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Latent Support Vector Machine Modeling for Sign Language
Recognition with Kinect
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Vision-based sign language recognition has attracted more and more interest from researchers in the com-
puter vision field. In this article, we propose a novel algorithm to model and recognize sign language per-
formed in front of a Microsoft Kinect sensor. Under the assumption that some frames are expected to be
both discriminative and representative in a sign language video, we first assign a binary latent variable
to each frame in training videos for indicating its discriminative capability, then develop a latent support
vector machine model to classify the signs, as well as localize the discriminative and representative frames
in each video. In addition, we utilize the depth map together with the color image captured by the Kinect
sensor to obtain a more effective and accurate feature to enhance the recognition accuracy. To evaluate our
approach, we conducted experiments on both word-level sign language and sentence-level sign language. An
American Sign Language dataset including approximately 2,000 word-level sign language phrases and 2,000
sentence-level sign language phrases was collected using the Kinect sensor, and each phrase contains color,
depth, and skeleton information. Experiments on our dataset demonstrate the effectiveness of the proposed
method for sign language recognition.
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1. INTRODUCTION

Sign language is a kind of visual language that consists of a sequence of grammatically
structured human gestures. It is one of the most natural means of exchanging informa-
tion for deaf and hearing impaired persons. The goal of sign language recognition is to
transcribe sign language into text efficiently and accurately. Currently, automatic sign
language recognition is still in its infancy, roughly decades behind automatic speech
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Fig. 1. Color image, depth map, and skeleton position provided by the Kinect sensor.

recognition [Von Agris et al. 2008]. It corresponds to a gradual transition from isolated
to continuous recognition for a small vocabulary task. Most research has focused on
identifying optimal features and classification methods to correctly recognize a given
sign from a set of possible signs. Correspondingly, there exist two challenges in sign lan-
guage recognition. One is how to efficiently capture the optimal features from signers,
and the other is how to model different signs and classify them correctly for recognition.

In the aspect of feature collection, different kinds of sensors are explored, vary-
ing from tracking systems using data gloves [Kim et al. 1996; Liang and Ouhyoung
1998; Fels and Hinton 1993; Kadous 1996] to computer vision techniques using cam-
era [Starner 1995; Starner et al. 1998; Vogler and Metaxas 2001] and motion capture
systems [Hernandez-Rebollar et al. 2004]. Until now, commercially available depth
camera systems have been expensive, and only a few researchers have used depth
information to recognize hand pose. Fortunately, the release of the Microsoft Kinect
sensor has provided a low-cost and off-the-shelf choice for depth sensors. The Kinect
sensor involves an infrared (IR) light projector, a standard CMOS camera, a color cam-
era, and a standard USB interface. The distortion of the IR pattern is used to calculate
depth maps, which have a per-pixel depth resolution of 1cm while the camera is 2m
away [Zhang 2012]. With these components, the Kinect could simultaneously provide
color image, depth map, and skeleton positions developed based on color and depth
information. Figure 1 illustrates the three kinds of output from the Kinect sensor at
the same moment.

The extra depth map and skeleton information provided by the Kinect sensor could
greatly benefit vision-based sign language recognition. First, background modeling
becomes simple and robust with the depth map. We can easily and accurately extract
human body parts from color images with the help of body depth information. Second, in
previous 2D solutions, tracking hands is always a difficult task, and most of them need
a signer to wear color gloves for help. However, with the skeleton information, hands
can be tracked robustly and in real time. Third, beyond the traditional 2D features, the
Kinect sensor can provide some novel 3D features, which are quite useful for improving
the performance of sign language recognition. These advantages of the Kinect have
been utilized into sign language recognition [Zafrulla et al. 2011]. In this article, we
also utilize the Kinect sensor to perform vision-based sign language recognition.

In the aspect of sign modeling and classification, researchers have developed and ap-
plied many kinds of models. Murakami and Taguchi [1991] trained an artificial neural
network (ANN) to recognize isolated signs, which was the early work on sign language
recognition. Vogler and Metaxas [1997] utilized hidden Markov models (HMMs) to
perform word-level sign language recognition, whose performance relies on the states
selection in the HMM model. Many approaches have treated the problem as gesture
recognition and have focused on statistical modeling of signs [Zhang et al. 2009, 2011,
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Fig. 2. Illustrations of frames from several sign language videos. The left-most column lists the names of
signs, followed by the frame sequences sampled from videos, respectively. Images with a red bounding box
denote discriminative frames.

2012]. Recently, the latent support vector machine (SVM) formalism has been success-
fully applied to many tasks [Felzenszwalb et al. 2010; Lan et al. 2011; Yao and Fei-Fei
2010]. An advantage of latent SVM and its variants is that they allow for weak su-
pervision of latent parts within an element to be recognized. This ability could also be
applied in sign language recognition.

