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Abstract

The evidential value of palmprints in forensic applications is clear as about 30% of the latents

recovered from crime scenes are from palms. While biometric systems for palmprint-based personal

authentication in access control type of applications have been developed, they mostly deal with low

resolution (about 100 ppi) palmprints and only perform full-to-full palmprint matching. We propose a

latent-to-full palmprint matching system that is needed in forensic applications. Our system deals with

palmprints captured at 500 ppi (the current standard in forensic applications) or higher resolution and

uses minutiae as features to be compatible with the methodology used by latent experts. Latent palmprint

matching is a challenging problem because latent prints lifted at crime scenes are of poor image quality,

cover only a small area of the palm and have a complex background. Other difficulties include a large

number of minutiae in full prints (about 10 times as many as fingerprints), and the presence of many

creases in latents and full prints. A robust algorithm to reliably estimate the local ridge direction and

frequency in palmprints is developed. This facilitates the extraction of ridge and minutiae features

even in poor quality palmprints. A fixed-length minutia descriptor, MinutiaCode, is utilized to capture

distinctive information around each minutia and an alignment-based minutiae matching algorithm is used

to match two palmprints. Two sets of partial palmprints (150 live-scan partial palmprints and 100 latent

palmprints) are matched to a background database of 10,200 full palmprints to test the proposed system.

Despite the inherent difficulty of latent-to-full palmprint matching, rank-1 recognition rates of 78.7%

and 69%, respectively, were achieved in searching live-scan partial palmprints and latent palmprints

against the background database.

Index Terms

Palmprint, forensics, latents, minutiae, MinutiaCode, matching, region growing.

I. INTRODUCTION

Palmprint is a combination of two unique features, namely, the palmar friction ridges and the

palmar flexion creases (see Fig. 1). Palmar friction ridges are the corrugated skin patterns with

sweat glands but no hair or oil glands [1]. Discontinuities in the epidermal ridge patterns are

called the palmar flexion creases. These are the firmer attachment areas to the basal (dermis) skin

structure. Flexion creases appear before the formation of friction ridges during the embryonic

skin development stage, and both of these features are claimed to be immutable, permanent and

unique to an individual [1]. The three major types of flexion creases that are most clearly visible

are: distal transverse crease, proximal transverse crease and radial transverse crease. Based on
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Fig. 1. Regions (interdigital, thenar and hypothenar), major creases (distal transverse crease, proximal transverse crease and

radial transverse crease), ridges, minutiae and pores in a palmprint.

these major creases, three palmprint regions are defined: interdigital, thenar and hypothenar (see

Fig. 1). Various features in palmprints can be observed at different image resolutions. While

major creases can be observed at less than 100 ppi, thin creases, ridges and minutiae can be

observed only at ∼ 400 ppi, and resolutions greater than 500 ppi are needed to observe pores.

The use of palmprints for person identification traces back to Chinese deeds of sale in the 16th

century [2]. Later in 1684, Grew introduced dermatoglyphics, a study of the epidermal ridges

and their arrangement on the hand. The first systematic capture of hand, finger and palm images

for identification purposes was done by Herschel in 1858 [3]. Galton [4] discussed the basis

of contemporary fingerprint science, and introduced palmar ridges and creases. He suggested

that the ridges on the finger tips, palms and soles are persistent and unique. Galton defined the

peculiarities in the ridges as minutiae and introduced several different minutiae types. He also
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divided the palm into three regions and analyzed the correlation between the ridge flow and the

major creases in each region. Cummins and Midlo [2] stated that the width of a palmar ridge is

18% larger compared to a finger. They also recognized the significance of the flexion creases,

particularly palmar flexion creases, and established the basis of the present flexion crease based

identification.

While the use of Automated Fingerprint Identification Systems (AFIS) in the forensic com-

munity is pervasive, the development of automated palmprint identification systems has lagged

due to the limitations of live-scan technologies for palmprints, large number of creases present

in palmprints, and large storage and computing capabilities needed for processing and matching

palmprints. The first reported use of palmprints in a criminal case occurred in a British court in

1931. The first automated palmprint identification system became available in the early 1990s

[5]. In recent years, with advances in live-scan techniques and increase in computational power,

more and more law enforcement agencies are capturing palmprints of suspects and utilizing latent

palmprints for suspect and victim identification. Surveys of law enforcement agencies indicate

that at least 30% of the prints lifted from crime scenes, called latents, – from knife hilts, gun

grips, steering wheels and window panes – are of palms, not fingers [6]. A major component

of the FBI’s Next Generation Identification (NGI) system is the development of an integrated

national palmprint identification system [7].

Palmprint recognition systems have been developed for civilian (mainly access control) ap-

plications [8], [9]. But these systems typically utilize low resolution (about 100 ppi) images

and only support full-to-full palmprint matching. To facilitate palmprint matching, these systems

use pegs to fix hand position and detect gaps between fingers for alignment. Matching is based

on texture or crease information in palmprint images. In forensic applications, on the other

hand, 500 ppi is the standard resolution and latent-to-full matching must be supported. When

latent examiners match latent palmprints, they mainly use minutiae, whose accurate extraction

requires a resolution of at least 400 ppi. Therefore, these low resolution palmprint systems are not

applicable for forensic applications. Recent work in [10] reports on a prototype image acquisition

system to simultaneously acquire multi-spectral fingerprints and palmprints of a hand at 500 ppi.

This will enable fusion of fingerprints and palmprints, which is also an objective of the FBI’s

NGI system in order to improve the matching accuracy.

Latent palmprint recognition shares some common problems with latent fingerprint recog-
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(a) (b)

(c) (d)

Fig. 2. A comparison of latent fingerprint and latent palmprint problem. (a) Latent fingerprint (from NIST SD27 [11]), (b) mated

full fingerprint, (c) latent palmprint and (d) mated full palmprint. The size of these images is 800×768, 800×768, 1164×768,

and 1630×1820 (width×heigth) pixels, respectively. The number of minutiae extracted from these images is 21, 114, 58 and

654, respectively. Minutiae are overlaid on the images.

nition, which has been extensively studied. Some of the common attributes include complex

background, poor ridge structures and small image area (see Fig. 2). Although minutiae extraction

and matching algorithms designed for fingerprints can be applied to palmprints directly, in order

to achieve higher accuracy and faster matching, characteristics of palmprints should be taken

into account. The first difference between fingerprints and palmprints is the presence of creases.

