
Wright State University Wright State University 

CORE Scholar CORE Scholar 

Kno.e.sis Publications The Ohio Center of Excellence in Knowledge-
Enabled Computing (Kno.e.sis) 

2001 

Latent Maximum Entropy Principle for Statistical Language Latent Maximum Entropy Principle for Statistical Language 

Modeling Modeling 

Shaojun Wang 
Wright State University - Main Campus, shaojun.wang@wright.edu 

Ronald Rosenfeld 

Yunxin Zhao 

Follow this and additional works at: https://corescholar.libraries.wright.edu/knoesis 

 Part of the Bioinformatics Commons, Communication Technology and New Media Commons, 

Databases and Information Systems Commons, OS and Networks Commons, and the Science and 

Technology Studies Commons 

Repository Citation Repository Citation 
Wang, S., Rosenfeld, R., & Zhao, Y. (2001). Latent Maximum Entropy Principle for Statistical Language 
Modeling. IEEE Workshop on Automatic Speech Recognition and Understanding, 182-185. 
https://corescholar.libraries.wright.edu/knoesis/281 

This Conference Proceeding is brought to you for free and open access by the The Ohio Center of Excellence in 
Knowledge-Enabled Computing (Kno.e.sis) at CORE Scholar. It has been accepted for inclusion in Kno.e.sis 
Publications by an authorized administrator of CORE Scholar. For more information, please contact library-
corescholar@wright.edu. 

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/knoesis
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis_comm
https://corescholar.libraries.wright.edu/knoesis?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=corescholar.libraries.wright.edu%2Fknoesis%2F281&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu
mailto:library-corescholar@wright.edu


LATENT MAXIMUM ENTROPY PRINCIPLE FOR 
STATISTICAL LANGUAGE MODELING 

Shaojun Wang' b a l d  Rosenfeld' Yunzin Z h Z  

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213' 
Dept. of CECS, University of Missouri, Columbia, MO 65211' 

dao@cecs.missouri. edu swang,mni@a.cmu. edu 

ABSTRACT 
In this paper, w dcscrihe a unified probabilistic framework 
for statistical lmiguage modeling, latent mmmum mtmpy 
Wnciple. The salient feature of this approach is that the 
hidden causal hierarchical dependency structure can be en- 
c d e d  into thpsiatwtical model in a principled way hy mix- 
turts of expoocntial families with a rirh expressive power. 
We first show tlie problem lormulatiun, whition, and cer- 
tain convergencc properties. We then discrihe how tu ust. 
this machine learning technique to model various aspects 
of natural language such as syntactic ~truct i i re  of sentence, 
semantic information in document. I:inally, we draw a con- 
clusion and point out future researrh dirmtioiw. 

1. INTRODUCTION 
Markov chain (n-gram) source modelq for riaturnl lan- 

guage were first explored by Shannon in his moiiuinental 
paper (191 which led to the birth 01 information thcory. N- 
gram l a n g w g ~  models have been widely used in current 
speech recognition systems to help r w l v e  amustic anhi- 
gui t ia  by placing higher prohsbditips on more likely word 
strings. While Markov diains are ellicimt at encoding I- 
tal word interactions, it has heen long a r g i d  that natu- 
ral language has: a deep structure (we for examplc 2 171) 
and Markov cham is a completely indequate  mode( ' I Iowl 
ever, very few approaches managed to propose a niodel that 
can effectively exploit relevant syntacric stri1rtiirC 151 and 
semantic information 111 of natural language arid t o  out- 
perforin simple n-gram in perplexity 'The dilliculty lies 
in the luck of n rm+ed pmbabilwfic fmmeaork Io mirdr  
language, which can sinrulianwusly t r k r  into arcount the 
lexical information inherent i n  M s r k w  chain models, the 
hierarchical syntactic tree structure ~n stochautic branch- 
ing p r o c : m  15, 141, the semaniir content i n  bdg-of-words 
catrgorical mixture log-linear rnodels ( I ,  91, and so 011 

