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Abstract. Model diagnostics is an integral part of model determination and
an important part of the model diagnostics is residual analysis. We adapt and
implement residuals considered in the literature for the probit, logistic and
skew-probit links under binary regression. New latent residuals for the skew-
probit link are proposed here. We have detected the presence of outliers using
the residuals proposed here for different models in a simulated dataset and a
real medical dataset.

1 Introduction

Diagnostic techniques are indispensable tools to check the fit of the models. In
particular, residuals are used to check whether or not the model assumptions are
satisfied by the data. Moreover, residuals are also useful to help in outlier detec-
tion, which can provide disproportional interference in inferential results. In the
classical approach for binary regression models, outlier detection is usually based
on the ordinary residual yi − p̂i , where p̂i = F(xt β̂) is the ith fitted observation,
F(·) is a known link function, xi is a vector of covariates and β̂ is the maximum
likelihood estimator (MLE) of β . There are several types of residuals in literature,
among them, Pearson, deviance and Anscombe residuals (see, e.g., McCullagh and
Nelder (1989)). However, these residuals have unknown sampling distributions
due to the discrete nature of the response variable. This affects the interpretation
of the residual plots and the outlying detection. Albert and Chib (1995) proposed
a Bayesian latent residual in binary regression which has continuous distribution.

In this work we describe some types of residuals used in Bayesian binary regres-
sion model framework. Among them, we present latent residuals obtained through
scale mixture of normals. For skew-probit model (Chen et al. (1999)) we pro-
pose two types of latent residuals. The first generalize the latent residual proposed
by Albert and Chib (1995) for symmetric models. In the skew-probit setting, this
residual can have expectation different from zero. Therefore, we propose the sec-
ond residual, which is based on the stochastic representation of the skew-normal
distribution given in Sahu, Dey and Branco (2003). When the shape parameter is
unknown in the skew-probit link we suggest using a residual that does not depend
on unknown parameters and has uniform distribution.
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This paper is organized as follows. First, we review some symmetrical and
skewed link functions for binary response models, with special attention to the
skew-probit model. Section 4 presents all residuals developed in this work. In Sec-
tion 5 we present a residual analysis in a simulated dataset. An application to a
real dataset is presented and discussed in Section 6. Finally, some conclusions are
presented in Section 7.

2 Binary regression

Consider y = (y1, . . . , yn)
t a set of binary responses (0/1), where y1, . . . , yn are

independent random variables. Consider also that xi = (xi1, . . . , xip)t is a set of
previous fixed quantities associated with yi , where xi1 can be equal to 1 (that corre-
sponds to the intercept). The binary regression model with independent responses
is given by

pi = P(yi = 1) = F(xt
iβ), (2.1)

where F−1 is a known function that linearizes the relationship between the suc-
cess probability and the covariates, and β is a p dimensional vector of regression
coefficients. In the generalized linear models theory (GLM), the function F−1 is
called link function. This link function can depend on additional parameters.

The most popular binary regression models are probit and logistic models, ade-
quate when we do not have an evidence that the probability of sucess increases in
a different rate than it decreases.

A large class of continuous, unimodal and symmetrical distributions with sup-
port on the real line is given by

F S =
{
F(·) =

∫
[0,∞)

�

( ·
δ

)
dG(δ),G is a cdf on [0,∞)

}
, (2.2)

where G is a cdf on interval [0,∞). Therefore, each member in this class are
symmetric distributions when δ has a continuous distribution. Some particular
cases are: probit model: when δ has degenerated distribution on point 1; Student-t
model: when δ follows a gamma distribution; logistic model: when δ = 4ψ2 and
ψ follows a Kolmororov–Smirnov distribution (Devroye (1986)).

Considering F ∈ F S in model (2.1) and using a vector of auxiliary variables
z = (z1, . . . , zn)

t , it is obtained the following representation for binary regression
with symmetrical link belonging to a normal mixture of scale:

yi =
{

1 if zi > 0,
0 otherwise,

(2.3)

with

zi |β, δ ∼ N (xt
iβ, δ(ψ)) and ψ ∼ g(ψ), (2.4)

where δ(ψ) > 0 for all ψ > 0, δ(·) is a bijective function and g(·) is a density of
continuous mixture.
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3 Skewed models using auxiliary variables

Symmetric links can be inappropriate when the probability of sucess approaches
zero at a different rate than it approaches one. Skewed links can be obtained when
the link function is the inverse of the cdf of an asymmetrical distribution.