Although creases are also frequently found in fingerprints, these creases are generally very thin

and their number is small. Conventional direction field estimation algorithms [12] can reliably
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(a) (b)

Fig. 3. Creases in palmprints. (a) A palmprint region with a major crease and its ridge skeleton image produced by VeriFinger,

(b) a palmprint region with many thin creases and its ridge skeleton image produced by VeriFinger.

estimate the ridge direction in fingerprints, which is then used to remove the creases and recover

the ridges. However, palmprints contain very wide creases (major creases) and a large number of

thin creases, especially in the thenar area (see Fig. 3(b)). It is not a trivial problem to recover the

ridge structure in the presence of a large number of creases. As shown in Fig. 3, VeriFinger 6.0

by Neurotechnology [13], which ranked high according to accuracy in two different fingerprint

competitions (FVC2000-2006 [14] and FpVTE 2003 [15]), and was the second best template

generator in the MINEX test [16], produces many false ridges around the major crease in

a palmprint (Fig. 3(a)), and totally fails in the palmprint area with dense thin creases (Fig.

3(b)). The second difference between fingerprints and palmprints is the image size. A typical

full fingerprint image (500×500 pixels) contains about 100 minutiae, while a full palmprint

image (2000×2000 pixels) contains about 800 minutiae. Assuming that the time complexity

of a minutiae matcher is O(n2), where n denotes the number of minutiae in a fingerprint or

a palmprint, matching palmprints will be about 64 times slower than matching fingerprints.

Therefore, the computational efficiency of minutiae matching algorithm is critical for palmprint

matching.

A partial-to-full palmprint matching system was proposed in [17] that used both SIFT [18]

and minutiae features in matching. The system was evaluated using live-scan partial and full

palmprint images. However, this system has the following limitations: (i) SIFT features can

not be consistently detected in latents and full prints, (ii) the minutiae extractor and matcher

(VeriFinger 4.2) used in [17] are not suitable for latent palmprint matching, and (iii) latent images

were not used to evaluate the algorithms.

We propose a minutiae-based latent-to-full palmprint matching system. To deal with creases
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in palmprints, a region growing algorithm is proposed to reliably estimate the ridge direction

and frequency. To reduce the computational complexity of minutiae matching algorithm, a fixed-

length minutia descriptor, MinutiaCode, is proposed, which captures information about the ridges

and other minutiae in the neighborhood of a minutia. The proposed system has been evaluated

by matching partial1 palmprints (150 live-scan partial palmprints and 100 latent palmprints)

against a background database of 10,200 full palmprints. Rank-1 recognition rates of 78.7% and

69%, respectively, were achieved in searching live-scan partial images and latents against the

background database.

II. MINUTIAE EXTRACTION

The performance of a minutiae extraction algorithm relies heavily on the quality of the input

palmprint images. In order to ensure that the minutiae extraction algorithm is robust with respect

to the quality of input palmprint images, an enhancement algorithm that improves the clarity

of the ridge structures is necessary. Contextual filtering like 2D Gabor filters [19] has been

very effective for fingerprint enhancement [20]. Two important parameters of 2D Gabor filters

are local ridge direction and frequency. When these parameters are correct, Gabor filtering can

connect broken ridges and separate joined ridges. However, when the parameters are incorrect,

spurious ridges may be produced after filtering. Hence, reliable ridge direction and frequency

estimation is very important for minutiae extraction.

A. Ridge Direction and Frequency Estimation

As ridge frequency is often estimated based on ridge direction [20], reliable direction es-

timation is even more important. Most direction field estimation algorithms [12], [21], [22]

consist of two steps: initial estimation using a gradient-based method followed by smoothing.

The smoothing may be done by a simple weighted averaging filter or more complicated model-

based methods [21], [22]. These smoothing algorithms generally make two assumptions either

explicitly or implicitly: (i) direction field is smooth except for singular areas, and (ii) noise has

a Gaussian distribution. But for palmprints which contain a large number of creases, the initial

1In our experiments, two types of partial palmprints, live-scan partial palmprints and latent palmprints, were used. Live-scan

partial palmprints were captured using an optical palmprint scanner and latent palmprints were lifted from crime scenes. When

we do not distinguish between live-scan partial palmprints and latent palmprints, they are referred to as partial palmprints.
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direction field obtained by gradient-based methods significantly deviates from the true direction

field and the noise can not be modeled as Gaussian. Hence, it is very difficult for these algorithms

to recover the true direction field in palmprints.

Funada et al. [23] proposed a palmprint enhancement approach, which performs image en-

hancement and local ridge direction and frequency estimation simultaneously. Local image blocks

(8×8 pixels) are modeled by sine waves and the six strongest waves (according to amplitude) are

found in each block. In the image formed by the first strongest wave in each block, continuous

blocks are clustered into regions. Generally, a region contains only ridges (such region is called

ridge region) or only creases (such region is called crease region). Based on several properties,

these regions are classified as ridge regions or crease regions, and ridge regions are used as a

single seed. A region growing algorithm is then used to grow the seed and obtain the enhanced

image. The palmprint enhancement algorithm proposed in [23] has two main limitations: (i)

crease regions may be incorrectly classfied as ridge regions and are grown in the region growing

procedure. As a result, the objective of detecting only ridges in palmprints can not be achieved.

(ii) The enhanced image is not smooth due to blocking effect and this produces spurious minutiae

or leads to inaccurate estimation of the position and direction of minutiae.

We propose a palmprint enhancement approach by modifying the algorithm in [23] in the

following ways: (i) regions selected in the seed selection stage are treated as different seeds

and are separately grown. Finally, one of the regions is selected as ridge region and the other

regions which are compatible with the ridge region are merged with it. By postponing region

classification to later stage, our algorithm can reliably remove creases and extract ridges. (ii)

To solve the blocking effect problem, we smooth the ridge direction and frequency obtained by

the region growing algorithm and use Gabor filters to enhance the palmprint image. These two

modifications significantly enhance the robustness of the minutiae extraction algorithm and lead

to better recognition accuracy.

