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Abstract

We consider clustering situations in which the pairwise
affinity between data points depends on a latent ”context”
variable. For example, when clustering features arising
from multiple object classes the affinity value between two
image features depends on the object class that generated
those features. We show that clustering in the context of a
latent variable can be represented as a special 3D hyper-
graph and introduce an algorithm for obtaining the clus-
ters. We use the latent clustering model for an unsupervised
multiple object class recognition where feature fragments
are shared among multiple clusters and those in turn are
shared among multiple object classes.

1. Introduction
We introduce a new type of clustering paradigm where

pairwise affinities between data points are defined by a
function of a latent ”context” variable thereby generating
multiple affinity matrices (or graphs). A situation of this
type occurs when P (xr, xs) ∈ [0, 1], standing for the proba-
bility that data points xr, xs belong to the same cluster, have
occasionally a high value or a low value depending on some
”context” latent variable: P (xr, xs) =

∑k
j=1 P (xr, xs, yj),

where yj are values/states of a random variable Y having
k different states. For example, the data points x1, ..., xm

could stand for image features arising from a collection of
k object classes y1, ..., yk. A pair of image features xr, xs

would be observed together, and thus have a high affinity
value, for images of some object classes and have a low
affinity value for images of other object classes. Thus a con-
ventional (spectral) clustering based on the pairwise affini-
ties Krs = P (xr, xs) would not produce the desired out-
come especially when the cardinalities of the object classes
differ in size, in which case Krs might have a small value
not because the features xr, xs are unlikely to be part of the
same cluster but because the object class in which they com-
monly appear is represented by a relatively small number of
training images compared to the total size of the training
set.

We show that this situation lends itself to a hyper-
graph construction over an extended set of m + k ver-
tices V = {x1, ..., xm, y1, ..., yk} with hyper-edges defined
over specific triplets {xr, xs, yj} standing for the proba-
bility P (xr, xs, yj) that the three vertices xr, xs, yj are to
be clustered together. All other hyper-edges would have a
zero weight. A clustering of the nodes, given the triple-
wise affinities, would provide an assignment of image fea-
tures and object classes to clusters. This construction
makes room for having clusters associated with their ob-
ject classes, so even if P (xr, xs) is small but P (xr, xs, yj)
is large for some subset of object classes then the features
xr, xs would be assigned to some cluster together with their
respective object classes. Moreover, we will show that the
special hyper-graph we are dealing with induces a clustering
algorithm which is reduced to a constrained form of Non-
Negative Tensor Factorization (NTF) problem.

In the second part of the paper we apply our model to
the task of clustering features which arise from multiple ob-
ject classes — a task where ”feature sharing” in one form
or another becomes important. Specifically, we consider an
unsupervised setting where a learner is given a collection
of unlabeled images, each containing an instance of some
object class (see Fig. 1). The learner identifies a set of
image fragments which are most effective in distinguishing
between the object classes and then sets out to find a par-
titioning of fragments into probabilistic assignments onto
clusters, thereby allowing fragments to be shared among a
number of clusters. The clusters are then associated (via
a second round of clustering process) with object classes
— thereby allowing detection of objects in cluttered scenes
achieved by associating matched image regions with object
classes. The unsupervised nature of this process together
with the latent clustering tool provides a scalable system
designed to handle many object classes.

2. The Latent Clustering Model
We are given data points X = {x1, ..., xm} and a con-

text variable Y having k distinct states y1, ..., yk. The affin-
ity value Krs between a pair of data points xr, xs is repre-
sented as a probability P (xr, xs) that xr, xs should be clus-
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Figure 1. Examples of objects used in the unsupervised learning.

tered together. In our problem setup, this affinity depends
on the state of the context variable by the marginal equation:
P (xr, xs) =

∑
j P (xr, xs | yj)P (yj) where P (xr, xs | yj)

stands for the triple-wise affinity representing the proba-
bility that the two data points are clustered together given
that Y = yj . In many applications of interest the the con-
tribution of the context variable to the affinity between a
pair of points is far from uniform. For example, if our the
data points represent image features and the context states
represent object classes, then a pair of features can appear
together in the context of one (or some) object class and
not in others. Therefore, if our goal is to cluster the data
points X into clusters, then the pairwise affinity values rep-
resented by the matrix K does not convey sufficient infor-
mation relevant for achieving a meaningful clustering. In-
stead, we assume we have direct access to the triple-wise
weights Kr,s,j = P (xr, xs, yj) — in Section 3 we will
derive such measurements in the context of unsupervised
multi-class recognition.