Chen (2004) carried out a simulation study to investigate the importance of the
choice of a link function in binary response variables prediction. He considered
two simulation schemes; (i) the dataset were generated according to the probit
model; and (ii) the data were generated according to the C log–log model. In both
situations, the probit, logit and C log–log models were fitted. The author observed
that when the true link function is probit, there are a few differences between the
probit and logit models. However, the C log–log model is inadequate. On the other
hand, when the true link function is C log–log, the symmetric models were clearly
inadequate, and the logit model had a better behavior than the probit model in this
case. This happened because for small probabilities of sucess, the logit and C log–
log links become very close, decreasing to zero faster than the probit link. The
author concluded in this empirical study that the choice of the link function is very
important, and in case it is badly specified, it can provide poor predictions.

3.1 Skew-probit regression

We considered the following class of distributions

F A =
{
Fλ(z) =

∫
[0,∞)

F (z − λw)dG(w)

}
, (3.1)

where λ ∈ R, F is a cdf of a symmetrical distribution around zero with support
on the real line, and G is a cdf of an asymmetrical distribution on [0,∞). The
model defined in (3.1) has some attractive properties: (a) when λ = 0 or G is
a degenerated distribution, the model reduces to the model with a symmetrical
link; (b) the skewness of the link function can be characterized by λ and G; and
(c) heavy and light tails for Fλ can be obtained according to the choice of F .

A skewed binary regression model belonging to class (3.1) can be defined by

yi =
{

1 if zi > 0,
0 otherwise,

(3.2)
zi = x�

i β + ε∗
i ,

where

ε∗
i = −λwi + εi, εi ∼ F and wi ∼ G.

A particular case of this model is obtained when we consider that F is the cdf
of a normal distribution and G is the cdf of a half-normal distribution. This results
in the skew-probit model of Chen and Dey (1998) and Chen et al. (1999).
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4 Residual analysis

Residuals in regression models are based mainly on comparison between the ith
response variable and its expectation. The first binary residual considered here will
be the residual ri = yi −pi , where pi = F(xt

iβ). This residual has continuous dis-
tribution and it is a function of the vector of parameters β . Then, the posterior
knowledge that we have about β will be reflected on its posterior residual distribu-
tion. The support of the posterior distribution of ri is the interval (yi −1, yi). Then,
if the value of yi and the posterior distribution of pi are in conflict, the posterior
distribution of this residual will be concentrated towards extreme values. There-
fore, the observation yi = 0 can be suspicious of being an outlier if the posterior
distribution of ri is concentrated around −1. On the other hand, the observation
yi = 1 can be suspicious of being an outlier if the posterior distribution of ri will
be concentrated towards the endpoint 1.

Farias and Branco (2011) describes some ways to obtain a sample from the
posterior distribution of the vector of parameters θ for probit and logistic models
(θ = β) and for the skew-probit model [θ = (β, λ)t ]. For example, let {θ (t)}Tt=1 be
a sample of size T from the posterior distribution of θ , since yi and xi are known
in order to obtain a sample from these residuals it is enough to consider r

(t)
i =

yi −Fθ(t)(xt
iβ

(t)), t ≤ T . From this sample we can obtain descriptive measures and
estimated densities from the posterior distribution of the residuals. Albert and Chib
(1995) proposed using graphics boxplots to represent the samples generated from
posterior distributions of the residuals against fitted probabilities. These graphics
jointly considered can help us to view unusual residuals.

4.1 Latent residuals

An alternative way to defining Bayesian residuals is based on the use of latent
variables. The model given in (3.2) provides a general representation for a class of
the binary regression models that encloses probit, logit and skew-probit models.
We can define several types of latent residuals under the class of link function
(3.1). The first latent residual considered here is

εi(zi,β) = zi − xt
iβ. (4.1)

This residual was defined by Albert and Chib (1995) in the binary response frame-
work for outlying detection in symmetrical models. The latent variable zi here can
represent, for example, an insect’s tolerance to a pesticide in the bioassay setting.
However, it can also be useful for diagnostic in skewed links.

