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Abstract. In this paper we propose a simple but efficient image rep-
resentation for solving the scene classification problem. Our new repre-
sentation combines the benefits of spatial pyramid representation using
nonlinear feature coding and latent Support Vector Machine (LSVM)
to train a set of Latent Pyramidal Regions (LPR). Each of our LPRs
captures a discriminative characteristic of the scenes and is trained by
searching over all possible sub-windows of the images in a latent SVM
training procedure. Each LPR is represented in a spatial pyramid and
uses non-linear locality constraint coding for learning both shape and
texture patterns of the scene. The final response of the LPRs form a
single feature vector which we call the LPR representation and can be
used for the classification task. We tested our proposed scene representa-
tion model in three datasets which contain a variety of scene categories
(15-Scenes, UIUC-Sports and MIT-indoor). Our LPR representation ob-
tains state-of-the-art results on all these datasets which shows that it
can simultaneously model the global and local scene characteristics in a
single framework and is general enough to be used for both indoor and
outdoor scene classification.

1 Introduction

In this paper, we propose a new approach for representing images for recognition
systems and particularly scene recognition. The scene recognition problem can
be viewed as a type of whole-image classification problem where the goal is to
view the entire image and assign it a label identifying the type of scene depicted
in the image. It can be argued that the dominant approaches used for solving
whole-image classification problems have evolved to rest on three fundamental
components:

– Dense extraction of gradient-based image descriptors, such as SIFT [1] or
HoG[2]

– Representing descriptors using some form of coding, such as k-means, sparse
coding [3] or Locality-Constrained Linear Coding (LLC) [4,5].

– Pooling feature descriptors together by different pooling methods[5,6], and
using a spatial pyramid representation[4,5,7].
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The spatial pyramid representation is popular because it captures the spatial
aspects of images. Using this approach, a feature vector describing the image is
created by using the image descriptors to create a feature vector describing the
whole image. In [7], this feature vector is a histogram describing the frequency of
various quantized image descriptors in the image. The image is then partitioned,
usually into equal quadrants, and a feature vector is created to describe each
sub-region. Each of these new vectors is concatenated with the original feature
vector, describing the whole image. Each region can then be recursively sub-
divided with the feature vectors for each new sub-region being concatenated to
the overall image’s feature vector.

This results in a multi-scale representation where different parts of the feature
vector represent both different scales and different spatial locations in the image.
The intuition behind this representation for scene recognition is that it captures
regularities in image appearance, such as the sky appearing at the top of images
and roads tending to appear in the bottom half.

We propose that although this intuition is valid, the spatial pyramid represen-
tation’s ability to model images is limited by the fixed grid that is typically used
to create the feature vectors. Depending on the composition of the scene and the
pose of the camera, scene elements can occur in a wide variety of configurations
and may correspond poorly to the 4×4 and 16×16 grids that are typically used
for pooling.

1.1 Paper Contribution

Inspired by the success of recent latent variable approaches [8,9] and Spatial
Pyramids (SP) representation [4,7], we propose a new image representation de-
signed to be used for discriminating between image classes. In our new repre-
sentation, each feature value expresses a particular type of scene region that is
present in the images of one category. To make this representation robust to
different spatial configurations of images, the position of each scene region is
treated as a latent variable that is optimized as part of the representation.

To capture the structure within a region, each region is represented with a
spatial pyramid. Thus, we refer to these regions as Latent Pyramidal Regions

and refer to this representation as the Latent Pyramidal Regions represention,
or LPR representation. The power of this representation will be demonstrated
in Section 6, where experiments on three different data sets will show that this
representation out-performs other representations and models, including the re-
cent work of Pandey et al. [8] that also incorporates latent-variable models into
scene recognition. Below, we will introduce the Latent Pyramidal Region Repre-
sentation, and then in Section 5 we will compare this representation with related
work.

2 The Latent Pyramidal Region Representation

The fundamental unit in the Latent Pyramidal Regions, or LPR, representation
is an image region detector that is parameterized to find image regions with a
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specific appearance. Given an input image I, the vector v will denote the LPR
representation of the image I.