The framework described above is modeled by a hyper-
graph with a set of m + k vertices V standing for m data
points and k context states and a set of hyper-edges E
defined over triplets of vertices {vi1 , vi2 , vi3} representing
two data points and one context state (the order does not
matter), i.e., two of the indices are in the range [1,m] and
the third index is in the range [m + 1,m + k] (see Fig. 2).
The hyper-graph is endowed by hyper-edges weights 3-way
array W with entries wi1,i2,i3 where 1 ≤ i1, i2, i3 ≤ m+k,
defined by:

wi1,i2,i3 =
{

Ki1,i2,i3 if {vi1 , vi2 , vi3} ∈ E
undertermined otherwise

}
(1)

A clustering of the hyper-graph will provide a partition-
ing of the m + k vertices into q clusters. Each cluster will
contain a subset of data points and a subset of context states.
Thus, not only do we have the data-points partitioned into
clusters but we also gain additional information about the
association between clusters and context states — this as-
sociation would prove useful in the application described in
Section 3.

Figure 2. The hypergraph construction. Each hyper-edge connects
one context state yj and a pair of data points xr, xs.

The reason we put a value of ”undetermined” (instead
of zero) for non-admissible hyper-edges is because we truly
have access to only partial information. For example, the
entry wi1,i2,i3 when 1 ≤ i1, i2, i3 ≤ m corresponds to
the probability that three data points xi1 , xi2 and xi3 arise
from the same cluster — a measurement which we do not
have (or do not wish to have due to computational complex-
ity) access to. Therefore, the clustering of the hyper-graph
should comply with the measurements we do have which
are represented by the entries of Ki1,i2,i3 .

We focus our attention next on how to obtain a hyper-
graph clustering. Practical solutions for hyper-graph clus-
tering date back to the 70s with vertex swapping techniques
employed by the VLSI/PCB communities [6, 4]. More re-
cent attempts based on graph theoretic approaches essen-
tially look for an approximate graph that best resembles the
original hypergraph [2, 5, 12, 1] . For example, if H is the
m×

(
m
n

)
hypergraph incident matrix, then [5] computes the

graph adjacency m × m matrix HH> whose entries Hij

correspond to the sum of all hyper-edges weights which are
incident to vertices vi, vj of the hypergraph, whereas [12]
performs a multiplicative normalization with the vertices
degrees (the sum of weights incident to a vertex) as part
of creating a Laplacian of the hypergraph. Both are con-



sistent with graph theoretical research which define hyper-
graph Laplacians by summing up all the weights incident
to pairs of vertices [7]. Once a graph has been created the
authors then perform the clustering using graph techniques
— the popular being spectral clustering or normalized cuts.

The are a number of reasons why the existing hyper-
graph clustering algorithms cannot be easily adapted to our
problem:

[1]. The clustering result we wish to obtain is by nature
probabilistic, i.e., ”soft”. A context state yj is most likely to
be associated with multiple clusters (with a degree of rele-
vance) and for many applications of interest the assignment
of data points to clusters would also benefit from a proba-
bilistic assignment. For example, in the multi-class recogni-
tion application described in Section 3 the data points stand
for image fragments (features) and those are likely to be
shared among a number of clusters.

[2]. The graph-theoretic techniques mentioned above es-
sentially project back the hyper-graph to a graph. As
was mentioned in the introduction, the pairwise affinities
P (xr, xs) are a result of a marginal over the context vari-
able:

∑
j P (xr, xs, yj) which in the language of the hyper-

graph is
∑

i3
wi1,i2,i3 . A clique-expansion technique, for

example, would produce back P (xr, xs) which is the mea-
sure we started with and concluded in the introduction that
it is not sufficient for meaningful clustering — basically,
there is a risk that the influence of the context variable will
get lost in the process. Consequently, we need a technique
that works directly with the 3-way array W so that the role
of the context variable remains intact.

[3]. The hyper-graph weight array W has a special struc-
ture as it is sparse and contains multiple copies of the ar-
ray K. Moreover, the ”underdetrmined” entries cannot be
viewed as hyper-edges with vanishing weights, thus a con-
ventional graph-theoretical clustering would not be appro-
priate.