We now describe our ridge direction and frequency estimation algorithm, which comprises of

four main steps.

1) Sine Wave Representation: A palmprint image I(x, y) is divided into non-overlapping

blocks of 16× 16 pixels. Let H and W denote the height and width of the image, and NH and

NW denote the number of blocks in the vertical and horizontal directions, respectively. Since

the ridge structure of a block can be approximated by a 2D sine wave, the task of estimating
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(a) (b) (c) (d) (e)

Fig. 4. Sine wave representation. (a) Local gray image (64×64 pixels), (b) local gray image multiplied by Gaussian function,

(c) two points with the highest amplitude in the frequency image, (d) the first sine wave, and (e) the second sine wave.

local ridge direction and frequency is transformed to estimating the parameters of sine wave

in each block. Centered at each block, the local image in the 64 × 64 window is multiplied

by a Gaussian function (σ = 16). The larger window (64 × 64 pixels) has the following two

advantages over the smaller window (16 × 16 pixels): (i) it is more robust to noise and (ii) the

resolution in the frequency domain is higher. The Discrete Fourier Transform (DFT), F (u, v), of

the resulting image is computed and the amplitude of low frequency components (points within

3 pixels from the center in the frequency domain) is set to 0. In the frequency domain, six points

with the maximum amplitude are found. Each of these points corresponds to a 2D sine wave

w(x, y) = a ∗ sin(2πf(cos(θ)x + sin(θ)y + φ), where a, f , θ, and φ represent the amplitude,

frequency, direction and phase, respectively. These waves are sorted in the decreasing order of

amplitude and are referred to as the first wave, the second wave,..., and the sixth wave. The above

steps are shown in Fig. 4. The parameters of the sine wave at position (u, v) are computed as:

a = |F (u, v)|, (1)

f =

√
u2 + v2

64
, (2)

θ = arctan(
u

v
), and (3)

φ = arctan(
Im(F (u, v))

Re(F (u, v))
). (4)
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(a)

(b)

(c)

Fig. 5. Six strongest sine waves corresponding to three types of local regions (64×64 pixels) in a palmprint: (a) no crease,

(b) creases with one direction, and (c) creases with two directions. In these three local regions, the sine wave corresponding to

ridges is the first, the third, and the third one of the six waves, respectively.

When a local image contains only ridges, the DFT has a single strong peak which corresponds

to the ridges. When the local image contains both ridges and creases, the DFT has multiple strong

peaks. Fig. 5 shows the six strongest waves of three types of local palmprint images: (i) no crease,

(ii) creases with one direction, and (iii) creases with two directions. As shown in Fig. 5, it is

not easy to reliably determine which wave corresponds to ridges based on the local information

alone, namely the amplitude. The basic idea of the proposed algorithm is to utilize the fact that

waves corresponding to ridges form continuous clusters.

Two adjacent waves (namely, waves in adjacent blocks) w1 and w2 are said to be continuous

if the following three conditions are satisfied:

Angle(θ1, θ2) ≤ π/6, (5)

| 1

f1

− 1

f2

| ≤ 3, and (6)

1

16

∑

(x,y)∈L

|w1(x, y)

a1

− w2(x, y)

a2

| ≤ 0.8, (7)
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(a) (b) (c) (d)

Fig. 6. Continuity of adjacent waves. (a) Two waves are continuous, (b) the direction of two waves is discontinuous, (c) the

frequency of two waves is discontinuous, and (d) the normalized grayscale values of two waves are discontinuous.

where Angle(θ1, θ2) computes the angle ∆θ (0 ≤ ∆θ ≤ pi/2) between two directions θ1 and θ2,

and L denotes the 16 pixels on the border of two adjacent blocks. The above three conditions

measure the continuity of direction, frequency and normalized grayscale values between two

adjacent waves, respectively. A pair of continuous adjacent waves, which satisfies the above

three conditions, and three pairs of discontinuous adjacent waves, which dissatisfy one of the

three conditions above, are shown in Fig. 6.

2) Seed Selection: The reliability of the first wave of a block is computed as a1/(a1 + a2),

where ai denotes the amplitude of the ith wave. The first wave of a block is deemed as reliable if

its reliability is greater than a threshold (0.67). A reliable first wave is represented by a node in

a graph. The adjacent nodes (waves) that are continuous are connected by edges. All connected

components with more than 20 nodes in the graph are used as seeds and the seeds are sorted in

the decreasing order of size (the number of blocks). An auxiliary image of NH × NW pixels,

IS(m, n), is created to record the seed index of each block. IS(m,n) is 0 for the blocks that do

not belong to any seed. Seeds selected in this step may include both ridge regions and crease

regions. For instance, one of the six seeds in Fig. 7(c) is a crease region.

3) Region Growing: Each seed is grown in turn by a region growing algorithm (see pseu-

docode RegionGrow). The three inputs to this algorithm are sk, IS , and IW . sk denotes the index

of the current seed. IS is an image of NH × NW pixels that is used to record the seed index

of all blocks. IW is an image of NH × NW pixels that is used to represent the current region.

IW (m,n) = i, i = 1, 2, · · · , 6 indicates the ith wave is selected in block (m,n). IW (m, n) = 0

indicates no wave is selected in block (m,n). Initially, the current region consists of only the

current seed, namely, IW (m,n) = 1 for blocks belonging to the current seed and 0 for the

remaining blocks. The region growing algorithm iteratively selects waves in new blocks that are
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Stages in the region growing algorithm: (a) a live-scan partial print (height: 765 pixels, width: 717 pixels) from the

thenar region, (b) first wave image, (c) six seeds overlaid on the gray image, (d) region grown from one seed which is a ridge

region, (e) region grown from another seed which is a crease region, and (f) final region.

continuous with the current region, and adds them to the current region, until no more waves

can be added.