Each element in the vector v is computed by finding the maximum response
of a cost function applied to different sub-windows in the image. If vi is the ith
element of v, we formally denote it as

vi = max
w∈I

θ⊤i f(I, w), (1)

where f (I, w) is a function that returns a vector of features extracted from sub-
window w in the image I. This max operation occurs over the set of all possible
sub-windows in the image and thus w is the latent variable of our model. As will
be discussed in Section 4, we represent these regions using the coding scheme
proposed in [4].

The vector θi is a set of parameters that defines what type of image region
each detector selects for. In our current implementation, these are trained dis-
criminatively using methods described in Section 3.

In our implementation, each region detector examines sub-windows of a size
that is fixed relative to the size of the image. For example, some detectors op-
erate on windows with a size that is 40% of the size of the image, while other
detectors may use a window that is 60% of the input image. As will be shown in
the experiments, using multiple window scales improves the performance of the
model.

The LPR representation has an intuitive explanation in terms of an object
model with parts, like [9]. The vector v is created from a bag of part detectors
by applying each detector to the image, then recording the highest score found
by the detector.

3 Learning the Parameters for Region Detectors

The key parameters in the LPR representation are the region detector param-
eters, denoted as θi in Eq. (1). Because this representation will eventually be
used to discriminate between different scene categories, the parameters of the
region detectors can be found through a discriminative training process based
on one-versus-all training of a structural Latent SVM.

The underlying idea behind the training process is to build the set of region
detectors optimized for separating each scene category from the others. A de-
tector defined by parameters θk is created by first choosing a particular scene
category k. Each training image, I can then be assigned a label y ∈ {−1,+1},
with y taking the label +1 if the I belongs to category k. Otherwise, y takes the
value −1.

The goal in training is to learn a prediction rule of the form:

Fθ(I) = argmax
k,w

[θ⊤k f (I, w)], (2)

where k will be the predicted label and w will be the sub-window with the
highest detection score. As in Eq. (1), the function f(I, w) evaluates to a vector
of features extracted from sub-window w.
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The parameter vector θ is found by minimizing the cost function

f(θ) =
λ

2
‖θ‖2 +

N
∑

j=1

Rj(θ), (3)

with λ balancing between the quadratic regularizer ‖θ‖2 and the risk function
Rj(θ), which is summed over the N training images.

The risk function Rj(θ) is structured to penalize the prediction function when
it predicts an incorrect label. Following [10], it is formulated as:

Rj(θ) = max
y,w

[

θ⊤Φ(Ij , y, w) +∆(y, yj)
]

−max
w

θ⊤Φ(Ij , yj , w) (4)

The recognition loss ∆(y, yj) is a 0/1 loss that measures the difference between
the ground-truth label yj and the predicted label y, i.e. ∆0/1(y, yj) = 1 if y �= yj ,
and 0 otherwise. The feature vector Φ is defined to reflect the statistics of image
I local to the sub-window w, i.e. Φ(I, y, w) = f (I, w) and following [11] we define
Φ as zero vectors for the images of other categories (i.e. yj = −1) during the
training.

For solving the non-convex optimization problem of Eq. (3), we use non-
convex bundle optimization in [12] which is a recent variant of bundle methods
for regularized risk minimization [13,14]. This method iterates between finding
the best sub-window w and the optimal discriminative parameter vector θ, until
convergence. In each iteration, a new linear cutting plane is found via a subgra-
dient of the objective function which will finally build up a piecewise quadratic
approximation. For finding the latent sub-window w∗ in each image Ij , we define
the inference function I(Ij , w, y, θ) = θ⊤Φ(Ij , y, w) where:

w∗ = argmax
w∈Ij

[I(Ij , w, y, θ)]. (5)

Then we predict the label y∗ by using w∗,

y∗ = argmax
y∈Y

[I(Ij , w
∗, y, θ) +∆(y, yj)]. (6)

The optimization method of [12] improves the approximation of the quadratic
lower bound of the objective function by iteratively adding a new cutting plane
using the sub-gradient of the cost function, which is

δθf = λθ +

N
∑

j=1

[Φ(Ij , y
∗, w∗)− Φ(Ij , yj , w

∗)]. (7)

In practice, it is possible to learn multiple region detectors in one cycle of one-
versus-all training by introducing multiple latent w variables and additively ex-
tending the feature function f(·) to accommodate multiple windows.