2.1. Semi-Symmetric NTF for Latent Clustering

We introduce in this section a reduction of the hyper-
graph clustering with weight structure described in eqn. 1
to a constrained non-negative semi-symmetric tensor fac-
torization of the 3-way array K into a sum of factors∑

r hr ⊗ hr ⊗ ur where the vector ur represents the proba-
bilistic assignment of the k context states to the r’th cluster
and the vector hr represents the probabilistic assignment of
the m data points to the r’th cluster.

The key for the reduction is the observation made in
[8] showing that under certain conditional independence
assumptions a probabilistic hyper-graph clustering with
weight tensor W onto q clusters corresponds to a super-

symmetric factorization:

W =
q∑

r=1

gr ⊗ gr ⊗ gr

where g1, ..., gq are column vectors of the probabilistic as-
signment matrix G with the constraints G ≥ 0 and G1 = 1.
The entry Gij stands for the probability that the i’th node of
the hypergraph is assigned to the j’th cluster.

In our case we have two types of nodes in the hyper-
graph — those that correspond to data points x1, ..., xm and
those that correspond to context states y1, ..., yk. Therefore,
we can represent the columns of the probabilistic assign-
ment matrix G as gj = (hj , uj) where hj holds the prob-
abilistic assignments of the data points, and uj for context
states, to the j’th cluster. The constraint G1 = 1 is equiv-
alent to the constraints

∑
j hji = 1 for i = 1, ...,m and∑

j uji = 1 for i = 1, ..., k.
The 3-way array W =

∑
r gr ⊗ gr ⊗ gr consists of 8

blocks out of which three are the tensor K =
∑

r hr⊗hr⊗
ur and its permutations

∑
r ur⊗hr⊗hr and

∑
r hr⊗ur⊗hr

and the remaining five correspond to hyper-edges which are
not in the set E, i.e., those whose weight is ”undetermined”
in the array W (see Fig. 3b).

As a result, the super-symetric factorization of the
weight array W contains as an embedding the factorization
of the array K into a semi-symmetric form (see Fig. 3):

K =
q∑

r=1

hr ⊗ hr ⊗ ur (2)

Thus, the solution for the probabilistic assignment of the
vertices representing the data points and context sates to q
clusters is found by the following constrained optimization:

min
ur,hr

D(K ||
q∑

r=1

hr ⊗ hr ⊗ ur) s.t. ur ≥ 0, hr ≥ 0∑
r hri = 1,

∑
r urj = 1

where r = 1, ..., q, i = 1, ...,m and j = 1, ..., k, and
D(x || y) =

∑
i xi ln(xi/yi)−xi+yi is the relative-entropy

error measure. Optimization over the realtive-entropy error
has a number of particularly useful advantages for our case:
(i) we can employ Jensen’s inequality to introduce auxil-
iary variables and obtain an EM-like iterative scheme, (ii)
the iterative scheme would automatically satisfy the non-
negativity constraints, and (iii) the square introduced by
hr⊗hr translates to an additive term under relative-entropy
and thus we avoid the complication of high-order terms (4th
order on hr) associated with in a Frobenius norm error.

Let Θ stand for the unknown parameters hr, ur, r =
1, ..., q and let L(Θ) = D(K ||

∑q
r=1 hr ⊗ hr ⊗ ur).

Let Ψr ≥ 0, r = 1, ..., q, stand for 3-way arrays of di-
mensions m × m × k (compatible with the dimensions



Figure 3. Hypergraph clustering process. a) The tensor W , b) The tensor W with blocks, representing K in gray, c) The tensor K, d) The
matrix G, resulting from the factorization of K

of K) representing non-negative auxiliary variables which
satisfy

∑
r Ψr = 1 where 1 is the array of 1s; and let

Q(Ψ,Θ) =
∑

r D(Ψr � K || hr ⊗ hr ⊗ ur) where
A � B =

∑
i1,i2,i3

Ai1,i2,i3Bi1,i2,i3 is an element-wise
product of two arrays (a.k.a Hadamard product).