After observation of sign language videos, we noticed that in a video, some frames are
more discriminative and representative than others. Users could recognize a sign lan-
guage video correctly only according to those discriminative and representative frames,
despite the other ones. As illustrated in Figure 2, each sign language video contains
a sequence of frames. However, lots of frames from different videos look similar, and
only a part of the frames in each video is specific. These specific frames are discrimi-
native and representative of each video, and people could recognize a video correctly
only according to these frames. Inspired by this observation, we introduce the latent
SVM model into the sign language recognition. The discriminative frames are treated
as latent variables in this model. After model learning and inference, we can correctly
recognize the sign of a video and find out the most discriminative and representative
frames within it.

The contributions of this work are summarized as follows:

(1) We collect a large dataset with ground-truth labels for research on sign language
recognition. Our dataset includes both sign language of words and sign language
of sentences.

(2) We adopt the latent SVM for sign language modeling, which can localize the rep-
resentative frames in video and classify the sign simultaneously.

(3) Based on the latent SVM model trained on word-level signs, we develop an approach
to perform recognition on sentence-level sign language.
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(4) By using the information from the Kinect sensor, our proposed method can improve
the performance of recognition significantly.

The rest of the article is organized as follows. Related work is reviewed in Section 2. In
Section 3, we first elaborate on the latent SVM for our word-level sign language recog-
nition, then present the approach of sentence-level sign language recognition based
on words. In Section 4, our self-built dataset is introduced, followed by experimental
results on this dataset. We conclude the article in Section 5.

2. RELATED WORK

In sign language recognition, data collection and feature extraction are the fundamen-
tal parts. Many early sign language recognition methods used gloves or accelerome-
ters to track hands and measure the features [Vogler and Metaxas 1997; Hernandez-
Rebollar et al. 2002]. Considering that it is more natural, vision-based sign language
recognition approaches became more and more popular. Matsuo et al. [1998] imple-
mented a system to recognize sign language with a stereo camera for recording 3D
movements. Segen and Kumar [1999] developed a system that uses a camera and a
point light source to track the user’s hand. Tracking the hands is an important part of
this kind of work and is usually implemented by requiring the signers to wear colored
gloves. The gloves used to be single colored for each hand [Kadir et al. 2004]. In some
works, the gloves were designed to allow hand pose to be better detected by employing
colored markers [Holden and Owens 2001] or differently colored fingers [Hienz et al.
1999]. Beyond using single-colored gloves, Zhang et al. [2004] utilized multicolored
gloves to detect both position and shape, in which fingers and palms of the hands were
different colors. The skill color model was also used to detect hands, such as is done in
Imagawa et al. [1998]. Depth can also be used to simplify the problem. Hasanuzzaman
et al. [2004] used a stereo camera pair to obtain the depth image for building models
of persons in the image.

The Microsoft Kinect sensor has offered an affordable depth camera that makes depth
a viable option for researchers. Keskin et al. [2013] described a depth image–based
real-time skeleton fitting for the hand using the Kinect and used it in an American
Sign Language (ASL) recognition application. Zafrulla et al. [2011] investigated the
application of the Kinect depth-mapping camera for sign language recognition and
proved that the Kinect could be a viable option for sign verification.

The classification model is also important in sign language recognition. It deter-
mines how to use low-level features to describe and recognize signs. The earliest model
in sign language work utilized ANNs [Murakami and Taguchi 1991]. Yang et al. [2002]
presented a general method to extract motion trajectories and used them within a
time-delay neural network (TDNN) to recognize sign language. Derived from auto-
matic speech recognition, HMMs are also applied in sign language recognition. Vogler
and Metaxas [1999] developed parallel hidden Markov models (PaHMMs) and demon-
strated that it is a promising scheme in sign language recognition. Kadous [1996]
presented a sign language recognition system that uses k-nearest neighbors (KNNs)
and decision tree learning to classify isolated signs. Sun et al. [2013] introduced a
discriminative exemplar coding (DEC) approach to model sign language video with a
depth feature from the Kinect.

Meanwhile, there is no single, universal sign language. Regionally different sign
languages have evolved, such as ASL [Brashear et al. 2003], German Sign Language
(GSL) [Bauer et al. 2000], and Chinese Sign Language (CSL) [Fang et al. 2003]. For
simplification, we focus on ASL in this article; the proposed method can be utilized in
other sign languages as well.
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Fig. 3. A visual illustration of our model with latent variables.

3. LATENT SVM MODELING FOR SIGN LANGUAGE RECOGNITION

In this section, we first introduce how to apply the latent SVM model on signs to perform
word-level sign language recognition, then explain how to perform sentence-level sign
language recognition by inheritance of the latent model from word-level one.

