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Statistical Methods in Medical Research 2010; 19: 271–289

Latent mixture models for multivariate and
longitudinal outcomes
Andrew Pickles Biostatistics, Health Methodology Research Group, University of Manchester,
University Place, Oxford Road, Manchester, M13 9PL, UK and Tim Croudace Department of
Psychiatry, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge,
CB2 2QQ, UK

Repeated measures and multivariate outcomes are an increasingly common feature of trials. Their joint
analysis by means of random effects and latent variable models is appealing but patterns of heterogeneity in
outcome profile may not conform to standard multivariate normal assumptions. In addition, there is much
interest in both allowing for and identifying sub-groups of patients who vary in treatment responsiveness.
We review methods based on discrete random effects distributions and mixture models for application in
this field.

1 Introduction

In a variety of therapeutic contexts the outcome targeted by an intervention is the time
path of one or more variables. In many cases growth curve models, multilevel models in
which the intercept and various functions of time may be considered as random effects,
lend themselves to the analysis of such data, allowing treatment effects to be defined by a
small number of growth parameters capturing change for individuals or groups, that are
often characterised simply as just a linear trend. The timescale over which parametric,
or more flexible ‘response to treatment’ trajectories are defined, may be the natural
units of follow-up or some linearising transformation. Where a discontinuous trend is
expected, more complex, piecewise forms can be considered. These models commonly
assume individual trajectories as being smoothly distributed around group (average) or
covariate-adjusted trends, with typical applications involving univariate, bivariate or
trivariate Gaussian normal random effects distributions.1

However, in some fields, particularly psychological and behavioural development,
consideration of both data and theory has suggested that a typological representation
might be more appropriate.2−5 By typological, we mean the identification of a small
number of groups, in which the time course for evolution of trends across the repeated
measures defines type/group.6 This perspective, often referred to as group-based trajec-
tory modelling, by one of its originators,7,8 or as latent-class growth analysis LCGA by
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272 A Pickles and T Croudace

another9,10 is based on the assumption that the data arise from observing, subject to
measurement error, a mixture of individuals from a limited number of latent classes,
each with their own developmental time path (trajectory type or group).11

Levine and Rabinowitz12 studied response to antipsychotic medications in an RCT of
patients with schizophrenia, arguing that little is known about the extent of heterogeneity
of symptomatology in treated early-onset psychosis, using data from a clinical trial of two
active treatments (haloperidol and risperidone). Trajectories on two types of psychotic
symptoms were studied and related to demographic (age, sex) diagnostic groups, social
and cognitive measures. They found that a number of variables, including the age of onset
of the disorder, the type of schizophrenia diagnosis, level of cognitive and premorbid
functioning had prognostic value in predicting treatment response trajectories (class
memberships).

Of course this perspective can be motivated in many therapeutic contexts in which
disease remission or course progression is studied, but has been particularly promi-
nent in the context of psychological therapy research where there are acute challenges
in identifying the principles and processes of change. Trajectory groups may corre-
spond to client groups who are either ‘recovering’ or ‘non-responsive’ or any other
variety of more subtle, potentially graduated patterns.13 This context has also pio-
neered the conceptualisation and study of such latent trajectory groups, observed under
routine practice conditions, outside of the controlled context of clinical trial intervention
studies.14 These authors explicitly set out to measure client progress under the expec-
tation that they might follow highly variable temporal courses, using growth mixture
modelling (GMM) of six repeated measures recorded on clients treated as psychother-
apy outpatients. GMM can be considered as an extension of multilevel growth models
that allow for latent classes, or an extension of latent class growth analyses that allow
for random effects. Their flexibility and also their complexity arises from the occurrence
of correlated random effects/growth factors within latent classes, and hence combines
notions of quantitative and qualitative heterogeneity. Stultz et al.14 found five client
groups with different profiles on the Clinical Outcomes in Routine Evaluation – Out-
come Measure described as: (a) high initial impairment, (b) low initial impairment,
(c) early improvement, (d) medium impairment with continuous treatment progress
or (e) medium impairment with discontinuous treatment progress. Relationships with
demographic and psychopathology measures were identified.

