
Int J Comput Vis (2017) 122:439–457

DOI 10.1007/s11263-016-0931-4

Latent Structure Preserving Hashing

Li Liu1
· Mengyang Yu1

· Ling Shao1

Received: 14 December 2015 / Accepted: 6 July 2016 / Published online: 20 July 2016

© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Aiming at efficient similarity search, hash func-

tions are designed to embed high-dimensional feature

descriptors to low-dimensional binary codes such that simi-

lar descriptors will lead to binary codes with a short distance

in the Hamming space. It is critical to effectively maintain

the intrinsic structure and preserve the original information

of data in a hashing algorithm. In this paper, we propose a

novel hashing algorithm called Latent Structure Preserving

Hashing (LSPH), with the target of finding a well-structured

low-dimensional data representation from the original high-

dimensional data through a novel objective function based

on Nonnegative Matrix Factorization (NMF) with their corre-

sponding Kullback-Leibler divergence of data distribution as

the regularization term. Via exploiting the joint probabilistic

distribution of data, LSPH can automatically learn the latent

information and successfully preserve the structure of high-

dimensional data. To further achieve robust performance with

complex and nonlinear data, in this paper, we also contribute

a more generalized multi-layer LSPH (ML-LSPH) frame-

work, in which hierarchical representations can be effectively

learned by a multiplicative up-propagation algorithm. Once

obtaining the latent representations, the hash functions can

be easily acquired through multi-variable logistic regression.

Experimental results on three large-scale retrieval datasets,

Communicated by Xianghua Xie, Mark Jones, Gary Tam.

B Ling Shao

ling.shao@ieee.org

Li Liu

li2.liu@northumbria.ac.uk

Mengyang Yu

m.y.yu@ieee.org

1 Department of Computer and Information Sciences,

Northumbria University, Newcastle upon Tyne NE1 8ST, UK

i.e., SIFT 1M, GIST 1M and 500 K TinyImage, show that

ML-LSPH can achieve better performance than the single-

layer LSPH and both of them outperform existing hashing

techniques on large-scale data.

Keywords Hashing · Nonnegative matrix factorization ·

Latent structure · Dimensionality reduction · Multi-layer

extension

1 Introduction

Similarity search (Wang et al. 2015; Gionis et al. 1999; Qin

et al. 2015; Yu et al. 2015; Liu et al. 2015; Gao et al. 2015;

Liu et al. 2015; Zhang et al. 2010; Wang et al. 2014; Bian and

Tao 2010) is one of the most critical problems in informa-

tion retrieval as well as in pattern recognition, data mining

and machine learning. Generally speaking, effective similar-

ity search approaches try to construct the index structure in

the metric space. However, with the increase of the dimen-

sionality of the data, how to implement the similarity search

efficiently and effectively has become an significant topic. To

improve retrieval efficiency, hashing algorithms are deployed

to find a hash function from Euclidean space to Hamming

space. The hashing algorithms with binary coding techniques

mainly have two advantages: (1) binary hash codes save stor-

age space; (2) it is efficient to compute the Hamming distance

(X O R operation) between the training data and the new com-

ing data in the retrieval procedure of similarity search. The

time complexity of searching the hashing table is near O(1).

Current hashing algorithms can be roughly divided into

two groups: random projection based hashing and learn-

ing based hashing. For the random projection based hashing

techniques, the most well-known hashing technique that pre-

serves similarity information is probably Locality-Sensitive

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-016-0931-4&domain=pdf

440 Int J Comput Vis (2017) 122:439–457

Hashing (LSH) (Gionis et al. 1999). LSH simply employs

random linear projections (followed by random thresholding)

to map data points close in a Euclidean space to similar codes.

It is theoretically guaranteed that as the code length increases,

the Hamming distance between two codes will asymp-

totically approach the Euclidean distance between their

corresponding data points. Furthermore, kernelized locality-

sensitive hashing (KLSH) (Kulis and Grauman 2009) has

also been successfully proposed and utilized for large-scale

image retrieval and classification. However, in realistic appli-

cations, LSH-related methods usually require long codes

to achieve good precision, which result in low recall since

the collision probability that two codes fall into the same

hash bucket decreases exponentially as the code length

increases.

However, the random projection based hash functions are

effective only when the binary hash code is long enough.

To generate more effective but compact hash codes, a num-

ber of methods such as projection learning for hashing have

been introduced. Through mining the structure of the data,

then being represented on the objective function, a pro-

jection learning based hashing algorithm can obtain the

hash function by solving an optimization problem associ-

ated with the objective function. Spectral Hashing (SpH)

(Weiss et al. 2009) is a representative unsupervised hashing

method, which can learn compact binary codes that preserve

the similarity between documents by forcing the balanced

and uncorrelated constraints into the learned codes. Fur-

thermore, principled linear projections like PCA Hashing

(PCAH) (Wang et al. 2012) has been suggested for better

quantization rather than random projection hashing. More-

over, Semantic Hashing (SH), which is based a stack of

Restricted Boltzmann Machines (RBM) (Salakhutdinov and

Hinton 2007), was proposed in Salakhutdinov and Hinton

(2009). In particular, SH involves two steps: pre-training

and fine-tuning. During these two steps, a deep generative

model is greedily learned, in which the lowest layer repre-

sents the high-dimensional data vector and the highest layer

represents the learned binary code for that data. Liu et al.

(2011) proposed an Anchor Graph-based Hashing method

(AGH), which automatically discovers the neighborhood

structure inherent in the data to learn appropriate compact

codes. To further make such an approach computationally

feasible, the Anchor Graphs used in Liu et al. (2011) were

defined with tractable low-rank adjacency matrices. In this

way, AGH can allow constant time hashing of a new data

point by extrapolating graph Laplacian eigenvectors to eigen-

functions. More recently, Spherical Hashing (SpherH) (Heo

et al. 2012) was proposed to map more spatially coherent

data points into a binary code compared to hyperplane-based

hashing functions. Meanwhile, the authors also developed a

new distance function for binary codes, spherical Hamming

distance, to achieve final retrieval tasks. Iterative Quanti-

zation (ITQ) (Gong et al. 2013) was developed for more

compact and effective binary coding. Particularly, a simple

and efficient alternating minimization scheme for finding a

orthogonal rotation of zero-centered data so as to minimize

the quantization error of mapping this data and the vertices

of a zero-centered binary hypercube. Additionally, Boosted

Similarity Sensitive Coding (BSSC) (Shakhnarovich 2005)

was designed to learn a compact and weighted Hamming

embedding for task specific similarity search. Boosted binary

regression stumps were used as hashing functions to map

the input vectors into binary codes. A similar idea as BSSC

is also applied to Evolutionary Compact Embedding (ECE)

(Liu and Shao 2015), which combines Genetic Program-

ming with the boosting scheme to generate high-quality

binary codes for large-scale data classification tasks. Besides,

Self-taught Hashing (STH) (Zhang et al. 2010), in which a

two-step scheme is effectively applied to learn hash func-

tions, was also successfully utilized for visual retrieval.

More hashing techniques can also be seen in Wang et al.

(2015), Cao et al. (2012), Song et al. (2014), Song et al.

(2013), Liu et al. (2012), Wang et al. (2015), Lin et al.

(2013).

Nevertheless, the above mentioned hashing methods have

their limitations. Although the random projection based hash-

ing methods, such as LSH, KLSH and SKLSH (Raginsky

and Lazebnik 2009), can produce relatively effective codes,

such simple linear hash functions cannot reflect the underly-

ing relationship between the data points. Meanwhile, since

the long codes are required for acceptable retrieval results

via random projection based hashing, the storage space and

the cost of computing the Hamming distance will be expen-

sive. On the other hand, in terms of learning based hashing

algorithms, most of them, e.g., Shakhnarovich (2005), Weiss

et al. (2009), Liu et al. (2011), only focus on the relationship

between data or sets rather than considering the combination

of the intra-latent structure1 of data and the inter-probability

distribution between the high-dimensional Euclidean space

and the low-dimensional Hamming space.

To overcome these limitations above, in this paper, we pro-

pose a novel NMF-based approach called Latent Structure

Preserving Hashing (LSPH) which can effectively preserve

data probabilistic distribution and capture much of the local-

ity structure from the high-dimensional data. In particular, the

nonnegative matrix factorization can automatically learn the

intra-latent information and the part-based representations of

data, while the data probabilistic distribution preserving aims

1 Usually, one dataset can be composed by a linear/nonlinear combi-

nation of a set of latent bases. Each of these bases effectively reflects

one or more attributes of the intrinsic data structure. Meanwhile, the

intra-latent structure indicates the relationship between the data and

these bases. For instance, when we use PCA on face data, the intra-

latent structure of a face means the relationship between a face and

their Eigenfaces.

123

Int J Comput Vis (2017) 122:439–457 441

Fig. 1 The outline of the proposed method. Part-based latent informa-

tion is learned from NMF with the regularization of data distribution.

We propose two different versions of our algorithm, i.e., single layer

LSPH and multi-layer LSPH. Specifically, ML-LSPH generates deep

data representations which can theoretically lead to better performance

for retrieval tasks with more complex data

to maintain the similarity between high-dimensional data

and low-dimensional codes. Moreover, incorporated with the

representation of binary codes, the part-based latent infor-

mation obtained by NMF based hashing, i.e., LSPH, could

be regarded as independent latent attributes of samples. In

other words, the binary codes determine whether the high-

dimensional data hits the corresponding latent attributes or

not. Given an image, this kind of data-driven attributes can

allow us to well describe an image and also may benefit zero-

shot learning (Jayaraman and Grauman 2014; Lampert et al.

2014; Tao 2015; Yu et al. 2013) for unseen image classifica-

tion/retrieval in future work.