3.1. Word-Level Sign Language Recognition

In word-level sign language recognition, each video contains only one sign correspond-
ing to one word in the vocabulary. Our task is to develop a learning model for application
to sign language recognition in sign videos. This model should generate accurate recog-
nition of sign language videos and additionally find the frames within each video that
are discriminative and representative of each sign. Latent SVM [Felzenszwalb et al.
2008; Liu et al. 2012a, 2012b] provides a framework in which we can treat the de-
sired state value as latent variables and consider different correlations into potential
functions in a discriminative manner. The desired state in word-level signs is the dis-
criminative capability of each frame in the videos. Three types of potential functions
are specially formulated to encode the latent variables representing frames into a uni-
fied learning framework. The best configurations of latent variables for all frames are
searched by optimization, and the sign language videos are classified. An illustration
of our latent model is shown in Figure 3.

3.1.1. Frame-Based Latent SVM. Formally, each sign language video x is to be classi-
fied with a semantic label y, where y ∈ {1, 2, . . . , L}, and L is the quantity of all sign
words in part A of our dataset (see Section 4.1). Each video consists of a set of frames,
whose visual feature vectors are denoted as xi, i ∈ {1, 2, . . . , N}. For each frame, the
discriminative capability is encoded in a latent variable zi ∈ Z � {0, 1}, where zi = 1
means that the i-th frame is discriminative and should be representative of sign lan-
guage recognition, and zi = 0 otherwise. Therefore, z = {z1, z2, . . . , zN} specifies the
discriminative frames within each training video. In the following, we will introduce
how to incorporate z into the proposed model and how to infer it along with model
parameter learning.

The goal is to learn a discriminative function fω over a sign language video x and
its label y, where ω denotes all model parameters. We use fω(x, y) to indicate the
compatibility among the visual feature x, the sign label y, and the latent variables z.
For scoring a video x with a class label y with the latent variable configuration z, we
take fω(x, y) as a form of fω(x, y) = maxω ωT���(x, z, y), which is defined by combining
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different potential functions:

ωT���(x, z, y) =

N
∑

i=1

αT · φ(xi, zi) +

N
∑

i=1

βT · ϕ(zi, y)

+
∑

(i, j)

γ T · ψ(zi, z j, y).

(1)

In this form, parameter vector ω is the concatenation of the parameters in all of the
factors. The model presented in the preceding equation simultaneously considers the
three potential functions, whose details are described next.

Unary potential αT · φ(xi, zi). This potential function models frame discriminative
capability. Here φ(xi, zi) represents a certain mapping of the visual feature xi, and
the mapping result depends on the latent variable zi. Model parameter α encodes the
weight for different latent variable values. Specifically, it is parameterized as

αT · φ(xi, zi) =
∑

b∈Z

αT
b · 1(zi = b) · xi, (2)

where 1(·) is the indicator function.
Unary potential βT ·ϕ(zi, y). This potential function models the compatibility between

sign label y and latent variable zi—that is, how likely a sign language video with class
label y contains a frame with latent variable zi. It is defined as

βT · ϕ(zi, y) =
∑

a∈L

∑

b∈Z

βa,b · 1(y = a) · 1(zi = b). (3)

The parameter βa,b measures the compatibility between y = a and zi = b. After model
learning, we select the latent variable z∗

y for location y as the latent discriminative
label according to βa,b—that is, z∗

y = arg maxb∈Zβb · 1(zi = b). Frames labeled with
latent variable z∗

y are treated as discriminative and representative ones.

Pairwise potential γ T ·ψ(zi, z j, y). Intuitively, keyframes within the same video should
have similar discriminative capability; the latent variables for those keyframes are
dependent. Hence, we assume that there are certain constraints between some pairs
of latent variables (hi, hj). This pairwise potential function models the compatibility
between class label y and the dependence of latent variables zi and z j—that is, how
likely a video with class label y contains a pair of frames with latent variables zi and
z j . It is defined as

γ T · ψ(zi, z j, y) =
∑

y∈L

∑

b∈Z

∑

c∈Z

γa,b,c · 1(y = a)

·1(zi = b) · 1(z j = c),

(4)

where model parameter γa,b,c denotes the compatibility between class label y = a and
latent variable configurations zi = b and z j = c.

