
Latent Regression Forest: Structured Estimation of 3D Articulated Hand Posture

Danhang Tang Hyung Jin Chang∗ Alykhan Tejani∗ Tae-Kyun Kim

Imperial College London, London, UK

{d.tang11, hj.chang, alykhan.tejani06, tk.kim}@imperial.ac.uk

Abstract

In this paper we present the Latent Regression Forest

(LRF), a novel framework for real-time, 3D hand pose es-

timation from a single depth image. In contrast to prior

forest-based methods, which take dense pixels as input,

classify them independently and then estimate joint po-

sitions afterwards; our method can be considered as a

structured coarse-to-fine search, starting from the centre of

mass of a point cloud until locating all the skeletal joints.

The searching process is guided by a learnt Latent Tree

Model which reflects the hierarchical topology of the hand.

Our main contributions can be summarised as follows:

(i) Learning the topology of the hand in an unsupervised,

data-driven manner. (ii) A new forest-based, discriminative

framework for structured search in images, as well as an

error regression step to avoid error accumulation. (iii) A

new multi-view hand pose dataset containing 180K anno-

tated images from 10 different subjects. Our experiments

show that the LRF out-performs state-of-the-art methods in

both accuracy and efficiency.

1. Introduction

Since the widespread success of real-time human body

pose estimation [10], the area of hand pose estimation has

received much attention within the computer vision com-

munity. Accurate and efficient hand pose estimation is ben-

eficial to many higher level tasks such as human computer

interaction, gesture understanding and augmented reality.

In this paper we introduce a method for real-time 3D hand

pose estimation from a single depth image.

State-of-the-art human body pose estimation techniques

consist mainly of data-driven, bottom-up approaches, in

which pixels are independently assigned body part la-

bels [15] or vote for joint locations [5, 18, 13]. However, in

comparison to the human body, the hand has far more com-

plex articulations, self-occlusions and multiple viewpoints;

thus, these approaches require exponentially more data to

∗These authors contributed equally to this work.

Figure 1: Our method can be viewed as a search process,

guided by a binary Latent Tree Model(LTM); starting from

root of the LTM, we minimise the offset to its children at

each level until reaching a leaf node which corresponds to

a skeletal joint position. For simplicity, we only show the

searching process for one joint.(All figures best viewed in

colour and high-definition)

capture this variation, making their direct application diffi-

cult.

Furthermore, few bottom-up approaches use a global re-

finement step, such as enforcing dependency between local

outputs [16] or kinematic constraints [17]. Without such

procedures, highly unlikely or even impossible poses can

be produced as output.

In contrast, other approaches to hand-pose estimation

have used a more top-down, global approach in which hy-

potheses are generated from a 3D hand model and poses are

tracked by fitting the model to the test data [3, 6, 1, 12].

Whilst these model-based approaches inherently deal with

the kinematic constraints, joint articulations and viewpoint

changes, their performance heavily relies upon accurate

pose initialisation and structural correlation between the

synthetic model and testing subject (i.e. hand width and

height).

In this paper, we present the Latent Regression Forest

(LRF) for real-time 3D hand pose estimation from a sin-

gle depth image. We formulate the problem as a dichoto-

mous divide-and-conquer search for skeletal joints which

1

is conducted as a structured coarse-to-fine search, guided

by a learnt topological model of the hand (see Figure 1).

Furthermore, the topological model is used to enforce im-

plicitly learnt global kinematic constraints on the output.

Additionally, by training in a discriminative manner using

our new diverse hand pose dataset, our approach is able to

generalise to hands of various shapes and sizes as demon-

strated in our experiments. Our experiments show that the

LRF outperforms state-of-the-art methods in both accuracy

and efficiency. The main contributions of our work can be

summarised as follows:

1) Unsupervised learning of the hand topology: We rep-

resent the topology of the hand by a Latent Tree Model[2]

which is learnt in an unsupervised fashion. This topological

model is used while training the Latent Regression Forest

to enable a structured coarse-to-fine approach.