Kreuter and Muthén15 have advanced this type of methodology in criminological
research where outcomes over time are often repeated event counts, following pioneering
applications of mixture models to cross-sectional data.16,17 Also, it is in this context
that many of the most vociferous debates about what the groups represent or capture
have been had.18 The methods have also been used in addiction treatment studies.19

Sequential process models (one growth model linked in time to another) have also been
formulated, often relating trajectory groups observed across periods of development and
in school settings where preventive interventions are tested.20 When trajectory models
span a pre-intervention period, then prevention-oriented behavioural science hypotheses
are examined. In these and other settings it is also not unusual for there to be more than
one variable whose time path is to be targeted and several may be studied in parallel
simultaneously. In developmental studies it is often prudent, or necessary, to study the
joint evolution of key variables and in intervention studies there will often be interest, or
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additional value, in studying the parallel and/or divergent course of secondary outcomes.
Adaptation of the generalised growth curve mixture model21 for such a circumstance can
consider correlated sets of random effects, for two or more processes (polynomial growth
or piecewise growth models for each measure), or potentially more parsimoniously,
factor analytic growth curve models, that harness the information for multiple responses
into a single latent variable outcome whose single trajectory is then examined. These
more general latent variable approaches to potential multivariate trajectory indicators
offer a framework within which the effects of treatment can be partitioned into common
and specific effects for each target variable. In the mixture model approach the latent
typology allows classes with distinctively different combinations of trajectories over each
target outcome whose differential association with treatment can be of interest. When
applied to pre-intervention longitudinal data these offer groupings akin to principal
strata.

Another generalisation is to use latent class mixtures for missing data, as a means
of tackling non-ignorable differences between sub-groups of patients with different
patterns of available data.22 This approach generates the latent class equivalent of
missing-data pattern mixture models.23,24 These are valuable where there are numerous
sparse patterns of missingness that in the standard pattern-mixture approach would
lead to too numerous and poorly estimated parameters or hard to justify restrictions on
parameters. Random coefficient expansions have been entertained.

In this framework, the intention of treatment may be to raise the probability of an
individual belonging to a recovering group or increasing the probability of switching
from a pathological or non-responsive group to a more benign or recovering group. But
these models can also be used as a tool to assist in accounting for selective receipt of treat-
ment, for example as an alternative to or as the first step in a propensity score adjustment
approach.25 Treatment compliance can also be approached along the pattern-mixture
lines of the previous paragraph (especially since missingness and non-compliance often
co-occur), an approach that is especially appealing where latent compliance classes can
be operationalised to overcome the problem of being unable to observe compliance to
a counter-factual treatment.

In this necessarily selective overview and introduction we illustrate some of these
methods, describe their key features, and discuss some of the less familiar and more
distinctive statistical issues. We report preliminary findings from applying some simple
variants of these methods using data from the SoCRATES trial (also used elsewhere in
this issue) analysed in Mplus and Stata gllamm.

2 SoCRATES trial description

The SoCRATES trial26,27 was a three-centre prospective, rater-blind, randomised, con-
trolled trial of three treatments for psychosis: CBT and treatment as usual (TAU),
supportive counselling (SC) and TAU, or TAU alone, with 18 months follow-up.
In summary, 101 participants were allocated to CBT+TAU, 106 to SC+TAU and 102
to TAU alone. Of these, 257 (83.20%) were first admission patients. A total of 225
participants (75% of those randomised) were interviewed at 18 months follow-up,
75 in the CBT+TAU arm, 79 in the SC+TAU arm and 71 after receiving TAU alone.
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The remaining participants died during the follow-up period (7), withdrew consent (4)
or were lost (73).

In this article, we consider the CBT and SC treatments as a single treatment group. Both
consisted of a preliminary 5-week intensive phase followed by a small number of booster
sessions until 3 months. Treatment was delivered by a small number of therapists,
implying that observations may exhibit some degree of within-centre clustering.

We examine the primary outcome, The Positive and Negative Syndromes Sched-
ule (PANSS),28 an interview-based scale for rating 30 psychotic and non-psychotic
symptoms administered blind to condition allocation. The PANSS was administered
at baseline, once a week over the first 6 weeks and then at 3 months, 9 months and
18 months. In analyses we log transformed the timescale, and considered linear and
quadratic terms, interacted with group (CBT vs. (SC+TAU and TAU)), collapsing the
two non-CBT arms for simplicity.