As mentioned earlier, the image is represented by the vector v which is the
concatenation of the maximum response of each detector in the image. If the
problem contains K classes and L region detectors are learned per class, this
will result in LK response values in the vector v.
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4 Features and Image Representation

The image content inside each region is represented using the locality constraint
coding scheme proposed in [4]. The actual image descriptors were computed
using the dense SIFT routine from the LabelMe toolbox. For quantizing the
SIFT features and constructing the codebook we use a sparse-coding algorithm
proposed in [3] to find an over-complete basis that will be used to represent the
descriptors. We use the sparse-coding algorithm because the ℓ1 regularization in
the optimization produces sparse bases that are robust to irrelevant features and
noise in the data. Using this codebook, descriptors are then encoded using the
LLC coding in [4]. As mentioned in the introduction, each region is represented
using a spatial pyramid representation with 3 levels. The image was represented
with 16×16 SIFT descriptors that were computed at every 8 pixels. The features
inside a cell in the spatial pyramid are pooled using a max-pooling operation,
similar to [4]. Following [5] our codebook is generated with 1024 entries and is
optimized from a set of 200,000 randomly sampled descriptors.

5 Related Work

Our work is related to recent efforts to combine both local and global information
for scene recognition. As mentioned in the introduction, a number of systems
have been proposed that use a spatial pyramid combined with a coding of image
descriptors [4,5,7]. Other approaches including [15] propose training a classifier
with both global scene labels and salient regions manually segmented by humans.

In [16,17], Li et al. propose another unique object-centered approach called the
Object Bank(OB). In this model, each image is represented as the response map
of a large number of pre-trained generic object detectors. The key challenge
in this approach is the need to have thousands of object detectors, which is
computationally expensive.

Our proposed model also has similarities to the recent work of Pandey and
Lazebnik [8]. The recognition system in [8] utilizes the deformable object detector
made available as part of the work in [9] to classify scenes without requiring
human-segmented regions [8]. While both our work and [8] use latent variable
models, the key differences in this work lie in how the models are constructed.
Imposing the object model from [9] on scenes has two significant limitations:

1. This imposes a strong spatial structure on the scene with parts being tied
to specific locations relative to the root filter.

2. This combines the localization of the parts with the classification of the
object category. In deformable parts model [9], the same parameters used to
position the part locations are also used to compute the classification score.

The significance and novelty of our approach lie in how we handle these two
issues differently:

1. Responding to the varied appearance of scenes, our model removes spatial
constraints and focuses on finding image regions that characterize scene ap-
pearance.
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2. Our approach separates the scene categorization classifier from the model for
identifying image regions. This allows the classifier to optimize the weights
for distinguishing between classes without having to balance how the weight
values will affect which image regions are chosen.

These design decisions are validated by our experiments in Section 6.4. Our rep-
resentation significantly raises recognition accuracy on the MIT Indoor dataset
to over 44%, compared with an accuracy rate of 30.4% reported in [8].

5.1 Limitations of This Approach

The primary limitation of this approach is that it is discriminatively trained for
a particular scene recognition problem. This somewhat blurs the line between
a classifier and image representation. However, in defense of this approach, we
submit that most recognition systems rely on a codebook that has been opti-
mized on the same images that will be used for training the system. While the
LPR representation is more directly optimized for specific categories, codebook
based methods are often implicitly tied to the dataset through the codebook
generation process.

6 Experiments

In this section we evaluate the performance of the proposed method on
three scene datasets with diverse types of scenes including natural scenes (15-
Scenes [7]), complex event and activity images (UIUC-Sports [18]), and cluttered
indoor scenes (MIT-Indoor [15]). In future work, we plan to pursue scaling our
approach to solve large-scale datasets like the SUN database[19].

On each of the three mentioned datasets, we report three key results, in ad-
dition to results presented in previous work:

– The accuracy computed using a linear SVM combined with the spatial pyra-
mid representation of the image created by the software released by the
authors of [4]. This representation encodes the image descriptors using a
locality-constrained coding(LLC) scheme [4]. Because this representation is
the concatenation of multiple feature vectors, the high dimensionality of this
descriptor limits the classifier to a linear classifier. The results reported for
LLC are obtained using the same codebook that we used in our system.