The region growing algorithm starts by finding candidate waves (see pseudocode FindCandi-

dateWaves). For each block (m,n) of the current region, candidate waves are found in its 4-

connected neighbors which do not belong to the current region. In a neighboring block, (m′, n′),

each of the six waves is checked in the decreasing order of amplitude if it is continuous with

the wave of block (m,n). If the ith wave in block (m′, n′) is continuous with the wave of block

(m,n), it is referred to as a candidate wave. A record about this candidate wave, wc = (m′, n′, i),

is added to a priority queue, Q, where i is the priority value and the first wave has the highest

priority.

The algorithm iteratively pops up a candidate wave wc = (m,n, i) from Q and processes it
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Function RegionGrow(sk,IS ,IW)

Q ← ∅;

for each pixel (m,n) in image IW do

if IW (m,n) > 0 then FindCandidateWaves(IW ,m, n);

end

while Q �= ∅ do

Pop up a candidate wave wc = (m,n, i) from Q;

if IW (m,n) > 0 then continue;

IW (m,n) = i;

FindCandidateWaves(IW ,m, n);

if i = 1 & IS(m,n) > sk then

Merge seed IS(m,n) with the current region;

end

end

until Q is empty. If the wave of block (m,n) has been selected, pop up and process the next

candidate wave in Q; otherwise, the ith wave is selected for block (m,n) and we find candidate

waves in its 4-connected neighbors. In addition, we check whether i = 1 and sl = IS(m,n) > sk.

If yes, this wave also belongs to another seed sl and we merge seed sl with the current region

by performing the following steps: (i) all pixels of IW corresponding to seed sl are set as 1,

(ii) seed sl is made invalid by seting all pixels in IS corresponding to seed sl to 0, and (iii)

candidate waves are found based on the blocks of seed sl.

4) Region Merging: After region growing is performed for each seed, a set of regions is

obtained. These regions are merged into a final region by first sorting in the decreasing order of

the number of reliable first waves. The first region is deemed as a ridge region and copied to

the final region. Then the other regions are checked in turn to see if they have different waves

in the overlapped blocks with the final region. If waves are not different, this region is deemed

as compatible with the final region and is copied to the final region; otherwise next region is

checked.

Fig. 7 shows different stages of the proposed region growing algorithm. Fig. 8 and Fig. 9

compare the ridges extracted by VeriFinger 6.0 [13], the algorithm in [23], and the proposed
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Function FindCandidateWaves(IW ,m, n)

for each 4-connected block (m′, n′) of block (m,n) do

if IW (m′, n′) > 0 then continue;

for i ← 1 to 6 do

if the ith wave is continuous with the wave in block (m,n) then

// Assume Q can be accessed in this function

Add candidate wave wc = (m′, n′, i) to priority queue Q;

break;

end

end

end

(a) (b) (c) (d)

Fig. 8. Comparison of VeriFinger 6.0, the algorithm in [23] and the proposed algorithm for ridge detection. (a) A live-scan

partial print (height: 973 pixels, width: 893 pixels) from the thenar region, (b) skeleton image of (a) by VeriFinger, (c) skeleton

image of (a) by the algorithm in [23], (d) skeleton image of (a) by the proposed algorithm.

(a) (b) (c) (d)

Fig. 9. Comparison of VeriFinger 6.0, the algorithm in [23] and the proposed algorithm for ridge detection. (a) A latent print

(height: 523 pixels, width: 886 pixels), (b) skeleton image of (a) by VeriFinger, (c) skeleton image of (a) by the algorithm in

[23], and (d) skeleton image of (a) by the proposed algorithm.
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algorithm for a live-scan partial print from the thenar region and a latent print, respectively.

This comparison shows that two region growing based algorithms (the algorithm in [23] and the

proposed algorithm) are more robust than VefiFinger 6.0 for ridge direction estimation in the

presence of creases. The algorithm in [23] failed to remove some creases which the proposed

algorithm successfully removed (see Fig. 8) and produced more spurs than the proposed algorithm

(see Fig. 9).

B. Minutiae Extraction

Given local ridge direction and frequency, a sequence of image processing steps is performed

to extract the minutiae: enhancement, binarization, thinning, and ridge and minutia extraction.

The extracted minutiae include many spurious minutiae due to image noise, which are removed

in the following way. The ridge validation procedure in [24] is used to classify ridges as

reliable or unreliable and the minutiae associated with unreliable ridges are removed. The

remaining minutiae are further classified as reliable or unreliable minutiae. A minutia is deemed

as unreliable if it forms an opposite pair with other minutia in the neighborhood; otherwise,

it is deemed as reliable. An opposite pair is a pair of minutiae that are close to each other

but have opposite directions. Both reliable and unreliable minutiae are used in the proposed

matching algorithm, but treated differently. The results of different steps in minutiae extraction

are shown in Fig. 10. It should be noted that due to complex background and multiple overlapping

latent prints in a single latent image, the region of interest (ROI) is manually marked for latent

palmprints. This is a common practice in forensics. But for other images (full palmprints and

live-scan partial palmprints), no manual intervention is needed.

III. MINUTIAE MATCHING

Given the minutiae features of two palmprints, the matching algorithm consists of (i) local

minutiae matching - the similarity between each minutia of a partial print and each minutia of

a full print is computed, (ii) global minutiae matching - using each of the five most similar

minutia pairs in step (i) as an initial set, a greedy matching algorithm is used to find additional

matching minutia pairs, and (iii) matching score computation - a matching score is computed

for each set of matching minutia pairs and the maximum score is used as the matching score

between two palmprints.
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(a) (b) (c) (d)

Fig. 10. Minutiae extraction. (a) A live-scan partial print (height: 636 pixels, width: 578 pixels) from the thenar region, (b)

direction field, (c) enhanced image, and (d) extracted ridge and minutiae.

A. Local Minutiae Matching

A minutia is generally tagged with the following features: location, direction, type (ending or

bifurcation) and quality (reliable or unreliable) [24]. Since the relative transformation between the

two palmprints to be matched is not known a priori, and considering the large size of palmprint

images, the minutiae correspondence problem is very challenging. To reduce the ambiguity

in matching, we attach additional distinguishing information to a minutia in the form of a

minutia descriptor. In the fingerprint recognition literature, four types of information have been

widely used as minutia descriptors, namely image intensity [25], texture [26], ridge information

[27] and neighboring minutiae [28], [29]. Among these four types of descriptors, texture-based

and minutiae-based descriptors are known to provide good performance and a combination

of texture and neighboring minutiae information can achieve higher accuracy [30]. However,

the length of the neighboring minutiae-based descriptor in [30] is variable, depending on the

number of neighboring minutiae. Computing the similarity between two variable-length minutiae

descriptors is not very efficient. Therefore, a fixed-length minutia descriptor, called MinutiaCode,

that captures neighboring texture and minutiae information is proposed here.