3 Single outcome growth and trajectory models

In the traditional linear growth curve model observations {yit} for individual i made at
times t = 0, . . . , T are assumed to follow a growth trajectory such that

yit = α + βt + ai + bit + εit

where ai and bi are random coefficients (intercept and slope, respectively) and εit for
t = 0, . . . , T are commonly assumed to have a mean zero Gaussian distribution with a
diagonal covariance matrix and uncorrelated with the freely correlated bivariate normal
distribution of the random coefficients.

Under maximum likelihood, observations need not be available for all individuals.
Thus, the measurement regime does not have to be the same provided that each regime
can be assumed to correspond to a missing-at-random missing data mechanism. With
more than two values of t the model equation is easily extended to include further
functions of t, such as polynomials, with fixed and random or just fixed coefficients as
required. With a measurement regime of fixed time intervals growth curve models are
easily set up within the confirmatory factor analysis framework given by

yit = η1i + λtη2i + εit

where the factor η1 corresponds to the random intercept and the factor η2 the random
slope that are jointly bivariate normal, and the factor loadings are temporal basis func-
tions (linear or higher order functions of time). As commonly applied, the models differ
from the random coefficient model in that the flexibility of possible factor loadings
lends itself to fitting a piecewise linear growth (equivalent to a saturated polynomial in
time in the random coefficient setup) and in a more obviously explicit choice as to the
constancy of var(εit) with t. Figure 1(a) and (b) illustrates these two models.

In both multilevel model and factor analysis model set-ups, Empirical Bayes’ (EB) esti-
mates of individual growth trajectories can be extracted, in the former case as functions
of the level-2 residuals and in the latter as functions of the factor scores.
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Figure 1 Graphical representation of linear growth random effects model (a) with an unspecified number
of measurement occasions and a random coefficient for t, and a structural equation growth model (b) with
factor loadings that vary over four fixed occasions of measurement.

Latent class trajectory models i.e. the group-based or LCGM approach (often abbrevi-
ated to LCGA), replaces the bivariate Gaussian assumption for the random coefficients
or factors by a discrete distribution of classes in two dimensions, with M masses of
size pj at locations d1j and d2j, j = 1, . . . , M, where d1 corresponds to the intercept
dimension and d2 the slope. Here too, EB estimates of the individual growth trajectories
can be obtained. These are given as the weighted sum of the growth trajectories of each
class, the weights being the individual posterior probabilities of class membership. The
maximum a posteriori probability (MAP) can also be used to assign individuals to their
most likely class, with models in which such allocations can be made with high confi-
dence, being indicative of the quality of the resulting classification and thus typology.
Second stage or simultaneous analyses can then relate groups to covariates.

Application of these mixture models seems to adopt three different positions on
determining the number of classes that should be fit.

The first position sees the models more as a data reduction device intended to capture
parsimoniously the bulk of the variation in the data, perhaps mapping the identi-
fied classes to some usually fairly coarse articulation of theory. The second position
attempts to identify the true number of classes by adding classes until no significant
improvement in fit occurs. Standard likelihood ratio test statistics cannot be com-
pared to the usual chi-square distribution as setting class probabilities to zero leaves
other parameters unidentified and it is unclear how many parameters are being tested.
Comparisons of Akaike and Bayesian Information Criterion (AIC = −2 log L + 2p and
BIC = −2 log L + p log(n) where p is the number of model parameters and n the number
of participants) can be used.29 Strict BIC superiority is often used as the selection crite-
rion but Raferty30 suggests a more demanding improvement before selecting the more
complex model. Other proposed tests include the Vuong inspired LMR31 likelihood
ration (LR) test of a K class model versus a K-1 class model in which the test statistic is
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compared against an approximation to a mixture of likelihoods, and a parametric boot-
strap likelihood ratio test.32 Nylund et al.33 undertook a range of simulations to examine
the validity of these tests and criteria. The LMR test was a substantial improvement
over the standard LR test that consistently over-estimated the number of classes, but the
parametric bootstrap LR test generally outperformed the LMR test in both power and
Type-1 error rate. The standard BIC outperformed both the AIC and the sample-size
adjusted BIC. The parametric bootstrap LR test marginally outperformed the BIC, but
has the disadvantages of assuming that the K-1 class model is correctly specified, being
much more computationally intensive, and being difficult to apply in small sample sizes
where not all bootstrap samples may deliver valid solutions. Lukociene and Vermunt34

