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Abstract

We develop the Latent Multi-group Membership
Graph (LMMG) model, a model of networks

with rich node feature structure. In the LMMG
model, each node belongs to multiple groups and

each latent group models the occurrence of links

as well as the node feature structure. The LMMG
can be used to summarize the network structure,

to predict links between the nodes, and to pre-

dict missing features of a node. We derive effi-

cient inference and learning algorithms and eval-

uate the predictive performance of the LMMG on

several social and document network datasets.

1. Introduction

Network data, such as social networks of friends, cita-

tion networks of documents, and hyper-linked networks of

webpages, play an increasingly important role in modern

machine learning applications. Analyzing network data

provides useful predictive models for recommending new

friends in social networks (Backstrom & Leskovec, 2011)

or scientific papers in document networks (Nallapati et al.,

2008; Chang & Blei, 2009).

Research on networks has focused on various models of

network link structure. Latent variable models (Airoldi

et al., 2007; Hoff et al., 2002; Kemp et al., 2006) decom-

pose a network according to hidden patterns of connections

between the nodes, while models based on Kronecker prod-

ucts (Leskovec et al., 2010; Kim & Leskovec, 2012; 2011a)

accurately model the global network structure. Though

powerful, these models account only for the structure of

the network, while ignoring observed features of the nodes.

For example, in social networks users have profile informa-

tion, and in document networks each node also contains the

text of the document that it represents. Such models can
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find patterns which account for the connections between

nodes, but they cannot account for the node features.

Node features along with the links between them provide

rich and complementary sources of information and should

be used simultaneously for uncovering, understanding and

exploiting the latent structure in the data. In this respect, we

develop a new network model considering both the emer-

gence of links of the network and the structure of node fea-

tures such as user profile information or text of a document.

Considering both sources of data, links and node features,

leads to more powerful models than those that only con-

sider links. For example, given a new node with a few

of its links, traditional network models provide a predic-

tive distribution of nodes to which it might be connected.

However, to predict links of a node, our model does not

need to see any links of a node. It can predict links using

only node’s features. For example, we can suggest user’s

friendships based only on the profile information, or rec-

ommend hyperlinks of a webpage based only on its tex-

tual information. Moreover, given a new node and its links,

our model also provides a predictive distribution of node

features. This can be used to predict features of a node

given its links or even predict missing or hidden features

of a node given its links. For example, in our model user’s

interests or keywords of a webpage can be predicted using

only the connections of the network. Such predictions are

out of reach for traditional models of networks.

We develop a Latent Multi-group Membership Graph
(LMMG) model of networks that explicitly ties nodes into

groups of shared features and linking structure (Figure 1).

Nodes belong to multiple latent groups and the occurrence

of each node feature is determined by a logistic model

based on the group memberships of the given node. Links

of the network are then generated via link-affinity matrices.

Each link-affinity matrix Θi represents a table of link prob-

abilities, and an appropriate entry of Θi is chosen based

on whether or not a pair of nodes share the membership

in group i. We derive effective algorithms for model pa-

rameter estimation and prediction. We study the perfor-



Latent Multi-group Membership Graph Model

Figure 1. Latent Multi-group Membership Graph model. A node

belongs to multiple latent groups at once. Based on group mem-

berships features of a node are generated using a logistic model.

Links are modeled via link-affinity matrices which allows for rich

interactions between members and non-members of groups.

mance of LMMG on real-world social and document net-

works. We investigate the predictive performance on three

different tasks: link prediction, node feature prediction, and

supervised node classification. The LMMG provides sig-

nificantly better performance on all three tasks than natural

alternatives and the current state of the art.

2. LMMG Model Formulation

The Latent Multi-group Membership Graph (LMMG)

model is a model of a (directed or undirected) network and

nodes which have categorical features. Our model contains

two important ingredients or innovations (See Figure 1).

First, the model assigns nodes to latent groups and al-

lows nodes to belong to multiple groups at once. In con-

trast to multinomial models of group membership (Airoldi

et al., 2007; Chang & Blei, 2009), where the membership

of a node is shared among the groups (the probability over

group memberships of a node sums to 1), we model group

memberships as a series of Bernoulli random variables

(φi in Figure 1), which indicates that nodes in our model

can truly belong to multiple groups. Hence, in contrast

to multinomial topic models, a higher probability of node

membership to a group does not necessarily to lower prob-

ability of membership to some other group in the LMMG.

Second, for modeling the links of the network, each group

k has associated a link-affinity matrix (Θ in Figure 1). Each

link-affinity matrix represents a table of link probabilities

given that a pair of nodes belongs or does not belong to

group k. Thus, depending on the combination of the mem-

berships of nodes to group k, an appropriate element of Θk

is chosen. For example, the entry (0, 0) of Θk captures the

link-affinity when none of the nodes belongs to group k,

while (1, 0) stores the link-affinity when first node belongs

to the group but the second does not. As we will later show

that this allows for rich flexibility in modeling the links of

the network as well as for uncovering and understanding

the latent structure in the network data.

Figure 2. Plate model representation of LMMG model.