3.1.2. Model Learning. Let 〈x(i), y(i)〉(i = 1, 2, . . . , K) be a set of K training videos; our
target is to learn the model parameter ω that discriminates the correct sign label y.
Here the discriminative latent variables are unobserved and automatically will be
inferred along with model learning.
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The latent SVM formulation [Felzenszwalb et al. 2008; Yu and Joachims 2009] is
utilized to learn the model as follows:

min
ω,ξ≥0

1

2
‖w‖2 + C1

K
∑

i=1

ξi

s.t. max
z

ωT���
(

x(i), z, y(i)
)

− max
z

ωT���
(

x(i), z, y
)

≥ �
(

y, y(i)
)

− ξi,∀i,∀y ∈ L,

(5)

where C1 is the trade-off parameter similar to that in traditional SVM, and ξi is the
slack variable for the i-th training example to handle the soft margin. Such an objective
function requires that the score for ground-truth label y(i) is much higher than for other
labels. The 0–1 loss function �(y, y(i)) is used to record the difference, which is defined
as

�0/1(y, y(i)) =

{

1 if y 	= y(i)

0 otherwise.
(6)

The constrained optimization problem in Equation (5) can be equivalently rewritten
as an unconstrained problem:

min
ω

L(w) =
1

2
‖ω‖2 + C1

K
∑

i=1

Gi(ω)

where Gi(ω) = max
y

(

�0/1

(

y, y(i)
)

+ max
z

ωT���
(

x(i), z, y
)

)

− max
z

ωT���
(

x(i), z, y(i)
)

.

(7)

Nonconvex bundle optimization in Do and Artières [2009] is adopted to solve
Equation (7)—that is, the algorithm iteratively builds an increasingly accurate piece-
wise quadratic approximation of L(w) based on its subgradient ∂wL(w). The key issue
is to compute the subgradients ∂wL(w). We define the following:

z(i)∗ = arg max
z

ωT���
(

x(i), z, y
)

,∀i,∀y ∈ L,

z(y) = arg max
z

ωT���
(

x(i), z, y(i)
)

,∀y

y(i)∗ = arg max
y

(

�0/1

(

y, y(i)
)

+ max
z

ωT���
(

x(i), z, y
))

,

(8)

then ∂ωL(ω) can be further computed as

∂

ω
L(ω) = ω + C1

M
∑

i=1

���
(

x(i), z(i)∗ , y(i)∗
)

− C1

M
∑

i=1

���
(

x(i), z(i), y(i)
)

, (9)

By utilizing the algorithm in Do and Artières [2009], we can optimize Equation (5)
by using ∂ωL(ω) and output the optimal model parameter ω.

During each iteration, we can also infer the latent variables z as follows:

z(y) = arg max
z

ωT���
(

x(i), z, y(i)
)

,∀y. (10)

This is a standard max-inference problem, and we use loopy belief propagation [Murphy
et al. 1999] to approximately solve it.
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Fig. 4. The framework of our sentence-level sign language recognition approach.

3.1.3. Recognition. Given the learned model parameter ω, we can directly apply it to
perform isolated sign language recognition on test video xt. The procedure will score
a word-level sign language video and provide the discriminative frames within it. The
class label y∗ and latent keyframe z∗ are labeled as follows:

(y∗, z∗) = arg max
y

{

max
z

ωT���(xt, z, y)
}

. (11)

3.2. Sentence-Level Sign Language Recognition

To explain our approach on sentence-level sign language recognition, we should first
introduce the structure of our sentence-level signs. In this work, each sentence-level
sign involves a sequence of word-level signs. For example, the sentence-level sign “I
drink hot water” consists of four word-level signs: “I,” “drink,” “hot,” and “water.” A
signer will perform this four word-level sign according to the sign language grammar to
generate this sentence-level sign. Specifically, all words in sign sentences are involved
in a dictionary, which is the summarization of all words in word-level sign language
recognition. For the preceding example, this means that if we have the sentence “I
drink hot water” in sentence-level signs, we should have the signs “I,” “drink,” “hot,”
and “water” in word level. This property enables our method for sentence-level sign
language recognition.

Figure 4 indicates the framework of our sentence-level sign language recognition
approach. Suppose that we already have the latent SVM model trained on word-level
sign videos. This model can score a sign video and label it. For a sentence-level sign, we
divide it into a sequence of video clips, where adjacent clips are temporally overlapped.
The trained latent SVM model is then applied on each clip and a score is produced.
Consequently, we get a sequence of scores corresponding to the sequence of video clips.
ITo take account of the temporal consistency of a video, a Gaussian kernel–based
temporal filtering is conducted on the score sequence for smoothing, which results in a
smoothed new score sequence. After that, according to the trained latent SVM model,
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each score in this smoothed new score sequence will be translated to a label, which
results in a label sequence. Notice that each label in this sequence belongs to a clip,
and the order of labels in sequence is the same as clips from the sentence video. Finally,
we merge all adjacent same labels in label sequence and retain the distinct ones. The
final retained distinct labels are treated as the label of this sentence-level sign video.

Formally, suppose that fω is the discriminative function trained from word-level
signs. The number of classes of these word-level signs is denoted as R. Let X be a
sentence-level sign video. x j ∈ {x1, x2, . . . , xM} denotes the overlapped video clip from
video X—that is X = {x1, x2, . . . , xM}.

For each clip x j , discriminative function fω will produce an R dimension score—that
is,

fω(x j) = (yj1, yj2, . . . , yj R) j = 1, 2, . . . , M.