have reported work on the appropriate choice of n in these formula for clustered or
repeated measures data settings, where a value reflecting either individuals or groups
could be chosen (they argued for the n of clusters).

Whether the classes are theoretically or empirically determined, both these perspec-
tives essentially regard the classes as ‘real’ (see Pickles and Angold,35 Nagin8 and Kreuter
and Muthén15 for further discussion) or sufficiently so to be used to guide theory
development, policy formulation or clinical decision-making.18,36

By contrast, the third perspective regards the discrete masses merely as a way of repre-
senting what may be a non-normal distribution of the random coefficients or factors. In
a limited number of simple cases it can be shown theoretically that the non-parametric
maximum likelihood (NPML) estimator of a random effect or latent variable is a finite
set of discrete masses.37,38 Adding more and more classes does not give a progressive
increase in likelihood but instead reaches a maximum, after which additional masses are
assigned zero-mass or locate at the same position as an existing mass. Even where the
underlying distribution is known and continuous, this non-parametric representation
gives a better fit to the data than does the correct distribution itself. While the range of
models for which it has been shown to apply theoretically is small and the models are
simple, empirically it has been shown to apply more generally (e.g. Davies and Pickles39

and Rabe-Hesketh et al.40). In these more complex settings, though the number of
classes required to achieve a NPML estimator is surprisingly small, commonly less than
10 and often much fewer if the response variables are categorical, the number of classes
identified is still often larger than most theory would support as distinct types and some
classes may be considered too small to be of clinical significance. Thus, from this posi-
tion the classes are not seen as representing an actual typology but are instead merely
a non-parametric representation of some unknown, probably continuous, distribution
(an idea pursued further by Kreuter and Muthén15).

As finite mixture modellers are only too aware, the likelihood surfaces are often multi-
modal.41 It is necessary therefore for careful (or automated and exhaustive) checks to
be made on the optimality of the reported solution, and its stability. For example,
both Mplus and Latent Gold software provide estimation from multiple starting points
to enable the user to check that a global optimum has been achieved, while gllamm
implements a different procedure that performs a grid search for the best location for
adding a K-th class to the K − 1 class solution.

In the study of Levene and Rabinowitz12 (cited above), this discrete random effects
approach is applied to the therapeutic context of treatment for early schizophrenia.
Essentially what they describe is the use of latent class trajectory models of in-treatment
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response trajectory for repeated measures of severity of symptoms (up to 24 months).
They used an implementation of the model (which they referred to as mixed-mode latent
class regression, following the user-written R library that was used for parameter esti-
mation) as a model based clustering tool to assign individuals to ‘recovery’ classes. The
association of MAP class assignments to a range of pre-treatment participant character-
istics was then examined using ANOVA where MAP class was a simple between-subjects
factor. Of course this association of baseline covariates with trajectory class can also
be estimated jointly inside the trajectory model. Usually a multinomial model is used to
link covariates to class probabilities such that

πi(c = k) = exp(Xiβk)
/ ∑

k=1...K

exp(Xiβk)

Such models allow association with treatment to be estimated, with or without further
covariate adjustment in the fixed-part of the model. However, the treatment effect may
be distributed across several classes and may include association to trajectory groups
that are not unequivocally beneficial, for example showing early response followed by
later relapse. An overall treatment effect may be obtained by associating trajectories
with some ultimate outcome as part of the model or by defining some class specific
summary statistic, such as area-under-the-curve, that allows the relative benefits of one
trajectory over another to be compared and a weighted sum over classes to be calculated.