Under standard manipulations (using Jensen’s inequal-
ity) it can be easily shown that (i) L(Θ) ≤ Q(Ψ,Θ) for
all admissible Ψ, (ii) L(Θ) = Q(Ψ∗,Θ) where Ψ∗ =
argminΨQ(Ψ,Θ) is the optimal solution under fixed Θ, and
(iii) stationary points over Θ for L(Θ) and Q(Ψ,Θ) coin-
cide. Taken together, we obtain the functional optimization:

min
ur,hr,Ψr

q∑
r=1

D(Ψr �K || hr ⊗ hr ⊗ ur)

s.t. ur ≥ 0, hr ≥ 0,Ψr ≥ 0∑
r

hri = 1,
∑

r

urj = 1,
∑

r

Ψr = 1

The update rule for ur,j given the current value of all other
variables is:

ur,j =
1

λj +
∑

i1,i2
hr,i1hr,i2

∑
i1,i2

Ψr
i1,i2,jKi1,i2,j ,

where λj is solved numerically (Newton-Raphson) from the
constraint

∑
r ur,j = 1. The update rule of hr,s is:

hr,s =
−(λs + α3) +

√
(λs + α3)2 + 4α2α1

2α1
,

where α1, α2, α3 are defined using the remaining variables:

α1 =
∑
i2,i3

Ψr
s,i2,i3Ks,i2,i3 +

∑
i1,i3

Ψr
i1,s,i3Ki1,s,i3

α2 = 2
∑
i3

ur,i3

α3 = 2
∑
i 6=s

∑
i3

hr,iur,i3

and where λs is solved numerically from the constraint∑
r hr,s = 1. Finally, the update rule for Ψr

i1,i2,i3
is:

Ψr
i1,i2,i3 =

ur,i1hr,i2hr,i3∑q
j=1 uj,i1hj,i2hj,i3

.

The iterative scheme starts with an initial guess for the aux-
iliary variables Ψr and hr and then proceeds iteratively until
convergence is achieved.

3. Unsupervised Multi-class Recognition

We apply the latent clustering model for the following
task: We are given an unlabeled set of images (from [10])
where each image contains an instance of some unknown
object class from a collection of 10 classes: 1. plastic (clear)
bottle, 2. beverage can, 3. ”do not enter” traffic sign, 4.
”stop” traffic sign, 5. ”one way” traffic sign, 6. vehicle from
frontal view, 7. vehicle from side view, 8. face in frontal
view, 9. computer mouse, and 10. pedestrian in frontal
view (see Fig. 1). Our task is to collect features repre-
sented as image fragments with their image location which
are on one hand the most ”relevant” for distinguishing be-
tween the classes and on the other hand are shared among
various classes. Once those features are collected we wish
to locate new instances of the object classes in novel im-
ages — where novel images may contain multiple instances
of various object classes.

The recognition task is similar to the one proposed
by [10] where image fragments are shared among object
classes but with the distinction that our task is unsuper-
vised hence is largely depended upon clustering (or projec-
tion) mechanisms rather than discriminatory mechanisms
employed in supervised settings. There are also similar
lines to the work of [11] in the sense of using image frag-
ments as basic building blocks but with the distinction that
(i) we work with multiple classes (rather than two), and
(ii) we have an unsupervised setting thus cannot make use



Figure 4. Pruning fragments. From each image 300 fragments are being extracted and matched in all the 200 images. This produces the
co-occurance matrix M. The fragments are then sorted by their correlation with the majority voting, i.e. the rows sum of M. Finally 10
fragments with highest correlation are chosen.

Figure 5. Training. Pruning produces 2000 fragments, from which the tensor K is formed. Applying the Semi-Symmetric NTF on the
tensor K results in the probabilistic assignment of the fragments and images to clusters. Following clustering based on the entries of U
produces the probabilistic assignment between clusters and object classes.

of maximizing mutual information for selecting best frag-
ments as proposed there. Also of relevance is the work of
[9, 3] which factor the pairwise co-occurances array of fea-
tures into a collection of rank-1 co-occurances using EM.
The assumption there, however, is that xr⊥xs | yj , i.e., the
factors P (xr, xs | yj) forms rank-1 arrays — an assumption
we do not need to make in the latent clustering model.

The relationship between clusters of features and object
classes is not one-to-one, i.e., an object class may induce a
number of feature clusters and a cluster of features may be
shared among several object classes. We therefore need to
(i) associate image fragments to clusters, (ii) associate im-
ages to clusters, and (iii) associate clusters to object classes.
For each surviving (i.e. relevant) image fragment we would
like to obtain the probability of assignment to each of the
clusters; for each image in the training set to obtain the
probability of assignment to each of the clusters, and for
each cluster the probability of assignment to each of the
object classes. Note that the latter is based on the infor-
mation of image-to-cluster assignments (the vectors ur) be-
cause each training image comes from a single object class.

