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Abstract

Comparing “face tubes” is a key component of modern

systems for face biometrics based video analysis and an-

notation. We present a novel algorithm to learn a distance

metric between such spatio-temporal face tubes in videos.

The main novelty in the algorithm is based on incorpora-

tion of latent variables in a max-margin metric learning

framework. The latent formulation allows us to model, and

learn metrics to compare faces under different challenging

variations in pose, expressions and lighting. We propose a

novel dataset named TV Series Face Tubes (TSFT) for eval-

uating the task. The dataset is collected from 12 different

episodes of 8 popular TV series and has 94 subjects with

569 manually annotated face tracks in total. We show quan-

titatively how incorporating latent variables in max-margin

metric learning leads to improvement of current state-of-

the-art metric learning methods for the two cases when the

testing is done with subjects that were seen during train-

ing and when the test subjects were not seen at all during

training. We also give results on a challenging benchmark

dataset: YouTube faces, and place our algorithm in context

w.r.t. existing methods.

1. Introduction

Automatic analysis of faces in digital images and videos

is a very important biometrics problem and has attracted

much attention in the computer vision community [1, 8,

11, 12, 17, 18, 21, 20, 25, 22, 24, 27, 32, 33, 37, 41, 44].

It has many important applications in recognizing, search-

ing, retrieving and indexing images, including: (i) Surveil-

lance and video archives – find a person in large amounts of

videos; (ii) Security – allow access to a person, or not, to a

resource; (iii) Consumer databases – find a certain person in

private or online image databases like Flickr or Facebook.

Recently, face verification, i.e. determining if two faces

are of the same person or not, has emerged as an important

research problem, e.g. [12, 18, 20, 27, 32, 33]. The task
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Figure 1. In the context of the important face biometrics based

problem of face tube comparison, the traditional methods learn

one metric/projection for all types of face appearance variations

e.g. expression, pose, illumination, and complex real-world com-

binations thereof (top row). We propose to learn automatically,

with a latent variable based formulation, different projections for

comparing different combinations of mined variations. As a re-

lated question, we investigate how taking an average of distances,

using a single metric (traditional methods), between all possible

pairs of faces from the two face tubes, compares with taking the

minimum distance between faces compared using proposed, vari-

ations adapted, metrics.

is set in a supervised learning framework where an anno-

tated set, containing pairs of face images (i) of the same

person (taken at different times and conditions) and (ii) of

different persons, is provided and the system has to pre-

dict if a new test pair (of unseen faces/person(s)) is of the

same person or not. Current approaches address this under

a metric learning framework [3, 14, 15, 39, 46] (see [5] for

a good survey), where a parametrized distance metric func-

tion is learnt for comparing face images [18, 27, 33] (with

the benchmark Labeled Faces in the Wild (LFW) [20] being

a catalyst). Along with such verification task, the learnt dis-

tance function can also be used for other applications like

identity based linking and clustering of faces.

Similar task of verification but with spatio-temporal

tracks of faces in videos, a.k.a. face tubes, has also seen

some interest, e.g. [8, 12, 30, 36, 41, 45]. The task with

realistic videos is much more challenging as, while in still
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image datasets (e.g. LFW [20]) the faces are near frontal

with good illumination and similar/constrained expressions,

the faces in videos have unconstrained pose and expression

variations and are taken in diverse and difficult illumination

conditions (see Fig. 2). Cinbis et al. [12] recently applied

the distance metric learned from static face pairs to face tube

matching showing that a cast-specific metric performs bet-

ter than a metric learned from external data. While they

addressed the case of unconstrained consumer videos, (i)

they used frontal face detectors to construct the evaluation

dataset and hence were limited to near frontal poses and (ii)

they used static face metric for learning and hence ignored

the information that comes from the natural association of

faces in face tubes (see §3 for detailed discussion). A recent

evaluation [8] of off-the-shelf face matchers shows that the

faces with challenging poses, expressions and illuminations

are the failure cases of such systems (Fig. 5 in [8]) .

In the present paper, we are interested in the difficult and

important task of distance metric learning for face tubes un-

der challenging realistic variations in pose, expression, il-

lumination conditions, etc. Note that this is different from

face recognition; we do not aim at learning person specific

characteristics but at learning what makes faces similar or

different. We propose a metric learning framework that in-

corporates and leverages factorization over such variations

(and, more realistically, their complex combinations) in the

metric as latent variables. This can also be viewed as learn-

ing separate metrics for specific combinations of variations.