4 Group-based latent growth (LCGA) model applied to SoCRATES

For illustration we fitted a two-class linear growth model to the positive symptom
profiles on the log time scale using gllamm. Assigning participants according to
their MAP, Figure 2 shows their raw symptom profiles by treatment group and class.
Class 1, 81% of the sample, evidently improves more rapidly than Class 2. A simple
chi-square association test of treatment allocation group and participant MAP class gave
a marginally significant Pearson chi-square (df = 1) of 3.05. Estimating the association
simultaneously with the trajectory model gave a log-odds coefficient for the association
of treatment 1.103 (SE adjusted for therapist clustering 0.528).

We have no theoretical justification for restricting the model to two classes. Table
1 gives various criteria (from Mplus42) for assessing models from the same family but
with an increasing number of classes. Here the minimum BIC might suggest four classes
whereas the parametric bootstrapping would suggest five. Further additional classes
were also small in size. Figure 3 shows the groups means for the five-class solution. The
great majority of participants (85%) showed variable but substantial initial reduction
in symptoms that was maintained. But both the four- and five-class solutions identified
a group whose symptoms tended to return to post-treatment levels during follow-up,
while the five-class solution identified a further group (4.7%) who had also shown little
improvement in the treatment phase. Both these latter groups would be of interest to
clinical researchers concerned either to better target treatment on patients most likely to
be responsive or to explore what modifications to the treatment protocol might allow
a better outcome.
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Figure 2 Participant positive symptom profiles by treatment and maximum a posteriori probability (MAP)
class (SoCRATES).

Table 1 Fit and test criteria for group-based (LCGM) with increasing classes for the positive symptoms
(SoCRATES)

Model: all in Likelihood Number AIC BIC ssaBIC BLRT Vuong-Lo-
log (time + 1) of free p value Mendell-Rubin
metric 3 params for k − 1 likelihood ratio
non-parametric latent test for k
random classes versus k − 1
effects classes

Latent classes
2 −3481.23 11 6984.45 7025.52 6990.63 <0.001 <0.001
3 −3462.02 15 6954.03 7010.03 6962.46 <0.001 <0.001
4 −3441.81 19 6921.62 6992.55 6932.29 <0.001 0.180
5 −3431.21 23 6908.40 6994.28 6921.34 0.0128 0.347

Table 2 gives mean classification probabilities after allocation for this five-class
model. This model gave an entropy of 0.727 and with the exception of the intermediate
response group 5, gave mean individual MAPs of 0.84 and above.

5 Multivariate outcome

For trajectories in more than one measure there are two distinct approaches to gener-
alisation. The first is to consider a set of single measure growth models (Figure 4), one
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Figure 3 Five group latent growth (LCGA) model mean positive symptom profiles for each class by logweek
(SoCRATES).

Table 2 Classification quality and class allocations based on MAPs
(Mplus Version 5.1)

Latent nˆ % Classification accuracy

class 1 2 3 4 5

1 7 2.265 0.838 0.018 0.095 0.000 0.049
2 18 5.825 0.007 0.841 0.000 0.044 0.108
3 165 53.398 0.019 0.005 0.855 0.002 0.118
4 11 3.560 0.000 0.075 0.000 0.907 0.018
5 108 34.951 0.009 0.052 0.160 0.031 0.748

Classification of individuals based on most likely class membership
(highest posterior probability). Entropy estimated by Mplus: 0.727.
Entries in italics are average latent class probabilities for class mem-
bership, by class for which probability is highest (MAP).

for each measure k, k = 1, . . . , K (where K is now used for outcome, not number of
classes) with observations {yikt} such that

yikt = αk + βkt + aik + bikt + εikt

Assumptions as to the correlation structure of the 2×K random coefficient vector (ai1,
bi1, . . . , aiK, biK) must be made. For discrete trajectory classes the equivalent of an
unstructured covariance matrix is obtained by allowing the class probability masses to
range freely over the 2×K dimensions. Alternatively, constraints can be imposed such
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Figure 4 Correlated growth models for a bivariate flexible (b1, b2, c1, c2) response profile.

that the multidimensional classes are considered as arising from a cross-classification
of classes defined on each of K dimensions. In either formulation, the occasion-specific
measurement errors may also be correlated across k, adding to the complexity of esti-
mation. Treating the observations as clustered and using robust parameter covariance
matrix estimators may be adequate for some purposes, but will preclude the use of
almost all the criteria suggested for empirically determining the optimum number of
classes.

