 7.3 5.6
5 32 8.2 6.1 5.5
6 64 8.0 7.2 6.0
7 128 8.8 6.5 6.0
8 256 8.5 7.1 6.0
9 512 7.8 7.0 6.0

Fig. 5: Test error rates [%] on the USPS dataset using the different approaches to the maximum approximation to
train LLMMs. SUMSUM = no maximum approximation, MAXSUM = maximum approximation in the numerator,
MAXMAX = maximum approximation in numerator and denominator.

In the following, we evaluate other initialization meth-
ods (Section 4.1). Table 2 shows the results of these
experiments. Using only a few (i.e. 8 or less) mixture
components, the models obtained from splitting dis-
criminative models outperform those initialized from
Gaussian mixtures. For the models with many (16 or
more) components, those initialized from the Gaussian
mixtures perform best. In general random initialization
performs worse than the other methods. We assume
that the number of local optima of the training criterion
grows with the number of densities and that the initial-
ization using a Gaussian mixture often leads to finding
better local optima than using random initialization or
discriminatively split models.

6.1.3 Different Features

Since we used Sobel gradient features in the
deformation-aware log-linear models (following [20]),
we also evaluated them here. Here we investigated plain
gray values, Sobel features, absolute values of Sobel
features, squared Sobel features, second order features
over the entire image, and second order features over
local (5x5 pixels) image regions (cf. Section 2). That is,
we use the product of the gray values of every pair of
pixels within a 5x5 neighborhood as features.

These experiments are performed using 0-5 splits cor-
responding to 1-32 densities per class. The models were

TABLE 2: Test error rates [%] on the USPS dataset
obtained using LLMMs with different initializations of
the training. (experiments with random initialization
were repeated three times and results are averaged. The
variance of these experiments was < 10−5).

ER [%] using initialization

splits dens.
class

GMD split random

0 1 8.9 8.9 8.9
1 2 7.6 6.8 7.9
2 4 6.3 6.1 6.8
3 8 6.2 6.1 6.3
4 16 5.6 6.1 6.4
5 32 5.5 6.1 5.9

initialized from a Gaussian mixture model. The results of
these experiments are given in Table 3. Note that using
plain Sobel features does not affect the result since linear
transformations of the features cancel out and thus have
no impact.

From the results it can be seen that better features lead
to a significant improvement for models with few com-
ponents. In models with many components, the effect
is very small, and in some cases, even overfitting can
be observed. Overall, the best result is obtained using
absolute values of Sobel features.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH 2010 9

 0

 5

 15

 20

 2 4 6 8 10 12 14 16 18 20
-10000

-8000

-2000

 0

E
R

 [
%

]

c
ri
te

ri
o

n

training iterations

train Crit
test Crit.
train ER
test ER

(a) SumSum

 0

 5

 15

 20

 2 4 6 8 10 12 14 16 18 20
-10000

-8000

-2000

 0

E
R

 [
%

]

c
ri
te

ri
o

n

training iterations

train Crit
test Crit.
train ER
test ER

(b) MaxSum

 0

 5

 15

 20

 2 4 6 8 10 12 14 16 18 20
-10000

-8000

-2000

 0

E
R

 [
%

]

c
ri
te

ri
o

n

training iterations

train Crit
test Crit.
train ER
test ER

(c) MaxMax

Fig. 6: Convergence of the training of LLMMs on the USPS dataset using the different variants of the maximum
approximation. SUMSUM = no maximum approximation, MAXSUM = maximum approximation in the numerator,
MAXMAX = maximum approximation in the numerator and denominator.

TABLE 3: Test error rates [%] on the USPS dataset
using LLMMs with different image features. Note that
using untransformed Sobel features leads to the same
results as pure gray values since they are only a linear
transformation of the gray values. Row “Dim.” is the
dimensionality of the feature space in which the param-
eters are trained.

splits dens.
class

gray val. |Sobel| Sobel2 2
nd (5x5)-2nd

Dim. 256 512 512 32896 6400

0 1 8.9 5.9 6.2 5.7 5.8
1 2 7.6 5.4 5.7 5.1 6.0
2 4 6.3 5.0 5.7 5.0 5.7
3 8 6.2 4.4 5.2 5.1 5.4
4 16 5.6 4.6 5.2 5.3 5.4
5 32 5.5 4.7 5.6 5.4 5.6

From these experiments, we observed that LLMMs are
robust models which lead to good results. The results
are improved from 8.6% error rate for simple log-linear
models to 5.5% error rate for LLMMs. By choosing the
right number of components, the maximum approxima-
tion in nominator and denominator, a good initialization,
and proper features it is possible to obtain an error rate
of 4.4%. In Section 6.3, we transfer the found settings to
the MNIST task and show that these settings generalize
well to this dataset.