2) Latent Regression Forest: We introduce a framework

for structured coarse-to-fine search in depth images. Guided

by the learnt Latent Tree Model, we learn binary decision

trees that iteratively divide the input image into sub-regions

until each sub-region corresponds to a single skeletal joint.

Furthermore, an error regressor is embedded into each stage

of the framework, in order to avoid error accumulation.

3) A new multi-view hand pose dataset: We present a

new hand pose dataset containing 180K fully 3D annotated

depth images from 10 different subjects.

2. Related Work

Hand pose estimation has a long and diversified history

in the computer vision community. With the recent intro-

duction of low cost real-time depth sensors, this field, as

well as the closely related field of human body pose es-

timation, has received much attention. In this section we

will discuss some of the more recent related works to these

problems, however, we refer the reader to [4] for a detailed

survey of earlier hand pose estimation algorithms.

Many works for human body pose estimation use large

synthetic datasets in training and use either pixel-wise clas-

sification [15], or joint regression techniques [5, 18, 13, 16]

for pose estimation. However, in comparison to the human

body, the hand has far more complex articulations, self-

occlusions and multiple viewpoints; thus, these approaches

require exponentially more data to capture this variation,

making their direct application difficult.

Keskin et al. [8] propose a solution to the data-explosion

problem, by first clustering the training data followed by

training multiple experts on each cluster using the method

of [15]. Furthermore, due to the increased variation in the

hand, capturing ground-truth annotated real data is a prob-

lem in its own right. Tang et al. [17] investigate semi-

supervised learning for hand pose estimation using anno-

tated synthetic data and unlabelled real data.

Recently many tracking-based methods have also been

proposed for hand pose estimation. Oikonomidis et al. [12]

introduce a tracking based method for hand pose estimation

in depth images using particle swarm optimisation. De La

Gorce et al. [3] incorporate shading and texture informa-

tion into a model-based tracker, whereas Ballan et al. [1]

use salient points on finger-tips for pose estimation. Very

recently, Melax et al. [9] proposed a tracker based on phys-

ical simulation which achieves state-of-the art performance

in real-time.

Graphical models, especially tree-based models have re-

cently been used for estimating human body pose. Tian et

al. [19] build a hierarchical tree models to examine spa-

tial relationships between body parts. Whereas Wang and

Li [20] use a Latent Tree Model to approximate the joint

distributions of body part locations. Latent Tree Models, in

particular, are interesting as they are able to represent com-

plex relationships in the data [11] and, furthermore, recent

methods for constructing these models ([2, 7]) enable us to

learn consistent and minimal latent tree models in a compu-

tationally efficient manner.

3. Methodology

The hand pose estimation problem can be decomposed

into estimating the location of a discrete set of joints on the

hand skeleton model. We formulate this as a dichotomous

divide-and-conquer search problem, in which the input im-

age is recursively divided in to two cohesive sub-regions,

until each sub-region contains only one skeletal joint. To

attain robustness to the complex articulations of the hand,

the search is carried out in a structured, coarse-to-fine man-

ner, where the granularity of each search stage is defined by

a learnt topological model of the hand.

In Section 3.1 we discuss how we can learn the hand

topology in an unsupervised fashion. Following this, in

Section 3.2, we discuss how this topology is used to build

a Latent Regression Forest (LRF) to perform a structured,

coarse-to-fine search in the image space. Finally, in Sec-

tion 3.3 we discuss a strategy to reduce error propagation

within the LRF.

3.1. Learning the hand topology

To guide the search process, we desire to define a coarse-

to-fine, hierarchical topology of the hand, where the most

coarse level of the hierarchy is defined by the input to the

search, the entire hand, and the most fine level by the out-

puts, the skeletal joints.

Given training images annotated with the 3D positions

of all skeletal joints, we additionally define the 3D position

of the entire hand as the centre of mass of all points in the

depth image. Thus, our objective is to learn a hierarchical

topology starting from the centre of mass and ending at the

skeletal joints. This is achieved by modelling the topology

2

Figure 2: An comparison between (a) a traditional Regression Tree, where each patch sample is extracted from a depth image,

propagated down the tree and ends up at one leaf node; and (b) an Latent Regression Tree, where the whole point cloud is

propagated down the tree and keep dividing until ending up at 16 leaf nodes.

as a Latent Tree Model and making use of the recently pro-

posed Chow-Liu Neighbour-Joining (CLNJ) method [2] to

construct it.

