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Latent Trait Models and

Ability Parameter Estimation
Erling B. Andersen
University of Copenhagen

In recent years several authors have viewed latent
trait models for binary data as special models for
contingency tables. This connection to contingency
table analysis is used as the basis for a survey of
various latent trait models. This article discusses es-
timation of item parameters by conditional, direct,
and marginal maximum likelihood methods, and

estimation of individual latent parameters as op-
posed to an estimation of the parameters of a latent
population density. Various methods for testing the
goodness of fit of the model are also described.
Several of the estimators and tests are applied to a
data set concerning consumer complaint behavior.

During the last 20 years there has been a considerable amount of research on latent trait models
of the logistic form. Since 1965 the connection to modern theory for exponential family distributions
has been recognized and has been widely used; and in recent years the connection to various forms of
contingency table analysis and latent structure analysis has been noted.

It is not the purpose of the present article to survey all of these developments, as there are a num-
ber of excellent survey papers available (Baker, 1977; Hambleton & Cook, 1977; Hambleton,
Swaminathan, Cook, Eigner, & Gifford, 1978; ~l~i~~~°9 Morgan, & Gustavsson, 19~(~9 Weiss & Davi-

son, 1981) and text books (Andersen, 1980b; Bock, 1975j Lord, 1981; Lord & Novick, 1968; Wright
& Stone, 1979) that deal with latent trait models, Rather, the aim is to give a short account of avail-
able inference methods for a logistic latent trait model and to assess the potentials of the methods, 1~~
pursuing the latter it will be shown how the various approaches apply to a new set of data.

Latent Trait Models d ~&reg;~~~~ ~~y’~°~~~

It has been increasingly the practice to write a latent trait model as a contingency table, allowing
users to see the connection to a contingency table analysis approach to the data. In the present article
this practice will be followed by writing the data from a test of k dichotomous items as a 2 x 2 voo x 2
contingency table. For simplicity the situation will first be described for the 2x2x2x2 case. This
corresponds to N individuals answering four items. The observed numbers ina2x2x2x2 con-

tingency table will then correspond to the number of observed response patterns on the four items.
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In the following xij,, will be written for the cell count of celt. ~~9 0~9 k, r) of the four-dimensional con-
tingency table and pijk, for the corresponding cell probability. For two levels on each ~r~~~~b~~9 a re-
sponse pattern will then be a combination of four integers such as 1121 or 1222, if i = 1, ~9 .~ = 1, 2,
~ - ~, ~9 and r = 1, 2 are the indices of the observed levels. In item response theory it is customary,
1~~~~~a~~~°~ to use the indices 0 and 1 rather than I and 2, and this tradition will be followed. The pos-
sible response patterns are accordingly of the form 1101 and so forth or, in general, ~ikr ~~~~ ~ ~ ~g ~9
.7&dquo; °m ~ 1, 0, Ie = 1, 0,andr= 1, 0. .

In contingency table analysis, the cell probabilities or the corresponding expected numbers in the
cells are expressed in the form of a log-imear model, i.e.,

All hypotheses that can be tested within the framework of log-linear models take the form of
collections of T’s being zero. In particular, all hypotheses of independence, conditional independence,
and equal probabilities can be expressed as collections Of T’S being zero.

~~s~-~~~a~~~ models are exponential family type models. A powerful statistical inference theory is
available for analyzing such models ~~~&reg; ~~de~°~~~~9 1980b; Barndorff-Niclscn, 1978). For theory and
applications of log-linear models for contingency tables, the reader should consult one of the many
textbooks and monographs now available, as for example, Bishop, Fienberg, and Holland (1975),
Haberman (1978), or Goodman (1978).

In many applications, however, the problem at hand is not readily expressed in terms of log-linear
interaction parameters and hypotheses concerning such parameters. Very often what is looked for, in-
stead, is some kind of joint link between the variables provided by some unobservable individual
characteristic called a latent variable. Thus, for a known value of the latent variable the probability
structure of the contingency table is ~~~~~~e9 and the apparent dependencies between variables can be
accounted for by the joint dependency on the latent variable.