This is in contrast to the existing works, which learn same

metric for any and all combinations of variations. Fig. 1 il-

lustrates the point. We show the proposed latent metric can

be learnt using an efficient stochastic gradient descent based

algorithm. We provide experimental results on the challeng-

ing benchmark: YouTube Faces [41], to put our method

in the context of existing works on the task of face verifi-

cation. In addition, we propose a new challenging dataset

– TV Series Face Tubes (TSFT) – to evaluate the difficult

task of face tube matching in videos with high facial vari-

ability such as TV series. We use this dataset to evaluate

our method for comparing new face tubes of unseen per-

sons along with the standard cast specific setting, i.e. com-

paring face tubes of people already seen at training. Our

results on TSFT dataset show that while face verification

in static near-frontal faces can be done quite successfully

(e.g. on LFW1), the task of face tubes matching in videos

with high facial variability is quite challenging, with room

for much progress. We show with quantitative results that

the method gives better performance, on TSFT dataset, than

strong baselines and the state-of-the-art methods. We find

expression variations to be particularly misleading for the

system; this problem is amplified in the case of hard datasets

with high variability, like TSFT, as the probability of find-

1http://vis-www.cs.umass.edu/lfw/results.html

ing another person with a similar expression is very high.

As collecting a dataset for sufficiently capturing identity de-

pendent facial expression variations for verification is a very

challenging task, we thus identify expression normalization

as an intriguing problem for face verification.

We now set the context for the work in the next sec-

tion. We then give the details of the approach (§3) and the

proposed dataset (§4), followed by experimental evaluation

(§5) and discussions (§6).

2. Related Works and Background

Face verification with still images is a very popular topic

of research in computer vision, with the very popular La-

beled Faces in the Wild (LFW) benchmark [20] specially

catalysing such research. Many recent papers address the

problem with novel approaches, e.g. Berg and Belhumeur

[7] propose a discriminative part based approach, Li et al.

[26] propose a probabilistic elastic model, Simonyan et al.

[33] use Fisher vectors [31] with metric learning, Cao et

al. [10] propose a novel regularization for similarity met-

ric learning, Cui et al. [13] propose to fuse many descrip-

tors using multiple metric learning, Sun et al. [35] use deep

learning, Barkan et al. [4] propose a method that uses fast

high dimensional vector multiplication and Weng et al. [40]

use robust feature set matching for partial face recognition.

Many of the most competitive approaches on LFW combine

many features, e.g. [18, 28, 43] and/or use external data, e.g.

[6, 23]

Metric learning has recently gained much interest, as in

[3, 14, 15, 39, 46] (we refer the reader to Bellet et al. [5] for

an excellent survey) and it has been applied for comparing

faces [10, 18, 27, 33] with simple extensions to comparing

face tubes [12, 30] as well. Given two face descriptors vi
and vj the task is formulated as learning a Mahalanobis like

metric of the form D̃2
M (vi, vj) = (vi − vj)

⊤M(vi − vj),
parametrized by the symmetric positive semi-definite (PSD)

matrix M . Various objectives have been proposed to learn

M (see [5] for a survey). Since maintaining M as PSD is

usually computationally expensive, M is often factorized as

M = L⊤L. Then the problem can be seen as that of finding

a linear subspace, spanned by the rows of L, into which the

features are embedded and compared as

D̃2
M (vi, vj) = (vi − vj)

⊤L⊤L(vi − vj) = ‖Lvi − Lvj‖
2
2.

(1)

Such formulation of metric learning has been shown to

be effective in comparing faces under lighting and expres-

sion variations[12, 18, 27]. Although the method is for com-

paring pairs of face images, it has been used in [12] for com-

paring face tubes in videos by taking the minimum or aver-

age distances between all quadratic number of face pairs

for the two tubes. While this was shown to give good re-

sults, it might not be optimal, as we discuss next. In a more



recent work [30], it was shown that using strong features

the face tube can be represented as a single descriptor vec-

tor (vs. one vector per face) achieving competitive results,

when combined with existing metric learning methods.

Our work is also related to local metric learning methods

notably [9] (we encourage the reader to see the references

in [9] for more context on local metric learning). They pro-

pose to learn metrics by weighting a set of ‘basis’ metrics

based on the location of the test pair vectors. They clus-

ter the data projected into a low dimensional space, and are

hence largely generative (although the low dimensional pro-

jection is learnt discriminatively). In the proposed method,

the metrics and the implicit ‘clustering’ are automatically

learnt in the same optimization.