A Latent Tree Model is a tree-structured graphical

model,M = (O ∪ L,E), where the vertexes are composed

of observable vertexes (skeletal joints and the hand posi-

tion), O, and latent vertexes, L = {l}, where l ⊆ O; and E

denotes edges(see Figure 3(c)(d)). In our work we only con-

sider binary tree models as to easily integrate them within

the Latent Regression Forest, which itself is composed of

binary trees.

The CLNJ method takes as input a pairwise distance ma-

trix,D, of all observable vertexes. Using the training set, S ,

the distanceD between two observable vertexes, x and y, is

defined as:

Dxy =

∑

I∈S δ (I, x, y)

|S|
(1)

where δ (I, x, y) is a function measuring the distance be-

tween vertexes x and y in image I . In this work we compare

two different distance functions, the first being the standard

Euclidean distance between the 3D positions of x and y,

and the second being the geodesic distance.

To calculate the geodesic distance between vertexes x

and y in image I , we first construct a fully connected, undi-

rected graph of all observable vertexes in I . Edges in this

graph are then removed if there is a large depth disconti-

nuity along this edge in image space. What remains is a

graph in which the edges all lie along a smoothly transition-

ing depth path. The geodesic distance between two vertexes

can then be calculated as the shortest path connecting them

in this graph.

In Figures 3(a) and (b) we demonstrate the difference

between Euclidean and geodesic distance on a toy hand

model. Through different poses the Euclidean distance be-

tween two joints can change drastically while the geodesic

one remains largely unchanged; this robustness to pose is

preferable to the capture the topology of human hand.

In Figures 3(c) and (d) two Latent Tree Models gener-

ated using the Euclidean and geodesic metrics respectfully

are shown; as highlighted by the arrows, the Euclidean-

generated model groups sub-parts of fingers with different

fingers e.g. root of middle finger is grouped with index fin-

ger, whereas in the geodesic-generated model the fingers are

all separated.

3.2. Latent Regression Forest

The aim of a Latent Regression Forest (LRF) is to per-

form a search of an input image for several sub-regions,

each corresponding to a particular skeletal joint. Search-

ing is preformed in a dichotomous divide-and-conquer fash-

ion where each division is guided by the learnt Latent Tree

Model representing the topology of the hand.

A LRF is an ensemble of randomised binary decision

trees, each trained on a bootstrap sample of the original

training data. Each Latent Regression Tree contains three

types of nodes: split, division and leaf (see Fig. 2). Split

nodes perform a test function on input data and decides to

route them either left or right. Division nodes divide the cur-

rent search objective into two disjoint objectives and prop-

agate input data down both paths in parallel. Finally, leaf

nodes are terminating nodes representing a single skeletal

joint and store votes for the location of this joint in 3D

space.

In Section 3.2.1 we discuss how to build the LRF fol-

lowed by a discussion of the testing procedure in Section

3.2.2.

3.2.1 Training

Given a Latent Tree Model (LTM) of the hand topology,M,

for each vertex i ∈ M, i = 0...|M|, its parent is defined

by p(i) and its 2 children by l(i) and r(i). For each training

3

Figure 3: (a) Euclidean distance between two joints. (b) Geodesic distance between two joints. (c) LTM generated using

the Euclidean distance metric. (d) LTM generated using the geodesic distance metric. In (c) and (d) solid circles represent

observable vertexes and dashed ones latent vertexes. This figure is best viewed in colour.

depth image, I , a 3D position, ρI
i , is associated with i. For

each observable vertex, i ∈ O, this is simply the position of

the associated joint; for each latent vertex, i ∈ L, the posi-

tion is represented by the mean position of the observable

nodes they are composed of. Therefore, each training sam-

ple can be represented as a tuple
(

I,ρI
i

)

, where ρI
i are the

3D positions of the associated vertex, i, in the image I .