With this type of information and given that a feature
is associated with a location, one could then match the li-
brary of features onto a novel image (containing multiple
instances of objects) to form ”hot spots” corresponding to
centers of objects. Each hot-spot location is then associated
with a probabilistic assignment to the object classes. The
details of the system are presented below.

3.1. Details of Recognition System

Training set: 10 object classes, 200 images, 20 from
each object class, scaled down to 32 × 32 pixels (dataset
adopted from [10]).

Image Fragments: The feature measurements consist
of a sample of 300 rectangular patches varying in size
and aspect-ratio from each image. This is consistent with
the approach of [11] where fragments are exhaustively
selected from the image set, and unlike the approach of
[10] where fragments are centered around image interest
points. In addition, each fragment is associated with the
corresponding image location for the purpose of creating
later a pointer to the proposed object class center (the
tacit assumption is that recognition will be shift and scale
invariant but not rotation invariant).

Pruning Fragments: The goal of this step is to winnow
out feature fragments and leave the ”best” 10 fragments
per image. In a supervised setting this can be handled
by computing the mutual information between the image
fragment and the class variable [11] and selecting the frag-
ments with the highest mutual information. Since we have
an unsupervised setting we perform instead a consistency
voting per image as follows. Let M be the co-occurance
matrix between the 300 fragments of a specific image and
all the 200 training images. Mij = 1 if the i’th fragment
is found in the j’th image, and 0 otherwise. A fragment
is matched to an image by performing a cross-correlation
at the corresponding location with a tolerance of a 4 × 4
window around the prescribed location. The fragment is
said to be found in the image if the cross-correlation is
above a prescribed threshold (0.7 in the implementation).
Let v = λM>1 contain the rows sum of M followed by
a scaling λ = maxi(M>1)i — representing the scaled
total number of ”hits” (fragments) per image. Since the
fragments come from an image associated with a single
object class, we expect the entries of v corresponding to the
other object classes to be relatively small. We also expect



Figure 6. Clusters resulting from the Semi-Symmetric NTF factorization. Axis x represents the image classes : 1. plastic (clear) bottle, 2.
beverage can, 3. ”do not enter” traffic sign, 4. ”stop” traffic sign, 5. ”one way” traffic sign, 6. vehicle from frontal view, 7. vehicle from
side view, 8. face in frontal view, 9. computer mouse, and 10. pedestrian in frontal view. Axis y represents the sum of the values in the
vector uj over all the 20 images of the same class. For example, 4th bar in the cluster 1 represents the sums of the values of vector u1 for
the images of ”stop” traffic sign.

Figure 7. Classes resulting from the CP clustering. The graphs show the values of the columns of the matrix G25x10

”relevant” fragments (represented by rows of M ) to have
a high correlation with v, thus we select the top 10 rows
of M with the highest covariance with v. This process is
repeated for each image with the end result of 2000 image
fragments. The pruning is summarized in the Fig. 4

Latent Model Clustering: We construct the 3-way ar-
ray K of size 2000×2000×200 whose context state variable
represents the images:

Ki,j,s =
{

1 if Fi ∈ Is and Fj ∈ Is

0 otherwise

}

where Fi represents the i’th fragment, i = 1, ..., 2000, and
Is represents images, s = 1, ..., 200. Following the Semi-
Symmetric NTF procedure described in Section 2.1 with
q = 25 clusters we obtain as a result fragment assignment
vectors hj ∈ R2000, j = 1, ..., 25, consisting of the proba-
bility of fragments to be in the j’th cluster, and image as-
signment vectors uj ∈ R200 consisting of images to be
associated with the j’th cluster. Let H and U be matrices
formed by the column vectors hj and uj , respectively.

Fig. 6 displays the clustering results. Each of the 25
clusters is displayed as a graph with the horizontal axis cor-



Figure 8. Example of classes-to-clusters relation. Clusters 9, 13 and 22, all of them having high probabilities for the images of beverage
can, have highest probabilities in the object class 6.

Figure 9. Detections of multiple objects in images.

responding to the 200 training images sorted by object class
and the vertical axis corresponding to the assignment prob-
ability uj . The results are presented such the probabilities
of all 20 images of the same class are summed up and pre-
sented as a single number. For example, cluster No. 1 con-
sists largely of images from class No. 4 (”stop” traffic sign),
whereas cluster No. 13 consists of images from classes 2,3
and 9. These results underscore the fact that in practice one
should not expect a one-to-one relationship between fea-
ture clusters and object classes because features are in most
cases shared among clusters and classes.