6.2 Deformation-aware Log-linear Models

In the following we experimentally investigated and
tuned the deformation-aware log-linear models on the
USPS dataset. First we investigated the warp-range and
different image features for alignment and classification.
Then we investigated the effects of the different pa-
rameter sharing schemes presented. We also investigate
different training methods and initializations and com-
pare the obtained results to an SVM and a kernelized
log-linear model with IDM distance kernel. While the
SVM can determine a relatively sparse set of support
vectors (30-50% of the training vectors), the kernelized

log-linear model will always give a weight to all training
observations and thus is computationally expensive.

6.2.1 Warp-range

One crucial setting of the IDM is the warp-range W ,
which controls the maximal horizontal and vertical dis-
placement for each pixel. In Figure 7 the effect of differ-
ent warp-ranges on the error rate on the USPS dataset
is shown. In these experiments we used simple Sobel
features. It can be seen that beyond a warp-range of
W = 2 hardly any improvement is possible and since
smaller warp-ranges W have faster runtimes for the
experiments in the following, we kept W = 2, which
is also concordant with the results Keysers et al. [20]
report.

6.2.2 Features

Keysers et al. [20] observed that local context is essential
to determine good alignments and they found that sub-
windows of Sobel features performed best. Here, we
investigated the impact of different local descriptors
and sub-windows on the classification performance. The
results of these experiments are shown in Table 4. Note
that here, in contrast to [20], this changes the entire
model and not just the distance function.

We compared eight different setups: simple gray val-
ues, Sobel features, absolute values of Sobel features, and
a combination of Sobel and absolute Sobel. Each feature
setup has been evaluated with and without 3×3 sub-
windows. It can be observed that using Sobel features,
scaled from -1 to 1, leads to a significant improvement
over using just gray values and there is hardly a differ-
ence in the test error rate whether local context is used or
not. Absolute Sobel values do not reach the performance
of plain Sobel features as they lose the direction of
the edge information. Nonetheless, combining the two
improves the result because the combination contains
both improved features for alignment as well as non-
linear combinations of the original features. The obser-
vation that Sobel features are important to determine
good alignments is consistent with the observations by

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH 2010 10

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5 6 7 8

E
R

 [
%

]

warprange

Fig. 7: The effect of different warp-ranges on the test
error rate [%] on the USPS test data [9].

Keysers et al. [20]. It can be observed that the use of sub-
windows leads to a minor improvement when using the
combined Sobel descriptors. Due to the minor improve-
ments using the feature combination but nonetheless
greatly increased training effort, we used simple Sobel
features for further investigations and re-combined the
best approaches in Section 6.3 for the MNIST dataset.

Figure 8 shows a visualization of the λcxy parameters
from an experiment with Sobel features and without
local-context. λcxy are averaged over the horizontal and
vertical Sobel features. A bright pixel in the λcxy in
Figure 8 denotes that our model expectes a bright-to-
dark (left-to-right or top-to-bottom) gradient in an image
of class c at position (x, y), and a dark pixel denotes an
dark-to-bright gradient (for characters written in dark
ink on white background). For most classes, the structure
is well recognizable with an exception for the classes
4 and 7 which have stronger variations than the other
classes which makes it more difficult to interpret the
prototypes.

6.2.3 The Deformation Parameters

In this section, we first analyzed the αcij(xy)ij parameters
learned and then we evaluated the different deformation
parameter sharing strategies described in Section 5.1.