Each Latent Regression Tree (LRT) in the Latent Re-

gression Forest is trained as follows: the LRT is trained in

stages, where each stage corresponds to a non-leaf vertex in

the LTM, M. Starting with the root vertex, i = 0, of M
we grow the LRT with the objective of separating the im-

age into two cohesive sub-regions which correspond to the

vertexes, l(i) and r(i), which are the children of the root

node.

This separation is achieved by growing a few layers of

Latent Regression Tree. At each node, we randomly gen-

erate splitting candidates, Φ = {(fi, τi)}, consisting of a

function, fi, and threshold, τi, which splits the input data,

S , into two subsets, Sl & Sr, s.t. Sl = {I|fi(I) < τi} and

Sr = S \Sl. A function, fi, for a splitting candidate, whilst

at the stage represented by the LTM vertex i is defined as:

fi(I) = dI

(

ρI
i +

u

dI(ρI
0)

)

− dI

(

ρI
i +

v

dI(ρI
0)

)

, (2)

where dI(·) is the depth at an image position, ρI
i is the posi-

tion of the LTM vertex, i, in the image, I and vectors u and

v are random offsets. Similarly to [15], the offsets are nor-

malised to make them depth-invariant. However, in order to

avoid error accumulation in depth values, the normalisation

factor is always the centre of mass, 1
dI(ρI

0
)
.

The splitting candidate, φ∗
i , that gives the largest infor-

mation gain is stored at the LRT node, which is a split node

as in the standard Random Forest. The information gain

whilst at the stage represented by the LTM vertex i is de-

fined as:

IGi (S) =

l(i),r(i)
∑

m

tr(ΣS
im)−

{l,r}
∑

k

Sk

|S|





l(i),r(i)
∑

m

tr
(

ΣSk

im

)





where ΣX
im is the sample covariance matrix of the set of

offset vectors
{(

ρI
m − ρI

i

)

|I ∈ X
}

and tr (·) is the trace

function. The offset vectors indicate the offsets from the

current centre to each centre of the two subregions.

This process is then repeated recursively on each split of

the data, Sl & Sr, until the information gain falls below a

threshold.

At this point we introduce a division node which divides

the current search objective into two finer ones and enters

the next search stage. The division node duplicates the

training data and continues to grow the tree along two sepa-

rate paths, each corresponding to to one of the two children

of the current LTM vertex, i. Additionally, for each training

image, I , reaching this division node we store the vectors

θm =
(

ρI
m − ρI

i

)

corresponding to the 3D offsets of i and

its children m ∈ {l(i), r(i)}.
This process of split followed by division is then re-

peated until the LTM vertex, i, to be considered is a leaf; at

which point we create a leaf node in the LRT corresponding

to the skeletal joint represented by i. The leaf node stores

information about the 3D offset of i from its parent p(i),

that being
(

ρI
i − ρI

p(i)

)

.

As previously mentioned, the hand has many complex

articulations and self-occlusions, thus, in order to fully cap-

ture this variation the training set used is extremely large.

4

To retain training efficiency we make use of the fact that we

train in coarse-to-fine stages based on the learnt LTM. An

intuition is that coarse stages require less training data than

the fine ones, therefore we can gradually add more training

data at each stage of the training procedure.

For an LTM of maximum depth D, we split the train-

ing data, S , into D equally sized random, disjoint subsets

S0, ...SD−1. We start training an LRT with S0 for the first

stage, and for each stage after we add an additional subset

to the training data. That is, for stage d the training set is

composed of Sd ∪ Sd−1. The training procedure to grow a

single LRT is described in Algorithm 1.

Algorithm 1 Growing a Latent Regression Tree

Input: A set of training samples S; a pre-learned

LTMM = (O ∪ L,E) with maximum depth D.

Output: A LRT T

1: procedure GROW(S , M)

2: Equally divide S into random subsets S0, ...SD
3: Let i← 0, j ← 0 ⊲ Initialise ith node of LTM and

jth node of LRT

4: Let d← 0 ⊲ First stage of training

5: SPLIT(i, j,S0, d)

6: function SPLIT(i, j, S , d)

7: Randomly propose a set of split candidates Φ.