The most commonly used tKhnique lor conibinrng v w -  
ious statistical niodelv is linear interpolation IS, 16). Lin- 
ear interpolation is simple, and easy to implement, and i t s  
result is never worse than m y  of its compoiierrts, but a 
linear interpolated niodel iiiakes suboptimal ILW of i t s  w m -  
poncnts and is generally inconsistent with its conqionentu, 
and as the result, performance improvement is very limited. 
Another approach is h a d  on Jayna '  maximum entropy 
principle IlO]. Compared with other approaches in statisti- 
cal modeling, there are several advantages to  tlik approach, 
including no data Iragnwntation as in decision trw. no i n d c  
pendence assumption as: in naive Baya,  and ailtomatic fea- 
ture weight? deterniination. The major wenknesc of current 
maximum entropy appmach is that it can only deal with 
explicit features. In natural language, there arp hidden hi- 
erarchical strcutures which we do not o I ) R ~ N ~ .  direct1 surh 
as semantic information 111 or syntactir strimlire fil. 1s 
it possible to incorywratP the hidden hierarchical struciuw 
information w h i h  wc helieve into maximum entropy prm- 
ciple framework? A previously prupused direct approach 
(12, 14, 181 is to use the component modrb'oiirpiir inform- 
tion and formidate it as certain consrraints ' Ihk  approach 
achieved some improveinerit i r i  perplexity and word error 
rate reductions 

Motivated by the need or establishing a uiiified proha- 

bilrstic framwork for natural language rnodcling, we liave 
recently propwed a latent maximum entropy (LME) prin- 
ciple. The LME: principle is beyond Jaynes' original max- 
imum entropy (ME) principle as it  ran handle latent vari- 
ables. III  the next section, we first present the latent max- 
iniuin entropy principle, its problem formulation, solution. 
a i d  certain convergmce propcrtia. W e  then show how 
to use this new principle for statitical language modeling 
by mixtures 01 exponential families with a rich expressive 
power. 

2. LATENT MAXIMUM ENTROPY 
PRINCIPLE 

Let X E X, say natural language, be the completedata 
with density p(X) and Y E Y ,  say words, sentences, docu- 
ments, etc he the observed incomplete data, and Y = Y ( X )  
is a many-bone mapping from X to Y .  The missing 
data can be semantic content at document level, syntactic 
structure at sentence level etc., see Fig. 1 for illustration. 
Let p(Y) denote the density of Y and p(XIY)  the condi- 
tional density of X given Y. Then p ( Y )  = c x ( y ) p ( X ) ,  

{ X  : X E X, Y ( X )  = Y}. and p(X) = 

I 
Figure 1. Natuml language, observed incomplete doto are 
words, sentences, documents, missing data are syntactic 
stmcture at sentence level, semantic content at document 
level, where dark nodes denote missing infomotion. 

The problem of maximum entropy principle with latent 
variables is to select a model p .  from a set of allowed prob- 
ability distributions to maximize the entropy 

(2) i = l  ... , , N  
where B(y) is the empirical distribution of a set of ob- 
servable training samples yi,. . . , yc ,  and is thus given by 
p(y) = 9, C(y) = Cy=, B(y,yi) is the occurrence connt 
of y among the training samples, f,(X), i = 1, .  . . , N are a 
set of features that correspond to weak learners in boost- 
ing and to sufficient statistics in exponential models, and 
p(XIY = y) encodes the hierarchical dependency struc- 
ture into the statistical model. Note that some features 
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are functions of observable data Y ,  say f j ( X )  = f , (Y) .  In 
such a case, the constraint is reduced to the common one, 

no constraints on latent variables, and the maxent solution 
will assign equal probability on latent variables, If there 
is no missing data, then the problem is reduced to Jaynes’ 
model. Thus (2) is a more general description than ME. 

Note that due to the nonlinear mapping by p ( X I Y ) ,  eq. 
( 2 )  forms nonlinear constraints on p ( X )  and the feasible set 
IS no longer convex. Even though the objective function (1) 
is concave, no unique optimal solution can he expected. In 
fact, minima and saddle points may exist. 