Specifically, because of the limitation of NMF, which

cannot completely discover the latent structure of the orig-

inal high-dimensional data, we provide a new objective

function to preserve as much of the probabilistic distribu-

tion structure of the high-dimensional data as possible to

the low-dimensional map. Meanwhile, we propose an opti-

mization framework for the objective function and show

the updating rules. Besides, to implement the optimiza-

tion process, the training data are relaxed into a real-valued

range. Then, we convert the real-valued representations into

binary codes. Finally, we analyze the experimental results

and compare them with several existing hashing algorithms.

The outline of the proposed LSPH approach is depicted in

Fig. 1.

LSPH is a linear hashing technique with a single-layer

generative network and data distribution preserving con-

straints. Although it is an efficient binary coding method for

large-scale retrieval tasks, such a single-layer generative net-

work may lead to several limitations in the following cases

as mentioned in [1]: (1) when it learns data which lie on or

near a nonlinear manifold; (2) when it learns syntactic rela-

tionships of given data; and (3) when it learns hierarchically

generated data. The single-layer LSPH is apparently not fit

for such cases. For instance, LSPH with a single-layer net-

work can well tackle data with small intra-variations such as

face images. However, for more complex data with extremely

different viewpoints, additional degrees of freedom of the

data will be required. In terms of large-scale image retrieval

tasks, the sources of data can be very variant and even sam-

ples belonging to the same category can differ significantly.

Naturally, the single-layer LSPH is not competent for simi-

larity search on such heterogeneous databases.

Therefore, in this paper, we also propose an extension

of LSPH called multi-layer LSPH (ML-LSPH) with the

multi-layer generative network [1] and distribution preserv-

ing constraints. ML-LSPH can deeply learn part-based latent

information of data and preserve the joint probabilistic distri-

bution for deep data representations. Applying the sigmoid

function to each layer, ML-LSPH is a nonlinear architecture.

Similar to recent deep neural networks (Hinton et al. 2006;

Masci et al. 2011; Krizhevsky et al. 2012), ML-LSPH gen-

erates deep data representations which can theoretically lead

to better performance than single layer LSPH for retrieval

tasks with more complex data2 in realistic scenarios. How-

ever, ML-LSPH is computationally more expensive during

training and test phases compared to single layer LSPH.

Thus, there exists a trade-off between ML-LSPH and LSPH

in terms of performance and computational complexity,

and the choice between these two versions depends on the

requirement of the application. Besides, as ML-LSPH is a

generalized framework of LSPH, it can easily shrink to LSPH

2 Such data have large intra-class variations but small inter-class vari-

ations, e.g., large-scale retrieval on fine-grained data.

123

442 Int J Comput Vis (2017) 122:439–457

if the number of the layers is set to 1. We evaluate our LSPH

and ML-LSPH on three large-scale datasets: SIFT 1M, GIST

1M and TinyImage, and the results show that our methods

significantly outperform the state-of-the-art hashing tech-

niques. It is worthwhile to highlight several contributions

of the proposed methods:

– LSPH can learn compact binary codes uncovering the

latent semantics and simultaneously preserving the joint

probability distribution of data.

– We utilize multivariable logistic regression to gener-

ate the hashing function and achieve the out-of-sample

extension.

– To tackle the data with more complex distribution, a

multi-layer extension of LSPH (i.e., ML-LSPH) has been

proposed for large-scale retrieval as well.

The rest of this paper is organized as follows. In Sect. 2,

we give a brief review of NMF. The details of LSPH and ML-

LSPH are described in Sects. 3 and 4, respectively. Section 5

reports the experimental results. Finally, we conclude this

paper and discuss the future work in Sect. 6.

2 A Brief Review of NMF

In this section, we mainly review some related algorithms,

focusing on Nonnegative Matrix Factorization (NMF) and

its variants. NMF is proposed to learn the nonnegative

parts of objects. Given a nonnegative data matrix X =

[x1, · · · , xN] ∈ R
M×N
≥0 , each column of X is a sample data.

NMF aims to find two nonnegative matrices U ∈ R
M×D
≥0 and

V ∈ R
D×N
≥0 with full rank whose product can approximately

represent the original matrix X, i.e., X ≈ U V . In practice,

we always set D < min(M, N). The target of NMF is to

minimize the following objective function

LN M F = ‖X − U V ‖2, s.t. U, V ≥ 0, (1)

where ‖ · ‖ is the Frobenius norm. To optimize the above

objective function, an iterative updating procedure was devel-

oped in Lee and Seung (1999) as follows:

Vi j ←

(

U T X
)

i j
(

U T U V
)

i j

Vi j , Ui j ←

(

X V T
)

i j
(

U V V T
)

i j

Ui j , (2)

and normalization

Ui j ←
Ui j

∑

i Ui j

. (3)

It has been proved that the above updating procedure can

find the local minimum of LN M F . The matrix V obtained in

NMF is always regarded as the low-dimensional representa-

tion while the matrix U denotes the basis matrix.

Furthermore, there also exists some variants of NMF.

Local NMF (LNMF) (Li et al. 2001) imposes a spatial local-

ized constraint on the bases. In Hoyer (2004), sparse NMF

was proposed and later, NMF constrained with neighborhood

preserving regularization (NPNMF) (Gu and Zhou 2009) was

developed. Besides, researchers also proposed graph regu-

larized NMF (GNMF) (Cai et al. 2011), which effectively

preserves the locality structure of data. Beyond these meth-

ods, Zhang et al. (2006) extends the original NMF with the

kernel trick as kernelized NMF (KNMF), which could extract

more useful features hidden in the original data through some

kernel-induced nonlinear mappings. Additionally, a hashing

method based on multiple kernels NMF was proposed in

Liu et al. (2015), where an alternate optimization scheme

is applied to determine the combination of different ker-

nels.

In this paper, we present a Latent Structure Preserving

NMF framework for hashing (i.e., LSPH), which can effec-

tively preserve the data intrinsic probability distribution and

simultaneously reduce the redundancy of low-dimensional

representations. Specifically, since the solution of standard

NMF only focuses on optimizing matrix factorization to min-

imize Eq. (1), the obtained low-dimensional representation

V lacks the data relationship information. In fact, most of

previous NMF extensions are based on keeping the local-

ity regularization to guarantee that, if the high-dimensional

data points are close, the low-dimensional representations

from NMF can still be close. However, this kind of reg-

ularization may lead to a low-quality factorization, since

it ignores preserving the whole data distribution but only

focuses on locality information. For a realistic scenario with

noisy data, locality preserving regularization would even pro-

duce worse performance. Rather than locality-based graph

regularization, we measure the joint probability of data by

Kullback-Leibler divergence, which is defined over all of

the potential neighbors and has been proved to effectively

resist data noise (Maaten and Hinton 2008). This kind of

measurement reveals the global structure such as the pres-

ence of clusters at several scales. To make LSPH more

capable on data with more complex distributions, the multi-

layer LSPH (ML-LSPH) is also proposed, in which more

discriminative, high-level representations can be learned

from a multi-layer network with the distribution preserv-

ing regularization term. To the best of our knowledge, this

is the first time that multi-layer NMF based hashing is

successfully applied to feature embedding for large-scale

similarity search. A preliminary version of our LSPH has

been presented in Cai et al. (2015). In this paper, we include

more details and experimental results and extend LSPH to

ML-LSPH for more complex data in realistic retrieval appli-

cations.

123

Int J Comput Vis (2017) 122:439–457 443

3 Latent Structure Preserving Hashing

In this section, we mainly elaborate the proposed Latent

Structure Preserving Hashing algorithm.

3.1 Preserving Data Structure with NMF

NMF is an unsupervised learning algorithm which can learn

a parts-based representation. Theoretically, it is expected

that the low-dimensional data V given by NMF can obtain

locality structure from the high-dimensional data X . How-

ever, in real-world applications, NMF cannot discover the

intrinsic geometrical and discriminating structure of the data

space. Therefore, to preserve as much of the significant

structure of the high-dimensional data as possible, we pro-

pose to minimize the Kullback-Leibler divergence (Xie et al.

2011) between the joint probability distribution in the high-

dimensional space and the joint probability distribution that

is heavy-tailed in the low-dimensional space:

C = λK L(P‖Q). (4)

In Eq. (4), P is the joint probability distribution in the

high-dimensional space which can also be denoted as pi j .

Q is the joint probability distribution in the low-dimensional

space that can be represented as qi j . λ is the control of the

smoothness of the new representation. The conditional prob-

ability pi j means the similarity between data points xi and

x j , where x j is picked in proportion to their probability den-

sity under a Gaussian centered at xi . Since only significant

points are needed to model pairwise similarities, we set pi i

and qi i to zero. Meanwhile, it has the characteristics that

pi j = p j i and qi j = q j i for ∀i, j . The pairwise similarities

in the high-dimensional space pi j are defined as:

pi j =
exp

(

−‖xi − x j‖
2/2σ 2

i

)

∑

k �=l exp
(

−‖xk − xl‖2/2σ 2
k

) , (5)

where σi is the variance of the Gaussian distribution which is

centered on data point xi . Each data point xi makes a signifi-

cant contribution to the cost function. In the low-dimensional

map, using the probability distribution that is heavy tailed,

the joint probabilities qi j can be defined as:

qi j =

(

1 + ‖vi − v j‖
2
)−1

∑

k �=l

(

1 + ‖vk − vl‖2
)−1

. (6)

This definition is an infinite mixture of Gaussians, which is

much faster to evaluate the density of a point than the sin-

gle Gaussian, since it does not have an exponential. This

representation also makes the mapped points invariant to the

changes in the scale for the embedded points that are far apart.