8: for all φ ∈ Φ do

9: Partition S into Sl and Sr by φ with Eq. 2.

10: Use the entropy in Eq. 3.2.1 to find the optimal φ∗
11: if IGi (S) is sufficient then

12: Save j as a split node into T .

13: SPLIT(i, l(j), Sl, d)

14: SPLIT(i, r(j), Sr, d)

15: else if i ∈ L then

16: Save j as a division node into T

17: Let S ← S ∪ Sd+1

18: SPLIT(l(i), l(j), S , d+ 1)

19: SPLIT(r(i), r(j), S , d+ 1)

20: else

21: Save j as a leaf node into T .

22: Return

3.2.2 Testing

At test time, pose estimation is performed on an image I

as follows; we define the starting position for the search,

ρIi=0 as the centre of mass of the depth image, which corre-

sponds to the root vertex of the LTM. Starting at the root of

the Latent Regression Forest, the image traverses the tree,

branching left or right according to the split-node function,

until reaching a division node. For each offset, θj stored at

the division node, 3D votes are accumulated in two Hough

spaces, H l and Hr, where the votes for H l are defined as
{

ρIi +
θj

ρI
0

|θj ∈ θl

}

and similarly for Hr. The modes of

these two Hough spaces now represent the two new posi-

tions, ρI
l(i) and ρI

r(i), from which the next search stage be-

gins. This process is then repeated recursively until each

path terminates at a leaf node.

This process will result in the image reaching multiple

leaf nodes, one for each terminating node in the LTM. Us-

ing the stored offsets at the leaf nodes, each leaf node votes

for its corresponding skeletal joint in a corresponding 3D

Hough space. Aggregating votes of all trees, we locate

the final positions of the joints by a structured search in

the Hough space, for which the structure is dictated by the

learnt LTM as follows. For each skeletal joint, we assign

to it a dependent observable vertex in the LTM which cor-

responds to the vertex with the smallest geodesic distance

as calculated in the matrix, D (Eq. 1). The location of

each joint in the Hough space is then defined as the max-

ima which is closest to the location of its dependent vertex.

Efficiency In contrast to the state-of-the-art bottom-up

approaches that take dense pixels as input [8] our algorithm

takes the whole image as input. Thus, while both methods

are constrained in complexity by the depth of the trees, d,

i.e. O (d), ours has a much lower constant factor. This is

because the number of pixels to be evaluated in bottom-up

approaches are usually in the order of thousands for a stan-

dard VGA image; whereas, in contrast, we only evaluate

one sample per image.

3.3. Cascaded Error Regressor

As explained in previous sections, a multi-stage coarse-

to-fine structured search is efficient. However, an underly-

ing risk is that the dependency between stages can lead to

error accumulation throughout the search. To compensate

for this, we embed an error regressor inspired by [14] into

each stage of Latent Regression Forest. After training stage

d with set Sd and before creating a division node , we use

Sd+1 to validate the trained forest so far. For each sample

si ∈ Sd+1, an error offset ∆θ between the ground truth and

the estimation is measured. Similar to the previously de-

scribed method of splitting, the forest is further grown for a

few layers in order to minimise the variance of ∆θ. Once

the information gain falls below a threshold a division node

is generated and the forest training enters next stage, d+ 1.

4. Experiments

Dataset In this paper, we use Intel R©’s Creative Interactive

Gesture Camera [9] as a depth sensor for capturing training

and testing data. As the state-of-the-art consumer time-of-

flight sensor, it captures depth images at a lower noise level

than structured-light sensors making them ideal for hand

pose estimation. For labelling, we utilise [9] to obtain a

5

..

Pa
lm

.

Th
um

b
R
.

.

Th
um

b
M
.

.

Th
um

b
T.

.

In
de
x
R
.

.

In
de
x
M
.

.

In
de
x
T.

.

M
id

R
.

.

M
id

M
.

.

M
id

T.

.

R
in
g
R
.

.

R
in
g
M
.

.

R
in
g
T.

.

Pi
nk
y
R
.

.

Pi
nk
y
M
.

.