Then scores of all clips for one video will form a score matrix:

⎛

⎜

⎜

⎜

⎝

y11 y12 · · · y1R

y21
. . .

...
...

. . .
...

yM1 · · · yMR

⎞

⎟

⎟

⎟

⎠

.

Here each row denotes the R dimension score over all R sign words for one clip, and
each column denotes M scores over all M clips for one sign word.

To take account of the temporal consistency of a video, a Gaussian kernel–based
temporal filtering is conducted on each column of score matrix. After smoothing, each
column is transferred as

(y1k, y2k, . . . , yMk)T ⇒ (y′
1k, y′

2k, . . . , y′
Mk)T k = 1, 2, . . . , R.

The score matrix is then transferred to

⎛

⎜

⎜

⎜

⎝

y′
11 y′

12 · · · y′
1R

y′
21

. . .
...

...
. . .

...
y′

M1 · · · y′
MR

⎞

⎟

⎟

⎟

⎠

.

For elements in each row of this new matrix, we only retain the maximum one. This
highest score denotes the final score of this clip—that is,

yj = max(y′
j1, y′

j2, . . . , y′
j R) j = 1, 2, . . . , M.

Then, the score matrix is transferred to the final score sequence y1, y2, . . . , yM, where
each element yj, j = 1, 2, . . . , M corresponds to a clip in this sentence-level sign video.

From the trained latent model, labels corresponding to score sequence y1, y2, . . . , yM

are then obtained as l1, l2, . . . , lM. We merge the adjacent same elements in l1, l2, . . . , lM

and then obtain the final labels l∗1, l∗2, . . . , l∗D, where D ≤ M.
The label sequence l∗1, l∗2, . . . , l∗D is the recognized result for this sentence-level sign

video. This result will be treated as correct if the label sequence l∗1, l∗2, . . . , l∗D is the
same as the ground-truth labels of this video. In other words, D should be equal to the
ground-truth number of words in this sentence, and the order from l∗1 to l∗D should be
the same as the ground-truth order of words in this sentence.
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Fig. 5. Illustration of signs in part A of our dataset.

4. EXPERIMENTS

In this section, we first introduce our self-built sign language dataset, then conduct
recognition on this dataset to validate the feasibility and effectiveness of our proposed
method.

4.1. Kinect Sign Language Dataset

Currently, there is no public Kinect sign language dataset. The existing public sign
language datasets are totally based on the 2D camera, which lacks the depth informa-
tion and thus cannot be used to evaluate the proposed method. In this situation, we
built the Kinect sign language dataset by ourselves.

Our dataset includes two parts: part A and part B. Part A consists of word-level sign
language, whereas part B consists of sentence-level sign language.

Part A includes 73 ASL signs, and each sign corresponds to a word. Figure 5 il-
lustrates some signs of Part A, and Table I lists all words of signs in Part A. These
signs came from 100 basic ASL signs that are frequently used by beginning signers.
We discarded those that look too similar in vision and finally selected 73 of the signs.
We recruited nine participants, each of whom stood in front of the Kinect sensor and
performed all signs three times. A total of 1,971 phrases were collected, each of which
included a set of color images, a set of depth maps, and a set of skeleton information.

Part B includes 63 sentences, and each sentence consists of 2 to 4 words. Regardless
of repeated ones, 63 sentences are constructed by 28 words, which are shown in Table II.
Some illustrative sentences are shown in Figure 6. These 28 words are of four types:
subject, verb, adjective, and object. The permutation of these 28 words generates all
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Table I. All Signs in Part A

Signs
mom dad boy girl home
work school store church inout
day night week month year
will today hot cold pizza
milk hotdog egg apple drink
water candy hungry shirt pants
shoes coat wash brushteeth sleep
happy angry sad sorry cry
love please thanks help who
what when where why how
stop big blue green yellow
red dollars cat dog bird
horse cow sheep pig I
you we he they play
go like want

Table II. Vocabulary Used in Part B

Subject Verb Adjective Object

I, we, drink, like hot, cold milk, water, egg,

dad go, wash, happy, angry, pizza, hotdog, apple,

cry sad candy, dollars, home,

school, church, shirt,

pants, shoes, coat

Fig. 6. Illustrative sentences in part B of our dataset.
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63 sentences. Every sentence in part B obeys the following grammar:

Subject V erb [Adjective] Object.

For example, we have “I drink hot water” or “Dad washes shirt.” Due to the length of
sentences, we will not list all sentences in part B here. Similar to part A, we recruited
10 participants, each of whom stood in front of the Kinect sensor and performed all
sentences three times. Notice that these 10 participants were different from the 9 par-
ticipants in part A. A total of 1,890 sentence-level sign language videos were collected,
each of which also included color images, depth maps, and skeleton information.