The MinutiaCode of a minutia (referred to as central minutia) is constructed as follows. The

circular region around a central minutia is divided into (R−1)×K sectors by R = 5 concentric

circles and K = 8 lines as illustrated in Fig. 11. The radius of the rth circle, 1 ≤ r ≤ R, is

20 ∗ r pixels. The direction of the kth line, 1 ≤ k ≤ K, is θ + (k − 1) · π/K, where θ denotes
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Fig. 11. The configuration of a MinutiaCode. The numbers of four types of neighboring minutiae, RS, US, RO and UO,

in sectors 1 and 2 are [1 0 1 0] and [0 2 0 0], respectively. Square indicates reliable minutiae and circle indicates unreliable

minutiae.

the direction of the central minutia. For each sector, a set of features is computed, including

the quality (1: foreground, 0: background), mean ridge direction, mean ridge period, and the

numbers of four types of neighboring minutiae. These four types of neighboring minutiae are

defined as: (i) reliable and with the same direction as the central minutia (RS), (ii) unreliable and

with the same direction as the central minutia (US), (iii) reliable and with the opposite direction

to the central minutia (RO), and (iv) unreliable and with the opposite direction to the central

minutia (UO). Whether a neighboring minutia has the same or opposite direction to the central

minutia is determined by the angle between the direction of the neighboring minutia and the

direction of the central minutia. If the angle is less than π/2, the neighboring minutia has the

same direction to the central minutia; otherwise, it has opposite direction to the central minutia.

See Fig. 11 for the numbers of four types of neighboring minutiae in two of the 32 sectors

(excluding the central part).

The similarity s between two MinutiaCodes is defined as the weighted average value of the

similarities of all valid sectors. A pair of corresponding sectors is deemed valid if both sectors

are in the foreground. If the number of the valid sectors is less than 16, s is set to 0; otherwise
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s is computed by:

s =
1

∑32
i=1 wi

32∑

i=1

wisi, (8)

where si denotes the similarity of the ith sector and wi denotes the weight of the ith pair of

corresponding sectors. To assign a larger weight to sectors containing more reliable minutiae,

wi is defined as (max(n1, n2) + w0), where n1 and n2 are the number of reliable minutiae in

the two corresponding sectors and w0 is a weight for sectors without reliable minutiae (set to

0.2 in our experiments).

The similarity si between two corresponding sectors is computed as follows. If the difference

between ridge directions or the difference between ridge periods is greater than the corresponding

threshold (π/6 and 3 pixels), si is set to 0; otherwise, si is computed using the following formulas:

si =
nM

nS

, (9)

nM = nMS + nMO, (10)

nS = nSS + nSO, (11)

nMS = min(nRS1 + nUS1, nRS2 + nUS2), (12)

nMO = min(nRO1 + nUO1, nRO2 + nUO2), (13)

nSS = max(nRS1, nRS2, nMS), and (14)

nSO = max(nRO1, nRO2, nMO), (15)

where the description of the symbols is given in Table I. The range of si is [0, 1]. If nM is equal

to nS , si is maximum (1). If nM = 0 and nS > 0, si is minimum (0). If nM = 0 and nS = 0

(namely, there is no minutiae which should be matched in the two sectors), si is set to 1.

B. Global Minutiae Matching

Given the similarity of all minutia pairs, the one-to-one correspondence between minutiae

is established in this stage. All minutia pairs are sorted in the decreasing order of normalized

similarity defined in [24] and each of the top-5 minutia pairs is used to align the two sets

of minutiae. Minutiae are examined in turn and minutiae that are close in both location and

direction, and have not been matched to other minutiae are deemed as matching minutiae. After

all the minutia pairs have been examined, a set of matching minutiae is obtained.
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TABLE I

SYMBOLS USED IN THE COMPUTATION OF THE SIMILARITY BETWEEN TWO MINUTIACODES

Symbol Description

si Similarity between the ith pair of corresponding sectors

nM Number of the matched minutiae

nS Number of the minutiae that should be matched

nMS Number of the matched minutiae of type RS and US

nMO Number of the matched minutiae of type RO and UO

nSS Number of the minutiae of type RS and US that should be matched

nSO Number of the minutiae of type RO and UO that should be matched

nRSj Number of the minutiae of type RS in partial (j = 1) or full (j = 2) palmprint

nUSj Number of the minutiae of type US in partial (j = 1) or full (j = 2) palmprint

nROj Number of the minutiae of type RO in partial (j = 1) or full (j = 2) palmprint

nUOj Number of the minutiae of type UO in partial (j = 1) or full (j = 2) palmprint

C. Matching Score Computation

The matching score S between two palmprints is computed as

S = Wm ∗ Sm + (1 − Wm) ∗ Sd, (16)

where Sm and Sd denote the minutiae-based matching score and the direction field based

matching score, respectively; the weight Wm is empirically set to 0.8.

The minutiae-based matching score Sm is the product of a quantitive score Smn and a

qualitative score Smq. The quantitive score measures the quantity of evidence and the qualitative

score measures the consistency in the common region between two palmprints. The quantitive

score Smn is computed as M/(M + 20), where M denotes the number of matched minutiae.

The qualitative score is computed as

Smq = SD × M

M + NL

× M

M + NF

, (17)

where SD is the average similarity of descriptors for all the matching minutiae, and NL and NF ,

respectively, denote the number of unmatched minutiae in latent and full prints that are reliable

and belong to the common region of the two palmprints.
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The direction field based matching score Sd is the product of a quantitive score Sdn and a

qualitative score Sdq. The quantitive score Sdn is computed as Nb/(Nb + 900), where Nb is the

number of blocks where the difference of direction between latent and full print is less than π/8.

The qualitative score Sdq is computed as (1−2∗Dd/π), where Dd is the mean of the difference

of direction values of all the blocks.