Now we formalize the LMMG model illustrated in Fig-

ure 2 and describe it in a generative way. Formally, each

node i = 1, 2, · · · , N has a real-valued group membership

φik ∈ [0, 1] for each group k = 1, 2, · · · , K . φik represents

the probability that node i belongs to group k. Assuming

the Beta distribution parameterized by αk1, αk2 as a prior

distribution of group membership φik , we model the latent

group assignment zik for each node as follows:

φik ∼ Beta(αk1, αk2)

zik ∼ Bernoulli(φik) for k = 1, 2, · · · , K . (1)

Since each group membership zik of a node is independent,

a node can belong to multiple groups simultaneously.

The group memberships of a node affect both node features

and its links. With respect to node features, we limit our

focus to binary-valued features and use a logistic function

to model the occurrence of node’s features based on the

groups it belongs to. For each feature Fil of node i ( l =
1, · · · , L ), we consider a separate logistic model where we

regard group memberships φi1, · · · , φiK as input features

of the model. In this way, the logistic model represents the

relevance of each group membership to the presence of a

node feature. For convenience, we refer to the input vector

of node i for the logistic model as φi = [φi1, · · · , φiK , 1],
where φi(K+1) = 1 represents the intercept term. Then,

yil =
1

1 + exp(−wT
l φi)

Fil ∼ Bernoulli(yil) for l = 1, 2, · · · , L (2)

where wl ∈ RK+1 is the logistic model parameter for the

l-th node feature. The value of each wlk indicates the con-

tribution of group k to the presence of node feature l.

In order to model the links of the network, we build on

the idea of the Multiplicative Attributes Random Graph

(MAG) model (Kim & Leskovec, 2012). Here each la-

tent group k has associated a link-affinity matrix Θk ∈
[0, 1]2×2. Each entry of the link-affinity matrix indicates a
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(a) Homophily (b) Heterophily (c) Core-periphery

Figure 3. Link structures modeled by link-affinity matrices.

tendency of linking between a pair of nodes depending on

whether they belong to the group k or not. In other words,

given the group assignments zik and zjk of nodes i and j,

zik “selects” a row and zjk “selects” a column of Θk and

so that the linking tendency from node i to node j is cap-

tured by Θk[zik, zjk]. After acquiring such link-affinities

from all the groups, we define the link probability pij as

the product of the link-affinities. Therefore, based on latent

group assignments and link-affinity matrices, we determine

each entry of the adjacency matrix A ∈ {0, 1}N×N of the

network as follows:

pij =
∏

k

Θk[zik, zjk]

Aij ∼ Bernoulli(pij) for i, j = 1, 2, · · ·N . (3)

The network model parameter Θk represents the link affin-

ity with respect to the particular group k. The model offers

flexibility in a sense that we can represent many types of

linking structures. In Figure 3, by varying the link-affinity

matrix, the model can capture heterophily (love of the dif-

ferent), homophily (love of the same), or core-periphery

structure. This way the affinity matrix allows us to discover

the effects of node features on links of the network.

The node feature and the network models are connected via

group memberships φi. For instance, suppose that wlk is

large for some feature l and topic k. Then, as the node i be-

longs to topic k with high probability (φik is close to 1), the

feature l of node i, Fil, is more likely to be 1. By modeling

group memberships using multiple Bernoulli random vari-

ables (instead of using multinomial distribution (Airoldi

et al., 2007; Chang & Blei, 2009)), we achieve greater mod-

eling flexibility which allows for making predictions about

links given features and features given links. In Section

4, we empirically demonstrate that the LMMG outperforms

traditional models on these tasks.

Moreover, if we divide the nodes of the network into two

sets depending on the membership to group k, then we can

discover how members of group k link to other members

as well as non-members of k, based on the structure of

Θk. For example, when Θk has large values on diagonal

entries like in Figure 3(a), members or non-members are

likely to link among themselves, while there is low affinity

for links between members and non-members. Figure 3(b)

captures exactly the opposite behavior where links are most

likely between members and non-members. While the

core-periphery structure is captured by link-affinity matrix

in Figure 3(c) where nodes that share group memberships

(the “core”) are most likely to link, while nodes in the pe-

riphery are least likely to link among themselves.

3. Inference, Estimation and Prediction

We now turn our attention to LMMG model estimation.

Given a set of binary node features F and the network A,

we aim to find node group memberships φ, parameters W

of node feature model, and link-affinity matrices Θ.

3.1. Problem formulation

When the node features F = {Fil : i = 1, · · · , N, l =
1, · · · , L} and the adjacency matrix A ∈ {0, 1}N×N are

given, we aim to find the group memberships φ = {φik :
i = 1, · · · , N, k = 1, · · · , K}, the logistic model param-

eters W = {wlk : l = 1, · · · , L, k = 1, · · · , K + 1},

and the link-affinity matrices Θ = {Θk : k = 1, · · ·K}.