– The accuracy computed using the maximum response of region detectors
associated with each class. If we denote Vk to be the set of all region detectors
trained to respond to class k, using the training procedure in Section 3, the
classification score for the class is computed by summing the reponse of those
detectors. Formally, this is expressed as

y = argmax
k∈K

[

∑

i∈Vk

vi

]

, (8)

where there are K possible classes.
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This is similar to the approach taken in [8,9] and will be referred to as
LPR-MS.

– The accuracy computed using an SVM with a Radial Basis-Function(RBF)
kernel and the LPR representation as well as a Linear SVM. We refer to
these as LPR-RBF and LPR-LIN.

In the experiments our region detectors are initialized with a random sub-window
of the image and are trained to learn a discriminative region of the scene by the
procedure explained in Section 3. All accuracies are the average of the per-class
recognition rates which is the mean over the diagonal values of the confusion
matrix.

6.1 Key Results

While the following sections will describe results in detail, we wish to highlight
the following key results:

– While the LLC representation and LPR representation use the exact same
descriptors and coding scheme, the LPR representation consistently outper-
forms LLC.

– The LPR representation consistently outperforms other single feature accu-
racy results. When other systems outperform the LPR representation, this
requires the fusion of multiple features. For example, by fusing five different
types of features Xiao et al. report an accuracy of 88.1% on the 15-scene
dataset in [19]. As reported in [19] the highest accuracy on the 15-scene
dataset achieved by any single feature is 81.2%.

– Using just gradient-based descriptors, the proposed LPR representation out-
performs the deformable part model approach proposed in [8] by over 14%
accuracy. The approach in [8] must incorporate additional color information
to be competitive.

6.2 15-Scenes Dataset

The 15-Scenes dataset contains 15 natural scene classes including 4485 images
from a variety of outdoor natural scenes, outdoor man-made scenes and indoor
scenes. For the test/train split we followed the setting suggested in [7]. Table 1
summarizes the performance comparison of the proposed method and state-of-
the-art methods. Here we have used three LPRs with the size of 100%, 65% and
25% of the total image. Examples of the regions detected are presented in Fig. 1.
As can be seen, our proposed method has outperformed the other state-of-the-art
methods.

Based on the results of Table 1, the overall accuracy obtained from LPR-MS
and the state-of-the-art methods are competitive. By using either an RBF or a
linear kernel SVM classifier for our LPR representation, we obtain an accuracy
of 85.81% and 85.75%, respectively, both of which are significantly higher than
LLC (our baseline) and other state-of-the-art methods. These results show that
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Table 1. The average per-class accuracy results of the proposed method compared
with state of the art in the 15-Scenes dataset. The abbreviations for our approach are
defined in Section 6.

Method Accuracy Method Accuracy

KC [6] 76.67 LLC(baseline) 80.57
OB2 [16] 80.9 LPR-MS(our approach) 83.29

ScSPM [5] 80.28 LPR-LIN(our approach) 85.72

KSPM [7] 81.4 LPR-RBF(our approach) 85.81

Table 2. Per-class accuracy of the proposed method (LPR-MS and LPR-RBF) com-
pared with our baseline (LLC [4]) and KSPM in 15-Scenes dataset. The categories are
listed in decreasing order of classification accuracy of (LPR-RBF). The accuracies for
(KSPM) are taken from [7].

class name KSPM LLC LPR-MS LPR-RBF class name KSPM LLC LPR-MS LPR-RBF

CALsuburb 99 99 99 99 MITinsidecity 80 84 84 85

PARoffice 93 95 96 94 MITopencountry 70 66 71 83

MITforest 95 96 96 93 store 76 74 76 78

MITtallbuilding 91 93 93 93 industrial 65 65 70 77

MITstreet 90 87 89 93 kitchen 68 65 73 75

MITmountain 89 87 89 92 bedroom 68 71 68 73

MIThighway 87 84 87 92 livingroom 60 58 72 70

MITcoast 82 86 87 90

the proposed method can perform well in all types of scene categories. To the
best of our knowledge, the best result reported on the 15-Scenes dataset is 88%
in [19] and [20], which is obtained by the fusion of five and eight different feature,
respectively. However, LPR representation obtains higher accuracy than any
single features reported in [19]. The per-class accuracy of the proposed method
compared with KSPM and LLC is provided in Table 2.