We visualized the learned αcij(xy)ij from the previous
experiments in Figure 9. For most classes the structure of
the class is clearly visible. For example, for class “0”, it is
good to move away from the center (and not inwards).
Movements on the outline of the zero are all equally
likely. For class “1”, moving up and down in the middle,
but not to the left and right is allowed. On the left side
of the image, moving down is not desired and on the
right side, moving up is not desired. For class “9”, there

TABLE 4: The impact of different local features and
local context on the test error rate [%] when us-
ing deformation-aware log-linear models on the USPS
dataset [9]. D is the dimensionality of the feature vectors
representing the individual pixels (cf. Section 5).

local context used: no yes

Features train test D train test D

gray values 2.6 7.6 1 0.5 7.6 9
Sobel 0.0 4.0 2 0.0 4.0 18
abs(Sobel) 0.8 4.9 2 0.2 4.8 18
Sobel + abs(Sobel) 0.0 3.8 4 0.1 3.6 36

0 1 2 3 4

5 6 7 8 9

Fig. 8: Visualizations of the λcxy from an experiment on
the USPS dataset.

are many high values on the bottom left of the top circle
which is a very common variability in writing style.

Table 5 shows the results obtained using the different
strategies for deformation parameter sharing described
in Section 5.1. It can be observed that, although the
number of parameters is significantly reduced, the error
rates on the test data are only slightly affected. This
shows that it is not necessary to have position- and
deformation-specific deformation priors but that most
of the relevant deformation information can be stored
in the λ-parameters. Thus we assume that the models
with shared deformation parameters generalize better.
The observation that the number of deformation papers
does not have a big influence on the results confirms
the observation from Keysers et al. [20] that the nearly
parameter-free IDM, while one of the simplest deforma-
tion models, achieves very competitive resuls.

6.2.4 Initialization and Alternating Optimization

The deformation-aware log-linear model can be rewrit-
ten as a Gaussian model analogously to the mixture
model [33]. Thus it is possible to initialize the model
from a deformation-aware Gaussian model [20]. Since
we cannot guarantee convergence to the global optimum
of the parameters, we considered three different ways
to initialize the model in this section: initialization from
a non-deformation invariant log-linear model, initial-
ization from a deformation-aware generative Gaussian
model, and initialization of all parameters with zeros.

For these alternatives, we compared the results using
different training schemes. In the scheme “fixed align-
ment”, we initialized the model, determined an align-
ment of the training data to the init model, and kept
this alignment fixed until convergence. In the scheme
“alternating optimization”, we used the alternating opti-
mization procedure described before. We initialized the
model and alternated between re-aligning and parameter
updates until convergence. The results of these experi-
ments are given in Table 6.

Interestingly, the final result is nearly independent of
the initialization, which indicates that the alternating
optimization is able to find a good set of parameters
independent of the starting point. Only for the model
initialized from the deformation aware Gaussian model,
the alternating optimization has no effect. We believe

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH 2010 11

0 1 2 3 4

5 6 7 8 9

Fig. 9: Visualizations of the αcij(xy)ij from an experiment
on the USPS dataset.

TABLE 5: Training and test error rates [%] on the on
the USPS dataset using the different deformation prior
sharing methods along with the number of deformation
parameters and the number of parameters of the entire
model [9].

Sharing scheme def. param total param test ER

full alphas 64000 69130 4.0
class indep. 6400 11530 3.8
def. indep. 5120 10250 3.9
pos. indep. 250 5380 4.1
pos. &def. indep. 20 5150 3.9

+ class indep. 2 5132 3.9

that this model is stuck in a strong local optimum. How-
ever, if alternating optimization is not used, the other
two models are clearly worse, which again highlights the
importance of the alternating optimization. The training
time for the different initializations is similar where
generally the model initialized with a log-linear model
needs fewer iterations than the other two.

6.3 Experiments on the MNIST Dataset & Compari-
son to the State-of-the-Art

In this section we transfer the results obtained on the
USPS dataset to the MNIST dataset. For that purpose,
we chose the settings which performed best on the
USPS dataset, trained the corresponding models on the
MNIST training set and evaluated on the MNIST test
set. Only for very few settings (such as the number of
splits of the mixture models), we performed multiple
experiments on the MNIST dataset to demonstrate the
stepwise improvement of the results.

The parameters that were transfered for the LLMMs
are the number of densities (2,4,32) and the image fea-
tures used (squared Sobel features). For the deformation-
aware log-linear models we transfered the warp-range
(W = 2), the image features (Sobel horizontal and
vertical), the deformation prior sharing (position and
deformation independent α(c, δ(x = i ∧ y = j))), and
the size of the local context (=1). For both LLMMs
and deformation-aware log-linear models we transfered
which variant of the maximum approximation we use
(MAXMAX) and the regularization factor γ = 10−6.