For symmetrical links, the residual given in (4.1) is distributed with the same
distribution used to define the link function. For example, when the model con-
sidered is the probit, the residual εi is normally distributed a priori. On the other
hand, when the model is the skew-probit given in (3.2), the residual (4.1) has a
skew-normal prior distribution. However, in this case the shape parameter of the
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residual distribution has an opposite sign of the distribution used to define the link
function. Note that the distribution of the residual εi is a function of the shape pa-
rameter λ in the skew-probit model. If λ is unknown, then the distribution of this
residual is a function of the prior distribution of the shape parameter. For example,
when λ is normally distributed a priori then the prior distribution of εi is unknown
and the interpretation of the size of the residuals is affected. A solution for this
problem is to use a point estimate for this parameter or to define residuals which
do not depend on prior parameters. In this way, we use the stochastic representa-
tion for skew-normal distribution given in Sahu, Dey and Branco (2003) and define
the following residual for the skew-probit case

ε∗
i (zi,wi,β, λ) = zi − (xt

iβ − λwi). (4.2)

This residual has symmetrical distribution F given in (3.1) with support on the
real line. If the adopted model is symmetrical, the skewness parameter λ is equal
to zero and the residual given in (4.2) reduces to the residual defined in (4.1).

In symmetrical models the residuals εi(zi,β), i = 1, . . . , n, can have prior vari-
ances different from one. In order to have variance one, for the scale mixture of
normal models given in (2.2), we define a standard residual

τi(β, δi) = zi − xt
iβ√

δ(ψ)
, (4.3)

where δ(ψ) and ψ are given in (2.4). The model (4.3) conditioned on {β, δ} has a
standard normal distribution. Therefore, we can use this residual and assume that
an observation is an outlier by using the same criteria for the probit and skew-
probit setting in the residuals ε and ε∗, respectively. Namely, we assume that an
observation can be an outlier if the probability of this residual being bigger in
absolute value than 1.64 is high. This value is chosen due to the normality of the
prior distribution, where this probability is around 0.10.

4.2 Latent residual uniformly distributed

The latent residual εi presented in (4.1) can depend on unknown parameters, as
it is the case of the skew-probit model which depends on the shape parameter λ.
Then, the prior distribution of this residual depends on the prior distribution of λ.
Then, these values of residuals can not be compared directly across different mod-
els, because they have different prior distributions. In order to built residuals with
the same probability distribution it is used the inverse probability integral transfor-
mation method on the previous latent residuals.

The first uniformly distributed residual proposed here is related with ε in (4.1)
and given by

ui = F−1(zi − xt
iβ), (4.4)
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where F is the cumulative distribution function which provides the link function
for the binary model and can depend on unknown parameters. The function F de-
pends on the shape parameter of the skew-probit model. This residual is uniformly
distributed on the interval (0,1).

We also apply the inverse probability integral transform method in the others
residuals showed in previous section. For logit model we define the residual

u∗
i = �(τi;0,1), (4.5)

where τi is given by (4.3), and for the skew-probit model we define one more
residual as follows

u∗
i = �(ε∗

i ;0,1) (4.6)

where ε∗
i is given by (4.2). An observation is suspicious of being an outlier by using

this residual if its posterior residual distribution is significantly different from its
prior residual distribution (uniform distribution). A way to check that is comparing
tail probabilities in each distribution. Computing the posterior probabilities of the
residual ui is out of the interval (α/2,1 −α/2), where α is the prior probability of
residual ui being outside the interval (α/2,1 − α/2).

5 A simulated dataset

In order to illustrate the behavior of the residuals presented here, we work with a
dataset simulated from a model that induces a few outliers. Consider the success
probability given by pi = F(xt

iβ|μ = 0, σ = 1, λ, ν), where F is a cdf of a skew-t
distribution. The skew-t density function is

f (z) = 2√
1 + λ2

tv

(
z√

1 + λ2

)
Tν+1

[
λz

√
ν + 1

(1 + λ2)ν + z2

]
, (5.1)

where tα and Tα are, respectively, the pdf and cdf of a standard Student-t distribu-
tion with ν degrees of freedom. It has the propriety to be skewed and heavy tailed.
For more details about this distribution see Azzalini and Capitanio (2003).