Clusters to Object Classes: Our final goal in the
training data processing is to form a probabilistic link be-
tween the 25 clusters of image fragments and the 10 object
classes. The motivation for desiring a probabilistic assign-
ment comes from the expectation that a feature cluster is
most likely relevant to a number of object classes — for
the same reason we expect image fragments to be shared
between clusters and object classes [10]. The information
for doing so is contained in the vectors uj representing the
probabilistic affinity between clusters and images. Since
each training image belongs to a single object class, the
high entries of a row of U represent clusters that should
be grouped together under the same object class. Let A
be a 25 × 25 matrix representing the pair-wise affinities
Aij = e−‖ui−uj‖2 between fragment-clusters. Given A we
look for a 25× 10 probabilistic assignment matrix G where
Gij represents the probability that the i’th cluster belongs
to the j’th object class. This is a special case of [8] who
show that the desired G is the outcome of the constrained
optimization: ‖A′ − GG>‖2F subject to G ≥ 0, G1 = 1

and A′ is the closest doubly stochastic matrix to A. Both
the latent model clustering and the clusters to object classes
clustering processes are summarized in the Fig. 5.

Fig. 7 displays the 10 columns of the probabilistic as-
signment matrix G. The horizontal axis of display repre-
sents the 25 clusters and the vertical axis represents the val-
ues (probabilities) of respective column of G. For example,
object class No. 5 (”one way” traffic sign), represented by
the first column of G, groups together clusters 12, 18 and 20
which is consistent with the results of Fig. 6 where clusters
12 and 20 largely consist of class No. 5 images and clus-
ter 18 having some weight for class No. 5 images. Fig. 8)
zooms in the 6th column of G which groups together clus-
ters 9,13 and 22. These three clusters all have a large repre-
sentation for Class No. 2 (Can Beverages).

Detecting Multiple Objects in Novel Images: from H
we can select the most ”relevant” (highest probability) frag-
ments per cluster — we have selected 10 leading fragments
per cluster bringing the number of fragments we work with
during visual recognition to 250. When a novel image is
processed, each of the 250 fragments is matched by scan-
ning the image at all locations and at different scales. When
the fragment is matched (i.e., cross correlation is above
threshold) to a certain location a vote to the object class cen-
ter (relative to the matched location) is tallied (recall that
a fragment has a location of class center associated to it).
The vote consists of the probability of the center to be as-
sociated with each of the 10 object classes (corresponding
row of H left-multiplied by G). The votes (class probabil-
ity vectors) are added thus making 10 object-class voting
maps. A location which is associated with fragments vot-



Figure 10. Detections of objects. On the left is the input image. In the center is the fragments voting map. The object class probabilities
for the highest local maximums is on the right.

ing consistently to the same object class will have a high
value in the corresponding voting map. Hot spot in the vot-
ing maps are identified and are sorted by voting strength.
Fig. 10 shows a test image with overlaid detections (in this
case Beverage Can and and a Bottle). The voting maps were
added together (for display) showing the hot-spot locations
which are consistent with the locations of the two objects.
On the right-hand display the relative strengths of each of
the classes is shown for each of the two hot-spots. The Bev-
erage Can has the highest score in the left hot-spot (Class
6 from Fig. 7 represents clusters 9, 13, 22 which all have
high scores for object class No. 2) and the Bottle has the
highest score in the right hot-spot (Class 8 from Fig. 7 most
strongly supports cluster 8 which represents object classes
No. 1 and 10 corresponding to Bottles and Pedestrians).
Fig. 9 shows object detections in three more novel images
containing various object classes embedded in richly clut-
tered scenes.

4. Summary
We introduced an affinity-based probabilistic clustering

task which embeds a ”hidden” variable in the definition of
pairwise affinities between data points. The framework is
useful when the affinity values between data points vary
according to an external context variable thereby being de-
fined by multiple affinity matrices (one per value of the con-
text variable). We have shown that the framework is mod-
eled by a special hyper-graph (where not all hyper-edges
have a defined weight) which can be reduced to a con-
strained form of a non-negative tensor factorization. The
model was applied to a setting where data-points represent
image fragments (features) and the context variable repre-
sents object classes. The clustering algorithm forms soft
clusters of features where features are probabilistically as-
signed to clusters and as a second phase the clusters them-
selves are probabilistically assigned to object classes.
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