Pi
nk
y
T.

.

M
ea
n

.

Joints

.

0

.

10

.

20

.

30

.

40

.

50

.

60

.

M
ea
n
er
ro
r
di
st
an
ce
(m

m
)

.

LTM(Geodesic)

.

LTM(Euclidean)

.

LTM(Randomised)

(a)
..

0

.

10

.

20

.

30

.

40

.

50

.

60

.

70

.

80

.

D: max allowed distance to GT (mm)

.

0%

.

10%

.

20%

.

30%

.

40%

.

50%

.

60%

.

70%

.

80%

.

%
fr

am
es

w
ith

al
lj

oi
nt

s
w

ith
in

D

.

LTM(Geodesic)

.

LTM(Euclidean)

.

LTM(Randomised)

(b)

Figure 5: Effect of different LTMs.(R:root, M:middle, T:tip)

..

Pa
lm

.

Th
um

b
R
.

.

Th
um

b
M
.

.

Th
um

b
T.

.

In
de
x
R
.

.

In
de
x
M
.

.

In
de
x
T.

.

M
id

R
.

.

M
id

M
.

.

M
id

T.

.

R
in
g
R
.

.

R
in
g
M
.

.

R
in
g
T.

.

Pi
nk
y
R
.

.

Pi
nk
y
M
.

.

Pi
nk
y
T.

.

M
ea
n

.

Joints

.

0%

.

5%

.

10%

.

15%

.

20%

.

25%

.

%
de
cr
ea
se

in
m
ea
n
er
ro
r
di
st
an
ce

Figure 6: Error regression.

..

1

.

2

.

4

.

6

.

8

.

10

.

12

.

14

.

16

.

18

.

20

.

Number of trees

.

0%

.

10%

.

20%

.

30%

.

40%

.

50%

.

60%

.

70%

.

80%

.

%
fr
am

es
w
ith

al
lj
oi
nt
s
w
ith

in
D

Figure 7: Number of trees.

200 400 600 800 1000
0

10

20

30

40

50

Time(frame)

C
u
m
u
la
ti
ve

m
ov
in
g
av
er
ag

e
er
ro
r(
m
m
) LRF

Melax et al.(calibrated)
Melax et al.(uncalibrated)
Keskin et al.

(a) Test sequence A (average error)

200 400 600 800 1000
0

10

20

30

40

50

Time(frame)

C
u
m
u
la
ti
ve

m
ov
in
g
av
er
ag

e
er
ro
r(
m
m
)

(b) Test sequence A(index tip)

..

0

.

10

.

20

.

30

.

40

.

50

.

60

.

70

.

80

.

D: max allowed distance to GT (mm)

.

0%

.

20%

.

40%

.

60%

.

80%

.

100%

.

%
fr

am
es

w
ith

al
lj

oi
nt

s
w

ith
in

D

(c) Worst case accuracy [18] of sequence A

200 400 600 800 1000
0

10

20

30

40

50

Time(frame)

C
u
m
u
la
ti
ve

m
ov
in
g
av
er
ag

e
er
ro
r(
m
m
) LRF

Melax et al.(calibrated)
Melax et al.(uncalibrated)
Keskin et al.

(d) Test sequence B(average error)

200 400 600 800 1000
0

10

20

30

40

50

Time(frame)

C
u
m
u
la
ti
ve

m
ov
in
g
av
er
ag

e
er
ro
r(
m
m
)

(e) Test sequence B(index tip)

..

0

.

10

.

20

.

30

.

40

.

50

.

60

.

70

.

80

.

D: max allowed distance to GT (mm)

.

0%

.

20%

.

40%

.

60%

.

80%

.

100%

.

%
fr

am
es

w
ith

al
lj

oi
nt

s
w

ith
in

D

(f) Worst case accuracy [18] of sequence B

Figure 8: Quantitative comparison against state-of-the-art methods.

preliminary pose for each frame, and then manually refine.