In order t o  solve this problem, we consider log-linear mod- 
els with incomplete data, since without missing data and 
higher-order term of p in eq. (Z), the solution for p is a 
log-linear model. Define p h ( X )  = Z; 1 e c ,* i f ; (X) ,  ~h~~ 
p * ( Y )  = C x E x ( y ) p * ( X )  and the loglikelihood function of 
the ohsenred data is 

C y , , ~ ( Y ) f j ( Y )  = C,,,RY = y ) f j ( Y  = Y). There are 

L(A) = log n P*(Y)p(u)  = ~ i ( Y ) l O ~ P * ( d  (3) 
Y t Y  YEY 

Now we resort to the EM al orithm [SI to solve the max- 
imization problem of eq. ($ Decompose L(A) into two 
parts, that is 

U A )  = c f i ( Y Y O g P * ( Y )  = Q(A,A‘) - K(A,A’) (4) 
Y t Y  

whereQ(kA’) = C g E Y @ ( ~ )  C x E x , , , p ~ ~ ( X l Y ) ~ ~ g p ~ ( X )  is 
the conditional expected complekdata loglikelihood, and 
K1A.A’) = CvEyfi(Y) ~ ~ s x ~ v ~ P w ~ ~ ~ y ) l o g p ~ ( X ] y )  is the 
conditional expected missing-data loglikelihood. 

The EM algorithm maximi- L(A) by iteratively max- 
imizing Q(A,A‘) over A. The j t h  iteration A( j )  + Ab+’) 
of the EM algorithm is defined by an expectation, E step, 
which computes Q(A,AcJ)) as a function of A, followed hy 
a maximization, M step, which finds A = A(’+’) to maxi- 
mize Q(A,A(J)). Each iteration of EM increases L(A), and 
very generally, if EM converges to A’, then h’ is a local 
maximum of L(A) 18, 21). 

For this particular log-linear model, we have 

Surprisingly, maximizing Q ( A , ~ ( ” )  is equivalent to maxi- 
mizing the dual function of the complete data maximum 
entropy problem as follows: 

maxpH@) = - C p ( x ) l o g p ( x )  (6 )  
X 

i = l  ... , ,N 
This is because 

N 

Q(A,A(”) = -Ios(ZA) + CXi(Cfi(y) 
i=, ”EY 

P A W ( X I Y  = y ) f G O  
X S X ( Y )  

which is exactly the dual function of (6). 
The generalized iteratiive scaling (GIS) [7] or improved 

iterative scaling (11s) 13, 61 algorithms can be used to max- 
imize Q(A,A‘). Usually only a few GIS (or 11s) steps are 
needed for the M step. 

Thus the proposed EM algorithm for maximum entropy 
with latent variables (Latent-maxent) is 
Latent-maxent: 

f c ( X ) ,  i = 1, ... , N; 

values A i , i =  1, ..., N by (GIS) or (11s) algorithm. 

compute C , t u P ( ~ ) C x , x ( y ) ~ , u ) ( X I Y  = Y) 

M step: K iterations of full parallel update of parameter __ 

ii 
f‘”’ 

Figure 2. Latentmozent, an EM pmeedure embedding on 
itemtiwe scaling loop, whew A(A(3+’IK), A(’)) 
is the auziliary function in IIS, s denotes the indez of one 
cycle of full pamllel update of Ai,i = 1 , .  -. , N and K de- 
notes the number of cycles of full pamllel updates. 

A natural interpretation of this iterative procedure is the 
following: If the right hand side of eq. (2) is constant, then 
the optimal soultion of p * ( X )  is a log-linear model with pa- 
rameters provided by GISjIIS algorithms. Once p i ( X )  is 
obtained, we could calculate the values of the right hand 
side of eq. (2). If this value matches the constant we as 
signed before, then by optimality condition, the extremum 
of the entropysuhject to the required constraints is reached; 
otherwise, the EM procedure is iterated until meeting the 
constraints. 

The  convergence proof for the propmed latent maxent 
algorithm is quite similar to the GEM algorithm (211 and 
is omitted here. For details, see [ZO]. Here we simply state 
the resnlt in the following theorem. 

Theorem: The latenemaxent algorithm, an EM nested 
by iterative scaling, monotonically increases the likelihood 
function L(A). All limit points of any latent-maxent se- 
quence {A( ’ ) , j  t 0) belong to the set 

and in theset r, the entropy H ( p .  A)) achieves (local) max- 
imum, and L(A) = Q(A,A) = -H[p.(A)),VA E r. 