3. Approach

Motivation. The traditional approach of using face pair

metric learning with mininum or average face distances

over the face tubes might not be optimal as: (i) A single

projection matrix L is used for faces irrespective of their,

i.e. pose, expression, lighting, etc., which means that faces

with different variations are embedded into the same space

for comparison; (ii) The learning is not done on face tubes

with similar minimum or average distances, but rather on

sampled positive and negative pairs of faces, which dis-

cards the information present by virtue of different faces

being grouped into different tubes; (iii) While some de-

gree of invariance against pose is achieved by aligning the

faces [44] or computing descriptors around face landmark

detections[12], invariance to other types of variations, espe-

cially expression, is not immediate. Even with pose, while

current strategies work for near frontal faces (many stan-

dard face databases including LFW are constructed by using

frontal face detectors), they might, however (a) add errors

in facial landmark detections for harder non-frontal faces,

which might then propagate to the later parts of the pipeline;

(b) still not be optimal to compare aligned frontal images

with aligned profile images directly and with the same pro-

jection matrix.

Such arguments motivate us to model variations which

may be due to (combinations of) pose, illumination, expres-

sion, etc. as latent variables in metric learning framework

which we detail in the following.

Proposed Method. Given spatio-temporal face tubes,

which may be obtained by using face detection and/or track-

ing technologies, we are interested in learning a distance

function for comparing them. Denoting s = [s1:Ns
] ∈

R
d×Ns a face tube (with Ns faces, each represented with d

dimensional feature), we propose to compare two face tubes

with following distance:

D2(s, t) = min
(ℓ,p,q)

‖Lℓ(sp − tq)‖
2
2, (2)

Algorithm 1. SGD based learning algorithm.

1: Input: Annotated training pairs T = {(s, t, yst)}, rate

(r) and number of stochastic updates (niters)

2: Initialize: b, {Lℓ}
k
ℓ=1

3: for i = 1, . . . ,niters do

4: Randomly sample a training pair (s, t) from T
5: Randomly sub-sample each tube to length (up to) m

6: Compute (ℓ, p, q) in (2) over this pair of tubes

7: Lℓ ← Lℓ − r∇Lℓ
Lst

8: b← b− r∇bLst

9: end for

10: Output: b, {Lℓ}
k
ℓ=1

where, (ℓ, p, q) ∈ J1, kK× J1, NsK× J1, NtK are latent vari-

ables. Matrix Lℓ ∈ R
d′
×d, d′ ≪ d, defines the linear em-

bedding associated to a specific combination of facial vari-

ations and p, q specify the frames in the corresponding face

tubes with features sp and tq ∈ R
d. Each Lℓ can be thought

of as a projection in a subspace where a certain combination

of face-variations may be compared e.g. smiling-surprised,

frontal-profile.

Given set T = {(s, t, yst)} of annotated tube pairs, with

yst = 1 for face tubes of same person and yst = −1 of

different persons, we learn the projection matrices Lℓ’s by

minimizing the hinge loss

L =
∑

T

max[0, 1− yst(b−D2(s, t))]
︸ ︷︷ ︸

Lst

, (3)

w.r.t. b and {Lℓ}
k
ℓ=1.

We perform the optimization with a stochastic gradient

descent algorithm (Alg. 1) using the subgradients w.r.t. Lℓ,

∇Lℓ
Lst =

{

0, if yst(b−D2(s, t)) > 1

2ystLℓ(sp − tq)(sp − tq)
⊤, otherwise,

(4)

where the latent variables (p, q, ℓ) are obtained for the cur-

rent pair (s, t) using Eq. 2, and that w.r.t. b,

∇bLst =

{

0, if yst(b−D2(s, t)) > 1
−yst otherwise.

(5)

We note here, that we do not specify the kind of vari-

ations and related clustering (for different ℓ’s) we want to

have–there are no explicit variation level annotations such

as ‘these people are smiling’ or ‘are in profile pose’. The

factorizations over the variations is thus learnt automatically

within a discriminative learning framework.

The lack of explicit regularization in the optimization

objective (loss in Eq. 3) is compensated by (i) fixing the

dimension of the projected space (d′), thereby limiting the

rank of the learned metric [12, 27, 30] and (ii) a combination

of low learning rate and fixed number of iterations (inspired

by the experiments with SGD for classification [2]).