IV. EXPERIMENTS

A. Palmprint Database

There is no public domain latent and mated full palmprint database available. Further, to

our knowledge, while there have been several large-scale performance evaluations organized

by NIST for fingerprint (FpVTE [15] and ELFT [31]), face (FRVT [32]) and iris (ICE [33]),

such performance evaluation of latent/partial palmprint matching algorithms has not yet been

conducted. The announcement of the FBI’s NGI program has created a substantial interest in

palmprint matching and it is likely that a similar evaluation for palmprint recognition will be

conducted in the near future. In our experiments, we used two sets of latent palmprints provided

to us by Noblis [34] and the Forensic Science Division of Michigan State Police (MSP). The

Noblis latent database consists of 46 latent palmprints which correspond to eight different palms.

The MSP latent database consists of 54 latent palmprints which correspond to 22 of the 36

different palms. The latents from Noblis and MSP have been merged to form a database of

100 latents. Michigan State Police also provided us with 10,040 full palmprints that are used to

form a background database for latent matching. Due to the limited number of latent palmprints

available to us, we also collected live-scan partial palmprints and their mated full palmprints

using a CrossMatch L SCAN 1000P optical scanner in our laboratory. Live-scan partial images

were collected from 50 unique palms (25 subjects who provided images of both left and right

palms) with three impressions per palm, one impression each from the thenar, hypothenar and

interdigital regions. Full prints of these 50 palms and other 66 palms were also scanned. The live-

scan partial images and the latent images were not merged, since they are quite different, both in

size and quality. The 116 live-scan full palmprints, 44 (8 from Noblis and 36 from MSP) mated

full palmprints of latents, and 10,040 full palmprints from the Michigan Forensic Laboratory

were merged to form a background database of 10,200 full palmprints. In our databases, most

images (the 10,040 full prints from the Michigan Forensic Laboratory) are at 500 ppi; remaining
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(a) (b)

(c) (d)

(e) (f)

Fig. 12. Examples of different types of palmprint images. (a) Live-scan full print (height: 1,753 pixels, width: 1,710 pixels),

(b) inked full print (height: 1,649 pixels, width: 1,575 pixels), (c) live-scan partial print (height: 581 pixels, width: 1,319 pixels)

from the interdigital region, (d) live-scan partial print (height: 549 pixels, width: 1,425 pixels) from the hypothenar region, (e)

live-scan partial print (height: 837 pixels, width: 748 pixels) from the thenar region, and (f) latent print (height: 649 pixels,

width: 998 pixels).
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TABLE II

PARTIAL PALMPRINT DATABASES. THE SUM OF THE LATENTS FROM THE THREE REGIONS (INTERDIGITAL, THENAR AND

HYPOTHENAR) MAY BE GREATER THAN THE TOTAL NUMBER OF THE LATENTS, AS SOME LATENTS CONTAIN DATA FROM

MORE THAN ONE REGION.

Noblis latent

database

MSP latent

database

MSU live-scan

partial database

Resolution (ppi) 1000 400 1000

No. of partial prints 46 54 150

No. of palms 8 36 50

Interdigital region 23 24 50

Thenar region 3 14 50

Hypothenar region 21 22 50

TABLE III

FULL PALMPRINT DATABASES.

Noblis mated

full database

MSP mated full

database

MSP full

database

MSU live-scan

full database

Resolution (ppi) 1000 400 500 1000

No. of palms 8 36 10,040 116

images were either downsampled or upsampled to 500 ppi using bicubic interpolation. Our partial

and full palmprint databases are summarized in Table II and Table III, respectively. Examples

of different types of palmprint images are shown in Fig. 12.

B. Matching Performance on Full Background Database

Due to the differences in the nature and quality of live-scan partial and latent palmprints,

we separately searched them against the full background database. Since a large number of

full prints are not oriented properly, no rotation constraint is used in the minutiae matching

algorithm. Hand type information (left hand or right hand) is utilized if this information can

be reliably estimated from partial palmprints. 55 latents among all 100 latents have hand type
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Fig. 13. CMC curves for latent and live-scan partial palmprint identification with a background database of 10,200 full prints.

The number of latents is 100 and the number of live-scan partial palmprints is 150. The curves are not smooth due to the small

number of partial images.

information and all 150 live-scan partial images have hand type information. The hand type

information for all the full prints was already available with the images. The number of left and

right hands in the background database is roughly equal. The CMC curves for searching 100

latents and 150 live-scan partial images against 10,200 full prints are shown in Fig. 13. The

rank-1 recognition rates of 78.7% and 69%, respectively, were achieved for live-scan partial and

latent palmprints. As expected, the performance for live-scan partial images is much better than

that for latents due to better image quality and larger image size of the former. There are two

things that should be noted. In forensic applications, latent experts generally manually correct

minutiae extracted by algorithms. With intervention of latent experts, the matching accuracy

can be significantly improved. In practice, latent experts generally examine top 20 candidates

provided by the automated system, and in high profile cases such as murder, latent experts may

examine as many as 100 candidates. As shown in Fig. 13, the rank-20 recognition rates of 81.3%

and 76%, respectively, were achieved for live-scan partial and latent palmprints.

C. Comparison to Other Algorithms

The proposed palmprint enhancement algorithm has two main improvements over the original

algortihm of Funada et al. [23], namely, more robust direction field estimation and elimination
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of blocking effect, which have been qualitatively shown in Fig. 8 and Fig. 9. To evaluate the

proposed improvements quantitatively, we combined the two enhancement algorithms with the

same minutiae extraction and matching algorithms proposed in this paper. An experiment was

conducted by searching 100 latents and 150 live-scan partial palmprints against a background

database of 160 full prints which consists of the 44 mated full prints of latents and 116 live-

scan full prints. Hand type information was not used in matching. The CMC curves of the

two enhancement algorithms for two types of partial images are given in Fig. 14. This figure

indicates that the improved algorithm provides higher palmprint matching accuracy than the

original algorithm in [23].