We apply the maximum likelihood estimation, which finds

the optimal values of φ, W , and Θ so that they maximize

the likelihood P (F, A, φ|W, Θ, α) where α represents hy-

per parameters, α = {(αk1, αk2) : k = 1, · · · , K}, for the

Beta prior distributioins. In the end, we aim to solve

max
φ,W,Θ

log P (F, A, φ|W, Θ, α) . (4)

Now we compute the objective function in the above opti-

mization problem. Since the LMMG independently gener-

ates F and A given group memberships φ, we decompose

the log-likelihood log P (F, A, φ|W, Θ, α) as follows:

log P (F, A, φ|W, Θ, α)

= log P (F |φ, W ) + log P (A|φ, Θ) + log P (φ|α) . (5)

Hence, to compute log P (F, A, φ|W, Θ, α), we separately

calculate each term of Equation (5). We obtain log P (φ|α)
and log P (F |φ, W ) from Equations (1) and (2):

log P (φ|α) =
∑

i,k

(αk1 − 1) log φik

+
∑

i,k

(αk2 − 1) log(1 − φik)

log P (F |φ, W ) =
∑

i,l

Fil log yil + (1 − Fil) log(1 − yil)

where yil is defined in Equation (2).

With regard to the second term in Equation (5),

log P (A|φ, Θ) = log
∑

Z

P (A|Z, φ,Θ)P (Z|φ, Θ) (6)

for Z = {zik : i = 1, · · · , N, k = 1, · · · , K}. We note

that A is independent of φ given Z . To exactly calculate
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log P (A|φ, Θ), we thus sum P (A|Z, Θ)P (Z|φ) over every

instance of Z given Θ and φ, but this requires the sum over

2NK instances. As this exact computation is infeasible, we

approximate log P (A|φ, Θ) using its lower bound obtained

by applying Jensen’s Inequality to Equation (6):

log P (A|φ, Θ) = log EZ∼φ [P (A|Z, Θ)]

≥ EZ∼φ [log P (A|Z, Θ)] (7)

Now that we are summing up over N2 terms, the

computation of the lower bound is feasible. We thus

maximize the lower bound L of the log-likelihood

log P (A, F, φ|W, Θ, α). To sum up, we aim to maximize

min
φ,W,Θ

−(Lφ + LF + LA) + λ|W |1 (8)

where Lφ = log P (φ|α),LF = log P (F |φ, W ), and

LA = EZ∼φ [log P (A|Z, W )]. To avoid overfitting, we

regularize the objective function by the L1-norm of W .

3.2. Parameter estimation

To solve the problem in Equation (8), we alternately up-

date the group memberships φ, the model parameters W ,

and Θ. Once φ, W , and Θ are initialized, we first update

the group memberships φ to maximize L with fixing W

and Θ. We then update the model parameters W and Θ to

minimize the function (−L + λ|W |1) in Equation (8) by

fixing φ. Note that L is decomposed into LA, LF , and Lφ.

Therefore, when updating W and Θ given φ, we separately

maximize the corresponding log-likelihoods LF and LA.

We repeat this alternate updating procedure until the solu-

tion converges. In the following we describe the details.

Update of group memberships φ. Now we focus on the

update of group membership φ given the model parameters

W and Θ. We use the coordinate ascent algorithm which

updates each membership φik by fixing the others so to

maximize the lower bound L. By computing the deriva-

tives of Lφ, LF , and LA we apply the gradient method to

update each φik:

∂Lφ

∂φik

=
αk1 − 1

φik

−
αk2 − 1

1 − φik

∂LF

∂φik

=
∑

l

(Fil − yil)wlk

∂LA

∂φik

= EZ∼φ





∑

j:Aij=1

∂ log pij

∂φik

+
∑

j:Aij=0

∂ log(1 − pij)

∂φik

+
∑

j:Aji=1

∂ log pji

∂φik

+
∑

j:Aji=0

∂ log(1 − pji)

∂φik



 (9)

where Fil is either 0 or 1, and yil and pij is respectively

defined in Equation (2) and (3). Due to the brevity, we de-

scribe the details of Equation (9) in the Appendix. Hence,

by adding up
∂Lφ

∂φik
, ∂LF

∂φik
, and ∂LA

∂φik
, we complete comput-

ing the derivative of the lower bound of log-likelihood ∂L
∂φik

and update the group membership φik using the gradient

method:

φnew
ik = φold

ik + γφ

(

∂LA

∂φik

+
∂LF

∂φik

+
∂LA

∂φik

)

(10)

for a given learning rate γφ. By updating each φik in turn

with fixing the others, we can find the optimal group mem-

berships φ given the model parameters W and Θ.

Update of node feature model parameters W . Now we

update the parameters for node feature model, W , while

group memberships φik are fixed. Note that given the group

membership φ the node feature model and the network

model are independent of each other. Therefore, finding

the parameter W is identical to running the L1-regularized

logistic regression given input φ and output F data as we

penalize the objective function in Equation (8) on the L1

value of the model parameter W . We basically use the gra-

dient method to update W but make it sparse by applying

the technique similar to LASSO:

∂LF

∂wlk

=
∑

i

(Fil − yil)φik

wnew
lk = wold

lk + γF

∂LF

∂wlk

− λ(k)Sign(wlk) (11)

if wold
lk 6= 0 or | ∂LF

∂wlk
| > λ(k) where λ(k) = λ for k =

1, · · · , K and λ(K + 1) = 0 (i.e., we do not regularize on

the intercepts). γF is a constant learning rate. Furthermore,

if wlk crosses 0 while being updated, we assign 0 to wlk as

LASSO does. By this procedure, we can update the node

feature model parameter W to maximize the lower bound

of log-likelihoodL as well as to maintain the small number

of relevant groups for each node feature.