For a 2 x 2 x 2 x 2 table the independence hypothesis is thus equivalent to the log-linear form

~oee9 ~ model with no two-factor or higher order interactions. Suppose that this hypothesis is clearly re-
jected based on the observations at hand but that the problem underlying the data suggests that the
dependency can be contributed to the variation of an unobservable latent individual parameter 0. It
may, for example, be assumed that there is independence in the table, given the value of 0. This form
of independence, which is often termed local independence in psychometric language, has the form

where p~ (0) is the probability of falling in cell (~9~p9~&dquo;~9~~ given the value of 0. Otherwise expressed,
Equation 3 is the probability of failing in cell ~~9~f1~.9~9~ for an individual with latent parameter 0.
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The marginal probability is now obtained from Equation 3 as

where (p (0) is the population density of 0.
The connection to classical psychometric modeling is now clear by observing that in the

2 x 2 x 2 x 2 case pi...(0) = 1 - po , , (0), p 1 (0) = 1 - p o (8) and so forth, so that the probabilities
may be renamed as

and so forth, wherep~(S) = P (answer 1 on item q given 0).
The ~&reg;~~~ can now be expressed in the following form

where a~y9 U4 are binary response variables with values 0 or 1.
Without any further assumptions onp~(9) or ~~~)9 an analysis based on Equation 6 would not be

possible. In the literature there are two principal ways of dealing with Equation 6. One approach,
known as latent class analysis, makes no assumptions as to the exact form ofp~’(0),p~(9),p’-~(9),
and but then assumes that ~p(O) is a discrete M-point distribution, i.e., for certain (unknown)
cutting points on the 0-scale, 00, ..., 9~,

In latent class this then results in the model

where jE~ -_~c~>~~) is assumed constant for 6v_i ~ ~ ~ 8~. It has only 5M &dquo; 1 parameters as com-
pared with 15 p;~/s. Hence, a model with M = 2 or ~~ _ ~ can be analyzed, when the contingency
table is four-dimensional, while for higher dimensional tables, more class probabilities can be esti-
mated. (Discussion of latent class analysis will be resumed in a later section.)

Another approach is to make few or no assumptions about qo(9) but then to assume a. certain
structure in the This approach is usually termed latent trait analysis, as the analysis is con-
cerned with models for the probabilities p < Q>(8)~ If, as in psychometrics, the variables are denoted as
items, the probabilities are usually modeled in terms of certain item parameters.

As a very general form
I I
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where ~Q~~ ..., aqt are the of item q.
A less general which covers most latent trait models for dichotomous items g~l~h ~ one-di-

mensional latent variable is

where H(x) is an increasing function over the real line with H(--) = 0 and H(d-cJ) = 1. The so-called
normal ogive model and the three-parameter logistic model can be written as in Equation 10 whence
is the guessing parameter, gi = I -go, ~(0) = 0.5, ~9 is the item difficulty, and a, the item discrimi-
nating power. In the normal ogive model, H is the cumulative normal distribution function, and in
the logistic model, H is the function ex/(1 + e’). A very general discussion of latent trait models based
on a formula similar to Equation 10 is given in a recent paper by Bartholomew (1980).

When there is a probability structure as in Equation 10, there is the possibility of assuming a cer-
tain form of the latent density ep(0) including some population parameters. A model where (p(6) is a
normal density with mean p and variance 02 has been discussed by Andersen and Madsen (1977) and
Sanathanan and Blumenthal (1978) for a logistic model, and by Christofferson (1975) and Muth6n
(1978,1979) for a normal ogive model. Bartholomew (1980) has discussed these and other models.

If ~p(O) depends on two parameters p and o, this gives the model

which, if the form of Equation 10 is assumed, will depend on the following parameters go, s~~9 a2,

~~9 ~4, ~i, ~9 b~9 &}, ~9 and ol. With fifteen free p -parameters this is close to a reparametcrization,
but with more items, the parameters can be estimated and the model checked, although the likeli-
hood function in most cases will have a complicated structure that gives rise to numerical problems in

solving the likelihood equations
The various models and statistical methods of this paper will be illustrated by a set of data de-

rived from a Danish study of consumer complaint behavior. Six hundred individuals were faced with
six typical consumer situations and were asked to state whether, under the given c~~°~~~st~~c~s9 they
would complain or not. The basic data in terms of number of individuals N,, responding with each of
the 64 possible response patterns u are shown in Table 1.

m the Logistic Latent Trait ~~

This section will deal only with the logistic model’, beginning with the one-parameter (Rasch)
model, where in Equation 10 g. = 0, gi = 1, H(x) = e’l(l + e’) and a, = 19 q ~ 1, ..., ~. With these

specifications the model is

In this section no assumption will be made on the latent density, returning to the estimation of ~p(O)
and ~pi, y o e o 9 ~,~ in later sections of this article. Hence, the probability distribution for each individual,
given the latent parameter 0, is considered. To this end is introduced