While doing the stochastic updates, to generate much

larger number of training points and to get smoother esti-

mates of the projection matrices, at each stochastic step we

not only randomly sample an annotated tube pair but also

sample (up to) a fixed number (m) of images from each of

the tubes. This allows us to construct many more virtual

training tube pairs (especially positive pairs which are usu-

ally relatively few), which is important to help the algorithm

update often all of the Lℓ matrices and provide a smoother

estimation.

4. TV Series Face Tubes (TSFT) Dataset

Context. We are specifically interested in face tube match-

ing algorithms in videos with very high variations in ex-

pression, pose, lighting, etc. and their combinations. Some

face video datasets for evaluating face tracking and recog-

nition exist, e.g. [17, 22, 24, 25, 34, 41], however they are

either recorded with coorperative subjects in limited back-

ground/lighting variations or are based on near-frontal faces

only. Also, many of them are generated automatically (with

face detector) with a post processing step for eliminating

duplicates and false positives and hence are dependent on

and are limited by the statistics of the face detector used.

While Sivic et al. [34] worked with TV series video in-

cluding profile faces as well, the task they addressed was of

learning character specific classifiers. The data they made

publicly available is from two episodes of a single TV series

with a relatively small number of subjects.

In a recent evaluation of commercial off-the-shelf face

matchers applied to videos [8], it was found that faces with

extreme face pose and illumination conditions were not en-

rolled by available systems (Fig. 5 in [8]) – we are interested

in such high variability scenarios. To the best of our knowl-

edge, a suitable publicly available large dataset to evaluate

face tube matching algorithms in the presence of challeng-

ing high variations in expressions, pose, illuminations and

their complex combinations, did not exist at the time of sub-

mission of this paper.

Proposed Dataset. We propose a novel dataset of manu-

ally annotated face tubes in popular TV series videos–TV

Series Face Tubes (TSFT) dataset2. The dataset captures the

many challenging variations present specifically in the case

of videos. Tab. 1 gives the statistics of the dataset, Fig. 2

shows faces of the subjects from the dataset. Face tracks of

94 subjects who vary in age, build, race and sex were man-

ually annotated in 12 episodes of 8 different series. Every

tenth frame of the tubes was manually marked with a bound-

ing box covering the face of the person and the intermediate

bounding boxes were linearly interpolated. The boxes were

expanded to make them square and padded with black pix-

els when they went out of the image. In total there are more

2The dataset is publicly available, please contact the authors

than 32,000 faces in the dataset. Fig. 3 shows the distri-

bution of track lengths and face sizes for the dataset. The

average track duration is a bit over 2.2 seconds (55 frames)

and the average face size is 121×121 pixels. Each face tube

has labels assigned manually for the associated character in

the series and the actor playing the character. The series and

the scenes within, where the tracks are marked, are of highly

diverse nature, they occur indoors (e.g. home, office, bar)

and outdoors (e.g. playing field, street, market) with very

challenging facial expressions, head motions, hence pose

changes, and lighting conditions. There are a total of 2005

positive pairs and order of 100k negative pairs. Hence the

dataset is large and very challenging for studying the prob-

lem of comparing face tubes in videos.

Proposed evaluation. We propose two evaluation settings

with provided training and testing splits of the dataset.

(i) Known Persons. This is the classic cast-specific metric

[12] evaluation where there is at least one training face tube

for each person present in the test set. To generate the train

and test sets for this scenario, we randomly selected at least

50% face tubes of each subject in the dataset as training

examples while keeping the rest as testing examples. This

gave us all 94 subjects in the train set, with 780 positive and

75k negative tube pairs, and 85 subjects in the test set, with

189 positive and 19k negative tube pairs.

(ii) Unknown Persons. In this setting the training and testing

are done on face tubes of different subjects, i.e. the subjects

in the test set were never seen during training. To generate

the train and test sets for this scenario, we randomly selected

80% of the subjects for training and kept the rest for testing.

This gave us 75 subjects with 1590 positive and about 1

million negative tube pairs for training and 19 subjects with

414 positive and 6k negative tube pairs for testing.

To evaluate the performance of the methods we report the

average precision (AP) for the different methods on the re-

spective test sets. If a method involves a random component

we suggest running the method 10 times and reporting the

mean and standard deviation of the AP for the 10 runs.