6.3 UIUC-Sports Dataset

The UIUC-Sports dataset contains images from eight sport scene categories.
This dataset includes 1,574 images of indoor and outdoor scenes that are highly
cluttered by objects. The particular characteristic of this dataset is the presence
of a structured foreground (e.g. players, sport instruments) in a highly textured
background (e.g. sea, court, field). Furthermore, this dataset includes images of
different activities that have similar backgrounds such as sailing and rowing or
polo, Bocce, and Croquet. For the test/train split we followed the setting sug-
gested in [16]. Here we have used the same setting for the number and size of
LPRs as we used for the 15-Scenes dataset. According to Table 3, the proposed
method could obtain improved results over both low-level features (i.e. GIST[21]
and KSPM[7], which capture the global scene properties) and high-level seman-
tical image representation methods (i.e. MM-Scene[22] and OB[17,16]). Further-
more, by using an SVM with radial basis-function kernel for classifying we obtain
an accuracy of 86.25% which is a more than 4% increase over our baseline. Here,
the linear kernel did not result in a significant improvement over LPR-MS but
it’s accuracy is still significantly better than LLC.



236 F. Sadeghi and M.F. Tappen

Table 3. The average per-class accuracy results of the proposed method compared
with state of the art in the UIUC-Sports dataset

Method Accuracy Method Accuracy

GIST[21] 63.88 OB1 [17] 77.88
MM-Scene [22] 71.7 LLC(our global term) 81.87
KSPM [7] 71.57 LPR-MS(our approach) 85.0

WWW[18] 73.4 LPR-LIN(our approach) 85.2

OB2 [16] 76.3 LPR-RBF(our approach) 86.25

Table 4. Per-class accuracy of the proposed method (LPR-MS and LPR-RBF) com-
pared with our baseline (LLC [4]) and state-of-the-arts (KSPM and OB) on UIUC-
Sports dataset. The categories are listed in decreasing order of classification accuracy
of (LPR-RBF). The accuracies for (KSPM) and (OB) are taken from [17].

class name KSPM OB LLC LPR-MS LPR-RBF

sailing 75 93 95 93 95

snow boarding 75 70 88 92 92

rowing 80 77 93 93 90

Rock climbing 93 88 93 82 90

polo 68 65 78 90 87

badminton 93 88 88 88 85

croquet 48 74 68 80 82

bocce 42 68 50 62 70

By comparing the per-class accuracy of our LPR representation with OB [17]
and KSPM [7] which is summarised in Table 4, we see that the accuracy of
the proposed method is significantly higher than the other two in most of the
categories. This suggests that the proposed method is less confused by similar
backgrounds such as sailing and rowing and similar visual structures like human
players in polo and bocce.

Also, the results of Table 3 show that the accuracy obtained by the proposed
method is significantly higher than the accuracy obtained by OB combined with
GIST. This shows that the proposed method is capable of learning both local
and global characteristics of the scenes without needing to be combined with
other methods.

6.4 MIT-Indoor Dataset

MIT-Indoor is a very challenging dataset of 15,620 indoor scenes images in 67
different categories. For each category we used 80 images for training and 20
images for testing following the same test/train split as in [15].

Here, we have used four LPRs with size of 100%, 80%, 65%, and 50% of
the total image size and we will show the effects of the LPRs in increasing the
classification accuracy at the end of this section. In Section 6.5 and Fig. 1 we
will show examples of the detected regions in this dataset.

Table 5 shows the classification results of the proposed method compared
with the state-of-the-art. Based on the results, LPR-MS obtains an accuracy of
41.22% and can reach 44.41% accuracy by using and RBF kernel and 44.84% by
using a linear kernel which are about 15% higher than the DPM method.
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Table 5. The average per-class accuracy results of the proposed method compared
with state-of-the-art on the MIT-indoor dataset. Our approach outperforms previous
approaches without the need to use color information.