Thus, the cost function based on Kullback-Leibler divergence

can effectively measure the significance of the data distribu-

tion . qi j models pi j is given by

G = K L(P‖Q) =
∑

i

∑

j

pi j log pi j − pi j log qi j . (7)

For simplicity, we define two auxiliary variables di j and Z

for making the derivation clearer as follows:

di j = ‖vi − v j‖ and Z =
∑

k �=l

(

1 + d2
kl

)−1
. (8)

Therefore, the gradient of function G with respect to vi can

be given by

∂G

∂vi

= 2

N
∑

j=1

∂G

∂di j

(

vi − v j

)

. (9)

Then ∂G
∂di j

can be calculated by Kullback-Leibler divergence

in Eq. (7):

∂G

∂di j

= −
∑

k �=l

pkl

⎛

⎝

1

qkl Z

∂

(

(

1 + d2
kl

)−1
)

∂di j

−
1

Z

∂ Z

∂di j

⎞

⎠ .

(10)

Since
∂((1+d2

kl)
−1)

∂di j
is nonzero if and only if k = i and l = j ,

and
∑

k �=l pkl = 1, the gradient function can be expressed as

∂G

∂di j

= 2
(

pi j − qi j

)

(

1 + d2
i j

)−1
. (11)

Eq. (11) can be substituted into Eq. (9). Therefore, the gra-

dient of the Kullback-Leibler divergence between P and Q

is

∂G

∂vi

= 4

N
∑

j=1

(pi j − qi j)(vi − v j)

(

1 + ‖vi − v j‖
2
)−1

.

(12)

Therefore, through combining the data structure preserv-

ing part in Eq. (4) and the NMF technique, we can obtain the

following new objective function:

O f = ‖X − U V ‖2 + λK L(P‖Q), (13)

where V ∈ {0, 1}D×N , X, U, V � 0, U ∈ R
M×D , X ∈

R
M×N , and λ controls the smoothness of the new represen-

tation.

123

444 Int J Comput Vis (2017) 122:439–457

In most of the circumstances, the low-dimensional data

only from NMF is not effective and meaningful for realistic

applications. Thus, we introduce λK L(P‖Q) to preserve the

structure of the original data which can obtain better results

in information retrieval.

3.2 Relaxation and Optimization

Since the discreteness condition V ∈ {0, 1}D×N in Eq. (22)

cannot be calculated directly in the optimization procedure,

motivated by Weiss et al. (2009), we first relax the data V ∈

{0, 1}D×N to the range V ∈ R
D×N for obtaining real-values.

Then let the Lagrangian of our problem be:

L = ‖X − U V ‖2 + λK L(P‖Q) + tr
(

ΦU T
)

+ tr(Ψ V T), (14)

where matricesΦ andΨ are two Lagrangian multiplier matri-

ces. Since we have the gradient of C = λG:

∂C

∂vi

= 4λ

N
∑

j=1

(

pi j − qi j

) (

vi − v j

)

(

1 + ‖vi − v j‖
2
)−1

,

(15)

we make the gradients of L be zeros to minimize O f :

∂L

∂V
= 2

(

−U T X + U T U V
)

+
∂C

∂vi

+ Ψ = 0, (16)

∂L

∂U
= 2

(

−X V T + U V V T
)

+ Φ = 0, (17)

In addition, we also have KKT conditions: Φi jUi j = 0 and

Ψi j Vi j = 0,∀i, j . Then multiplying Vi j and Ui j in the cor-

responding positions on both sides of Eqs. (16) and (17)

respectively, we obtain

(

2
(

−U T X + U T U V
)

+
∂C

∂vi

)

i j

Vi j = 0, (18)

2
(

−X V T + U V V T
)

i j
Ui j = 0. (19)

Note that

(

∂C

∂v j

)

i

=

(

4λ

N
∑

k=1

p jkv j − q jkv j − p jkvk + q jkvk

1 + ‖v j − vk‖2

)

i

= 4λ

N
∑

k=1

p jk Vi j − q jk Vi j − p jk Vik + q jk Vik

1 + ‖v j − vk‖2
.

Therefore, we have the following update rules for any i, j :

Vi j ←

(

U T X
)

i j
+ 2λ

N
∑

k=1

p jk Vik+q jk Vi j

1+‖v j −vk‖2

(

U T U V
)

i j
+ 2λ

N
∑

k=1

p jk Vi j +q jk Vik

1+‖v j −vk‖2

Vi j , (20)

Ui j ←

(

X V T
)

i j
(

U V V T
)

i j

Ui j . (21)

All the elements in U and V can be guaranteed that they are

nonnegative from the allocation. In Lee and Seung (2000), it

has been proved that the objective function is monotonically

non-increasing after each update of U or V . The proof of

convergence about U and V is similar to the ones in Zheng

et al. (2011), Cai et al. (2011).

Once the above algorithm is converged, we can obtain the

real-valued low-dimensional representation by a linear pro-

jection matrix. Since our algorithm is based on general NMF

rather than Projective NMF (PNMF) (Yuan and Oja 2005;

Guan et al. 2013), a direct projection does not exist for data

embedding. Thus, in this paper, inspired by Cai et al. (2007),

we consider using linear regression to compute our projec-

tion matrix. Particularly, we make the projection orthogonal

by solving the Orthogonal Procrustes problem (Schönemann

1966) as follows:

min
P

‖P X − V ‖, s.t. P
T
P = I (22)

where P is the orthogonal projection. The optimal solution

can be obtained by the following procedure: 1. use the singu-

lar value decomposition algorithm to decompose the matrix

X T V = AΣ BT ; 2. calculate P = BΩ AT , where, Ω is a

connection matrix as Ω = [I, 0] ∈ R
D×M and 0 indicates

all zeros matrix. Given data x ∈ R
M×1, its low-dimensional

representation is v = Px. There are three advantages on

using orthogonal projection according to Zhang et al. (2015):

Firstly, the orthogonal projection can preserve the Euclid-

ean distance between two points; Secondly, the orthogonal

projection can distribute the variance more evenly across

the dimensions; Thirdly, the orthogonal projection can learn

maximally uncorrelated dimensions, which leads to more

compact representations.

3.3 Hash Function Generation

The low-dimensional representations V ∈ R
D×N and the

bases U ∈ R
M×D , where D ≪ M , can be obtained from

Eq. (20) and Eq. (21), respectively. Then we need to convert

the low-dimensional real-valued representations from V =

[v1, · · · , vN] into binary codes via thresholding: if the d-th

element in vn is larger than a specified threshold, this real

123

Int J Comput Vis (2017) 122:439–457 445

value will be represented as 1; otherwise it will be 0, where

d = 1, · · · , D and n = 1, · · · , N .

In addition, a well-designed semantic hashing should

also be entropy maximizing to ensure its efficiency (Baluja

and Covell 2008). Meanwhile, from the information theory,

through having a uniform probability distribution, the source

alphabet can reach a maximal entropy. Specifically, if the

entropy of codes over the corpus is small, the documents

will be mapped to a small number of codes (hash bins). In

this paper, the threshold of the elements in vn can be set to the

median value of vn , which can satisfy entropy maximization.

Therefore, half of the bit-strings will be 1 and the other half

will be 0. In this way, the real-value code can be calculated

into a binary code (Yu et al. 2014).

However, from the above procedure, we can only obtain

the binary codes of the data in the training set. Therefore,

given a new sample, it cannot directly find a hash function.

To solve such an “out-of-sample” problem, in our approach,

we are inspired by the “self-taught” binary coding scheme

(Zhang et al. 2010) to use the logistic regression (Hos-

mer and Lemeshow 2004) which can be treated as a type

of probabilistic statistical classification model to compute

the hash code for unseen test data. Specifically, we learn a

square projection matrix via logistic regression, which can

be regarded as a rotation of V . This kind of transformation

can make the codes more balanced (Gong et al. 2013; Liu

et al. 2012) and lead to better performance compared with

directly binarizing V with the median value calculated from

training data. To make it more convincing, we also show the

performance difference in the later section. Before obtain-

ing the logistic regression cost function, we define that the

binary code is represented as V̂ = [v̂1, · · · , v̂N], where

v̂n ∈ {0, 1}D and n = 1, · · · , N . Therefore, the training

set can be considered as {(v1, v̂1), (v2, v̂2), · · · , (vN , v̂N)}.

The vector-valued regression function which is based on the

corresponding regression matrix Θ ∈ R
D×D can be repre-

sented as

hΘ (vn) =

(

1

1 + e−(ΘT vn)i

)T

i=1,··· ,D

. (23)

Therefore, with the maximum log-likelihood criterion for

the Bernoulli-distributed data, our cost function for the cor-

responding regression matrix can be defined as:

J(Θ) = −
1

N

(

N
∑

n=1

(

v̂
T
n log(hΘ(vn))

+ (1 − v̂n)T log(1 − hΘ(vn))

)

+ δ‖Θ‖2
)

,

(24)

where log(·) is the element-wise logarithm function and 1 is

an D ×1 all ones matrix. We use δ‖Θ‖2 as the regularization

term in logistic regression to avoid overfitting.

To find the matrix Θ which aims to minimize J(Θ), we

use gradient descent and repeatedly update each parameter

using a learning rate α. The updating equation is shown as

follows:

Θ(t+1) = Θ(t) −
α

N

N
∑

i=1

(

hΘ(t) (vi) − v̂i

)

vT
i −

αδ

N
Θ(t).