The results for the experiments on both datasets using
LLMMs and deformation aware log-linear models along

TABLE 6: Training and test error rates [%] on the USPS
dataset obtained using the different initializations with
and without alternating optimization [9].

fixed align. altern. opt.

Init. initial train test train test

Gaussian 6.5 0.7 4.6 0.7 4.6
log-linear 8.3 0.1 5.9 0.0 4.0
zero init - 1.9 8.3 0.0 4.0

the number of parameters of the respective models
are given in Table 7. The first block of results shows
the results obtained using the LLMM approach, the
second block contains the results obtained using the
deformation-aware log-linear model. Additionally to the
classification error rate of the individual approaches on
both the USPS and the MNIST dataset, we give the total
number of parameters and an estimate of the runtime of
the respective model relative to the performance of the
simplest model: a single log-linear model.

For the LLMMs, we evaluated models with 2, 4,
and 32 densities per class using gray values only and
using squared horizontal and vertical Sobel features.
Each of these models was initialized using a mixture
of Gaussians and the training was performed using the
MAXMAX-setup. Analogously to the experiments on the
USPS dataset, it can be observed that for the models with
only few densities, the use of the Sobel features leads
to significant improvement whereas the improvement is
much smaller for the models with sufficient densities.

For these LLMMs, the number of parameters as well
as the runtime grows linear in the number of model
densities. It can be observed that the improvement
with a higher number of densities is slightly higher
on the MNIST dataset than on the USPS dataset which
is probably due to less overfitting problems since the
amount of training data is much bigger. In general for
the mixtures, it can be observed that the models which
lead to improvements on the USPS dataset also lead to
improvements on the MNIST dataset.

For the deformation-aware log-linear models, a com-
bination of Sobel and absolute Sobel with position and
deformation independent α sharing improves the results.
Additionally using local context does not lead to an
improvement but rather to overfitting. All improve-
ments using settings optimized on the USPS dataset
consistently transfer to improvements on the MNIST
database, showing the good generalization capabilities
of our model.

Table 8 shows comparison results from the literature,
some of them very simple, some of them state-of-the-
art. The first model is a simple single Gaussian classifier
with diagonal covariance matrix, which can also be seen
as a naı̈ve Bayes classifier. This one is, along with its
discriminative counterpart, the simple log-linear model,
the fastest approach. In these two approaches, a test
observation only needs to be compared to one prototype
per class.

The single Gaussian model with IDM, already per-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH 2010 12

TABLE 7: Comparison of test error rates [%], number of parameters and run-time of the LLMMs and
the deformation-aware log-linear model to the state-of-the-art for the USPS and the MNIST dataset.

USPS MNIST

Model # param. ER # param. ER run-time factor

log-linear model 2570 8.2 7850 7.4 1
+ abs(SobelHV) 5130 5.5 15690 3.0 2

LLMMs on gray values
1 split/2 densities 5140 7.6 15700 6.7 2
2 split/4 densities 10280 6.3 31400 5.4 4
5 split/32 densities 82240 5.5 251200 3.5 32

LLMMs on squared Sobel features
1 split/2 densities 10260 5.7 31380 3.0 4
2 split/4 densities 20520 5.7 62760 2.5 8
5 split/32 densities 164160 5.6 502080 2.1 64

deform. aware log-lin. model (with Sobel) 69130 4.0 211690 1.6 50
+ abs(SobelHV) 74250 3.8 227370 1.3 100

+ deformation parameter sharing 10340 3.6 31390 1.4 100
+ local context 92190 3.7 282270 1.5 900

TABLE 8: Comparison to the state-of-the-art for the USPS and the MNIST dataset. When two run-time
factors are given, the first is for USPS, the second for MNIST.

USPS MNIST

Model ref. # param. ER # param. ER run-time factor

single Gaussians 2560 18.5 7840 18.0 1
single Gaussians + IDM [20] 2560 6.5 7840 5.8 50

nearest neighbor [20] 1866496 5.6 47040000 3.1 729/6000
nearest neighbor + IDM [20] 1866496 2.4 47040000 0.6 36455/300000

SVM 658177 4.4 15411905 1.5 256/1963
SVM with IDM kernel [13] 530705 2.8 - 0.7 10300/100000
kernel log-linear model (with IDM kernel) 1873797 5.3 47100010 - 36455/300000

DBN [17] 640610 - 1665010 1.3 210/ 220
convolutional neural network [36] - - 180580 0.4 -/25

forms much better but an IDM comparison is about 50
times as expensive as a simple component-wise compar-
ison (due to the use of Sobel features and a deformation
window of 5×5 pixels (W = 2)).