Denote by θ = (β, ν, λ)t , where β = (β0, β1)
t are the regression parameters, ν

the degrees of freedom and λ the skewness parameter.
The simulated dataset contains 600 observations divided by 10 categories with

60 observations each, using the following values for the parameters β = (1,3)t ,
ν = 5 and λ = −3. It is possible to select the success probabilities on several ways.
Chen (2004) suggests choosing the pi’s equally spaced. However, in order to have
an artificial data that reflects properties of real ones, we decided for not choosing
the pi ’s equally spaced. As it is typically observed in dose–response model, the
covariates x1, . . . , xn are increase and equally spaced. This results, in general, in
not equally spaced pi ’s. In order to achieve this goal, we proceed following these
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Table 1 Simulated dataset

Category xi yi . ni

1 −1.1901 5 60
2 −1.0883 4 60
3 −0.9866 8 60
4 −0.8848 12 60
5 −0.7831 13 60
6 −0.6813 20 60
7 −0.5796 28 60
8 −0.4779 36 60
9 −0.3761 49 60

10 −0.2744 56 60

steps: (i) we choose the smallest and the largest success probabilities, denoted here
by p1 and pn, respectively; (ii) we calculate the initial values x0

1 = F−1(p1) and
x0
n = F−1(pn); (iii) we calculate the remaining initial values the following way,

x0
i = x0

i−1 + (x0
n − x0

1)/(n − 1), i = 2, . . . , n − 1, and finally; (iv) we calculate
the success probabilities pi = F(x0

i ), i = 1, . . . , n. The smallest and the largest
success probabilities chosen were p1 = 0.05 and p30 = 0.95. Finaly, we obtained
x1, . . . , xn by

xi = F−1(pi) − β0

β1
.

The simulated dataset is presented in Table 1.
Considering the following prior distribution for β ∼ N2(0,1000In) and λ ∼

N (0,1000), we fit the probit, logit and skew-probit models for this dataset. The
results are presented in Table 2 and Figure 1.

Table 2 Posterior inference for regression parameters for the simulated dataset

95% HPD

Model Parameters Mean Median Lower Upper

Probit β0 1.91 1.91 1.57 2.20
β1 3.15 3.17 2.68 3.56

Logit β0 3.26 3.04 2.76 3.87
β1 5.47 5.14 4.56 6.22

Skew-probit β0 2.35 2.25 1.37 3.74
β1 8.96 8.78 4.51 13.72
λ −4.05 −4.01 −6.50 −1.67
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Figure 1 Proportion of success and fitted curves for the simulated dataset.

In order to compare the models we obtained the values of the Deviance informa-
tion criterion (DIC), the Bayes factor (Kass and Raftery (1995)) and the pseudo-
Bayes factor (Geisser and Eddy (1979)). These values are presented in Table 3.

Note that the skew-probit model outperforms logistic and probit models for all
criteria used. This result is an indicative of possible outliers in probit and logistic
models. Then, a residual analysis is carried out to try to detect possible outliers in
each fitted model. Figure 2 graph the boxplots of posterior distribution of the latent
residual εi , τi and ε∗

i for the probit, logit and skew-probit models, respectively,
by using parallel box plots of residual distributions against fitted probabilities.
We fitted the probabilities through the posterior mean of the success probabilities.
These residuals are prior normally distributed for the probit, logit and skew-probit
models.

This graphical representation through boxplot is useful to inform about the vari-
ability and symmetry of the distribution. The central box of the boxplots presented

Table 3 DIC, Bayes factor and pseudo-Bayes factor for the simulated dataset

Bayes factor Pseudo-Bayes factor

DIC M1 M2 M3 M1 M2 M3

Logistic (M1) 575.267 — 3.069 0.032 — 3.067 0.039
Probit (M2) 577.478 0.326 — 0.011 0.326 — 0.013
Skew-probit (M3) 569.080 30.732 94.337 — 25.459 78.083 —
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correspond to quartiles, and the extreme values of the hatched lines correspond to
5th and 95th percentiles of the distribution.

An observation yi is a candidate for an outlier for these models if the poste-
rior distribution of its respective residual is far from its prior median. Alterna-
tively, another way to check if an observation yi is an outlier, it is calculating
the probability of the event R = {k1 < εi < k2}c, where k1 and k2 are such that
the prior probability of this event to happen is small, around 0.10. The values k1
and k2 are chosen such that Prob(R|y) is approximately 0.10, which is given by
k1 = −k2 = �−1(0.95) = 1.64 in the probit model and k1 = −k2 = 2.94 in the
logit model (because the tails of logistic distribution are heavier than the normal
distribution). Following these ideas, for the skew-probit model we want to have k1
and k2 such that, the probability of Rc is approximately 0.90. Because the asym-
metry of this distribution, there are many ways to do it. We consider here equal
tails interval. Another alternative was to choose an HPD interval (high density).
We added parallel lines in the boxplots to show the points k1 and k2. Moreover, the
posterior probabilities of a residual exceeding these values are presented in Table 4
for all three models considered.