(25)

The updating equation stops when the norm of difference

between Θ(t+1) and Θ(t), i.e., ||Θ(t+1) − Θ(t)||2, is smaller

than a small value. Then we can obtain the regression matrix

Θ . For a new coming test data Xnew ∈ R
M×1, then its low-

dimensional representation is Vnew = P Xnew. Note that each

entry of hΘ is a sigmoid function, the hash codes for a new

coming sample Xnew ∈ R
M×1 can be represented as:

V̂new = ⌊hΘ(P Xnew)⌉, (26)

where ⌊·⌉ means the nearest integer function for each entry

of hΘ . Specifically, since the output of logistic regression

i.e., hΘ(P Xnew), indicates the probability of “1” for each

entry, ⌊·⌉ is equivalent to binarizing each bit by probabil-

ity 0.5. Thus, if the probability of a bit from hΘ(P Xnew)

is larger than 0.5, it will be represented as 1, otherwise

0. For example, through Eq. (26), vector hΘ(P Xnew) =

[0.17, 0.37, 0.42, 0.79, 0.03, 0.92, · · ·] can be expressed as

[0, 0, 0, 1, 0, 1, · · ·]. Up to now, we can obtain the Latent

Structure Preserving Hashing codes for both training and test

data. The procedure of LSPH is summarized in Algorithm 1.

Algorithm 1 Latent Structure Preserving Hashing (LSPH)

Input:

The training matrix X ∈ R
M×N ; the objective dimension (code

length) D of hash codes; the learning rate α for logistic regression;

the regularization parameters {δ, λ}.

Output:

The basis matrix U , the orthogonal projection P and the regression

matrix Θ .

1: Initialize U and V with uniformly distributed random values

between 0 and 1.

2: repeat

3: Compute the low-dimensional representation matrix V and the

basis matrix U via Eqs. (20) and (21), respectively;

4: until convergence

5: SVD decompose the matrix X T V to obtain AΣ BT and calculate

P = BΩ AT ;

6: Obtain the regression matrix Θ through Eq. (25) and the final LSPH

encoding for each sample is defined in Eq. (26).

4 Multi-Layer LSPH Extension

To better tackle the retrieval tasks with more complex data

distributions, in this section, we introduce the multi-layer

123

446 Int J Comput Vis (2017) 122:439–457

……

Fig. 2 Illustration of multi-layer LSPH (ML-LSPH)

LSPH (ML-LSPH). ML-LSPH aims to generate more infor-

mative high-level representations compared with single-layer

LSPH for data with complex distributions. Once the represen-

tation by ML-LSPH is computed, the final hashing functions

are also obtained through multivariable logistic regression,

same as LSPH mentioned above.

Given data matrix X ∈ R
M×N , inspired by recent deep

learning algorithms and multi-layer NMF [1], Trigeorgis

et al. (2014), we can extract latent data attributes by incor-

porating our LSPH algorithm with a multi-layer structure as

illustrated in Fig. 2. Similar to the learning of the above rep-

resentation matrix V , a matrix sequence V1, · · · , Vn can be

obtained by solving the following optimization problems:

min ‖X − U1V1‖
2 + λK L

(

P||Q(1)
)

min ‖V1 − U2V2‖
2 + λK L

(

P||Q(2)
)

...

min ‖Vn−1 − Un Vn‖2 + λK L
(

P||Q(n)
)

,

where Ui ∈ R
Di−1×Di , Vi ∈ R

Di ×N , i = 1, · · · , n, D0 =

M , P is the distribution of X and Q(i) is the distribution of

Vi .

∂G j

∂Ui

= U T
i−1 · · · U T

j+1

(

∂K L
(

P||Q(j)
)

∂V j

⊙ g′
(

U j+1V j+1

)

⊙ · · · ⊙ g′ (Ui Vi)

)

V T
i (27)

∂G j

∂Vi

= U T
i U T

i−1 · · · U T
j+1

(

∂K L
(

P||Q(j)
)

∂V j

⊙ g′
(

U j+1V j+1

)

⊙ · · · ⊙ g′(Ui Vi)

)

(28)

(Ui)μν ← (Ui)μν
⎛

⎜

⎝

(

Ri V T
i

)

μν
+ λ

(

∑i
j=1

(

M
(j)
i−1 ⊙ g′(Ui Vi)

)

V T
i

)

μν
(

Ni V T
i

)

μν
+ λ

(

∑i
j=1

(

S
(j)
i−1 ⊙ g′(Ui Vi)

)

V T
i

)

μν

⎞

⎟

⎠

γ

(29)

(Vi)μν ← (Vi)μν
⎛

⎜

⎝

(

U T
i Ri

)

μν
+ λ

(

∑i
j=1 U T

i

(

M
(j)
i−1 ⊙ g′(Ui Vi)

))

μν
(

U T
i Ni

)

μν
+ λ

(

∑i
j=1 U T

i

(

S
(j)
i−1 ⊙ g′(Ui Vi)

))

μν

⎞

⎟

⎠

γ

(30)

In this way, Vi , i = 1, · · · , n, are the hidden factors of

each layer. By introducing the nonlinear function g(·) into the

network, these hidden factors are generated by the following

rules:

Vi = g (Ui+1Vi+1) , i = n − 1, · · · , 0. (31)

Then our task is to minimize the following objective function:

F = ‖X − g (U1g (U2 · · · g (Un Vn))) ‖2

+ λ

n
∑

i=1

K L
(

P||Q(i)
)

. (32)

Let us denote Gi = K L(P||Q(i)) and ⊙ is the Hadamard

product (element-wise product). By taking the derivatives of

F with respect to Ui and Vi , we have:

∂ F

∂Ui

= (Ni − Ri) V T
i + λ

i
∑

j=1

∂G j

∂Ui

(33)

∂ F

∂Vi

= U T
i (Ni − Ri) + λ

i
∑

j=1

∂G j

∂Vi

(34)

where matrices Ni , Ri ∈ R
Di−1×N are calculated by the fol-

lowing rules:

Ri+1 =
(

U T
i Ri

)

⊙ g′ (Ui+1Vi+1)

Ni+1 =
(

U T
i Ni

)

⊙ g′ (Ui+1Vi+1)

for i = 1, · · · , n − 1, with the initialization:

R1 = X ⊙ g′ (U1V1)

N1 = (U1V1) ⊙ g′ (U1V1) .

Besides, the derivatives of G with respect to Ui and Vi

are calculated by Eqs. (27) and (28). With the derivation in

Sect. 3, we have the derivative

(

∂K L(P||Q(j))

∂V j

)

μν

= 4

N
∑

k=1

pνk(V j)μν −q
(j)
νk (V j)μν − pνk(V j)μk +q

(j)
νk (V j)μk

1+‖v
j
ν −v

j
k ‖2

,

123

Int J Comput Vis (2017) 122:439–457 447

where v
j
k is the k-th column of V j , k = 1, · · · , N and

j = 1, · · · , n. To ensure that every element in Ui and Vi

is nonnegative, we use the following symbols to split the

above derivatives as:

∂K L
(

P||Q(j)
)

∂V j

= A j − B j , (35)

where

(

A j

)

μν
= 4

N
∑

k=1

pνk(V j)μν + q
(j)
νk (V j)μk

1 + ‖v
j
ν − v

j
k ‖2

, (36)

(

B j

)

μν
= 4

N
∑

k=1

q
(j)
νk (V j)μν + pνk(V j)μk

1 + ‖v
j
ν − v

j
k ‖2

. (37)

Then we can define two matrix sequences Sl and Ml as fol-

lows:

S
(j)
l+1 = U T

l+1

(

S
(j)
l ⊙ g′(Ul+1Vl+1)

)

, (38)

M
(j)
l+1 = U T

l+1

(

M
(j)
l ⊙ g′(Ul+1Vl+1)

)

, (39)

where l = j, · · · , i − 2, S
(j)

j = A j and M
(j)

j = B j . In this

way, the derivatives of G j with respect to Ui and Vi , i.e., Eqs.

(27) and (28), will be:

∂G j

∂Ui

=
(

(S
(j)
i−1 − M

(j)
i−1) ⊙ g′(Ui Vi)

)

V T
i , (40)

∂G j

∂Vi

= U T
i

(

(S
(j)
i−1 − M

(j)
i−1) ⊙ g′(Ui Vi)

)

. (41)

Substitute the above equations into Eqs. (33) and (34), we

obtain:

∂ F

∂Ui

=(Ni − Ri)V T
i

+ λ

i
∑

j=1

(

(S
(j)

i−1 − M
(j)

i−1) ⊙ g′(Ui Vi)

)

V T
i ,

∂ F

∂Vi

=U T
i (Ni − Ri)

+ λ

i
∑

j=1

U T
i

(

(S
(j)
i−1 − M

(j)
i−1) ⊙ g′(Ui Vi)

)

.

Finally, similar to the procedure in Sect. 3, the update

rules for multi-layer LSPH (ML-LSPH) are shown in Eqs.

(29) and (30), where 0 < γ < 1 is the learning rate

and i = 1, · · · , n. The convergence property of the above

iteration is similar to the one in [1]. Besides, for better under-

standing our ML-LSPH, we aim to unify the LSPH and

ML-LSPH under a same framework. Thus, in our implemen-

tation, the function g(·) applied on U1 and V1 is regarded

as identity function f (x) = x . The function g(·) for Ui

and Vi , i = 2, · · · , n is played by nonlinear sigmoid func-

tion f (x) = 1
1+ex . In this way, when the number of layers

n = 1, the ML-LSPH will shrink to the ordinary single-

layer LSPH. It is noteworthy that we could theoretically

formulate our ML-LSPH to an arbitrary number of lay-

ers according the above algorithms. However, for realistic

applications with complex data distributions, the number of

layers is always less than 3, since when the number of layers

increases, the accumulative reconstruction error will cause

the non-convergence of the proposed model (Trigeorgis et al.

2014).

For the hash code generating phase, it is similar to LSPH.