4.2. Features

In this article, we adopt two kinds of features: Ordinary features and Kinect features.
The Ordinary features include a histogram of oriented gradients (HOG) feature and
an optic flow (OP) feature, which can describe the appearance and motion information.
Based on output of the Kinect, we can know the position of hands and obtain their
shape information and motion features. In addition, we can also estimate body pose by
using the Kinect features.

Ordinary features. The Ordinary features include the HOG feature and OP feature.
Based on the depth map from Kinect, it is easy to obtain the mask image and crop the
foreground. Once the humans are centralized, we extract the HOG descriptor for each
detected area. In human detection, the HOG has been shown to be successful [Dalal
and Triggs 2005]. We follow the construction in Dalal and Triggs [2005] to define a
dense representation of an image at a particular resolution. The image is first divided
into 8 × 8 nonoverlapping pixel regions, or cells. For each cell, we accumulate a 1D
histogram of gradient orientations over pixels in that cell. These histograms capture
local shape properties but are also somewhat invariant to small deformations.

The gradient at each pixel is discretized into one of nine orientation bins, and each
pixel “votes” for the orientation of its gradient, with a strength that depends on the
gradient magnitude at that pixel. For color images, we compute the gradient of each
color channel and pick the channel with the highest gradient magnitude at each pixel.
Finally, the histogram of each cell is normalized with respect to the gradient energy
in a neighborhood around it. We look at the four 2 × 2 blocks of cells that contain a
particular cell and normalize the histogram of the given cell with respect to the total
energy in each of these blocks. This leads to a 9×4 dimensional vector representing the
local gradient information inside a cell. In our implementation, we resize each image to
256 × 128 and then extract HOGs in 8 × 8 cells. This feature vector of the human body
bounding box is the 2, 340-dimensional normalized HOG cell vector. After principal
component analysis (PCA) [Bao et al. 2012] at ratio 0.9, the dimension of the feature is
further reduced to obtain a compact description and efficient computation, which can
also be achieved by feature selection as in Liu et al. [2011b].

To generate the hand shape feature, we first crop a 48×48 pixel patch in the position
of the hand point on every color frame. Then we extract the HOG feature on every
patch and treat this feature as a hand shape feature. This hand shape feature has 288
dimensions.

For generating the hand motion feature, we reuse the patch mentioned earlier. The
OP feature is calculated between one patch on a color frame and the patch in the same
position on the previous frame. This feature is treated as a hand motion feature and
has 2,304 dimensions.

To obtain a compact description and efficient computation, the combined 2,592-
dimension feature of a hand patch is then reduced using PCA [Bao et al. 2012] at
ratio 0.9.
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Table III. Body Pose Features

3D Vectors Angles Distance

SR → ER (3) ∠ SC-SR-ER (1) HR → HL (1)

ER → WR (3) ∠ SR-ER-WR (1)

WR → HR (3) ∠ ER-WR-HR (1)

SL → EL (3) ∠ SC-SL-EL (1)

EL → WL (3) ∠ SL-EL-WL (1)

WL → HL (3) ∠ EL-WL-HL (1)

HR → HL (3)

Note: Numbers in parentheses denote the feature
dimension.

Fig. 7. The skeleton joints’ names.

Kinect features. The Kinect sensor has four kinds of output: color image, depth image,
mask image, and skeleton image, as shown in Figure 1. The Kinect features include
body pose, hand shape, and hand motion features. The body pose features are extracted
using skeleton information. By using Microsoft KinectSDK 1.5, we can obtain the
positions of the shoulder, elbow, wrist, and hand, on both the right and left sides of the
body.

The body pose features are a combination of three parts:

(1) The unit vectors of the elbows with respect to the shoulders, the wrists with respect
to the elbows, the hands with respect to the wrists, and the left hand with respect
to the right hand. See the first column of Table III.

(2) The joint angles of the shoulders, elbows, and wrists. See the middle column of
Table III.

(3) The distance between the right hand and the left hand, normalized by being divided
by twice the shoulder width. See the last column of Table III.

In total, the body pose feature has 28 dimensions. Figure 7 and Table III show details
of the body pose feature.

The 28-dimension feature is combined to the reduced one to generate the final Kinect
feature.
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Table IV. Comparison of Different Methods on Part A of Our Dataset

Methods Mean Accuracy Features

HC [Sivic and Zisserman 2003] + SVM 67.9% HOG + OP

LSC [Liu et al. 2011a] + SVM 74.4% HOG + OP

Our model: Latent SVM 82.3% HOG + OP

HC [Sivic and Zisserman 2003] + SVM 75.2% HOG + OP + Kinect

LSC [Liu et al. 2011a] + SVM 75.0% HOG + OP + Kinect

Our model: Latent SVM 86.0% HOG + OP + Kinect

Note: The percentages shown are the average accuracies over all signs.