Update of network model parameters Θ. Next we focus

on updating network model parameters, Θ, also where the

group membership φ is fixed. Again, note that the network

model is independent of the node feature model given the

group membership φ, so we do not need to consider Lφ or

LF . We thus update Θ to maximize LA given φ using the

gradient method.

∇Θk
LA ≈ ∇Θk

EZ∼φ





∑

Aij=1

log pij +
∑

Aij=0

log(1 − pij)





Θnew
k = Θold

k + γA∇Θk
LA

for a constant learning rate γA. We explain the computation

of ∇Θk
EZ∼φ log pij and ∇Θk

EZ∼φ log(1 − pij) in detail

in the Appendix.
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3.3. Prediction

With a fitted model, our ultimate goal is to make predic-

tions about new data. In the real-world application, the

node features are often missing. Our algorithm is able to

nicely handle such missing node features by fitting LMMG
only to the observed features. In other words, when we

update the group membership φ or the feature model pa-

rameter W by the gradient method from Equation (9) and

(11), we only average the terms corresponding to the ob-

served data. For example, when there is missing feature

data, Equation (9) can be converted into as:

∂LF

∂φik

=

∑

l:Fil∈O
(Fil − yil)wlk

∑

l:Fil∈O
1

(12)

for the observed data O.

Similarly, for link prediction we modify the model estima-

tion method as follows. While updating the node feature

model parameters W based on the features of all the nodes

including a new node, we estimate the network model pa-

rameters Θ only on the observed network by holding out

the new node. This way, the observed features naturally

update the group memberships of a new node, we can pre-

dict the missing node features or network links by using the

estimated group memberships and model parameters.

4. Experiments

Here we perform experiments to evaluate our model. First,

we run the various prediction tasks: missing node feature

prediction, missing link prediction, and supervised node

classification. In all tasks our model outperforms natural

baselines. Second, we qualitatively analyze the relation-

ships between node features and network structure by a

case study of a Facebook ego-network and show how the

LMMG identifies useful and interpretable latent structures.

Datasets. For our experiments, we used the following

datasets containing networks and node features.

• AddHealth (AH): School friendship network (458

nodes, 2,130 edges) with 35 school-related node

features such as GPA, courses taken, and place-

ment (Bearman et al., 1997).

• Egonet (EGO): Facebook ego-network of a particular

user (227 nodes, 6,348 edges) and 14 binary features

(e.g. same high school, same age, and sports club),

manually assigned to each friend by the user.

• Facebook100 (FB): Facebook network of Cal-

tech (769 nodes, 33,312 edges) and 24 university-

related node features like major, gender, and dormi-

tory (Traud et al., 2011).

• WebKB (WKB): Hyperlinks between computer sci-

ence webpages of Cornell University in the WebKB

(a) Missing feature (b) Missing link (c) Supervised node
prediction prediction classification

Figure 4. Three link and feature based predictive tasks.

dataset (195 nodes, 304 edges). We use occurrences

of 993 words as binary features (Craven et al., 1998).

We binarized discrete valued features (e.g. school year)

based on whether the feature value is greater than the

median value. For the non-binary categorical features

(e.g. major), we used an indicator variable for each possible

feature value. Some of these datasets and the source code

of our algorithms are available at http://snap.stanford.edu.

Predictive tasks. We investigate the predictive perfor-

mance of the LMMG based on three different tasks. We

visualize the three prediction tasks in Figure 4. Note that

the column represents either features or nodes according to

the type of the task. For each matrix, given 0/1 values in the

white area, we predict the values of the entries with ques-

tion marks. First, assuming that all node features of a given

node are completely missing, we predict all the features

based on the links of the node (Figure 4(a)). Second, when

all the links of a given node are missing, we predict the

missing links by using the node feature information (Fig-

ure 4(b)). Last, we assume only few features of a node are

missing and we perform the supervised classification of a

specific node feature given all the other node features and

the network (Figure 4(c)).

Baseline models. Now we introduce natural baseline and

state of the art methods. First, for the most basic baseline

model, when predicting some missing value (node feature

or link) of a given node, we average the corresponding val-

ues of all the other nodes and regard it as the probability

of value 1. We refer to this algorithm as AVG. Second,

as we can view each of the three prediction tasks as the

classification task, we use Collective Classification (CC)

algorithms that exploit both node features and network de-

pendencies (Sen et al., 2008). For the local classifier of

CC algorithms, we use Naive-Bayes (CC-N) as well as lo-

gistic regression (CC-L). We also compare the LMMG to

the state or the art Relational Topic Model (RTM) (Chang

& Blei, 2009). We give further details about these models

and how they were applied in the Appendix.