In particular, acquired the low-dimensional representation

Vn in the n-th layer, we first solve the Orthogonal Procrustes

problem minPT P=I ‖P X − Vn‖ to achieve the orthogonal

projection P . The optimal solution can be obtained by the

following procedure: 1. use the singular value decomposi-

tion algorithm to decompose the matrix X T Vn = AΣ BT ; 2.

calculate P = BΩ AT , where, Ω is a connection matrix as

Ω = [I, 0] ∈ R
D×M and 0 indicates all zeros matrix. For a

new coming test data xnew ∈ R
M×1, the low-dimensional

representation in the n-th layer is vnew
n = Pxnew and

the binary codes are calculated by v̂new
n = ⌊hΘ(Pxnew)⌉

where Θ is obtained by the similar multi-variable regres-

sion scheme. The procedure of ML-LSPH is summarized in

Algorithm 2.

Algorithm 2 Multi-layer Latent Structure Preserving Hash-

ing (ML-LSPH)

Input:

The training matrix X ∈ R
M×N ; the dimensions for n layers

D1, · · · , Dn ; the learning rate γ for the multi-layer NMF struc-

ture; the learning rate α for logistic regression; the regularization

parameters {δ, λ}.

Output:

The n-th layer representation Vn , the orthogonal projection P and

the regression matrix Θ .

1: Initialize Ui and Vi with uniformly distributed random values

between 0 and 1, i = 1, · · · , n.

2: repeat

3: Compute the basis matrix Ui and the low-dimensional represen-

tation matrix Vi via Eqs. (29) and (30) respectively for each layer;

4: until convergence

5: SVD decomposes the matrix X T Vn to obtain AΣ BT and calculate

P = BΩ AT ;

6: Obtain the regression matrix Θ through Eq. (25) and the final ML-

LSPH encoding for each sample is defined by ⌊hΘ (P X)⌉.

Batch-Based Learning Scheme With the number of the layers

increasing, the computational costs will inevitably increase

as well in the current multi-layer network architecture of

ML-LSPH. In order to effectively reduce the computa-

tional complexity on large-scale data, we adopt a random

batch-based learning strategy (RBLS) in the iteration opti-

123

448 Int J Comput Vis (2017) 122:439–457

Fig. 3 Illustration of the P ∈ R
N×N and Q(j) ∈ R

N×N matrices

composition. The white blocks indicate zeros and dark-colored blocks

indicate the similarity computed via the randomly selected subset

mization of ML-LSPH. The complexity of each layer’s NMF

is O(N M D) as mentioned above, which is still regarded as

linear complexity in terms of N and not very demanding for

large-scale data processing. However, the real bottleneck of

the optimization procedure is the calculation of the KL diver-

gence for each layer, specifically, the similarity matrices P

and Q(m), due to the complexity of O(N 2 D). Therefore, in

our implementation, we adopt RBLS to effectively reduce

the complexity for computing P and Q(m) in ML-LSPH.

In detail, for each step of updating P and Q(m), we ran-

domly select a small subset of the whole training set. Then

we only need to compute the pairwise similarity of this subset

and the rest of the elements of P and Q(m) are replaced by

zeros:

pi j =

⎧

⎨

⎩

exp(−‖xi −x j ‖
2/2σ 2

i)
∑

k �=l exp(−‖xk−xl‖2/2σ 2
k)

, if xi , x j ∈ batch

0, otherwise
,

qm
i j =

⎧

⎨

⎩

(1+‖vm
i −vm

j ‖2)−1

∑

k �=l (1+‖vm
k −vm

l ‖2)−1 , if vm
i , vm

j ∈ batch

0, otherwise
,

where m indicates the layer index. The illustration of pro-

posed RBLS are also shown in Fig. 3. If we assume the size

of the small subset is ℓ, the complexity of our RBLS will be

reduced from O(N 2 D) to O(ℓ2 D). Usually, the ℓ can be set

as ℓ = 1/100N . It is noteworthy that only the computation of

P and Q(m) are replaced by the above RBLS trick and other

parts of the algorithm in ML-LSPH are still the same as men-

tioned before. In this way, our multi-layer LSPH becomes

scalable for large-scale data.

5 Computational Complexity Analysis

In this section, we will discuss the computational complexity

of LSPH and ML-LSPH. The computational complexity of

LSPH consists of three parts. The first part is for comput-

ing NMF, the complexity of which is O(N M D) (Li et al.

2014), where N is the size of the dataset, M and D are

the dimensionalities of the high-dimensional data and the

low-dimensional data respectively. The second part is to

compute the cost function Eq. (7) in the objective func-

tion which has the complexity O(N 2 D). The last part is the

logistic regression procedure whose complexity is O(N D2).

Therefore, the total computational complexity of LSPH is:

O(t N M D + N 2 D + t N D2), where t is the number of iter-

ations.

Fig. 4 The Mean Average Precision of the compared algorithms on the SIFT 1M and GIST 1M datasets (Color figure online)

123

Int J Comput Vis (2017) 122:439–457 449

It is obvious that single-layer ML-LSPH is actually

LSPH. The computational complexity of ML-LSPH with

multiple layers consists of several NMF optimizations,

the computation of matrices P and Q(j), and the logistic

regression procedure. With the above discussion, the com-

putational complexity of ML-LSPH is O(t N M
∑n

i=1 Di +

ℓ2
∑n

i=1 Di + t N D2), where ℓ is the batch size.

6 Experiments and Results

In this section, we systematically evaluate the proposed

LSPH and multi-layer LSPH (ML-LSPH) on three large-

scale datasets. The relevant experimental results and data

visualization will be included in the rest of this section. All the

experiments are completed using MatLab2014a on a work-

Fig. 5 The precision-recall curves of the compared algorithms on the SIFT 1M and GIST 1M datasets for the code of 48 bits (Color figure online)

Table 1 The comparison of

MAP between using median

values and Logistic regression to

generate codes with different

numbers of bits

Code length 16 bits 32 bits 48 bits 64 bits 80 bits 96 bits

SIFT 1M

Median value binarization 0.274 0.321 0.355 0.390 0.427 0.448

Logistic regression binarization 0.303 0.340 0.376 0.424 0.445 0.461

GIST 1M

Median value binarization 0.131 0.157 0.193 0.207 0.214 0.227

Logistic regression binarization 0.153 0.185 0.211 0.234 0.241 0.255

Table 2 The comparison of

MAP, training time and test time

of 32 bits and 48 bits of all the

compared algorithms on the

SIFT 1M dataset

Methods SIFT 1M

32 bits 48 bits

MAP Train time (s) Test time (µs) MAP Train time (s) Test time (µs)

LSH 0.240 0.3 1.1 0.280 0.6 1.9

KLSH 0.150 10.5 14.6 0.230 10.7 16.2

RBM 0.260 4.5 × 104 3.3 0.280 5.8 × 104 3.7

BSSC 0.280 2.2 × 103 11.2 0.293 2.6 × 103 13.4

PCAH 0.252 6.5 1.2 0.235 7.4 1.9

SpH 0.275 25.8 28.3 0.284 88.2 101.9

AGH 0.161 144.7 55.7 0.267 184.2 72.0

ITQ 0.320 1.0 × 103 32.1 0.360 1.1 × 103 35.7

STH 0.270 1.2 × 103 17.4 0.318 1.8 × 103 19.8

CH 0.280 93.4 53.5 0.330 98.2 54.4

LSPH 0.340 1.1 × 103 20.3 0.376 1.2 × 103 22.7

123

450 Int J Comput Vis (2017) 122:439–457

Table 3 The comparison of

MAP, training time and test time

of 32 bits and 48 bits of all the

compared algorithms on the

GIST 1M dataset

Methods GIST 1M

32 bits 48 bits

MAP Train time (s) Test time (µs) MAP Train time (s) Test time (µs)

LSH 0.107 1.4 2.7 0.135 2.1 3.0

KLSH 0.110 29.5 27.2 0.120 30.7 38.0

RBM 0.123 5.5 × 104 3.4 0.142 6.2 × 104 3.7

BSSC 0.112 3.2 × 103 13.0 0.130 3.8 × 103 15.1

PCAH 0.090 49.2 2.8 0.075 52.3 3.0

SpH 0.130 65.3 40.2 0.148 131.1 116.3

AGH 0.124 242.5 83.7 0.160 279.4 95.6

ITQ 0.170 1.2 × 103 33.8 0.200 1.5 × 103 36.2

STH 0.123 1.9 × 103 21.3 0.171 2.5 × 103 25.2μ

CH 0.160 194 64.1 0.190 210.5 71.5

LSPH 0.185 1.4 × 103 21.8 0.211 1.7 × 103 24.1

Fig. 6 Some example images from the TinyImage dataset (Color figure online)

station with a 12-core 3.2GHz CPU and 120GB of RAM

running the Linux OS.

6.1 Evaluation on LSPH

In this subsection, we first apply the proposed single-layer

LSPH algorithm method for large-scale similarity search

tasks. Two realistic datasets are used to evaluate all meth-

ods: SIFT 1M: it contains one million 128-dim local SIFT

feature vectors (Lowe 2004). GIST 1M: it contains one mil-

lion 960-dim global GIST feature vectors (Oliva and Torralba

2001). The two datasets are publicly available.3

3 http://corpus-texmex.irisa.fr.

For both SIFT 1M and GIST 1M, we respectively take

10K images as the queries by random selection and use

the remaining to form the gallery database. To construct the

training set, 200, 000 samples from the gallery database are

randomly selected for all of the compared methods. Addition-

ally, we also randomly choose another 50, 000 data samples

as a cross-validation set for parameter tuning. In the querying

phase, the returned points are regarded as true neighbors if

they lie in the top 2 percentile points closest to a query for both

two datasets. Since the Hamming lookup table is fast with

hash codes, we will use the Hamming lookup table to measure

our retrieval tasks. We evaluate the retrieval results in terms

123

http://corpus-texmex.irisa.fr

Int J Comput Vis (2017) 122:439–457 451

Fig. 7 The top-500 Mean Average Precision of the compared algo-

rithms on the TinyImage dataset (Color figure online)

of the Mean Average Precision4 (MAP) and the precision-

recall curves. Additionally, we also report the training time

and the test time (the average searching time used for each

query) for all methods.