Since to our knowledge, there is no partial-to-full palmprint matching algorithm available in

the open literature, we compared our matching algorithm to a commercial fingerprint SDK, Neu-

rotechnology VeriFinger. However, VeriFinger can not be directly used for palmprint matching,

because it has a limit on the number of minutiae that can be dealt with in feature extraction

and matching and this limit is smaller than the number of minutiae observed in full palmprints.

In [17], full palmprints are split into five sectors and minutiae are extracted separately for each

sector using VeriFinger. No minutiae are extracted from the central part of the palms, as this

part is less frequently found in latents. Major creases are extracted and minutiae around the

major creases are removed. After these steps, VeriFinger matcher can be used for partial-to-full

palmprint matching. A rank-1 recognition rate of 67.5% was reported in [17] when matching

240 live-scan partial (which are from 20 palms of all the 50 palms in the MSU live-scan partial

database) against 100 live-scan full prints (which is a subset of the MSU live-scan full database).

The rank-1 rate (67.5%) of VeriFinger on a small background database (100 full prints) is much

lower than the rank-1 rate (78.7%) of the proposed algorithm on a much larger background

database (10,200 full prints).

D. Utilization of Ancillary Information

Given a latent palmprint, proficient latent examiners can often reliably estimate (depending

on the quality of the latent image) the hand (left or right) that made the latent, the part of

the palm that the latent was from, and the orientation of the latent [35]. To determine the

matching performance gain in the presence of such information, an experiment was conducted

by searching 100 latents against a small background database of 160 full prints which consists
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Fig. 14. CMC curves of using two different palmprint enhancement algorithms (Funada’s [23] and ours) in searching 100

latents and 150 live-scan partial palmprints against a background database of 160 full prints.

of the 44 mated full prints of latents and 116 live-scan full prints. A small background database

is selected, as it is not a trivial task to automatically extract ancillary information for the full

background database where a large number of palmprints are of poor quality and not in upright

position. For the 160 full prints, region map and palm orientation were manually marked by the

authors. The region map of a full palmprint is shown in Fig. 15. The region map is a 3-bit-depth

image of the same size as the palmprint image, where one of the three bits of each pixel is used

to record which of the three palmprint regions it belongs to. The different regions are allowed

to overlap somewhat in order to account for errors in marking the region map for latents. For

the 100 latents, hand type, region map and orientation are estimated by the authors using the

methods described in [35]. Due to the poor quality of latents, hand type can not be estimated for

45 latents and palm orientation can not be estimated for 27 latents. Fig. 16 shows one example

for each of the following three situations: (i) the ancillary information can be reliably estimated,

(ii) no ancillary information can be reliably estimated, and (iii) partial ancillary information

can be reliably estimated. The ancillary information is utilized in the minutiae matcher in the

following way: (i) the similarity between palmprints of different hand types (left vs. right) is

0; (ii) the similarity between two minutiae of different palm regions (e.g., interdigital region

vs. thenar region) is 0; (iii) the similarity between two minutiae whose direction (with respect
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(a) (b)

Fig. 15. Region map. (a) A full palmprint and (b) its region map.

(a) (b) (c)

Fig. 16. Estimating latent palmprint ancillary information. (a) Ancillary information can be reliably estimated (left hand,

hypothenar region, 90 degree), (b) no ancillary information can be reliably estimated, and (c) partial ancillary information can

be reliably estimated (unknown hand, interdigital region, -90 degree).

to palm orientation) difference is greater than a threshold (π/3) is 0. Fig. 17 shows the CMC

curves demonstrating the performance improvement in the presence of ancillary information. The

improvement of rank-1 identification rate due to the use of ancillary information indicates that

such information is quite useful. The matching speed with ancillary information is also about

2.5 times faster than without such information. The rank-20 identification rates with and without

ancillary information in Fig. 17 are the same due to the small size of the background database.
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Fig. 17. CMC curves for latent palmprint matching (100 latents) with and without ancillary information against a background

database of 160 full prints.

E. Different Palm Regions

To examine the identification performance of different palm regions, we computed three

separate CMC curves (see Fig. 18) for matching images from the three palm regions in the

150 live-scan partial images against the background database of 10,200 full prints. The thenar

region was found to be the most challenging palmprint region with a rank-1 recognition accuracy

of only 52%, which is much lower than the accuracy of the interdigital region (98%) and the

hypothenar region (86%). The low accuracy for the thenar region is due to the presence of a

large number of creases in the thenar region and the smaller size of the images from the thenar

region. During our collection of live-scan partial palmprints, we intended to capture each of

the three regions exclusively. However, it is not easy to scan the thenar region alone without

interference of the other two regions due to the structure of the thenar region. Therefore, only a

part of the thenar region, which is characterized by a large number of creases, is scanned. As a

result, the size of the images from the thenar region is smaller than that of the images from the

other two regions. The superior performance of the interdigital to the hypothenar is due to: (i) the

direction field in the interdigital region is more distinctive than that in the hypothenar region),

and (ii) some of the hypothenar images in our database contain the edge of the palm where the

ridge pattern is not present. Since just using partial palmprints from the interdigital region can

June 25, 2008 DRAFT



28

1 5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

Id
e

n
ti
fi
c
a

ti
o

n
 R

a
te

Cumulative Match Characteristic

Interdigital

Thenar

Hypothenar

Fig. 18. CMC curves for matching live-scan partial images from three different palm regions against the background database

of 10,200 full prints. The numbers of the partial images from the three palm regions are the same (50).

achieve a rank-1 recognition rate of 98%, we can predict that the rank-1 recognition accuracy

of full-to-full palmprint matching (searching the full prints of the live-scan partial palmprints

against the full background database) using the proposed algorithm should be greater than or

equal to 98%.

F. Quality of Latents

We manually classified the 100 latent palmprints into three different quality levels: good (45

latents), bad (34 latents) and ugly (21 latents). This terminology for latent palmprint quality

is adapted from NIST SD27 [11] where latent fingerprints were assigned the same labels. The

average number of reliable minutiae extracted in good, bad, and ugly latents is 77, 56, and 45,

respectively. An example image with each quality level is shown in Fig. 19. Fig. 20 shows the

CMC curves for matching latents with these three quality levels against the background database

of 10,200 full prints. As expected, the matching performance of latents with different quality

levels is dramatically different. These results indicate that, while the proposed system can deal

with latents of good quality satisfactorily, the intervention of latent experts is still necessary in

the case of latents with bad and ugly quality.