Task 1: Predicting missing node features. First, we ex-

amine the performance for the task of predicting missing
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LL

AVG CC-N CC-L RTM LMMG
AH -23.0 -17.6 -16.8 -63.4 -15.6

EGO -5.4 -6.6 -5.1 -9.9 -3.7

FB -8.7 -11.6 -8.9 -19.0 -7.4

WKB -179.3 -186.8 -179.2 -336.8 -173.6

ACC

AVG CC-N CC-L RTM LMMG
AH 0.53 0.61 0.56 0.59 0.64

EGO 0.79 0.81 0.78 0.74 0.86

FB 0.77 0.76 0.75 0.77 0.80

WKB 0.88 0.88 0.89 0.88 0.90

Table 1. Prediction of missing node attributes. The LMMG per-

forms the best in terms of the log-likelihood as well as the classi-

fication accuracy on the held-out data.

features of a node where features of other nodes and all the

links are observed. We randomly select a node and remove

all the feature values of that node and try to recover them.

We quantify the performance by using the log-likelihood

of the true feature values over the estimated distributions

as well as the predictive accuracy (the probability of cor-

rectly predicting the missing features) of each method.

Table 1 shows the results of the experiments by measur-

ing the average of log-likelihood (LL) and prediction accu-

racy (ACC) for each algorithm and each dataset. We notice

that LMMG model exhibits the best performance in the log-

likelihood for all datasets. While CC-L in general performs

the second best, our model outperforms it by up to 23%.

The performance gain over the other models in terms of ac-

curacy seems smaller when compared to the log-likelihood.

However, LMMG model still predicts the missing node fea-

tures with the highest accuracy on all datasets.

In particular, the LMMG exhibits the most improvement in

node feature prediction on the ego-network dataset (30%

in LL and 7% in ACC) over the next best method. As the

node features are derived by manually labeling community

memberships of each person in the ego-network dataset,

a certain group of people in the network intrinsically share

some node feature (community membership). In this sense,

the node features and the links in the ego-network are di-

rectly related to each other and our model successfully ex-

ploits this relationship to predict missing node features.

Task 2: Predicting missing links. Second, we also con-

sider the task of predicting the missing links of a specific

node while the features of the node are given. Similarly to

the previous task, we select a node at random, but here we

remove all its links while observing its features. We then

aim to recover the missing links. For evaluation, we use

the log-likelihood (LL) of missing links as well as the area

under the ROC curve (AUC) of missing link prediction.

We give the experimental results for each dataset in Ta-

LL

AVG CC-N CC-L RTM LMMG
AH -40.2 -57.2 -38.9 -100.6 -36.1

EGO -142.7 -134.3 -157.6 -149.9 -125.9

FB -320.8 -330.7 -345.6 -359.1 -328.3

WKB -54.2 -185.5 -39.6 -25.8 -13.7

AUC

AVG CC-N CC-L RTM LMMG
AH 0.51 0.69 0.39 0.56 0.72

EGO 0.61 0.89 0.55 0.49 0.89

FB 0.73 0.70 0.57 0.46 0.73

WKB 0.70 0.86 0.55 0.50 0.89

Table 2. Prediction of missing links of a node. The LMMG per-

forms best in all but one case.

ble 2. Again, the LMMG outperforms the baseline mod-

els in the log-likelihood except for the Facebook100 data.

Interestingly, while RTM was relatively competitive when

predicting missing features, it tends to fail predicting miss-

ing links, which implies that the flexibility of link-affinity

matrices is needed for accurate modeling of the links.

We observe that Collective Classification methods look

competetive in some performance metrics and datasets. For

example, CC-N gives good results in terms of classifica-

tion accuracy, and CC-L performs well in terms of the log-

likelihood. As CC-N is a discriminative model, it does not

perform well in missing link probability estimation. How-

ever, the LMMG is a generative model that produces a joint

probability of node features and network links, so it is also

very good at estimating missing links. Hence, in overall,

the LMMG nicely exploits the relationship between the net-

work structure and node features to predict missing links.

Task 3: Supervised node classification. Finally, we

examine the performance on the supervised classification

task. In many cases, we aim to classify entities (nodes)

based on their feature values under the supervised setting.

Here the relationships (links) between the entities are also

provided. For this experiment, we hold out one feature of

nodes as the output class, regarding all other features of

nodes and the network as input data. We divide the nodes

into a 70% training and 30% test set. Similarly, we mea-

sure the average of the log-likelihood (LL) as well as the

average classification accuracy (ACC) on the test set.

We illustrate the performance of various models in Table 3.

The LMMG model performs better than the other mod-

els in both the log-likelihood and the classification accu-

racy. It improves the performance by up to 20% in the log-

likelihood and 5% in the classification accuracy. We also

notice that exploiting the relationship between node fea-

tures and global network structure can improve the perfor-

mance on supervised node classification compared to the

models focusing on the local network dependencies (e.g.,
Collective Classification methods).
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LL

AVG CC-N CC-L RTM LMMG
AH -84.5 -486.6 -60.5 -236.0 -55.3

EGO -24.8 -54.0 -22.2 -41.7 -21.2

FB -97.6 -254.6 -79.2 -181.7 -63.4

WKB -17.5 -254.6 -15.4 -193.6 -15.0

ACC

AVG CC-N CC-L RTM LMMG
AH 0.52 0.58 0.63 0.51 0.63

EGO 0.76 0.76 0.77 0.75 0.79

FB 0.69 0.71 0.77 0.72 0.77

WKB 0.82 0.81 0.84 0.84 0.85

Table 3. Supervised node classification. The LMMG gives the

best performance on both metrics and all four datasets.