Figure 2 and Table 4 show that the observations with large probabilities to
be outliers considering the residual εi for all models is the first dosage (xi =
−1.1901), where it was obtained 5 success in 60 outcomes. Moreover, since the
residual εi is a function of a shape parameter in the skew-probit, that can af-
fect the residual analysis when this parameter is unknown because of the resid-
ual εi have an unknown prior distribution. An alternative is using the residual
ε∗
i = zi − (xt

iβ − λwi) on the skew-probit case. This residual does not depend
on prior parameters and it is normally distributed. That allows us to detect out-
liers in the same considered for the residual ε∗

i in the probit case. Another residual
which is normally distributed a priori, it is the residual τi = (zi − xt

iβ)/
√

δi in the
logit model, that happens because the logistic model can be obtained through scale
mixture of normals. The fourth and sixth column of Table 4 show the posterior
probabilities of these residuals in absolute value are bigger than 1.64 in the logit
and skew-probit models, respectively.

Figure 2 and Table 4 show that the observations with large probabilities of being
outliers considering the residual ε for probit and τi for logit are the same. Since
there is no unknown parameter for skew-probit model, the residual ε∗ does not
present any observation with high probability of being outlier, different from the
residual ε. The residual ε∗ removes the dependence on λ of the skew-probit model.
Concluding, the residuals analysis shows that there are no observations with a large
probability of being outliers for the skew-probit model.

6 Application

We illustrate our procedures using the dataset presented in Christensen (1997). It
consists of a randomly selected subset of 300 patients admitted to the University of
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Figure 2 Boxplots of posterior distribution of the latent residuals εi = zi − xt
iβ , τi = (zi − xt

iβ)/√
δi and ε∗

i = zi − (xt
iβ − λwi), respectively, against the fitted probabilities E(pi |y) for the fitting

of the probit (a), logit (b) and skew-probit (c) model.

Table 4 Outlying probabilities for the models fot the simulated dataset

Model

Probit Logit Skew-probit

Dosage ε ε τ ε ε∗

1 0.146∗ 0.140∗ 0.142∗ 0.141∗ 0.106
2 0.107 0.109 0.105 0.114 0.102
3 0.101 0.121 0.114 0.125 0.098
4 0.102 0.117 0.108 0.120 0.098
5 0.094 0.100 0.093 0.114 0.092
6 0.093 0.101 0.100 0.114 0.096
7 0.102 0.110 0.101 0.123 0.102
8 0.105 0.113 0.104 0.122 0.100
9 0.098 0.101 0.090 0.120 0.098

10 0.078 0.082 0.075 0.106 0.096
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New Mexico Trauma Center between the years 1991 and 1994. Of these, 22 died.
One of the objectives of this study was to explain the probability of the patient
eventually died due to the injuries by using binary regression model and consider-
ing the following explanatory variables: injury severity score (ISS), revised trauma
score (RTS), patient’s age (AGE) and the type of injuries (TI), that is, whether they
were blunt (TI = 0) or penetrating (TI = 1). The response variable are 1 if the pa-
tient died and 0 if the patient survives.

The data considered here has been analyzed by means of binary regression
model assuming different link functions, such as logistic, probit, complementary
log–log models and skew-probit link. Christensen (1997) compared logistic, pro-
bit, complementary log–log models through of Bayes Factor and suggest against
complementary log–log model, but there are not a serious preference between lo-
gistic and probit models. However, there exists significant difference between the
observed number of 0’s (278 survivors) and 1’s (22 fatalities) on the dataset, that
indicates a skewed link. Thus, Farias and Branco (2011) proposed a skew-probit
link to analyze this dataset. The skew-probit link is able to fit positively and nega-
tively skewed data. They fitted a model with null intercept, the predictors ISS, RTS,
AGE, TI and the interaction AGE and TI. Furthermore, it was compared logistic,
probit and skew-probit models through of several Bayesian criteria and concluded
that the skew-probit model seems to be more appropriate to fit the Trauma dataset
than the logistic and probit models.

For each regression parameter we considered independent normal diffuse prior
with mean 0 and variance 100. We check the convergence of the MCMC method
using several diagnostic procedures, such as the graphs of the ergodic averages and
the Geweke statistic. These diagnostic procedures showed that convergence had
been achieved. Finally, the Monte Carlo sample size was taken to be M = 3000 in
all calculations.