6.1.1 The Selected Methods and Settings

In this experiment, we compare LSPH with the 10 selected

popular hashing methods including LSH (Gionis et al. 1999),

BSSC (Shakhnarovich 2005), RBM (Salakhutdinov and Hin-

ton (2007)), SpH (Weiss et al. 2009), STH (Zhang et al.

2010), AGH (Liu et al. 2011), ITQ (Gong et al. 2013), KLSH

(Kulis and Grauman 2009), PCAH (Wang et al. 2012) and

CH (Lin et al. 2013). In these methods, for BSSC, through

the labeled pairs scheme in the boosting framework, it can

obtain weights and thresholds for every hash function. RBM

will be trained with several 100-100 hidden layers without

fine-tuning. According to KLSH, 500 training samples and

the RBF-kernel are used to output the empirical kernel map,

in which we always set the scalar parameter σ to an appro-

priate value on each dataset. For ITQ, the number of the

iterations is set as 50. In AGH with two-layer, we consider

the number of the anchor points k as 200 and the number of

the nearest anchors s in sparse coding as 50. CH has the same

anchor-based sparse coding setting with AGH. All of the 10

methods are evaluated on different lengths of the codes, e.g.,

16, 32, 48, 64, 80 and 96. Under the same experimental set-

ting, all the parameters used in the compared methods have

been strictly chosen according to their original papers.

4 The ground-truth is defined by top 2 percentile nearest neighbors of

a query via linear scan based on the Euclidean distance.

In the experiments of our LSPH method, all the data are

first normalized into the range of [0, 1], since the nonnegative

constraint is required in our framework. We also use the vali-

dation set to tune our hyper-parameters. Particularly, for each

dataset, we select one value from {0.01, 0.02, · · · , 0.10} as

the optimal learning rate α of multi-variable logistic regres-

sion through 10-fold cross-validation on the validation set.

The regularization parameter λ is determined from one of

{10−2, 10−1, 1, 101, 102, 103}, which yields the best perfor-

mance via 10-fold cross-validation on the validation set. The

regularization parameter δ in the hash function generation is

fixed as δ = 0.35. We limit the maximum number of itera-

tions with 1000 in LSPH learning phase, as well.

6.1.2 Results Comparison

We demonstrate MAP curves on the SIFT 1M and GIST 1M

datasets compared with different methods in Fig. 4. From the

general tendency, the accuracies on the GIST 1M dataset are

lower than those on the SIFT 1M dataset, since features in the

GIST 1M has higher dimensions with larger variations than

those on SIFT 1M. In detail of Fig. 4, ITQ always achieves

higher Mean Average Precision (MAP) and gets a consis-

tent increasing condition with the change of the code length

on both datasets. Furthermore, MAP of CH also proves to

be competitive but a little lower than ITQ. Interestingly, on

both the SIFT 1M and GIST 1M datasets, the MAP of SpH

and STH are always “rise-then-fall” when the length of code

increases. Due to the use of random projection, LSH and

KLSH have a low MAP when the code length is short. More-

over, PCAH always gets decreasing accuracies when the code

length increases. For our method LSPH, it achieves the high-

est performance among all the compared methods on both

datasets. The proposed LSPH algorithm can automatically

exploit the latent structure of the original data and simul-

taneously preserve the consistency of distribution between

the original data and the reduced representations. The above

properties of LSPH allow it to achieve better performance

in large-scale visual retrieval tasks. Fig. 5 also shows the

precision-recall curves with the code length of 48 bits on

both SIFT 1M and GIST 1M datasets with the top 2 per-

centile nearest neighbors as the ground truth. From all these

figures, we can further discover that, for both two datasets,

LSPH achieves apparently better performance than other

hashing methods by comparing the Mean Average Precision

(MAP) and Area Under the Curve (AUC). Additionally, to

further illustrate the necessity of using logistic regression

binarization rather than direct median value binarization as

mentioned in Sect. 3.3, we carry out comparison experiments

on both SIFT 1M and GIST 1M datasets. In Table 1, it is easy

to observe that logistic regression binarization can achieve

consistently higher MAP across all code lengthes than the

direct median value binarization scheme.

123

452 Int J Comput Vis (2017) 122:439–457

Fig. 8 Comparison of precision recall curves with different bits on the TinyImage dataset. Ground truth is defined by top-500 Euclidean neighbors

(Color figure online)

Table 4 The comparison of

MAP between using LSPH and

ML-LSPH with different

numbers of bits on all three

datasets

Code length 32 bits 48 bits 64 bits 80 bits 96 bits 128 bits

SIFT 1M

LSPH 0.340 0.376 0.424 0.445 0.461 0.470

ML-LSPH 0.347 0.382 0.441 0.470 0.492 0.498

GIST 1M

LSPH 0.185 0.211 0.234 0.241 0.255 0.261

ML-LSPH 0.183 0.222 0.253 0.269 0.273 0.279

TinyImage

LSPH 0.180 0.224 0.241 0.265 0.274 0.304

ML-LSPH 0.182 0.235 0.252 0.279 0.290 0.318

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Recall

P
re

c
is

io
n

TinyImage (48bits)

ML−LSPH (2 layers)

LSPH

ITQ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

TinyImage (80bits)

ML−LSPH (2 layers)

LSPH

ITQ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

TinyImage (128bits)

ML−LSPH (2 layers)

LSPH

ITQ

Fig. 9 Comparison of precision recall curves using ordinary LSPH (one layer) and ML-LSPH (two layers) with different bits on the TinyImage

dataset (Color figure online)

123

Int J Comput Vis (2017) 122:439–457 453

0 100 200 300 400 500 600 700 800 900 1000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Number of iterations

L
o
s
s
1

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7
x 10

−3

Number of iterations

L
o
s
s
2

0 100 200 300 400 500 600 700 800 900 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of iterations

T
o
ta

l
L
o
s
s

(a) (b) (c)

0 100 200 300 400 500 600 700 800 900 1000
0.237

0.238

0.239

0.24

0.241

0.242

0.243

0.244

0.245

0.246

0.247

Number of iterations

L
o
s
s
1

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8
x 10

−3

Number of iterations

L
o
s
s
2

0 100 200 300 400 500 600 700 800 900 1000
0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

Number of iterations

T
o
ta

l
L
o
s
s

(d) (e) (f)

Fig. 10 Illustration of convergence on the TinyImage dataset with

the code length 64 (λ = 10). For ordinary LSPH (one layer): a

loss1 = ‖X − U1V1‖
2 versus number of iterations. b loss2 =

K L(P||Q) versus number of iterations. c T otalloss = ‖X −

U1V1‖
2 + λK L(P||Q) versus number of iterations. For ML-LSPH:

d loss1 = ‖X − g(U1g(U2 · · · g(Un Vn)))‖2 versus number of iter-

ations. e loss2 =
∑n

i=1 K L(P||Q(i)) versus number of iterations. f

T otalloss = ‖X−g(U1g(U2 · · · g(Un Vn)))‖2+λ
∑n

i=1 K L(P||Q(i))

versus number of iterations. Zoom in for better viewing

Meanwhile, the training and test time for all the methods

are listed in Tables 2 and 3, as well. Considering the training

time, the random projection based algorithms are relatively

more efficient, especially the LSH. While, RBM takes the

most time for training, since it is based on a time-consuming

deep learning method. Our method LSPH is significantly

more efficient than STH, BSSC and RBM, but slightly slower

than ITQ, AGH and SpH. It is noteworthy that once the opti-

mal hashing functions of our method are obtained from the

training phase, the optimized hashing functions will be fixed

and directly used for new data. In addition, with the rapid

development of silicon technologies, future computers will

be much faster and even the training will become less a prob-

lem. In terms of the test phase, LSH is the most efficient

methods as well, since only a simple matrix multiplication

and a thresholding are needed to obtain the binary codes.

AGH and SpH always take more time for the test phase. Our

LSPH has the competitive efficiency with STH. Therefore,

in general, it can be concluded that LSPH is an effective

and relatively efficient method for the large-scale retrieval

tasks.

6.2 Evaluation on ML-LSPH

In this subsection, the multi-layer LSPH is evaluated on the

TinyImage dataset, which is a subset containing 500,000

images5 from ***80 Million Tiny Images (Torralba et al.

2008a, b). Some example images from the TinyImage dataset

are illustrated in Fig. 6. We further take 1K images as

5 This subset is downloaded from http://groups.csail.mit.edu/vision/

TinyImages/.

the queries by random selection and use the remaining to

form the gallery database. Considering the cost of com-

putation in multi-layer networks, in this experiment, only

100, 000 randomly selected samples from the gallery data-

base form the training set. Similar to the experiments of

LSPH, another 50, 000 data samples are also randomly cho-

sen as a cross-validation set for parameter tuning. For image

searching tasks, given an image, we describe it with 512-

dimensional GIST descriptors (Oliva and Torralba 2001) in

this experiment and then learn to hash these descriptors with

all compared methods. In the querying phase, a returned point

is regarded as a neighbor if it lies in the top ranked 500 points

for the TinyImage dataset. We evaluate the retrieval results

through Hamming distance ranking and report the Mean

Average Precision (MAP) and the precision-recall curves

by changing the number of top ranked points. Additionally,

we also report the parameter sensitive analysis and visu-

alize some retrieved images of compared methods on this

dataset.

To avoid confusion, in this experiment, we only compare

with LSH, PCAH, ITQ, AGH, RBM and SpH, which have

shown distinctive performance according to the results in the

previous comparison. Besides, we also add a new hashing

technique SKLSH in this experiment. Note that, RBM here

has 100-100-100 three hidden layers without fine-tuning. All

of the above methods are then evaluated on six different

lengths of codes (32, 48, 64, 80, 96, 128). Under the same

experimental setting, all the parameters used in the compared

methods have been strictly chosen according to their original

papers.