The next comparison result is a nearest neighbor
classifier which is frequently used as a simple base-
line and already performs reasonably well. However,
a problem with this approach is that at test time, the
runtime depends on the number of training samples.
If the nearest neighbor uses the IDM to compare the
images, it obtains one of the best published results on
both datasets. Note, that the use of computationally more
complex image alignment models can lead to a small
additional improvement [20].

We also compare the performance to SVMs with and
without explicit deformation modeling. The standard
SVM uses a Gaussian radial basis function kernel and
SVM+IDM is the method from [13]. For SVMs, the
number of operations to classify an observation depends
on the number of support vectors. In these two datasets,
the number of support vectors is typically about 30%
of all training samples and thus these methods need
about one third of the runtime of the corresponding
nearest neighbor classifier. For the SVM incorporating
the IDM, we used a radial basis kernel of the symmetric
variant of the IDM distance defined as KIDM(X,V) =

exp
(

−γ
2 (didm(X,V) + didm(V,X))

)

, since non-symmetric
kernels cause problems in training SVMs. Although
this kernel is not positive definite, it was observed by
Haasdonk [13] that in practice the training terminates
with a good result. We note that the symmetric IDM
distance is known to perform worse than the asymmetric
one in nearest-neighbor experiments (3.4% instead of
2.4%). Nonetheless, the support vector machines obtain
excellent results on both datasets, where the results on
the MNIST database have been reported by [13] and the
results on the USPS database have been obtained using
our own implementation.

Furthermore, we used the same IDM kernel as we
used in the SVM also in a kernelized log-linear model,
which then learns a weight for each training observation.
Apart from a prohibitive runtime at test time, at training
time, the full kernel matrix between all pairs of training
samples has to be computed and stored which requires
a large amount of memory. The performance of this
approach is neither competitive with our deformation-
aware log-linear model nor with the respective SVMs.

For further comparison we give two state-of-the-art
results on the MNIST database using deep belief net-
works and convolutional neural networks. Both are
based on neural networks where the deep belief network
is proposed as a general learning technique [17] which

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH 2010 13

does not incorporate prior knowledge about the data. It
does not even assume that the observations are images.
The convolutional neural networks were designed with
digit recognition in mind and are trained from a huge
amount of automatically deformed training data [36].
The convolutional neural network obtains one of the
best published results on the MNIST dataset despite its
small size and efficient classification stage. However, the
training phase for this network is computationally very
expensive because during training the training data is
automatically deformed several thousand times.

As an overview, it can be seen that our method
compares favorably well to other methods. In particular
in comparison with the other fast methods, only the
convolutional neural networks, which are difficult to
create and optimize, outperform our methods with a
comparable computation time. Furthermore, the small
number of parameters in our model is a good indicator
for its generalization performance which is underlined
by the successful transfer of the settings from the USPS
dataset to the MNIST dataset.

7 SUMMARY

W E presented how latent variables can be incor-
porated into log-linear models and two direct

applications of this approach: log-linear mixture models
and deformation-aware log-linear models. We presented
an efficient and effective training algorithm for these
approaches and showed that they work well in prac-
tice. Both approaches were demonstrated to perform
well on two widely-used image classification tasks and
obtain competitive results with other approaches al-
beit only very few parameters have to be trained. The
deformation-aware log-linear model is the first approach
to train the deformation parameters jointly with the
remaining model parameters. By sharing deformation
parameters among pixels, the number of parameters can
be further reduced resulting in improved generalization.

REFERENCES

[1] J. Anderson. Logistic discrimination. In P. R.
Krishnaiah and L. N. Kanal, editors, Handbook of
Statistics 2, pages 169–191. North-Holland, 1982.

[2] O. Barndorff-Nielsen and P. Jupp. Approximating
exponential models. Annals of the Institute of Statis-
tical Mathematics, 41(2):247–267, 1988.

[3] O. Bender, F. Och, and H. Ney. Maximum entropy
models for named entity recognition. In 7th Con-
ference on Computational Natural Language Learning,
pages 148–152, Edmonton, Canada, May 2003.