Method Accuracy Method Accuracy

HOG [2] 22.8 DPM+GIST-color [8] 39.0
ROI+gist [15] 26.5 DPM+KSPM [8] 40.5
MM-scene [22] 28.0 DPM+KSPM+GIST-color [8] 43.1
GIST-color [2] 29.7 LLC(our global term) 37.32
DPM [8] 30.4 LPR-MS(our approach) 41.22

KSPM [7] 34.4 LPR-LIN(our approach) 44.84

CENTRIST [23] 36.9 LPR-RBF(our approach) 44.41

OB2 [16] 37.6

When DPM is combined with GIST-color, KSPM and both of them, accuracies
of 39%, 40.5% and 43.1% are obtained, respectively. These accuracies, though
competitive, are still less than the accuracy obtained by our method. This shows
that, as opposed to our method which can simultaneously learn global and local
features of the scene, DPM can only capture local features and thus needs to be
combined with other feature types to obtain satisfying results. Table 6 contains
the per-class accuracies obtained by LPR, our baseline(LLC) and the best results
obtained by DPM after fusion with both GIST and KSPM features.

To examine the contribution of each region in our LPR model, we tested our
performance in the MIT-indoor dataset with different number of regions. Similar
experiments are carried out on the other two datasets, and similar results are
obtained. Table 7 contains the accuracy obtained by changing the numbers
of region detectors from one to five. The regions cover 35%, 50%, 65%, 80%
and 100% of the whole image, respectively. The obtained results show that our
LPRs contributed significantly in improving the classification accuracy. More
surprisingly, we obtained our best performance in the MIT-indoor dataset by
using only four regions, while adding the smallest size regions (i.e. 35%) slightly
reduced the accuracy. This result shows that in this dataset, adding regions with
smaller sizes can make the system overfit on the very small details of the scene.
This result is in contrast with [8], where the authors obtained their best result
by using eight parts. We believe that the reason for this contrast lies in the
fact that in [8] each part covers a much smaller portion of the scene image than
our LPR regions (i.e. about 10% of the image). As opposed to our approach,
where each LPR models one characteristic of the scene including foreground
objects and background context, each part in [8] models one part of a recurring
object available in images of each scene category and thus only learns local
discriminative pattern of the scenes.

6.5 Qualitative Analysis of LPR

For evaluating the behaviour of the region detectors in the proposed method, we
visualized the regions that are discovered by LPR representation in a number
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Table 6. Per-class accuracy of the proposed method (LPR-MS and LPR-RBF) com-
pared with our baseline (LLC [4]) and (DPM) on MIT-indoor dataset. The categories
are listed in decreasing order of classification accuracy of (LPR-RBF). The accuracies
for (DPM) are taken from [8].

class name DPM+ LLC LPR-MS LPR-RBF class name DPM+ LLC LPR-MS LPR-RBF

GC+KSPM GC+KSPM

cloister 95 85 85 95 bathroom 56 44 39 39

elevator 86 76 86 90 hairsalon 52 24 38 38

bowling 55 70 70 90 grocerystore 48 48 43 38

greenhouse 75 80 90 85 laundromat 50 32 41 36

inside subway 52 57 57 81 fastfood restaurant 24 18 24 35

garage 56 56 67 78 prisoncell 50 30 30 35

buffet 80 75 75 75 poolinside 45 15 10 35

inside bus 57 74 74 74 library 35 25 30 35

church inside 79 68 74 74 subway 62 29 33 33

closet 72 50 56 72 dining room 56 33 39 33

classroom 61 78 78 72 restaurant kitchen 13 30 22 30

corridor 67 67 76 71 mall 20 15 15 30

concert hall 80 60 55 70 bookstore 35 25 30 30

florist 89 68 68 68 bedroom 10 33 33 29

casino 47 53 58 68 videostore 23 5 14 27

stairscase 55 55 55 65 operating room 26 16 21 26

movietheater 55 65 70 65 museum 17 22 22 26

studiomusic 63 47 63 63 lobby 35 10 30 25

trainstation 70 70 75 60 gameroom 35 20 25 25

pantry 75 65 60 60 office 10 24 24 24

tv studio 50 50 50 56 laboratorywet 14 18 23 23

auditorium 33 50 61 56 shoeshop 16 26 26 21

kindergarden 40 30 55 55 deli 5 16 11 21

locker room 38 29 29 52 bakery 26 11 21 21

dentaloffice 48 38 43 52 artstudio 15 10 10 20

nursery 65 55 50 50 warehouse 29 10 14 19

hospitalroom 20 45 45 50 gym 33 6 17 17

bar 33 44 39 44 livingroom 20 5 35 15

winecellar 38 24 29 43 airport inside 10 0 15 15

kitchen 52 38 29 43 waitingroom 33 14 19 14

meeting room 77 41 45 41 jewelleryshop 5 5 18 14

computerroom 44 39 44 39 toystore 18 0 0 9

clothingstore 33 44 39 39 restaurant 10 10 15 0

children room 11 28 28 39

Table 7. Average classification rate on MIT-indoor dataset obtained by different
numbers of LPRs