Case study: Analysis of a Facebook ego-network. Now

we qualitatively analyze the Facebook ego-network exam-

ple to provide insights into the relationship between node

features and network structure. We examine the estimated

model parameters W (for features) and Θ (for network

structure). By investigating model parameters (W and Θ),

we can find not only what features are important for each

group but also how each group affects the link structure.

We begin by introducing the user which we used to cre-

ate a network between his Facebook friends. We asked

our user to label each of his friends with a number of la-

bels. He chose to use 14 different labels. They corre-

spond to his high school (HS), undergraduate university

(UNIVERSITY), math olympiad camp (CAMP), computer

programming club (KPROG) and work place (KCOMP)

friends. The user also assigned labels to identify friends

from his graduate program (CS) and university (ST), bas-

ketball (BASKETBALL) and squash (SQUASH) clubs, as

well as travel mates (TRAVEL), summer internship buddies

(INTERN), family (FAMILY) and age group (AGE).

We fit the LMMG to the ego-network and each friend’s

memberships to the above communities. We obtained the

model parameters W and Θ. For the validation procedure,

we set the number of latent groups to 5 since the previous

prediction tasks worked well when K = 5. In Table 4, for

each of 5 latent groups, we represent the top 3 features with

the largest absolute value of model parameter |wlk| and the

corresponding link-affinity matrices Θk.

We begin by investigating the first group. The top three la-

bels the most correlated to the first group are ST, AGE, and

INTERN. However, notice that INTERN is negatively corre-

lated. This means that group 1 contains students from the

same graduate school and age, but not people with whom

our user worked together at the summer internship (even

though they may be of the same school/age). We also note

that Θ1 exhibits homophily structure. From this we learn

that summer interns, who met our Facebook user neither

because of shared graduate school nor because of the age,

form a group within which people are densely connected.

On the other hand, people of the same age at the same uni-

versity also exhibit the homophily, but are less densely con-

nected with each other. Such variation in link density that

depends on the group memberships agrees with our intu-

ition. Those who worked at the same company actively in-

teract with each other so almost everyone is linked in Face-

book. However, as the group of people of the same uni-

versity or age is large and each pair of people in that group

does not necessarily know each other, the link affinity in

this group is naturally smaller than in the intern’s group.

Similarly, groups 2 and 3 form the two sports groups

(BASKETBALL, SQUASH). People are connected densely

within each of the groups, but less connected to the outside

of the groups. This is natural because the sports clubs make

members actively interact with each other but do not nec-

essarily make members interact with those not in the clubs.

Furthermore, we notice that those who graduated from not

only the same high school (HS) but also the same under-

graduate school (UNIVERSITY) form another community

but the membership to high school is more important than

to the undergraduate university (8.7 vs. 2.3).

However, for groups 4 and 5, we note that the correspond-

ing link-affinity matrices are nearly flat (i.e. values are

nearly uniform). This implies that groups 4 and 5 are re-

lated to general node features. In this sense, we hypothesize

that features like CS, family, math camp, and the company,

have relatively little effect on the network structure.

5. Related Work and Discussion

The LMMG builds on previous research in machine learn-

ing and network analysis. Many models have been de-

veloped to explain network link structure (Airoldi et al.,

2007; Hoff et al., 2002; Kemp et al., 2006; Leskovec et al.,

2010) and extensions that incorporate node features have

also been proposed (Getoor et al., 2001; Kim & Leskovec,

2011b; Taskar et al., 2003). However, these models do not

consider latent groups and thus cannot provide the benefits

of dimensionality reduction or produce interpretable clus-

ters useful for understanding network community structure.

The LMMG provides meaningful clustering of nodes and

their features in the network. The network models of sim-

ilar flavor have been proposed in the past (Airoldi et al.,

2007; Hoff et al., 2002; Kemp et al., 2006), and some even

incorporate node features (Chang & Blei, 2009; Nallapati

et al., 2008; Miller et al., 2009). However, such models

have been mainly developed for document networks where

they assume the multinomial topic distributions for each

word in the document. We extend this by learning a lo-

gistic model for occurrence of each feature based on node

group memberships. To highlight the difference between

the previous models and ours, since topic memberships
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Group Top 1 Top 2 Top 3 Link-affinity matrix

1 ST (9.0) AGE (4.5) INTERN (-3.7) [0.67 0.08; 0.08 0.17]

2 HS (-8.7) UNIVERSITY (-2.3) BASKETBALL (2.2) [0.26 0.18; 0.18 0.38]

3 UNIVERSITY (-7.1) KORST (-2.6) SQUASH (2.2) [0.22 0.23; 0.23 0.32]

4 CS (7.3) FAMILY (7.0) CAMP (6.9) [0.25 0.24; 0.24 0.27]

5 KCOMP (5.2) KORST (4.4) INTERN (-3.8) [0.29 0.22; 0.22 0.27]

Table 4. Logistic model parameter values of top 3 features and the link-affinity matrix associated with each group in the ego-network.

in the above models are modeled by multinomial distribu-

tions, a node has a mass of 1 to split among various topics.

In contrast, in the LMMG, a node can belong to multiple

topics at once without any constraint.