[4] J. C. Bezdek and R. J. Hathaway. Convergence of
alternating optimization. Neural Parallel Scientific
Computation, 11(4):351–368, 2003.

[5] O. Chapelle, V. Vapnik, O. Bousquet, and
S. Mukherjee. Choosing multiple parameters
for support vector machines. Machine Learning, 46
(1):131–159, 2002.

[6] J. N. Darroch and D. Ratcliff. Generalized iterative
scaling for log-linear models. The Annals of Mathe-
matical Statistics, 43(5):1470–1480, Oct. 1972.

[7] D. DeCoste and B. Schölkopf. Training invariant
support vector machines. Machine Learning, 46(1-3):
161–190, 2002.

[8] P. F. Felzenszwalb, R. B. Girshick, D. McAllester,
and D. Ramanan. Object detection with discrimina-
tively trained part based models. IEEE Transaction
on Pattern Analysis and Machine Intelligence, 2009.

[9] T. Gass, T. Deselaers, and H. Ney. Deformation-
aware log-linear models. In Symposium of the German
Association for Pattern Recognition (DAGM), LNCS,
Jena, Germany, Sept. 2009.

[10] P. V. Gehler and S. Nowozin. Let the kernel figure it
out: Principled learning of pre-processing for kernel
classifiers. In IEEE Conference on Computer Vision and
Pattern Recognition, 2009.

[11] A. Gunawardana and W. Byrne. Convergence
theorems for generalized alternating minimization
procedures. Journal of Machine Learning Research, 6:
2049–2073, 2005.

[12] A. Gunawardana, M. Mahajan, A. Acero, and J. C.
Platt. Hidden conditional random fields for phone
classification. In International Conference on Spoken
Language Processing, pages 117 – 120, Lisbon, Portu-
gal, Sept. 2005.

[13] B. Haasdonk. Transformation Knowledge in Pattern
Analysis with Kernel Methods. PhD thesis, Albert-
Ludwigs-Universität Freiburg, 2005.

[14] B. Haasdonk. Feature space interpretation of SVMs
with indefinite kernels. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 27(4):482–492,
2005.

[15] B. Haasdonk and D. Keysers. Tangent distance
kernels for support vector machines. In International
Conference on Pattern Recognition, pages 864–868,
Quebec City, Canada, Sept. 2002.

[16] G. Heigold, P. Lehnen, R. Schlueter, and H. Ney. On
the equivalence of Gaussian and log-linear HMMs.
In Interspeech, Brisbane, Australia, Sept. 2008.

[17] G. Hinton, S. Osindero, and Y.-W. Teh. A fast
learning algorithm for deep belief nets. Neural
Computation, 18:1527–1554, 2006.

[18] T. Jebara. Machine Learning: Discriminative and Gen-
erative. Kluwer, 2003.

[19] D. Keysers, W. Macherey, H. Ney, and J. Dahmen.
Adaptation in statistical pattern recognition using
tangent vectors. IEEE Transaction on Pattern Analysis
and Machine Intelligence, 26(2):269–274, Feb. 2004.

[20] D. Keysers, T. Deselaers, C. Gollan, and H. Ney.
Deformation models for image recognition. IEEE
Transaction on Pattern Analysis and Machine Intelli-
gence, 29(8):1422–1435, Aug. 2007.

[21] S. Kullback. Estimating and testing interaction
parameters in the log-linear model. unpublished
manuscript, 1971.

[22] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. Y, MONTH 2010 14

and labeling sequence data. In ICML, 2001.
[23] T. K. Landauer, D. McNamara, S. Dennis, and

W. Kintsch, editors. Handbook of Latent Semantic
Analysis. Lawrence Erlbaum Associates, 2007.

[24] Y. LeCun and C. Cortes. The
MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/.

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–
2324, Nov. 1998.

[26] D. Liu and J. Nocedal. On the limited memory
method for large scale optimization. Mathematical
Programming B, 45(3):503–528, 1989.

[27] R. Memisevic and G. Hinton. Unsupervised learn-
ing of image transformations. In IEEE Conference on
Computer Vision and Pattern Recognition, Minneapo-
lis, MN, USA, June 2007.

[28] T. P. Minka. A comparison of numerical optimizers
for logistic regression. Technical report, Microsoft
Research, Oct. 2003. revised Nov 2004.