5. Experimental Results

5.1. TV Series Face Tubes (TSFT) dataset

Image representation. Recent works on face verification

[11, 21, 37] showed that local pattern features are powerful

facial descriptors. We thus use local binary pattern (LBP)

[1] as our base features. We extract LBP in 3×3 circular

pixel neighborhoods (with the diagonal pixels bilinearly in-

terpolated) and use the uniform LBP patterns, i.e. patterns

with at most two bitwise transitions from 0 to 1, or vice

versa, when the bit pattern is seen as circular. We extract

such LBP densely at every pixel at 3 scales with face im-

age resized to 120×120, 80×80 and 60×60 pixels. We



Figure 2. Example faces of the 94 subjects from the proposed TV Series Face Tubes (TSFT) dataset. The dataset has diverse set of subjects

(age, gender, race, sex) who appear in different lighting conditions (home, office, bar, field, inside car, at day, at night) and have varied

pose, expressions and motions.
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Figure 3. Histogram of track lengths and face sizes in the pro-

posed TV Series Face Tubes (TSFT) dataset.

Sl. Series Sub Tubes S/E* + pairs - pairs

1. BBT* 10 71 1/1, 1/6 315 2871

2. Buffy 11 69 5/2 195 2610

3. Castle 12 97 3/1 439 5192

4. Dexter 12 78 1/1,2/24 267 3348

5. Homeland 11 74 1/1 269 3044

6. Mad Men 12 70 1/2,2/13 200 2685

7. Numb3rs 11 54 1/1 128 1613

8. Weeds 15 76 1/1,1/6 192 3118

- Total 94 569 - 2005 24681

Table 1. Statistics for the TV Series Face Tubes (TSFT) dataset.

(*BBT = The Big Bang Theory, *S/E = Season/Episode).

make spatial histograms of the LBP features with cell size

of 10×10 pixels and concatenate all the (ℓ1 normalized)

cell histograms for all the scales to give a final vector of

(122 + 82 + 62) × 59 = 14, 396 dimensions for each face

image.

Baseline method (PCA+CS). Recently Chen et al. [11] and

Hussain et al. [21] showed that projecting the local pattern

histograms on to their PCA basis and then using cosine sim-

ilarity with the projected vectors is a very strong baseline,

which competes with many recently proposed supervised

methods [11, 21]. As a baseline: (i) We do ℓ1 normalization

followed by elementwise square root normalization of the

local pattern histograms. This corresponds to the non-linear

Helinger kernel map [38] and was recently shown to give

very good performance for facial analysis tasks [32]. With

this kernel map, the Euclidean distances between mapped

vectors correspond to the Bhattacharyya distance between

the probability distributions represented by the original dis-

tances. (ii) We project these high dimensional vectors onto

their low rank PCA basis. Similar to Hussain et al. [21],

we found that with such PCA based compression of vec-

tors the performance practically stays the same upto a cer-

tain dimension and then falls as we go below. We found,

with preliminary experiments, that 1000 PCA dimensions

(almost similar to [21] who suggested 900) as a good oper-

ating point. (iii) Finally we follow recent works [11, 21] and

use cosine similarity (CS), i.e. dot product divided by norms

of the vectors, as the comparison measure. In practice, we

ℓ2 normalize the PCA projected vectors and then compare

them using Euclidean distance, achieving the same effect.

We stress again that this is a very strong baseline [11,

21]. We denote this baseline as PCA+CS in the following.

Compared method: Supervised Metric Learning (ML).

Supervised metric learning is currently one of the state-of-

the-art methods for face verification tasks [18, 27, 33]. As

discussed above in §2, the main idea is to learn a Maha-

lanobis like metric – which is itself decomposed into a prod-

uct of a low rank matrix with its transpose, effectively mak-

ing it a low dimensional projection learning problem. Dif-

ferent losses such as hinge [33] and logistic [18, 27] have

been optimized giving good results.

We compare with such supervised metric learning



Known Persons

Method Dist. Dim. k Avg. Prec.

Chance - 14396 - 1.0

PCA+CS [11, 21]
min 1000 - 11.8

avg 1000 - 4.0

ML [12, 27, 33]
min 64 - 17.7 ± 0.3

avg 64 - 10.7 ± 1.1

ML [12, 27, 33]
min 128 - 17.0 ± 0.4

avg 128 - 6.5 ± 0.2

Latent ML - 64×2 2 18.3 ± 0.4

ML [12, 27, 33]
min 192 - 14.7 ± 0.7

avg 192 - 5.3 ± 0.3

Latent ML - 64×3 3 18.1 ± 0.8

ML [12, 27, 33]
min 256 - 13.7 ± 0.1

avg 256 - 4.3 ± 0.1

Latent ML - 64×4 4 18.1 ± 0.7

ML [12, 27, 33]
min 320 - 11.2 ± 0.3

avg 320 - 3.6 ± 0.1

Latent ML - 64×5 5 18.2 ± 0.6

ML [12, 27, 33]
min 384 - 9.7 ± 0.5

avg 384 - 3.2 ± 0.1

Latent ML - 64×6 6 18.4 ± 0.6

Unknown Persons

Method Dist. Dim. k Avg. Prec.