For our ML-LSPH, the data zero-one normalization and

hyper-parameter selection follow the same scheme as those

in LSPH. Besides, to better reach the local minimum loss

in ML-LSPH, the learning rate γ for iterative optimization

is considered. In this experiment, we fix γ = 0.5 for ML-

LSPH. More importantly, for the reason mentioned above

that when the number of the layers increases, the accumu-

lative reconstruction error will cause the non-convergence

problem of the proposed model (Trigeorgis et al. 2014),

we evaluate ML-LSPH with n = 2 layers, which is the

same setting as in Trigeorgis et al. (2014). We further set

the dimension of the middle layer6 (i.e., V1) to 256 on this

dataset.

6 After attempting various network architectures with different dimen-

sions of middle layers, the current ML-LSPH network is the best option

for our task. Similar to the deep learning model (Krizhevsky et al. 2012;

Szegedy et al. 2014). It is noteworthy that the dimensions of middle lay-

ers are quite sensitive to the data distribution (i.e., dataset) and there is no

particular proof to explain what length of dimension for middle layers

is better. Thus, we recommend to try different structure settings in order

to determine what kind of structure can achieve the best performance.

123

http://groups.csail.mit.edu/vision/TinyImages/
http://groups.csail.mit.edu/vision/TinyImages/

454 Int J Comput Vis (2017) 122:439–457

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

M
e

a
n

 A
v
e

ra
g

e
 P

re
c
is

io
n

TinyImage (32 bits)

ML−LSPH (2 layers)

ITQ

LSH

ML−RBM (3 layers)

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

M
e

a
n

 A
v
e

ra
g

e
 P

re
c
is

io
n

TinyImage (48 bits)

ML−LSPH (2 layers)

ITQ

LSH

ML−RBM (3 layers)

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

M
e

a
n

 A
v
e

ra
g

e
 P

re
c
is

io
n

TinyImage (64 bits)

ML−LSPH (2 layers)

ITQ

LSH

ML−RBM (3 layers)

10
−2

10
−1

10
0

10
1

10
2

10
3

0.15

0.2

0.25

0.3

Value of λ

10
−2

10
−1

10
0

10
1

10
2

10
3

Value of λ

M
e

a
n

 A
v
e

ra
g

e
 P

re
c
is

io
n

TinyImage (80 bits)

ML−LSPH (2 layers)

ITQ

LSH

ML−RBM (3 layers)

0.15

0.2

0.25

0.3
M

e
a

n
 A

v
e

ra
g

e
 P

re
c
is

io
n

TinyImage (96 bits)

ML−LSPH (2 layers)

ITQ

LSH

ML−RBM (3 layers)

0.15

0.2

0.25

0.3

M
e

a
n

 A
v
e

ra
g

e
 P

re
c
is

io
n

TinyImage (128 bits)

ML−LSPH (2 layers)

ITQ

LSH

ML−RBM (3 layers)

10
−2

10
−1

10
0

10
1

10
2

10
3

Value of λ

10
−2

10
−1

10
0

10
1

10
2

10
3

Value of λ

10
−2

10
−1

10
0

10
1

10
2

10
3

Value of λ

10
−2

10
−1

10
0

10
1

10
2

10
3

Value of λ

Fig. 11 Parameter sensitivity analysis of the regularization parameter λ with different bits on the TinyImage dataset (Color figure online)

Table 5 Results comparison

(MAP) of ML-LSPH

with/without KL regularization

term
∑n

i=1 K L(P||Q(i))

Code length 32 bits 48 bits 64 bits 80 bits 96 bits 128 bits

With KL regularization term (λ = 1) 0.174 0.224 0.242 0.273 0.280 0.305

Without KL regularization term (λ = 0) 0.170 0.195 0.218 0.246 0.254 0.273

6.2.1 Results Comparison

Fig. 7 illustrates the MAP curves of all compared algorithms

on the TinyImage dataset. Our ML-LSPH algorithm achieves

slightly lower MAP than ITQ when the code length is less

than 48 bits but consistently outperforms all other compared

methods in every length of code. RBM with 3 layers can also

produce competitive search accuracies on this dataset. Dif-

ferent to other hashing techniques, the performance of PCAH

decreases with the increase of the code length. The similar

phenomenon has appeared in the previous evaluation on SIFT

1M and GIST 1M datasets. The performance of AGH, SpH

and LSH is consistent with that in the previous experiments.

Besides, Fig. 8 shows a series of precision-recall curves with

different code lengths on the TinyImage dataset with the 500

nearest neighbors as the ground truth. By comparing the Area

Under the Curve (AUC), our ML-LSPH achieves apparently

better performance than other methods on relatively long

bits (code length ≥ 48 bits) and the performance slightly

goes down when short hash codes are adopted. Moreover, in

Table 4 and Fig. 9, we also compare the performance between

ML-LSPH and LSPH in terms of the MAP and AUC on all

three datasets. The ML-LSPH can achieve consistently better

results than LSPH, since large intra-class variations in Tiny-

Image cause complex and noisy data distributions, which are

more difficult to handle by LSPH. Besides, Fig. 10 illus-

trates the convergence of the proposed LSPH and ML-LSPH

on TinyImage with the code length of 64. We can clearly

observe that, for LSPH, the loss of ‖X −U1V1‖
2 dramatically

drops down when the number of iterations increases. While,

for ML-LSPH, the loss of ‖X − g(U1g(U2 · · · g(Un Vn)))‖2

first climbs up when the number of iterations is less than 50

and then goes down. With the batch-based learning scheme,

the total losses of both LSPH and ML-LSPH can steadily

decrease with little fluctuation.

Additionally, in Fig. 11, we also compare the retrieval

performance of ML-LSPH with respect to the regularization

parameter λ along different code lengths via cross-validation.

When tuning the parameter λ from 0.01 to 1000 with a scale

factor of 10, the MAP curves of ML-LSPH appear to be rel-

atively stable and insensitive to λ. For code lengths equal

to 64 bits and 80 bits, the best performance occurs when

λ = 10. However, for the rest of the code lengths, ML-LSPH

can achieve the highest retrieval accuracies with λ = 100.

123

Int J Comput Vis (2017) 122:439–457 455

Query images

(a) ML-RBM

(b) LSH

(c) SpH

(d) PCAH

(e) SKLSH

(f) ITQ

(g) AGH

(h) ML-LSPH

Fig. 12 The top 25 retrieved images for queries (plane, bird, car, horse, ship and truck) with 96 bits using ML-RBM, LSH, SpH, PCAH, SKLSH,

ITQ, AGH and our ML-LSPH (from a to h). Best viewed in color (Color figure online)

123

456 Int J Comput Vis (2017) 122:439–457

Specifically, to illustrate the effectiveness of the data dis-

tribution preserving (KL divergence) regularization term in

ML-LSPH, we also compare the algorithm without using

the KL divergence term in Table 5. The results indicate that

combining the multi-layer NMF network with the data distri-

bution preserving term could always gain better performance.

Finally, the top-ranked retrieval results using compared meth-

ods on some typical queries are illustrated in Fig. 12. It can

be observed that the retrieved images via ML-LSPH have

more semantic consistency with the query images.

7 Conclusion and Future Work

In this paper, we have proposed the Latent Structure Pre-

serving Hashing (LSPH) algorithm, which can find a well-

structured low-dimensional data representation through the

Nonnegative Matrix Factorization (NMF) with the proba-

bilistic structure preserving regularization part, and then the

multi-variable logistic regression is effectively applied to

generate the final hash codes. To better tackle the data with

complex and noisy data distributions, a multi-layer LSPH

(ML-LSPH) extension has also been developed in this paper.

Extensive experiments on three large-scale datasets have

demonstrated that our algorithms can lead to competitive

hashing performance for large-scale retrieval tasks.

As we mentioned in the introduction of the paper, the

hash codes learned from both LSPH and ML-LSPH can be

regarded as independent latent attributes due to the prop-

erty of NMF. In future work, this kind of learned data-driven

attributes will be further explored with zero-shot learning for

unseen image classification, retrieval and annotation tasks.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

References

Ahn, J. H., Choi, S., & Oh, J. H. (2004). A multiplicative up-propagation

algorithm. In International Conference on Machine Learning.

ACM, New York.

Baluja, S., & Covell, M. (2008). Learning to hash: Forgiving hash func-

tions and applications. Data Mining and Knowledge Discovery,

17(3), 402–430.

Bian, W., & Tao, D. (2010). Biased discriminant euclidean embedding

for content-based image retrieval. IEEE Transactions on Image

Processing, 19(2), 545–554.

Cai, D., He, X., & Han, J. (2007). Spectral regression for efficient

regularized subspace learning. In International Conference on

Computer Vision.

Cai, D., He, X., Han, J., & Huang, T. S. (2011). Graph regularized

nonnegative matrix factorization for data representation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 33(8),

1548–1560.

Cai, Z., Liu, L., Yu, M., & Shao, L. (2015). Latent structure preserving

hashing. In British Machine Vision Conference.

Cao, L., Li, Z., Mu, Y., & Chang, S. F. (2012). Submodular video hash-

ing: a unified framework towards video pooling and indexing. In

Proceedings of the ACM international conference on Multimedia,

pp. 299–308.

Gao, Y., Shi, M., Tao, D., & Xu, C. (2015). Database saliency for fast

image retrieval. IEEE Transactions on Multimedia, 17(3), 359–

369.

Gionis, A., Indyk, P., & Motwani, R. (1999). Similarity search in high

dimensions via hashing. Very Large Date Bases, 99, 518–529.