Firstly, to compare the models we present in Table 5 the values of the DIC, the
Bayes factor and the pseudo-Bayes factor.

The skew-probit link outperforms logistic and probit models for all criteria used.
This result is an indicative of possible outliers in probit and logistic models. Then,
a residual analysis is carried out to try to detect possible outliers in each fitted
model.

Table 5 Values of DIC, Bayes factor and pseudo-Bayes factor for Trauma data

Bayes factor Pseudo-Bayes factor

DIC M1 M2 M3 M1 M2 M3

Logistic (M1) 112.998 — 0.269 0.159 — 0.551 0.191
Probit (M2) 112.032 1.689 — 0.591 1.813 — 0.347
Skew-probit (M3) 109.781 6.275 3.715 — 5.224 2.881 —
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Figure 3 Posterior probabilities of the latent residuals ui being outliers for probit (a) and logit (b),
skew-probit u (c) and u∗ (d) for Trauma dataset.

Figure 3 shows the posterior probabilities of the latent residuals ui = �(εi) for
the probit, logit and skew-probit models. For the skew-probit we also show the
posterior probabilities of the latent residuals u∗

i .
Table 6 shows that there are eight observations with a large probability of be-

ing outliers for probit and logit models. They are observations 19, 49, 52, 69, 74,

Table 6 Outlying probabilities for the probit, logit and skew-probit models for Trauma dataset by
using uniformly distributed residuals

Model (residual)

Index Probit (ui ) Logit (u∗
i ) Logit (ui ) Skew-probit (ui ) Skew-probit (u∗

i )

69 0.999∗ 0.997∗ 0.867∗ 0.999∗ 0.809∗
74 0.998∗ 0.996∗ 0.841∗ 0.998∗ 0.797∗

135 0.907∗ 0.904∗ 0.692∗ 0.816∗ 0.352
232 0.761∗ 0.849∗ 0.693∗ 0.338 0.138
49 0.710∗ 0.784∗ 0.593∗ 0.568∗ 0.216

269 0.616∗ 0.608∗ 0.542∗ 0.579∗ 0.235
19 0.504∗ 0.563∗ 0.507∗ 0.319 0.146
52 0.454∗ 0.504∗ 0.445∗ 0.395 0.182
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Table 7 Inference summaries for Trauma data

95% HPD intervalPosterior
mean

Posterior
SDParameter Lower Upper

β1 0.088 0.032 0.029 0.151
β2 −0.553 0.137 −0.823 −0.303
β3 0.053 0.021 0.0183 0.098
β4 0.722 1.272 −1.771 3.263
β5 0.006 0.034 −0.063 0.074
λ −4.652 1.988 −8.924 −1.204

135, 232 and 269, all with posterior probabilities bigger than 0.4. However, for
the skew-probit model, the residual ui shows 5 observations suspicious of being
outliers and the residual u∗

i shows only two observations with outlying probability
bigger than 0.4. That result was expected since the skew-probit models outper-
forms logistic and probit models for all model comparasion criteria used in Farias
and Branco (2011) and presented in Table 5. Therefore, our residuals analysis con-
firm that the skew-probit link should be prefered than logistic and probit models.

Finally, Table 7 presents posterior summaries of the parameters for skew-probit
model, where SD and HDP represent the standard deviation from the posterior
distributions and the 95% highest posterior density interval, respectively.

7 Conclusion

In this work we described the use of latent variables in the Bayesian binary re-
gression model framework. The introduction of these latent variables has the goal
to obtain known forms for the full conditional posterior distributions, which make
easy to implement the Gibbs sampling algorithm. Moreover, different kinds of
residuals based on these latent variables were defined and those are useful for out-
lying detection.

We implemented severals latent residuals for probit, logit and skew-probit links
for a simulated dataset and a medical dataset. For the simulated data, we detected
the same outliers under the probit and logit models which is associated to the first
category. The same outlier was found under the residual εi for the skew-probit
model. However, when we remove the dependence on λ in skew-probit model by
using the residual ε∗

i , there is no outlier observation. For the medical dataset the
uniform residuals show the same outliers under the symmetrical models and less
outliers under the skew-probit model. Then, the latent residuals proposed in this
paper have showed to be able to detect the difference between symmetrical and
asymmetrical models. Finally, we suggest the use of the uniform residuals when
the goal is to compare directly the residuals values between different models.
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