The second approach, more suited to the circumstance where it is expected that the
profiles of development will be similar across measures, is to assume a factor model for
the k measures at each time t, ηit, implying that the measures while being on different
scales, measure the same underlying construct (Figure 5). A change over time in the
underlying construct is described by a single growth curve model as before.

yikt = αk + λkηit + εit

ηit = η∗
1i + λtη

∗
2i + dit

For trajectory class models it is the distribution over higher order factors or random
coefficients η∗ that is specified as discrete rather than the more usual Gaussian.

6 Bivariate group-based latent growth (LCGA) model applied to
SoCRATES

Applied to the joint positive and negative symptom profiles of the SoCRATES dataset,
four classes were defined by the cross-classification of being ‘high’ or ‘low’ on each of
P and N symptom profiles. A class was thus defined by six locations, with intercept,
linear and quadratic slopes for each of P and N, with constraints on class locations
to ensure that ‘high’ on P in the high-P/High-N class is the same as that in the high-
P/Low-N class, etc. Table 3 compares the results from two models estimated in Mplus,42
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Figure 5 Latent factor growth curve model for a bivariate response profile.

Table 3 Fit criteria with and without correlated errors for a bivariate latent growth/LCGA model with four
classes located on a rectangle in the 2 × 2 positive by negative symptoms space

Bivariate Class sizes- AIC BIC ssaBIC Covariance P classes N classes
model after modal Estimation Response Response

allocation (S.E.) Variable Variable

2 classes P1/N1 n = 26 14357.87 14428.80 14368.54 None 18.081 21.125
P by 2 P1/N2 n = 37 (1.055) (1.345)
classes N P2/N1 n = 47
Log likelihood P2/N2 n = 199
−7159.933
2 classes P1/N1 n = 27 14217.68 14292.34 14228.91 7.474 18.376 21.679
P by 2 P1/N2 n = 31 (0.832) (1.072) (1.528)
classes N P2/N1 n = 49
(P with N P2/N2 n = 202
covariance)
Log likelihood
−7088.839

one that assumes the occasion-specific errors for positive and negative symptoms to be
uncorrelated, and the second model, which clearly fits much better, allows them to be
correlated within occasion. Although the class sizes differ relatively little between the
models, it is likely that the tests and criteria used to assess the number of classes required
could be affected substantially by the appropriate choice of error covariance.

7 Allowing the classes to differ in more than means: mixtures of
growth curve models

In all the models described above the discrete distribution corresponding to poten-
tial latent classes has been used to replace a continuous distribution for the random
coefficients of a more traditional growth curve model. Except in the case of NPML
representation, the discrete model is not a generalisation of the continuous model in the
sense of the continuous model being nested within it. However, such a nesting is possible
if instead of the latent class representing a group of participants with a common mean
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Figure 6 GMM for a single response profile and between class treatment effect heterogeneity.

and residual variance structure, the latent classes should represent participants with a
common mean and overall covariance structure i.e. we allow each latent class to have
growth structure variability within it. Following Muthén10 we refer to this as a GMM.
In practice it rarely seems possible to allow unrestricted differences in the covariance
structure, but even allowing for a common within class random growth structure this
approach is more general and does not assume that the only within class variation is in
time-specific errors. However, the implied classes are now heterogeneous, rather more
overlapping and perhaps less easily considered typologically (Figure 6).

Many applied studies e.g. Stulz et al.14 cited earlier, use this more general random
effects mixture model,43 which in software tutorials by applied journals is addressed
alongside the group-based latent growth model (LCGA).11 Current practice in this area
largely follows guidance offered by Muthén and Muthén.9,10 Typical reports use the full
range of BIC, AIC, entropy and LMR LR tests to choose the optimal number of classes
and dimensions of between class variability in applications described as GMMs. Muthén
and Asparouhov44 extending the original exposition in Muthén et al.1 apply this to a
small set of pharmaceutical trial data on antidepressant treatment. Separate analysis of
the placebo group finds evidence of a placebo response trajectory class with a strong
initial improvement, followed by a later worsening. A separate analysis of the medication
group shows two types of responder classes, one with an initial improvement only and
one with a sustained improvement. A joint analysis of the placebo and medication groups
makes it possible to estimate medication effects in the presence of placebo-response
effects and shows benefits of medication.