4.3. Baselines

To evaluate our proposed method for sign language recognition, we compare it to two
baseline algorithms: hard-assignment coding (HC) [Sivic and Zisserman 2003] and
soft-assignment coding (LSC) [Liu et al. 2011a].

Let bi (bi ∈ Rd) denote a visual word or an exemplar, where d is the dimensionality of
a local feature or a frame representation. The total number of exemplars is n. A matrix
B = [b1, b2, . . . , bn] denotes a visual codebook or a set of basis vectors. Let xi (xi ∈ Rd)
be the ith local feature in an image. Let zi (zi ∈ Rn) be the coding coefficient vector of
xi, with zi j being the coefficient with respect to word bj .

Hard-assignment coding [Sivic and Zisserman 2003]. For a local feature xi, there is
one and only one nonzero coding coefficient. It corresponds to the nearest visual word
subject to a predefined distance. When Euclidean distance is used,

zi j =

{

1 i f j = arg min
j=1,...,n

∥

∥xi − bj

∥

∥

2

2

0 otherwise.

Soft-assignment coding [Liu et al. 2011a]. The jth coding coefficient represents the
degree of membership of a local feature xi to the jth visual word,

zi j =
exp

(

−α
∥

∥xi − bj

∥

∥

2

2

)

∑n
k=1 exp

(

−α ‖xi − bk‖
2
2

) .

where α is the smoothing factor controlling the softness of the assignment. Note that
all n visual words are used in computing zi j .

To compensate for the missing temporal information of these two baselines, spatial
pyramid matching (SPM) [Lazebnik et al. 2006] is utilized to model the temporal
information for representation. Here, the SPM with two levels 1 × 1 and 1 × 3 is
adopted. After coding, we trained multiclass linear SVM [Cortes and Vapnik 1995]
classifiers upon the features in Sivic and Zisserman [2003], Liu et al. [2011a], and
Zhang et al. [2013].

4.4. Results on Word-Level Signs

To evaluate our proposed method on isolated sign language recognition, we imple-
mented it and the baseline algorithms on Part A of the dataset.

Meanwhile, to prove the effectiveness of the Kinect features, we also conducted com-
parison experiments. We designed two different cases. For the first case, all methods are
conducted using only Ordinary features. For the other case, all methods are conducted
using the combination of Ordinary features and Kinect features.

The recognition accuracies are shown in Table IV. From results we can infer the
following:

(1) Whether using Kinect features or not, our latent SVM outperforms the other two
baseline algorithms when using the same kind of feature. Specifically, the average
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recognition accuracy is approximately 86% over all 73 signs when using the com-
bination of Ordinary and Kinect features, which is nearly a 10% improvement
compared to the baseline algorithm HC. This proves the effectiveness of our model
on isolated sign language recognition. We believe that the latent SVM model bene-
fits the classification and leads to the improvement. Practically, all baselines with
the regular SVM only consider the mapping relations between the visual features
of sign videos and the corresponding sign labels, and they have no ability to take
into account the different discriminative capabilities of frames in sign videos, as
well as the constraints between them. However, as discussed in Section 1, some
frames in a sign video may have greater discriminative and representative abil-
ities than others. Different from these methods, the latent SVM can model the
discriminative and representative abilities of different frames, which can improve
the classification performance. In the latent SVM model, each frame is assigned a
latent variable that measures the discriminative power of each frame. By bringing
in the latent variables, the mapping relations between frames and visual features
of videos, frames, and sign labels are integrated into the discriminative function.
The more discriminative and representative a frame is, the greater contribution it
makes to classification. After training, the most discriminative frames could not
only be sought out, but they also could benefit the classification of sign videos.
The experimental results actually demonstrate the advantages of the latent SVM
model in our sign language recognition task.

(2) The first three lines of the table show recognition accuracy using only Ordinary fea-
tures, whereas the last three lines show recognition accuracy using a combination of
Ordinary features and Kinect features. It is observed that when additionally using
Kinect features, all baselines and our model outperform the ones with only Ordi-
nary features. This result proves that features from the Kinect sensor can improve
recognizing performance, and consequently, the Kinect sensor is quite suitable for
sign language recognition.

We also show the confusion matrix. Due to the large number of classes, it is difficult
to show all classes in one confusion matrix. For simplification, we randomly select 20
different kinds of signs to construct the confusion matrix, as shown in Figure 8. It is
observed from the confusion matrix that our model could distinguish signs well. Almost
every sign is distinct from others.

In addition, our model could find out the discriminative and representative frames of
each sign language video, which are indicated by the latent variables. Some illustrative
results are shown in Figure 9. Visually, we can see that illustrated frames in each sign
are discriminative to other signs and could basically represent the sign.