The three latents (same as those in Fig. 19) and their mated full prints, which were all
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(a) (b) (c)

Fig. 19. Latents with three different quality levels. (a) Good (height: 552 pixels, width: 726 pixels), (b) bad (height: 511 pixels,

width: 905 pixels), and (c) ugly (height: 473 pixels, width: 999 pixels).
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Fig. 20. CMC curves for matching latents with three different quality levels: good (45 latents), bad (34 latents) and ugly (21

latents) against the background database of 10,200 full prints.

correctly identified at rank 1 by the proposed algorithm, are shown in Fig. 21. The latents have

been aligned with the mated full prints. An example of unsuccessful match is shown in Fig. 22,

where the poor quality of both the latent and full print is the reason for the matching failure.

G. Fusion of Latent Palmprints

At crime scenes, multiple latent palmprints from the same palm can be frequently found.

Based on image and non-image information (such as the position of the latents), latent experts

can often reliably determine whether two latents are from the same palm. To determine the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 21. Examples of successful latent match. (a) Latent of good quality, (b) corresponding region in the mated full print of

(a), (c) the mated full print of (a), (d) Latent of bad quality, (e) corresponding region in the mated full print of (d), (f) the mated

full print of (d), (g) Latent of ugly quality, (h) corresponding region in the mated full print of (g), and (i) the mated full print

of (g). The matching minutiae are overlaid on the images. The corresponding region are marked on the full prints.
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(a) (b)

Fig. 22. Example of an unsuccessful latent match. (a) Latent and (b) its mated full print which ranks 2108 in matching against

the background database of 10,200 full prints (only the corresponding part is shown).

performance gain of fusing multiple latent palmprints, the following experiment was conducted.

The 100 latents in our database were merged into 30 groups, each of which consists of multiple

latents from the same palm. If any latent of a group leads to a successful match (identified

at rank-1), this group is deemed as a successful match. This ‘OR’ rule is consistent with the

practice in forensics. Based on this rule, the rank-1 recognition rate of searching 30 groups

against the full background database is 90%, which is much higher than the rank-1 rate (69%)

without fusion. A latent group with two latents from the same palm is shown in Fig. 23, where

one latent has much better quality than the other and it was correctly identified at rank-1. All

3 (10%) latent groups that failed to identify contain only one latent that is of poor quality and

can not be improved by fusion.

H. Computational Requirements

The computational requirements of different modules of the proposed system on a PC with Intel

3GHz CPU and Windows XP operating system are as follows. The average feature extraction

time is 7 seconds for partial palmprints and 22 seconds for full palmprints. The DFT and

Gabor filtering are the most computationally demanding parts of the feature extraction algorithm.

The average matching time between a partial palmprint and a full palmprint is 0.34 seconds.

June 25, 2008 DRAFT



32

(a) (b) (c) (d)

Fig. 23. A latent group consisting of two latent palmprints from the same palm. (a) A good latent (height: 1,324 pixels, width:

630 pixels) which was correctly identified at rank-1 in searching against the full background database, (b) an ugly latent (height:

999 pixels, width: 318 pixels) which was not identified, (c) the corresponding region (with matching minutiae marked) in the

mated full print of (a), and (d) the mated full print (height: 2,146 pixels, width: 2,341 pixels) of (a) and (b).

Considering that a typical full palmprint has about 800 minutiae and a typical partial palmprint

in our database has about 150 minutiae, and no pre-alignment stage has been used prior to

minutiae matching, this matching speed is reasonable. We have also tested the descriptor in [30]

on a subset of palmprint images; its matching speed was found to be more than 10 times slower

than MinutiaCode proposed here.

V. CONCLUSION AND FUTURE WORK

We have developed a prototype latent-to-full palmprint matching system. A region growing

algorithm was developed to robustly estimate the local ridge direction and frequency even in the

presence of overwhelming amounts of noise. Our minutiae matching algorithm is based on a new

fixed-length minutia descriptor which captures texture and neighboring minutiae information. The

proposed system achieves rank-1 recognition rates of 78.7% and 69%, respectively, in searching

150 live-scan partial palmprints and 100 latent palmprints against a background database of

10,200 full palmprints. Partial palmprints from the thenar region are most difficult to match

among the three palm regions. Quality of latents has a significant effect on the matching accuracy.

Ancillary information in the form of hand type, palm region and palm orientation can significantly

improve both the matching accuracy and matching speed. A simple ‘OR’ rank level fusion of
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multiple latents from the same palm can improve the matching accuracy from 69% to 90%.

Designing a robust latent palmprint segmentation algorithm is our ongoing work. While the

proposed region growing algorithm can recover a flat direction field even when the noise is

overwhelming, it needs to be improved to deal with noisy high curvature areas of palmprints.

For high resolution (1000 ppi) palmprints that are becoming available, we are exploring how

to reliably extract and utilize various types of extended features [36], especially creases, as

palmprints often contain a large number of stable creases. Utilizing creases in latent palmprint

matching is more likely to improve the matching accuracy for latents from the thenar region. For

efficient search on a large background database (of the order of millions), our matching algorithm

needs to be made more efficient. One approach is to use an indexing technique based on minutia

triplets [37]. Another approach is to utilize hand type, palm region and palm orientation, since we

have shown that such information can improve both the matching accuracy and matching speed.

We plan to develop an algorithm to estimate the ancillary information from latent palmprints.

Besides the interdigital, the thenar and the hypothenar regions, the writer’s palm (the edge of

palm opposite the thumb) is also frequently found at crime scenes. As the joint part of the palm

and the back of the hand, the writer’s palm generally contains very few minutiae. We plan to

collect images of writer’s palm and design a matcher which takes into account the characteristics

of the writer’s palm. It is generally believed that fusion at feature level can lead to better accuracy

than fusion at score/rank level. We plan to explore how to merge multiple fragmental latents

from the same palm into a single latent palmprint with larger image size and better quality [38].

To automatically determine whether two latents are from the same palm, we need to develop a

latent-to-latent palmprint matching algorithm.
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