Chance - 14396 - 6.3

PCA+CS [11, 21]
min 1000 - 32.8

avg 1000 - 21.1

ML [12, 27, 33]
min 64 - 36.3 ± 0.7

avg 64 - 32.7 ± 1.1

ML [12, 27, 33]
min 128 - 36.4 ± 0.1

avg 128 - 27.9 ± 0.2

Latent ML - 64×2 2 35.4 ± 1.4

ML [12, 27, 33]
min 192 - 34.7 ± 0.5

avg 192 - 24.2 ± 0.4

Latent ML - 64×3 3 36.0 ± 1.8

ML [12, 27, 33]
min 256 - 32.2 ± 0.6

avg 256 - 21.7 ± 0.6

Latent ML - 64×4 4 37.0 ± 1.6

ML [12, 27, 33]
min 320 - 31.8 ± 0.6

avg 320 - 19.9 ± 0.6

Latent ML - 64×5 5 37.5 ± 1.4

ML [12, 27, 33]
min 384 - 29.5 ± 0.6

avg 384 - 17.3 ± 0.4

Latent ML - 64×6 6 38.8 ± 1.0

Table 2. Results of the various experiments on the TV Series Face Tubes (TSFT) dataset. See §5 for a detailed discussion.

method by optimizing the hinge loss. Essentially we op-

timize the proposed objective (Eq. 3) with k = Ns =
Nt = 1. We use a stochastic gradient descent algorithm

[33] with a fixed number of one million iterations generat-

ing face pairs by first randomly sampling an annotated face

tube pair and then randomly sampling one face each from

the two face tubes. Once we learn a metric, we compare

face tubes using either minimum or average distance [12],

i.e. take the minimum (resp. average) distance over all pos-

sible face pairs from the two tubes. We denote this method

as ML in the following.

For such supervised learning methods, and similarly

for the proposed metric learning with latent variables, two

strategies have been used in the literature. Either, use a

first compression method, like PCA, and then learn again

another low dimensional projection with the PCA reduced

vectors [11]. Or, learn the low dimensional projection di-

rectly with the original high-dimensional vectors [33]. We

found, with preliminary experiments, that reducing the di-

mension using PCA and then learning the metric leads

to similar performance as the second method while being

faster. Hence, we follow the second approach and map the

features first by PCA and then learn the metric for both pro-

posed and compared methods.

Initialization. Methods with latent variables are generally

based on non-convex optimizations and thus proper initial-

ization is important for them. The experiments that fol-

low require initialization for the supervised metric learn-

ing as well as our proposed latent metric learning. We

follow recent work [33] for the compared supervised met-

ric learning (ML), and initialize the projection matrix with

low rank PCA basis, corresponding to the largest eigenval-

ues, whitened by dividing each of the PCA vectors with the

square root of the corresponding eigenvalue.

We tried different strategies for initializing the projec-

tion matrices for the proposed latent metric learning. First,

we did an unsupervised clustering of faces using k-means

and used the clusters to initialize the projection matrices as

in the case with ML above. The intuition is that the clus-

tering will bring the faces that are similar in feature space,

but (possibly) not of the same person, closer and then the

projection matrices will specialize in better separating the

confusing cases in each cluster. However, we found that

this initialization doesn’t work well in practice. Instead,

we found that randomly selecting a small number (1500) of

training vectors and initializing the projection matrix with

the low rank whitened PCA matrix (as above for the su-

pervised ML) of these vectors gave good results. We thus

follow this initialization strategy.

Performance and comparison with existing methods.