While previous work tends to explore only the network or

only the features, the LMMG jointly models both so that it

can make predictions on one given the other. The LMMG
models the interaction between links and group member-

ships via link-affinity matrices which provide great flexibil-

ity and interpretability of obtained groups and interactions.

The LMMG is a new probabilistic model of links and nodes

in networks. It can be used for link prediction, node fea-

ture prediction and supervised node classification. We

have demonstrated qualitatively and quantitatively that the

LMMG proves useful for analyzing network data. The

LMMG significantly improves on previous models, inte-

grating both node-specific information and link structure

to give better predictions.
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A. Mathematical Details

A.1. Update of Group Membership φ

In Equation (9), we proposed the gradient ascent method

which updates each group membership φik to maximize

the lower bound of log-likelihood L. To complete its

computation, we further take a look at
∂EZ∼φ log pij

∂φik
and

∂EZ∼φ log(1−pij)
∂φik

in detail. Then, we can also compute
∂EZ∼φ log pji

∂φik
and

∂EZ∼φ log(1−pji)
∂φik

in the same way.

First, we calculate the derivative of expected log-likelihood

for edges, EZ∼φ log pij . When all the group memberships

except for φik are fixed, we can derive
∂EZ∼φ log pij

∂φik
from

definition of pij in Equation (3) as follows:

∂EZ∼φ log pij

∂φik

=
∂

∂φik

EZ∼φ

[

∑

k′

log Θk′ [zik′ , zjk′ ]

]

=
∑

k′

[

∂

∂φik

EZ∼φ log Θk′ [zik′ , zjk′ ]

]

(13)

Here we use the following property. Since zik is an in-

dependent Bernoulli random variable with probability φik ,

for any function f : {0, 1}2 → R,

EZ∼φf(zik, zjk) = φikφjkf(1, 1) + φik(1 − φjk)f(1, 0)

+(1 − φik)φjkf(0, 1) + (1 − φik)(1 − φjk)f(0, 0) .

(14)

Hence, by applying Equation (14) to (13), we obtain

∂EZ∼φ log pij

∂φik

=
∂

∂φik

EZ∼φ log Θk[zik, zjk]

= φjk log Θk[1, 1] + (1 − φjk) log Θk[1, 0]

− φjk log Θk[0, 1]− (1 − φjk) log Θk[0, 0] . (15)

Next, we compute the derivative of expected log-likelihood

for unlinked node pairs, i.e. EZ∼φ log(1 − pij). Here we

approximate the computation using the Taylor’s expansion,

log(1 − x) ≈ −x − 0.5x2 for small x:

∂EZ∼φ log(1 − pij)

∂φik

≈ −
∂EZ∼φpij

∂φik

− 0.5
∂EZ∼φp2

ij

∂φik

.

To compute
∂EZ∼φpij

∂φik
,

∂EZ∼φpij

∂φik

=
∂

∂φik

EZ∼φ

∏

k′

Θk′ [zik′ , zjk′ ]

=
∂

∂φik

EZ∼φΘk[zik, zjk]
∏

k′ 6=k

Θk′ [zik′ , zjk′ ]

=
∏

k′ 6=k

EZ∼φΘk′ [zik′ , zjk′ ]
∂

∂φik

EZ∼φΘk[zik, zjk] .

By Equation (14), each EZ∼φΘk[zik, zjk] and its derivative

can be obtained. Similarly, we can calculate
∂EZ∼φp2

ij

∂φik
, so

we complete the computation of
∂EZ∼φ log(1−pij)

∂φik
.

As we attain
∂EZ∼φ log pij

∂φij
and

∂EZ∼φ log(1−pij)
∂φij

, we even-

tually calculate ∂LA

∂φik
. Hence, by adding up

∂Lφ

∂φik
, ∂LF

∂φik
, and

∂LA

∂φik
, we complete computing the derivative of the lower

bound of log-likelihood ∂L
∂φik

:

∂L

∂φik

=
∂LA

∂φik

+
∂LF

∂φik

+
∂LA

∂φik

.

A.2. Update of MAG Model Parameters Θ

Next we focus on the update of parameters of the network

model, Θ, where the group membership φ is fixed. Since

the network model is independent of the node attribute

model given the group membership φ, we do not need to

consider Lφ, LF , or |W |1. We thus update Θ to maximize

only LA given φ using the gradient method.

As we previously did in computing ∂LA

∂φik
by separating edge

and non-edge terms, we compute each ∂LA

∂Θk[x1,x2]
for k =

1, · · · , K and x1, x2 ∈ {0, 1}. To describe mathematically,

∂LA

∂Θk[x1, x2]
=

∑

Aij=1

∂EZ∼φ log pij

∂Θk[x1, x2]

+
∑

Aij=0

∂EZ∼φ log(1 − pij)

∂Θk[x1, x2]
. (16)

Now we compute each term in the above calculation by the

definition of pij . First, we compute the former term by

using Equation (14) For instance,

∂LA

∂Θk[0, 1]
= (1−φik)φjk

∂ log Θk[0, 1]

∂Θk[0, 1]
=

(1 − φik)φjk

Θk[0, 1]
.

Hence, we can properly compute Equation (16) depending

on the values of x1 and x2.