3. L A T E N T  M A X E N T  A P P R O A C H  FOR 
STATISTICAL L A N G U A G E  M O D E L I N G  

Natural language is a composite, hierarchically organized 
code to represent mesages. Simpler patterns at a lower 
level are combined in a well-defined manner to form more 
complex patterns at succeeding higher levels. The function 
of such a hierarchical structure is to constrain the ways in 
which the individual patterns at that level can he combined, 
thus building redundancy into the source code and making 
it robust to errors made hy speakers. As a result, relatively 
few primitive patterns can he combined in a multilevel hier- 
archy according to a complex procgs to form a rich, robust 
information-bearing code. 

The latent maximurn entropy principle as discussed above 
can be used to describe natural language in a principled 
way by mixtures of exponential families with a rich ex- 
pressive power. In this section, we discuss how to apply 
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it to statistical language modeling. We first describe vari- 
ous language models which aims a t  B specific linguistic phe- 
nomenon. Then we describe how to formulate them into the 
framework of latent maximum entropy principle. 
3.1. Modeling Local Lexical Information 

The commonly used n-gram model, or (n-1)th order 
Markov chain model, is constructed by assuming all his- 
tories with the same last n-1 words to belong to the same 
equivalence class. The maximum likelihood estimate of an 
n-gram probability given a training corpus is 

C(W, . . . wn) 
C" 

p(w, .. .W") = 

where C(WI . . . wn) is the occurrence count of the n-word 
string WI..  . wn, and C., is the count of total n-word strings 
in the corpus. 

3.2. Modeling Syntactic Structure 
There are two approach- to model syntactic structure in 

natural language. One approach uses the probabilit dis- 
tribution of stochastic context-free grammars (SCFGf over 
strings of words (141. The other user a parser t o  uncover 
phrasal heads standing in an important relation t o  the cur- 
rent word 14, 51. For brevity, we only demonstrate here the 
first approach. 

Following (131, let G be a context-free grammar consisting 
of a collection of rules (A -+ a), where each a is a string of 
terminals and nonterminals. For each sentence S E L(G), 
the language of G ,  there is a corresponding set of parse 
trees t,  each of which has S = W I W . .  . WL as leaves. If we 
observe only S,  then for an ambiguous grammar, the actual 
parse tree used to derive S is hidden. 

the  prob- 

distribution 

Suppme we have a joint distribution p(S,T 
ability of deriving S using the tree T. Then t k e marginal 

gives a language model. In the equation above, p(S,T) is 
the complete data density and p(S) is the incomplete data 
density. C ( A  - a;T,S)  is the number of times that the 
rule A - U appears in the parse tree T for the sentence 
S .  The probability parameters p(A - a) are n o r m a l i  so 
that C , p ( A  - a) = 1. 

The model is simplified by making the Markovian ag- 
sumption that the probability with which a nonterminal 
is rewritten as a string U depends only on the nontermi- 
nal, and not on any surrounding context. This assumption 
leads to an efficient training algorithm. For convenience, 
we m u m e  that the grammar is in Chomsky normal form. 
Thus, each rule is either of the form A - BC or A -+ w. 
By EM algorithm, the parameters p(A -+ a) can he esti- 
mated iteratively and the E step can be accomplished by 
inside-ontside algorithm through dynamic programming in 
a parse chart. 

3.3. Modeling Semantic Informat ion  
A document can be viewed as a collection of semanti- 

cally homogeneous sentences. With a huge amount of doc- 
uments on hand, the task of latent semantic analysis (LSA) 
in the context of information retrieval is to discover the com- 
pact semantic representations of high-dimensional categor- 
ical text data, which is beyond the lexical level of word oc- 
currenm, throu h the mapping of high-dimensional term- 
frequency (count? vectors in the vector space representation 
of documents to a lower dimensional representation in a SD 
called latent semantic space. Semantic relations between 
words and documents can then he easil defined in terms 
of their proximity in the semantic spacefi, 91. 