For training, we have collected sequences from 10 differ-

ent subjects with varying hand sizes by asking each subject

to make various hand poses with an illustration of 26 differ-

ent postures shown as aid. Each sequence was then samples

at 3fps producing a total of 20K images and by addition-

ally applying in-plane rotations to this set, the final dataset

contains 180K ground truth annotated training images. For

testing, we have collected two sequences (denoted sequence

A and B) each containing 1000 frames capturing a vast array

of different poses with severe scale and viewpoint changes.

Furthermore, as [9] is tracking based and requires initiali-

sation (frontal view of an open hand), in order to do a fair

comparison both test sequences start in this way.

In all experiments we train each Latent Regression Tree

by evaluating 2000 splitting candidates at each node and the

threshold used to stop growing the tree at a particular stage

is chosen based on the size of a finger joint, which was set

to (10mm)2.

In Section 4.1 we conduct a self comparison of the dif-

ferent components in the Latent Regression Forest. Fol-

lowing this, In Section 4.2 we do a thorough evaluation

against other state-of-the-art methods. Finally, in Figure 9

we present some qualitative results.

6

4.1. Self Comparisons

To evaluate the impact of different distance metrics used

when constructing the LTM we quantitatively measure the

impact of the different topologies on performance. We com-

pare LTMs generated using the Euclidean and geodesic dis-

tance as well as 5 randomly generated LTMs. For each of

these 7 topologies, an Latent Regression Forest is trained on

a subset of the training data and evaluated on sequence A.

Figure 5(a) shows the standard evaluation metric of mean

error, in mm, for each joint across the sequence. As

shown, the Euclidean-generated LTM performs slightly bet-

ter than the random ones, whereas the geodesic-generated

LTM achieves the best performance on all joints except for

two. In addition to this, we also employ more challenging

metric, the proportion of test images that have all predicted

joints within a certain maximum distance from the ground

truth, which was recently proposed in [18]. The results us-

ing this metric can be seen in Figure 5(b). As shown, the

Euclidean-generated LTM achieves the same performance

as the upper-bound of performance from the random LTMs,

whereas the geodesic-generated LTM significantly outper-

forms all of them showing a 20% improvement at a thresh-

old of 40mm.

Additionally, we evaluate the impact of the cascaded er-

ror regressor. In Figure 6 we show the decrease in mean

error distance for each joint across the whole sequence. As

can be seen, we achieve up to a 22% reduction in mean error

for one joint and and improvement of 10% on average.

In principle, since each tree generates much less votes

comparing to traditional regression tree, more trees are

needed in order to produce robust results. Figure 7 shows

the accuracy impact from different number of trees. A rea-

sonable choice considering the trade-off between accuracy

and efficiency is 16 trees, which is the setting we use in all

experiments.

4.2. Comparison with State­of­the­arts

We compare a 16-tree Latent Regression Forest with two

state-of-the-art methods. The first is a regression version of

Keskin et al. [8], for which we use our own implementa-

tion using the training parameters as described in [8]. The

second method we compare to is the model-based tracker of

Melax et al. [9], for which we use a compiled binary version

provided by the authors. As this method is model based it

requires calibration of the hand structure (width and height).

Therefore, in order to do a fair comparison we compare to

two versions of this method, one which has been calibrated

and one which has not.

In Figures 8 (a) and (d) we show the cumulative mov-

ing average of the mean joint error. As can be seen, our

approach maintains a low average error throughout both se-

quences, and as expected the tracking based approaches re-

duce in error over time. In Figures 8 (b) and (e) we show

the cumulative moving average of the index fingertip error,

a relatively unstable joint. Notice, that after approximately

the 500th frame the tracking based methods continuously

decrease in accuracy for this joint, indicating the tracking

has failed and could not recover. This further highlights the

benefit of using frame-based approaches.

Additionally, in Figures 8 (c) and (f), we compare

all methods using the more challenging metric proposed

in [18]. As can be seen our method largely outperforms

the other state-of-the-arts. Furthermore, our method runs

in real-time at 62.5fps which is comparable to [9] (60 fps)

and much faster than [8] (8.6fps). Note that here both our

method and [8] are unoptimised—single threaded, without

any CPU/GPU parallelism.