Tab. 2 gives the performances of the proposed method along

with compared methods. On the Known persons experi-

ments (while training and test face tubes are from different

scenes/episodes all the test subjects were seen on training)

the baseline of PCA projection to 1000 dimensions and then

comparison with cosine similarity (CS) improves the 1.0

chance performance to 11.8 while compressing the features

by 14×. Adding supervision and learning the metric by op-

timizing the hinge loss (ML), for differnt values of the pro-

jection dimension, improves this to up to 17.7 reducing the



#negs→ 1k 2.5k 5k 10k 15k 20k

Chance 15.9 7.0 3.6 1.9 1.2 1.0

ML 53.2 40.8 28.9 25.0 18.9 17.6

LatML 55.2 42.1 31.6 25.9 22.2 18.3

Table 3. Performance of methods, chance, baseline and proposed

(k = 2), with different number of negative test pairs.

size of the vector from 14396 to 64. We see that increasing

the projection dimension for ML leads to overfitting and the

performance drops above d′ = 128. Finally, upon using the

proposed latent max-margin metric learning we improve the

performance to 18.4 while avoiding overfitting. For similar

amount of compression (cf. d′ = 128 for ML), the proposed

method achieves 18.3 (with k = 2 and d′ = 64). Thus the

proposed addition of latent variables in the standard metric

learning formulation improves the performance for the task

of Known persons verification.

It is interesting to note that the results using the two

types of tube distances, i.e. minimum and average (take the

minimum/average distance between all possible face pairs

from the two tubes) are different from recent previous works

[12]. While Cinbis et al. [12] reported that average distance

works better than the minimum distance on their dataset,

we find that the opposite holds on the proposed dataset.

We conjecture that this might be due to some overfitting of

their method on the limited negative pairs as (i) the dataset

was generated from one series only so the subjects were

fewer and (ii) they used automatic negative pair generation

by using co-occurrence arguments, i.e. face tubes which ap-

pear together are of different person, which leads to nega-

tive pairs with reduced diversity in appearances. Hence in

their case they reported that some test negatives also have

small distances which suggests possible overfitting on the

negative set. However, in the present case the negatives are

relatively much more diverse than the postives as, while the

positive pairs come from the same series (albeit from dif-

ferent diverse scenes and from different episodes also) the

negatives can come from completely different filming con-

ditions of different series. Hence, in the present case the

minimum distance works better, i.e. the system chooses to

predict based on the best matching pair of faces for two test

tubes.

In the more challenging and realistic situation of ‘Un-

known person’ testing (no test subject was seen during

training) the proposed method again shows improvements.

The PCA+CS method improves the chance performance of

6.3 to 32.8 while the ML method improves it further to 36.4

(d′ = 128). The proposed latent metric learning improves

the performance to up to 38.8 (for d′ = 64 and k = 6).

The performances for the two evaluation scenarios

should be seen relative to the chance performances. While,

for the proposed method, the chance performance improves

by about 18× (from 1.0 to 18.4) in the Known person evalu-

ation, the same improvement is only about 6× (6.3 to 38.8)

in the Unknown person setting underlying the much more

challenging nature of the later.

Experiments with different number of negatives. Not

surprisingly, the absolute magnitude of the AP depends

on the random chance performance or the relative number

of positives and negatives in the test set. When we vary

the number of negatives (by random subsampling, for the

Known persons evaluation) we see that the AP decreases

with increasing number of negative examples (Tab. 3). With

a chance performance around the same as the Unknown per-

sons evaluation, the AP rises to 42.1 (cf. 38.8 for Unknown

person), while when we take the maximum number of neg-

atives available (around 20k) the AP is more than 2× lower.

The probability of finding another person with almost same

kind of expression and other variations increases with the

possible number of negatives (see qualitative results below).

We stress here that in a real-world system the number of

negatives will far exceed the number of positives (as the

number of images of the same person will be much lower

that the total number of images in the database) and hence

the expected performances will be much lower. Hence, we

conclude that the task of face verification, especially in the

presence of high facial variations, is very challenging with

a large room for improvement.

Qualitative results. Fig. 4 shows some of the top false pos-

itives for the proposed method. As seen in the figure, in

video databases it is much more likely to have two differ-

ent persons with very similar expressions or in very simi-

lar poses and illumination conditions which makes it much

more challenging. Upon visual inspection, we conclude

that usually a combination of many factors, including ex-

pression, pose and illumination, contribute to the confusion.

However, the high probability of the presence of very simi-

lar expressions seems to be a recurrent reason. We also at-

tempted to visualize the implicit clustering obtained but we

didn’t get easily semantically interpretable results. As the

initialization is done randomly, the mined variations seemed

to be non-trivial combinations of expression, pose, illumi-

nation, etc.