Gong, Y., Lazebnik, S., Gordo, A., & Perronnin, F. (2013). Iterative

quantization: A procrustean approach to learning binary codes for

large-scale image retrieval. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 35(12), 2916–2929.

Gu, Q., & Zhou, J. (2009). Neighborhood preserving nonnegative

matrix factorization. In British Machine Vision Conference.

Guan, N., Zhang, X., Luo, Z., Tao, D., & Yang, X. (2013). Discriminant

projective non-negative matrix factorization. PLoS One, 8(12),

e83291.

Heo, J. P., Lee, Y., He, J., Chang, S. F., & Yoon, S. E. (2012). Spherical

hashing. In IEEE Conference on Computer Vision and Pattern

Recognition.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algo-

rithm for deep belief nets. Neural Computation, 18(7), 1527–1554.

Hosmer, D. W, Jr., & Lemeshow, S. (2004). Applied logistic regression.

New York: Wiley.

Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness

constraints. Journal of Machine Learning Research, 5, 1457–1469.

Jayaraman, D., & Grauman, K. (2014). Zero-shot recognition with

unreliable attributes. Advances in Neural Information Processing

Systems, 4, 3464–3472.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classi-

fication with deep convolutional neural networks. In Advances in

Neural Information Processing Systems.

Kulis, B., & Grauman, K. (2009). Kernelized locality-sensitive hashing

for scalable image search. In International Conference on Com-

puter Vision.

Lampert, C. H., Nickisch, H., & Harmeling, S. (2014). Attribute-based

classification for zero-shot visual object categorization. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 36(3),

453–465.

Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by

non-negative matrix factorization. Nature, 401(6755), 788–791.

Lee, D. D., & Seung, H. S. (2000). Algorithms for non-negative matrix

factorization. In Advances in Neural Information Processing Sys-

tem.

Li, P., Bu, J., Yang, Y., Ji, R., Chen, C., & Cai, D. (2014). Discrimi-

native orthogonal nonnegative matrix factorization with flexibility

for data representation. Expert Systems with Applications, 41(4),

1283–1293.

Li, S.Z., Hou, X., Zhang, H., & Cheng, Q. (2001). Learning spatially

localized, parts-based representation. In IEEE Conference on Com-

puter Vision and Pattern Recognition.

Lin, Y., Jin, R., Cai, D., Yan, S., & Li, X. (2013). Compressed hashing.

In IEEE Conference on Computer Vision and Pattern Recognition.

Liu, L., & Shao, L. (2015). Sequential compact code learning for unsu-

pervised image hashing. IEEE Transactions on Neural Networks

and Learning Systems.

Liu, L., Yu, M., & Shao, L. (2015). Multiview alignment hashing for

efficient image search. IEEE Transactions on Image Processing,

24(3), 956–966.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Int J Comput Vis (2017) 122:439–457 457

Liu, L., Yu, M., & Shao, L. (2015). Projection bank: From high-

dimensional data to medium-length binary codes. In International

Conference on Computer Vision.

Liu, L., Yu, M., & Shao, L. (2015). Unsupervised local feature hashing

for image similarity search. IEEE Transactions on Cybernetics.

Liu, W., Wang, J., Ji, R., Jiang, Y. G., & Chang, S.F. (2012). Supervised

hashing with kernels. In IEEE Conference on Computer Vision and

Pattern Recognition, pp. 2074–2081.

Liu, W., Wang, J., Kumar, S., & Chang, S. F. (2011). Hashing with

graphs. In International Conference on Machine Learning.

Liu, Y., Wu, F., Yang, Y., Zhuang, Y., & Hauptmann, A. G. (2012).

Spline regression hashing for fast image search. IEEE Transactions

on Image Processing, 21(10), 4480–4491.

Lowe, D. G. (2004). Distinctive image features from scale-invariant

keypoints. International Journal of Computer Vision, 60(2), 91–

110.

Masci, J., Meier, U., Cireşan, D., & Schmidhuber, J. (2011). Stacked

convolutional auto-encoders for hierarchical feature extraction. In

Artificial Neural Networks and Machine Learning (pp. 52–59).

Oliva, A., & Torralba, A. (2001). Modeling the shape of the scene: A

holistic representation of the spatial envelope. International Jour-

nal of Computer Vision, 42(3), 145–175.

Qin, J., Liu, L., Yu, M., Wang, Y., & Shao, L. (2015). Fast action retrieval

from videos via feature disaggregation. In British Machine Vision

Conference.

Raginsky, M., & Lazebnik, S. (2009). Locality-sensitive binary codes

from shift-invariant kernels. In Advances in Neural Information

Processing Systems.

Salakhutdinov, R., & Hinton, G. (2009). Semantic hashing. Interna-

tional Journal of Approximate Reasoning, 50(7), 969–978.

Salakhutdinov, R., & Hinton, G. E. (2007). Learning a nonlinear embed-

ding by preserving class neighbourhood structure. In International

Conference on Artificial Intelligence and Statistics.

Schönemann, P. H. (1966). A generalized solution of the orthogonal

procrustes problem. Psychometrika, 31(1), 1–10.

Shakhnarovich, G. (2005). Learning task-specific similarity. Ph.D. the-

sis, Massachusetts Institute of Technology.

Song, J., Yang, Y., Huang, Z., Shen, H. T., & Luo, J. (2013). Effec-

tive multiple feature hashing for large-scale near-duplicate video

retrieval. IEEE Transactions on Multimedia, 15(8), 1997–2008.

Song, J., Yang, Y., Li, X., Huang, Z., & Yang, Y. (2014). Robust hashing

with local models for approximate similarity search. IEEE Trans-

actions on Cybernetics, 44(7), 1225–1236.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,

Erhan, D., Vanhoucke, V., & Rabinovich, A. (2014). Going deeper

with convolutions. In IEEE Conference on Computer Vision and

Pattern Recognition.

Tao, R., Smeulders, A. W., & Chang, S. F. (2015). Attributes and cat-

egories for generic instance search from one example. In IEEE

Conference on Computer Vision and Pattern Recognition.

Torralba, A., Fergus, R., & Freeman, W. T. (2008). 80 million tiny

images: A large data set for nonparametric object and scene

recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 30(11), 1958–1970.

Torralba, A., Fergus, R., & Weiss, Y. (2008). Small codes and large

image databases for recognition. In IEEE Conference on Computer

Vision and Pattern Recognition.

Trigeorgis, G., Bousmalis, K., Zafeiriou, S., & Schuller, B. (2014).

A deep semi-nmf model for learning hidden representations. In

International Conference on Machine Learning.

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE.

Journal of Machine Learning Research, 9(11), 2579–2605.

Wang, D., Gao, X., & Wang, X. (2015). Semi-supervised constraints

preserving hashing. Neurocomputing, 167, 230–242.

Wang, D., Gao, X., Wang, X., & He, L. (2015). Semantic topic

multimodal hashing for cross-media retrieval. In Proceedings of

the International Joint Conference on Artificial Intelligence (pp.

3890–3896).

Wang, J., Kumar, S., & Chang, S. F. (2012). Semi-supervised hashing

for large-scale search. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 34(12), 2393–2406.

Wang, Q., Zhu, G., & Yuan, Y. (2014). Statistical quantization for sim-

ilarity search. Computer Vision and Image Understanding, 124,

22–30.

Weiss, Y., Torralba, A., & Fergus, R. (2009). Spectral hashing. In

Advances in Neural Information Processing Systems.

Xie, B., Mu, Y., Tao, D., & Huang, K. (2011). m-sne: Multiview sto-

chastic neighbor embedding. IEEE Transactions on Systems, Man,

and Cybernetics, Part B: Cybernetics, 41(4), 1088–1096.

Yu, F. X., Cao, L., Feris, R. S., Smith, J. R., & Chang, S. F.

(2013). Designing category-level attributes for discriminative

visual recognition. In IEEE Conference on Computer Vision and

Pattern Recognition.

Yu, F.X., Kumar, S., Gong, Y., & Chang, S.F. (2014). Circulant binary

embedding. arXiv preprint arXiv:1405.3162.

Yu, J., Tao, D., Wang, M., & Rui, Y. (2015). Learning to rank using user

clicks and visual features for image retrieval. IEEE Transactions

on Cybernetics, 45(4), 767–779.

Yuan, Z., & Oja, E. (2005). Projective nonnegative matrix factorization

for image compression and feature extraction. Image Analysis (pp.

333–342).

Zhang, D., Wang, J., Cai, D., & Lu, J. (2010). Self-taught hashing for

fast similarity search. In Conference on Special Interest Group on

Information Retrieval.

Zhang, D., Zhou, Z.H., & Chen, S. (2006). Non-negative matrix fac-

torization on kernels. In Pacific Rim International Conference on

Artificial Intelligence.

Zhang, X., Yu, F.X., Guo, R., Kumar, S., Wang, S., & Chang, S.F.

(2015). Fast orthogonal projection based on kronecker product. In

International Conference on Computer Vision.

Zheng, W., Qian, Y., & Tang, H. (2011). Dimensionality reduction with

category information fusion and non-negative matrix factorization

for text categorization. In Artificial Intelligence and Computa-

tional Intelligence.

123

http://arxiv.org/abs/1405.3162

	Latent Structure Preserving Hashing
	Abstract
	1 Introduction
	2 A Brief Review of NMF
	3 Latent Structure Preserving Hashing
	3.1 Preserving Data Structure with NMF
	3.2 Relaxation and Optimization
	3.3 Hash Function Generation

	4 Multi-Layer LSPH Extension
	5 Computational Complexity Analysis
	6 Experiments and Results
	6.1 Evaluation on LSPH
	6.1.1 The Selected Methods and Settings
	6.1.2 Results Comparison

	6.2 Evaluation on ML-LSPH
	6.2.1 Results Comparison

	7 Conclusion and Future Work
	References