5. Conclusion & Future Work

In this paper we presented the Latent Regression Forest,

a method for real-time estimation of 3D articulated hand

pose. We formulated the problem as a structured coarse-to-

fine search for skeletal joints, in which we learnt the granu-

larity of each search stage using a Latent Tree Model. Fur-

thermore, compared to other forest-based methods that take

dense pixels as input, our method is applied on the whole

image as opposed to individual pixels, greatly increasing

the run-time speed. To the best of our knowledge this is

the first work combining Latent Tree Models and Random

Forests, allowing us to apply the Latent Regression Forest

to many existing applications of the Latent Tree Model. As

future work, we plan to investigate the application of the La-

tent Regression Forest to many other structured problems,

either spatially or temporally.

Acknowledgement

This project was supported by the Samsung Advanced In-

stitute of Technology(SAIT).

References

[1] L. Ballan, A. Taneja, J. Gall, L. V. Gool, and M. Polle-

feys. Motion capture of hands in action using discriminative

salient points. In ECCV, 2012.

[2] M. J. Choi, V. Y. F. Tan, A. Anandkumar, and A. S. Willsky.

Learning latent tree graphical models. JMLR, 12:1771–1812,

2011.

[3] M. de La Gorce, D. Fleet, and N. Paragios. Model-based

3d hand pose estimation from monocular video. TPAMI,

33(9):1793–1805, 2011.

[4] A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and

X. Twombly. Vision-based hand pose estimation: A review.

CVIU, 108(1):52–73, 2007.

[5] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and

A. Fitzgibbon. Efficient regression of general-activity hu-

man poses from depth images. ICCV, 2011.

[6] H. Hamer, K. Schindler, E. Koller-Meier, and L. V. Gool.

Tracking a hand manipulating an object. In ICCV, 2009.

7

Figure 9: In (a) we show success cases; we show the localisation on the depth image followed by a visualisation of the

estimated 3D joint locations from multiple angles. In (b) we show some failure cases, note however that the structure of the

output is still in line with the hand topology. This image is best viewed in colour.

[7] S. Harmeling and C. K. I. Williams. Greedy learning of bi-

nary latent trees. TPAMI, 33(6):1087–1097, 2011.

[8] C. Keskin, F. Kıraç, Y. E. Kara, and L. Akarun. Hand pose

estimation and hand shape classification using multi-layered

randomized decision forests. In ECCV, 2012.

[9] S. Melax, L. Keselman, and S. Orsten. Dynamics based

3d skeletal hand tracking. In Interactive 3D Graphics and

Games, 2013.

[10] Microsoft Corp. Redmond WA. Kinect for xbox 360.

[11] R. Mourad, C. Sinoquet, N. L. Zhang, T. Liu, and P. Leray. A

survey on latent tree models and applications. JAIR, 47:157–

203, 2013.

[12] I. Oikonomidis, N. Kyriazis, and A. A. Argyros. Full dof

tracking of a hand interacting with an object by modeling

occlusions and physical constraints. In ICCV, 2011.

[13] G. Pons-Moll, J. Taylor, J. Shotton, A. Hertzmann, and

A. Fitzgibbon. Metric regression forests for human pose es-

timation. In BMVC, 2013.

[14] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof.

On-line random forests. In ICCV Workshops, 2009.

[15] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,

R. Moore, A. Kipman, and A. Blake. Real-time human pose

recognition in parts from single depth images. In CVPR,

2011.

[16] M. Sun, P. Kohli, and J. Shotton. Conditional regression

forests for human pose estimation. In CVPR, 2012.

[17] D. Tang, T.-H. Yu, and T.-K. Kim. Real-time articulated hand

pose estimation using semi-supervised transductive regres-

sion forests. In ICCV, 2013.

[18] J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon. The vitru-

vian manifold: Inferring dense correspondences for one-shot

human pose estimation. In CVPR, 2012.

[19] Y. Tian, C. Zitnick, and S. Narasimhan. Exploring the spatial

hierarchy of mixture models for human pose estimation. In

ECCV, 2012.

[20] F. Wang and Y. Li. Beyond physical connections: Tree mod-

els in human pose estimation. In CVPR, 2013.

8