8 Latent classes for compliance and drop-out

In addition to data defining outcome trajectory, compliance data may also be included in
the analysis. This allows the estimation of the Complier-Average-Causal-Effect (CACE).
Often this coincides or is strongly associated with missing data and thus overlaps with
approaches to missing data such as pattern-mixture models.22

Consider the growth curve mixtures model in the previous section. We may consider
the outcome trajectory data as being a mixture of data derived from a set of growth
models, where each component is formed by a class of participants that differ on their
level of compliance. In the treated group, compliance data is assumed to be available,
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Observed compliance (upper panel) and latent 

compliance (lower panel)
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b :         In class 1 (non-compliers) this path is fixed at 0
In class 2 (compliers) this path is free

rgroup bdi6
bdi0

CentreC

b

Figure 7 Path diagram for complier average causal effect for a single outcome (bdi6), with baseline covari-
ates (bdi0 and centre) when compliance is unobserved for participants assigned to the non-active treatment
randomisation group.

and hence is informative as regards compliance class membership. In the untreated
participants compliance class is commonly not observed, but due to randomisation, we
might be willing to assume that compliance class prevalences are equal to those in the
treated group (Figure 7).

In the simplest case, compliance is considered to be the binary compliant (c = 1) or
non-compliant (c = 0). In the treated group (r = 1), we observe the two conditional
distributions f (y| r = 1, c = 1) or f (y| r = 1, c = 0) while in the control group (r =
0) we can observe only the marginal π f (y| r = 0, c∗ = 1) + (1 − π )f (y|r = 0, c∗ = 0)
where π is the proportion of c = 1 in the treated group and c* is latent (unobserved)
compliance. Estimates are then obtained for the effect of treatment within strata defined
by the partially observed compliance groups. Skrondal and Rabe-Hesketh (pp. 427–
32)45 provide an example in relation to the benefits of a social intervention (job-training)
on depression.

Morgan-Lopez and Fals-Stewart46 consider the use of this kind of model for estimation
of treatment effects in trials in which therapy is delivered by open-enrollment groups.
Over and above the fact that the trials are clustered, with therapy being delivered within
groups,47 these have the additional complexity that the groups are not formed at a single
point in time and then closed to new participants, but instead have a membership that
evolves as participants are recruited into the groups and others drop out. Morgan-
Lopez and Fals-Stewart consider a model of similar form to that illustrated in Figure
8. In this model data on participation d1–d4 at each of four occasions is used to form
latent participation classes, say c = k for k = 1, . . . , K. Class membership may also be
correlated with the week of entry into the trial (start week) and might be influenced
by treatment assignment (dotted arrow). The dashed lines indicate that the effect of
treatment may vary by participation class (though because of randomisation the average
treatment over latent classes on the intercept should be zero).

Such a model delivers treatment effects by latent participation class, with an
average effect being obtained as the mean of these estimates weighted by class size.
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Figure 8 Participation data pattern-mixture latent class model for a growth curve with intercept, slope and
treatment effect differences by class.

Their simulation results suggest that the average treatment effect estimated from this
mixture model is less biased than the standard simple growth curve model estimated
under missing-at-random assumptions even when the number of latent classes is smaller
than that used to simulate the data. Beunckens et al.48 give a latent-class mixture
treatment in the more standard incomplete data case.

As the diagram makes clear the association between participation class and response
is via the growth intercept and slope. This rules out the more immediate or contem-
poraneous association of non-participation and response that you might expect when
examining, say, a drug treatment on a causally proximal biomarker response.

9 Models for mediation and moderation

In a similar fashion to the formation of latent compliance groups, Emsley et al.49 in
this issue make use of discrete latent classes to operationalise the principal stratification
approach to examine moderation and mediation. In that case, the inability to observe the
value of a binary mediating (or moderating) variable under the counterfactual treatment
regime means that the expected counterfactual outcome is derived from a consideration
of the outcomes under the two latent states of the mediating (moderating) variable.