5.2. YouTube Faces (YTF) dataset

We now give results on a standard challenging bench-

mark of video face verification: YouTube Faces (YTF)

dataset [41]. YTF dataset contains 3425 unconstrained

videos of 1595 celebrities, downloaded automatically from

YouTube. The benchmark provides detected and aligned

faces and has a standard evaluation protocol. It is divided

into 10 splits, each split containing, randomly selected, 250

positive and 250 negative pairs of face tracks. The per-

formance is reported as the average over 10 disjoint runs,

where in each run 1 fold is used for testing and the rest 9



Figure 4. Typical false positive face pairs, selected from test face tube pairs, with the proposed latent metric learning algorithm.

Method AUC EER

Random chance 50.0 50.0

ML (avg dist) [12, 27, 33] 85.9 22.5

ML (min dist) [12, 27, 33] 83.4 24.6

Proposed Latent ML 86.0 22.6

MBGS [41] 82.6 25.3

MBGS & SVM⊖ [45] 86.9 21.2

FV (base method) [30] - 16.2

DeepFace-single [36] 96.3 8.6

Table 4. Performance of the proposed method vs. baselines (top)

and some existing method (bottom) on YTF dataset (see §5.2).

folds are used for training. We report the Area under the

Receiver Operating Characteristic curve (AUC) and the Re-

ceiver Operating Characteristic Equal Error Rate (EER).

We use the three types of Local Binary Pattern (LBP)

features provided by the authors i.e. LBP [29], Center-

Symmetric LBP (CSLBP) [19] and Four-Patch LBP [42].

We follow similar setting as for the TSFT dataset and first

project the concatenated features to 1000 dimensions with

PCA and then learn the lower dimensional embeddings.

Tab. 4 gives the result of the baseline ML, proposed

method and some existing state-of-the-art methods. The re-

sults obtained with the proposed method are better than the

dataset creators’ [41] results (86.0 vs 82.6 AUC) and are

competitive w.r.t. one of their recent works (86.9 AUC) [45]

based on a more complicated learning setup. This validates

the implementation of our model w.r.t. the existing art, with

similar features. State-of-the-art on this benchmark is pri-

marily approached by engineering strong features [30] or by

using large amounts of external data [36] and is hence not

directly comparable to our results.

For the baseline method, the average distance performs

better than minimum distance for the baseline ML (85.9 vs

83.4 AUC). The proposed method performs better than the

baseline with minimum distance (86.0 vs 83.4 AUC), how-

ever, it performs similar to the baseline ML with average

distance (+0.1 AUC and -0.1 EER). The main challenges of

this dataset are filming conditions, video quality and motion

blur. Pose robustness seems to be largely corrected by us-

ing alignment. First, the faces are outputs of a face detector

and hence are constrained enough for reasonable landmark

detections and second, empirically we observed a big gain

(26 vs. 22.5 EER) when using the features computed on

aligned versions of the face images vs. those on unaligned

versions (both provided with the dataset). The main chal-

lenges thus remaining are related largely to the quality of

videos, where averaging the distances seems to smooth out

the noise (e.g. in [36] as well). This also seems to be sup-

ported, perhaps surprisingly, by recent results where fea-

tures were pooled/averaged for all the frames of the video

together into one descriptor [30]. Opportunistically choos-

ing the minimum best distance between two faces of the

two face tubes seems to be dominated by noise leading to

the relatively lower performance of the baseline ML with

minimum distance. This loss is largely recovered by using

proposed latent ML which, however, is not able to surpass

the averaged distance.

6. Discussion and conclusion

The task of video face track verification is an impor-

tant and challenging face based biometrics problem. In

the experiments reported, the performances were found to

be far from saturated on the proposed challenging dataset.

We note here that the performance depends on the random

chance performance; in reality the number of negatives far

exceeds the number of positives and the evaluation should

mimic such challenging scenario.

We believe that a principle challenge for the task is that

due to expression. In a large pool of negative candidates,

it is highly probable to find another person with similar ex-

pression. Since annotating a large number of expression

diverse faces will be quite a challenge, expression normal-

ization would be a critical problem. The solutions could

be inspired by the recent work using ‘3D frontalization’ for

face verification [36] and also the methods used for facial

re-enactment and performance transfer e.g. [16].

To conclude, we presented a metric learning algorithm

incorporating latent variables. We showed results on the

popular benchmark YouTube faces where the model per-

forms competitively w.r.t. current art using similar features.

We also proposed a challenging dataset–TV Series Face

Tubes (TSFT)–with manual annotations for 569 face tubes

of 94 different subjects appearing in 8 popular TV series.

We showed that the method improves upon the current state-

of-the-art metric learning algorithms on TSFT. The dataset

is available upon request.
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