Second, we use the same Taylor’s expansion technique for

the latter term in Equation (16) as follows:

∂EZ∼φ log(1 − pij)

∂Θk[x1, x2]
≈

∂

∂Θk[x1, x2]
EZ∼φ

(

−pij − 0.5p2
ij

)

.

Similarly to
EZ∼φpij

∂φik
,

EZ∼φpij

∂Θk[x1,x2]
is computed by

∏

k′ 6=k

EZ∼φΘk′ [zik′ , zjk′ ]
∂

∂Θk[x1, x2]
EZ∼φΘk[zik, zjk]

where each term is obtained by Equation (14). Similarly,

we compute
EZ∼φp2

ij

∂Θk[x1,x2]
so that we can obtain ∂LA

∂Θk[x1,x2]
.
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B. Implementation Details

B.1. Initialization

Since the objective function in Equation (8) is non-convex,

the final solution might be dependent on the initial values

of φ, W , and Θ. For reasonable initialization, as the node

attributes F are given, we run the Singular Vector Decom-

position (SVD) by regarding F as an N × L matrix and

obtain the singular vectors corresponding to the top K sin-

gular values. By taking the top K components, we can

approximate the node attributes F over K latent dimen-

sions. We thus assign the l-th entry of the k-th right sin-

gular vectors multiplied by the k-th singular value into wlk

for l = 1, · · · , L and k = 1, · · · , K . We also initialize

each group membership φik based on the i-th entry of the

k-th left singular vectors. This approximation can in par-

ticular provide good enough initial values when the top K

singular values dominate the others. In order to obtain the

sparse model parameter W , we reassign 0 to wlk of small

absolute value such that |wlk| < λ.

Finally, to initialize the link-affinity matrices Θ, we intro-

duce the following way. When initializing the k-th link-

affinity matrix Θk, we assume that the group other than

group k has nothing to do with network structure, i.e. every

entry in the other link-affinity matrices has the equal value.

Then, we compute the ratio between entries Θk[x1, x2] for

x1, x2 ∈ {0, 1} as follows:

Θk[x1, x2] ∝
∑

i,j:Aij=1

EZ∼φP [zik = x1, zik = x2]

As the group membership φ is initialized above and zik and

zjk are independent of each other, we are able to compute

the ratio between entries of Θk. After computing the ratio

between entries for each link-affinity matrix, we adjust the

scale of the link-affinity matrices so that the expected num-

ber of edges in the MAG model is equal to the number of

edges in the given network, i.e.
∑

i,j pij =
∑

i,j Aij .

B.2. Selection of the Number of Groups K

Another issue in fitting the LMMG to the given network

and node feature data is to determine the number of groups,

K . We can find the insight about the value of K from the

MAG model. It has been already proved that, in order for

the MAG model to reasonably represent the real-world net-

work, the value of K should be in the order of log N where

N represents the number of nodes in the network (Kim &

Leskovec, 2012). Since in the LMMG the network links are

modeled similarly to the MAG model, the same argument

on the number of groups K still holds.

However, the above argument cannot determine the specific

value of K . To select one value of K , we use the cross-

validation method as follows. For instance, suppose that we

aim to predict all the features of a node where its links to the

other nodes are fully observed (Task 1 in Section 4). While

holding out the test node, we can set up the same prediction

task in a way that we select one at random from the other

nodes (training nodes) and regard it as the validation test

node. We then perform the missing node feature predic-

tion on this validation node and obtain the log-likelihood

result. By running this procedure with varying the vali-

dation test node, we can attain the average log-likelihood

on the missing node features given the specific value of K

(i.e. N-fold cross-validation). Finally, we compare the av-

erage log-likelihood values according the value of K and

pick up the best one to maximize the log-likelihood. This

method can be done by the other prediction tasks, missing

link prediction and supervised node classification.

B.3. Baseline Models

Here we briefly describe how we implemented each base-

line method depending on the type of prediction task.

AVG. In this baseline method, we regard each l-th node

feature and a link to the i-th node as an independent ran-

dom variable, respectively. In other words, we assume that

missing node features or links do not depend on each other.

Hence, we predict the l-th missing node feature by find-

ing the probability that the l-th node feature of all the other

nodes have value 1. We then regard the found probability

as that of the missing l-th node feature taking value 1.

Similarly, when we predict missing links (in particular, the

link to the i-th node) of a given node, we average the prob-

ability that all the other nodes are linked to the i-th node

and take it as the probability of link from the given node to

the i-th node (i.e. preferential attachment).

CC-N. For this method, we basically use the Naive-Bayes

method using node features of each node as well as those

of neighboring nodes. To represent each node feature of

neighboring nodes by a single value, we select the majority

value (either 0 or 1) from the neighbors’ feature values.

However, we cannot use the node features when predict-

ing all the node features of a given node. Furthermore, the

node features of neighboring nodes are unattainable when

we predict missing links. Therefore, depending on the type

of prediction task, we exploit only achievable information

among node features and those of neighboring nodes.

CC-L. We employ the similar approach to the CC-N. How-

ever, here we use the logistic regression rather than the

Naive-Bayes and average the feature values of neighboring

nodes rather than pick up the majority value.

RTM. We use the lda-R package to run RTM (http://cran.r-
project.org/web/packages/lda/index.html).