10 Instrumental variables

Models for causal effect estimation based on the principle of instrumental variables (IV)
have a long history. Their use and equivalence to other approaches to effect estimation,
such as nested marginal structural means models are examined elsewhere in this issue.
An IV model structure for a growth mixture application is shown in Figure 9, in which
the instrument, usually random group assignment and interactions of this with baseline
characteristics are allowed to influence the growth mixture parameters only through
treatment received.
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Figure 9 Growth curve model within which causal effects on a response profile of partly non-randomly
assigned treatment T with unobserved confounder U is identified by an IV.

These variables are taken as IVs on the basis of one of a number of alternative
restrictions that broadly rule out direct effects of the IVs on the profile of responses
(and that all indirect effects occur through difference in treatment exposure). Such
assumptions identify the model in which treatment exposure and outcome response are
correlated due to selection and the presence of confounders.

As yet there has been little work to develop the use of IVs in the latent class/growth
mixture setting. It is important to distinguish the settings where the treatment allo-
cations may be two or more treatment regimes,50 requiring binomial or multinomial
treatment selection/exposure models, from those where there are two or more trajectory
classes, requiring binomial or multinomial class membership models. Further work is
also required to clarify the interpretation to be given to the class-specific treatment effect
estimates when within class treatment effect heterogeneity (essential heterogeneity51) is
being postulated.

While simultaneous estimation of a joint model of treatment exposure and growth
curve response can be undertaken, there may be scope for simpler two-stage methods
that begin by estimating predicted treatment based on covariates and IVs, and then
replacing treatment by predicted treatment in the LCGA or GMM.

11 Using latent classes for pre-treatment trajectories

Havilland and Nagin25 and Haviland et al.52 consider the case where there is an extended
pre-treatment record for the response variable and this history is likely to be corre-
lated with treatment receipt. They examine use of trajectory classes formed from these
pre-baseline histories as a means to achieve a data reduction prior to propensity score
construction or as an alternative to propensity scores. They considered assigning partici-
pants to their pre-treatment response history class according to their MAP and treatment
effects estimated by class or pooled across classes weighted by prevalence. Alternatively,
participants can be considered as potentially belonging to all classes and class-specific
treatment effects/pooled effects estimated by an average across all participants weighted
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Figure 10 GMM pre-treatment growth history class to post-treatment growth response class transition
model.

by their class specific posterior probabilities. If the treatment effects and history trajec-
tory classes were estimated simultaneously the model would be structured similarly to
that of Morgan-Lopez and Fals-Stewart shown in Figure 8, where d1–d4 are replaced
by pre-baseline measures of y.

As in the case considered earlier of forming trajectory classes over response profiles
for more than one measure, so too can classes be formed over both pre-treatment and
post-treatment response histories. This formulation allows the effect of treatment to be
considered explicitly as influencing the probability of switching between trajectory latent
classes. Figure 10 shows such a model adapted from the trial setting of antidepressant
medication treatment with a repeat as described by Muthén et al.53

12 Discussion

There can be little doubt regarding the potential value of the group-based approaches
for exploratory analysis of differential response to therapy. The combination of being
able to use the model specification to define the space of variability to be considered,
combined with the relatively non-parametric nature of the class identification allows
scope for both clinical insight to guide search and yet for counter-intuitive findings
driven by the data to show through. The approach responds to the need to investigate
for whom a treatment is effective by allowing for different treatment effects in different
trajectory classes. Caution is nonetheless required in the interpretation of the classes.
GMMs, in allowing within group variability in growth trajectories, are likely to lead
to less distinctive classifications and a wider area of the response profile space where
class membership is more equivocal. They may, however, be more realistic and better
fit the data than the group-based latent growth (LCGA) models in which within-group
homogeneity of trajectory is assumed.

The models may also be viewed as data-reduction tools, collapsing variability across
a number of dimensions into a typology, whether that is informed primarily by patterns
of outcome response, patterns of pre-treatment response history, patterns of treatment
participation or patterns of missingness.
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Further work is required in the formalisation of these methods into both the traditional
framework of pre-specified analysis plans and into the more formal frameworks of causal
inference.
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