number and size of LPRs Accuracy

(1) 100% 37.32
(2) 100%,50% 38.15
(3) 100%,50%,65% 40.27
(4) 100%,50%,65%80% 41.22
(5) 100%,35%,50%65%,80% 40.91

of categories for all the three datasets. In our experiments we have trained the
model with three LPRs for the 15-Scenes and UIUC-Sports dataset. Due to
the larger number of categories in the MIT-Indoor dataset we trained LPR
representation with four regions.

For each category in the datasets, Fig. 1 presents five examples of the test
images in which LPR has discovered discriminative regions well (the first five
columns) and one example in which inappropriate region is selected by the LPR
(last column). In all the images the LPRs are shown with colored bounding
boxes and the region with the biggest size(i.e 100% of the image) is not shown.
The examples in the last column show that LPR in confused whenever a pattern
appears in the image that seldomly occurs in the images of that category. In these
images, the smaller region has not been able to find a discriminative pattern,
however the larger region has captured the global context of the scene.
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Fig. 1. The detected regions found by LPR in (MITMountain, CALsuburb, bedroom)
categories of 15-Scenes, (Polo, Sailing) categories of UIUC-Sports and (movietheater,
operating room, staircase, gym and livingroom) categories of MIT-indoor dataset. For
each category five example of the test images in which LPR has discovered discrim-
inative regions is presented (the first five columns) along with one example in which
inappropriate region is selected by the LPR(last column).
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For the 15-Scenes dataset, we have provided examples of the discovered regions
by LPR in natural outdoor (MITMountain), natural man-made (CALsuburb)
and indoor (bedroom) scenes. We observe that for each of the scene categories,
the smaller region captures a discriminative recurring pattern of the scene that
can be part of an object (e.g. bed corner in bedroom or peak of the mountain)
or just a recurrent pattern (e.g. sidewalk and lawn in suburb). The larger region
also detects the general pattern of the scene and yet has the flexibility to discard
noise patterns and select a sub-window with the most information.

Similarly, in the UIUC-Sports dataset, the smaller region captures the mast in
the Sailing category, whereas the larger region captures the sailing boat, sky and
water. Likewise, in the Polo category, the smaller region has learned the pattern
of man riding a horse, while the larger region has most of the important elements
of the scene which is man riding a horse in a field. These examples show that our
latent region detectors can efficiently find discriminative scene structures.

The MIT-indoor dataset, contains images of indoor scenes where usually sev-
eral different objects occur in the images of one category. In these images, our
LPR representation searches for recurring patterns of different objects and their
combinations. For example, the smallest detected region contains screen in the
movietheater, sofa in the living room or bed in the operating room. The bigger
regions capture the combination of screen and seats in movietheater, steps, wall
and floor in staircase or sofa and desk in the living room. Based on these exam-
ples we understand that an obvious advantage of LPR over DPM is that LPR
can find discriminative regions of the scenes which contain a discriminative part
of an object, a whole object, or the combination of several objects with their
context; whereas DPM only seeks to find a recurring object of the scene. We
conclude that our latent region detection approach has the ability to capture
both local and global discriminative features and is general enough to be used
for recognition tasks in all types of scenes.

7 Conclusion

In this paper, we addressed the problem of scene classification by using a latent
SVM framework in which a set of region detectors are learned to capture the
key characteristics of the scenes. Each region is called Latent Pyramidal Region
and it is represented by a spatial pyramid and using nonlinear locality constraint
coding. By learning the pattern of these regions. Our model can learn the lo-
cal and global characteristics of the scene images efficiently. We conducted our
experiments on the 15-Scenes dataset, UIUC-Sports dataset, and MIT-indoor
scene dataset with 67 categories. The results show that our proposed method
can obtain state-of-the art performance on a variety of scene datasets without
needing to be combined with known global features like GIST and KSPM.
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