Our method and all baselines are implemented on a computer with and Intel�

Xeon� E7-4860 2.27GHz CPU with 32G RAM. The whole training process of the two
baselines took several hours (depend on the two kinds of features). At the same time,
for our method, only each complete iterative round in training, including learning and
inference, would take several hours. This means that the whole training process could
last more than a week. The high computational cost of training is a disadvantage of the
latent SVM model. However, for a testing sign video, the testing process of our latent
model takes about the same amount of time as the two baselines, and the recognition
accuracy offers remarkable improvement. In this situation, we believe that the time
consumption of the training is worthwhile.

4.5. Results on Sentence-Level Signs

As mentioned earlier, all words in sentences of sentence-level signs in part B of our
dataset come from the 28 different words within part A. Hence, to reduce the computing
time and to improve the recognition performance of sentence-level signs, we retrained a
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Fig. 8. Confusion matrix on 20 different signs that were randomly selected.

new latent SVM model on only these 28 word-level signs. Notice that this will not affect
the classification of all 73 word-level signs in Section 4.4. Similarly, the multiclass linear
SVMs for the two baseline algorithms are also retrained on the selected 28 word-level
signs.

Based on the retrained latent SVM model, we conduct recognition on all 63 kinds
of sentence-level signs according to the method proposed in Section 3.2. Practically,
the length of a clip is set to the length of the minimum one in all 28 word-level sign
videos, and the overlapped length is set to one third of the clip length. A sentence
video is treated as being correctly recognized if the label sequence is the same as the
ground-truth labels both in quantity and order. Recognition results of our method and
both baselines are shown in Table V.

It is observed from Table V that in sentence-level sign language recognition, our
method also outperforms all other baseline algorithms both when using Ordinary fea-
tures and when using a combination of Ordinary and Kinect features. Specifically,
the average recognition accuracy when using the combination of Ordinary and Kinect
features is nearly a 13% improvement compared to the baseline algorithm HC. These
results demonstrate the effectiveness of our method in sentence-level sign language
recognition.

Meanwhile, for our method and the two baseline algorithms, the average recognition
accuracy has nearly a 7% improvement when using a combination of Ordinary and
Kinect features compared to using only Ordinary features. Once again, the Kinect
feature has proved to be effective in sign language recognition.

In addition, we conduct more comparison experiments. We manually divide each
sentence-level sign video into nonoverlapped clips according to the ground-truth labels,
where each clip contains only one sign word. For example, a video of “I drink hot water”
is divided into four clips, where adjacent clips have no overlap, and each clip corresponds
to sign words “I,” “drink,” “hot,” and “water,” respectively.

Based on these manually divided clips, we conduct sentence-level sign language
recognition according to the method proposed in Section 3.2. The recognition results
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Fig. 9. Illustrative results of parts of selected discriminative frames.

Table V. Comparison of Different Methods on Part B of Our Dataset

Methods Mean Accuracy Features

HC [Sivic and Zisserman 2003] + SVM 62.7% HOG + OP

LSC [Liu et al. 2011a] + SVM 66.1% HOG + OP

Our model: Latent SVM 75.0% HOG + OP

HC [Sivic and Zisserman 2003] + SVM 68.9% HOG + OP + Kinect

LSC [Liu et al. 2011a] + SVM 73.2% HOG + OP + Kinect

Our model: Latent SVM 82.9% HOG + OP + Kinect

Note: The percentages shown are the average accuracies over all sentences.

are shown in Table VI. For simplification, all of these recognitions used a combination
of Ordinary features and Kinect features.

From the procedures of recognition, we can infer that recognition accuracy of our
proposed sentence-level sign language recognition method in Section 3.2 with any kinds
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Table VI. Sentence-Level Recognition Results on Part B with Manually Divided Clips

Methods Mean Accuracy Features

HC [Sivic and Zisserman 2003] + SVM 72.1% HOG + OP + Kinect

LSC [Liu et al. 2011a] + SVM 75.5% HOG + OP + Kinect

Our model: Latent SVM 84.1% HOG + OP + Kinect

of clip division may not be higher than the one in Table VI, as all clips in experiments
of Table VI are manually cut. We notice that the average recognition accuracy of our
method in Table VI is lower than the one in word-level shown in Table IV. The reason
is that the meaningless transition between two words in a sentence sign video could
decrease the accuracy of recognition. This issue is a challenge in all sentence-level sign
language recognition and needs further research.

5. CONCLUSIONS

We have presented a latent SVM model for both word-level and sentence-level sign
language recognition. This model could effectively recognize the sign language videos
and find out the discriminative and representative frames within each video simul-
taneously. Moreover, we utilized the Kinect sensor to efficiently capture useful in-
formation from signers and hence improved the recognition accuracy. Experimental
results demonstrated the effectiveness of our method both in word-level and sentence-
level sign language recognition. For the challenge of eliminating the negative effect
of meaningless transitions in sign sentences, we plan to continue our research of this
work.
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