Following 191, a generative model of word-document co- 
occurrences by bag-of-words assumption is described as fol- 
lows: (1) choose a document d, with probability p(dn), (2) 

selecl a Semantic clazs I* wtth lrrohabiliry p (a ldn ) ,  (3) pick 
a word wm with probabdity p(w,.lrt). Since only pair of 
(dn,wm) is being oI~sprv~I, :w a rwilt, the joirit probability 
model is a mixture of log-linear nwdrl with the expwssioii 
p(d, ,u, . . . )  = p ( d , , J E : = ,  ~ ( u . . , l z ~ ) ~ ( z ~  d , )  T y p i ~ d l y  thr 
number of dociimmrs, u,ords in ihe vocahular). and Idtent 
class vdriabla IS 011 the order of 100.000. I0,I)W atid hun- 
dreds, respcrrively 'Ihus latent cl~.ss wrial~lrs fun<:tion w 
battlenpck v,iridbles to CoiUitrdin word o c ~ : ~ ~ r r ~ n c c s  in doc"- 
nienL<. Il l i istrai  i<ms of li.trni .wnmmi<' arialyais in  ternis of a 
graphical model and demensionality reduction are drpicted 
in Figs. 3 and 1, respectively. 

F igure  3. G m p h i d  representation of dependency of 
words, documents, and semantic content, where semantic 
ncdea form a bottlenedc, and dark nodes n z  not observable 'i~~_n"i-'l 
W Y  

Figure  4. Dimensionality d u c t i o n  by probabilistic latent 
semantic analysis 

By assuming that the joint probability of (d,,w,) is 
a multinomial distribution, the  likelihood function can he 
written as 

where C(d,, wm) is the count of word wm in document d,. 
EM algorithm can he performed to estimate the parameters. 

3.4. 
The various aspects of linguistic phenomena described 

above can be encoded into a unified probabilistic model 
by the latent maximum entropy principle. Define the com- 
plete data as X = (&,TI, .  . . , Sd,Td. D, Z), where Sa is a 
sentence, S. = (W;, W,, . . . W,,) ,  W,, E V, Ta is a parse 
tree for Si, Z is a semantic node, D is a document, and the 
observed data are Y = (St,'. . , s d ,  D). 

Explicit features such as Markov chain based n-grams can 
be modeled directly (161. For example, for trigram model, 
we have 

Modeling Various Aspects by L M E  

Syntactic structure as described by SCFG can be encoded 
by the constraints 
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Semantic content as described by PLSA can be encoded by 
the constraints 

Figure 5. A sample realization of the mized &ain/tree 
/table gmphical model, where the document has two sen- 
tences with lengfi  5 and 6, respectively. 

By information theoretic arguments, it can be shown that 
when each constraint is considered separately, the solution 
of latent maxent will be reduced to the individual models 
described in subsection (3.1-3.3). 

The exponential form of the complete data density func- 
tion is often called a Gibbsian field. For every Gibbsinn 
field, there is an equivalent Markovian field. The pro- 
pased model is a rather complicated mixed cbain/tree/table 
graphical model (see Fig. 5 for illustration). Because of the 
added lexical neighborhoods due to the n-gram, the distri- 
bution is no longer context-free, and the calculation of the 
right band side of Eqn. (13) has to be performed by a vari- 
ant of the inside-outside algorithm or Markov chain Monte 
Carlo simulation. Since the size of the configuration space 
is large, the feature expections may need to be calculated 
by loopy belief pmpagation 1151 or also by efficient Markov 
chain Monte Carlo methods. 

4. CONCLUSION A N D  R E S E A R C H  
DIRECTIONS 

We praented a laletit niaximiim entropy principle wliich 
is beyond J a y n d  origwal maxiliturn entropy principle. 
LMF provides R general sraristical frameaork for mwrprr 
rattng arbitrary aspects of t~arural languagr into a paramer- 
n c  model l h a  parameters can be esrimatcd in 1hQ sen% of 
niaximuni likelrhod. intcraction3 among various spec-  of 
languagr can be raken into account automatically and si- 
multantously, and rhegcneral model LF reduced t o a  faniiliw 
mndel when aiming at d sptxific linguistic phenomenon 

We are currrntly irnplemcntirig the Iatcnt niax~nt model 
using real text training data. Siwe the nuntlrcr of features 
k large. model complexity coiitrol and aiitomatic fcatirre 
.wIccti~n is under investigatiuir 
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