[29] S. Mori, K. Yamamoto, and M. Yasuda. Research
on machine recognition of handprinted characters.
IEEE Transaction on Pattern Analysis and Machine
Intelligence, 6(4):386–405, 1984.

[30] F. Och and H. Ney. Discriminative training and
maximum entropy models for statistical machine
translation. In Annual Meeting of the Association for
Computational Linguistics, pages 295–302, Philadel-
phia, PA, USA, July 2002.

[31] A. Quattoni, S. Wang, L.-P. Morency, M. Collins,
and T. Darrell. Hidden conditional random fields.
IEEE Transaction on Pattern Analysis and Machine
Intelligence, 29(10):1848–1852, 2007.

[32] L. R. Rabiner. A tutorial on hidden Markov mod-
els and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, Feb. 1989.

[33] L. K. Saul and D. D. Dee. Multiplicative updates
for classification by mixture models. In Neural
Information Processing Systems Conference, volume 14,
pages 897–904, Cambridge, MA, USA, 2002.

[34] B. Schölkopf. The USPS dataset.
ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data/.

[35] B. Schölkopf and A. J. Smola. Learning with Kernels.
MIT Press, Cambridge, MA, USA, 2002.

[36] P. Simard. Best practices for convolutional neural
networks applied to visual document analysis. In
7th International Conference on Document Analysis and
Recognition, pages 958–962, Edinburgh, Scotland,
Aug. 2003.

[37] S. Uchida and H. Sakoe. A survey of elastic match-
ing techniques for handwritten character recogni-
tion. IEICE Transactions on Information and Systems,
E88-D(8):1781–1790, 2005.

[38] T. Weyand, T. Deselaers, and H. Ney. Log-linear
mixtures for object class recognition. In British
Machine Vision Conference, 2009.

Thomas Deselaers Thomas Deselaers is a re-
searcher at the the Computer Vision Laboratory
of ETH Zurich. He received his diploma and
his PhD degree from RWTH Aachen University
in Aachen, Germany in 2004 and 2008, re-
spectively. From March 2004 to December 2008
he was a full time researcher at the Human
Language Technology and Pattern Recognition
Group of the Computer Science Department of
RWTH Aachen University, where he has been
the head of the image processing and under-

standing group since 2005.

Tobias Gass Tobias Gass is a PhD student at
the Computer Vision Laboratory of ETH Zurich.
Before that he was a researcher at the Hu-
man Language Processing Group of the Com-
puter Science Department of the RWTH Aachen
University in Aachen, Germany. He received
his diploma in computer science from RWTH
Aachen University in 2009. In 2006 he was a
visiting student researcher at the Medical Imag-
ing Group of the University Hospitals Geneva in
Geneva, Switzerland. His research interests are

image and object recognition, discriminative modeling and data mining.

Georg Heigold Georg Heigold is a researcher
at the Human Language Technology and Pattern
Recognition Group of the Computer Science
Department of RWTH Aachen University where
he received his PhD degree in 2010. He received
the Diploma degree in physics from ETH Zurich,
Switzerland in 2000. He worked as a software
engineer at De La Rue, Bern, Switzerland from
2000 to 2003. Since 2004, he has been with
the Computer Science Department of RWTH
Aachen University in Aachen, Germany. In 2008,

he was a research intern at Microsoft research in Redmond, USA. His
research interests include automatic speech recognition, discriminative
training, and log-linear models.

Hermann Ney received the Dipl. degree in
physics from the University of Goettingen, Ger-
many, in 1977 and the Dr.-Ing. degree in elec-
trical engineering from the TU Braunschweig
(University of Technology), Germany, in 1982.

In 1977, he joined Philips Research Labora-
tories (Hamburg and Aachen, Germany) where
he worked on various aspects of speaker ver-
ification, isolated and connected word recog-
nition and large vocabulary continuous-speech
recognition. In 1985, he was appointed head of

the Speech and Pattern Recognition group. In 1988-1989 he was a
visiting scientist at AT&T Bell Laboratories, Murray Hill, NJ. In July 1993,
he joined RWTH Aachen (University of Technology), Germany, as a
professor for computer science.

His work is concerned with the application of statistical techniques
and dynamic programming for decision-making in context. His current
interests cover pattern recognition and the processing of spoken and
written language, in particular signal processing, search strategies for
speech recognition, language modeling, automatic learning and lan-
guage translation.