1Estimation in the normal ogive latent trait model is treated at length in Lord and Novick (1968). Readers are also referred to
Bock (1972) or Muthen (1978).
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Table 1
Number of Individuals for Each Response Pattern

for Complaint Data

The probability of a response vector will then be
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where 0~ is the latent parameter. From this equation it follows that the estimation of 0, will depend
only on the total score M.. and, from general results on exponential family distributions, that the maxi-
mum likelihood estimate of e, is the solution to

For given values of &~, this equation is easily solved by a ~~~~~~~~~.~~~ns~~ method. (Details are given
in Andersen, 1980b, chap. 6.)

In another application of exponential family theory, ~~e Andersen, 1980b, chaps. 3 and 6), the
conditional probability off the response pattern ~~5~9 ~aa9 M~) given M.. = t, say,

is independent of the value of 0,, and thus only depends on the bqa This property of the Rasch model
can be used to obtain conditional maximum likelihood (CML) estimates for ~b,9 oe~e b,~)~o

When the CML approach is used for estimating the b,’s, the 9’s are usually estimated from Equa-
tion 15 with the CML estimates for b,9 ..., bk inserted in the equation. The conditional likelihood
equations are slightly involved, but various programs are available. Recently, the author’s original
program has been implemented as an SAS subroutine (cf. Weinreich, 1980).

There are other possible ways of estimating the by9so An alternative to the CML approach is a di-
rect maximum likelihood ~I~m~) approach. The direct likelihood will be the product of Equation 14
over all ,~~ which takes the following form:

Once again, from exponential family theory it can be deduced that the likelihood equations for the
~~, estimation become Equation 15 and, in addition,

Note that Equation ~1~ has only k - 1 possible solutions, as all individuals with common value M.. = t
get the same parameter estimate t~t) for t &reg; 1, ..., k - 1. For the extreme values of t, d(0) = - C° and
8(k) = -~- ~ are obtained. The solutions to Equations 15 and 18 form a set of joint estimates ~x9 0°0~ bk9
~~)9 aaay 6(k - 1). These estimates for b, do not coincide with the CML estimates. It can be shown that
the ML estimate has a bias of ~/~1~ ~- 1), which does not vanish for large values of N. For large values
of both k and the bias is negligible and, as shown by Haberman (1977), the joint set of ~~9s and b(t)s
are consistent under certain restrictions on the joint convergence of k and N to infinity. The first com-
puter program for the solution of Equations 15 and 18 is described by Lord (1968). The estimates can
also be obtained by more general algorithms for exponential family distributions such as, for ex-
ample, those in the GLIh4 library.

A comparison of the CML approach, the direct ML approach, and certain modifications of these

2In fact, it was this possibility of an individual parameter estimation independent of the bq’s that lead Rasch to suggest his
model in 1960. Readers interested in the history of the Rasch model are referred to the reprinting of the 1960 book with com-
ments by Wright (Rasch, 1980).
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procedures is given by Wight and Douglas (1977). Approximate solutions for one of these modifica-
tions was given recently by Cohen (1979).

In a recent paper by Bock and Aitkin (1981) an alternative method called marginal maximum
likelihood estimation is suggested. It is based on the EM algorithm and applies an approximation by
Gauss-Hermite quadrature to the integral in Equation 6, By reseating, qo(6) is assumed to be a stan-
dard normal density, but the model can also by interpreted as using an empirical discrete latent dis-
tribution estimated directly. (For further details the reader is referred to the original paper.)

of Estimates

Some of these estimates for the data of Table win now be examined. The item marginals and in-
dividual marginals are presented in Table 2. The ~1~~ estimates and their standard errors, and the
corresponding solutions to Equation 18, are shown in Table 3. These estimates can be compared with
the direct ML estimates (and their standard errors), which are given in Table 4. Note how clearly the
multiplicative bias ~~ ~~./~~~ -~ 1) emerges.

Table 2

Item and Individual ~. Marginals
for the Complaint Data

Table 3

CML Estimates for Item Parameters

and ML Estimates for Individual

Parameters for Data

Table

Simultaneous Estimates for Both

Item Parameters and Individual

Parameters for the Complaint Data

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



452

Two-Parameter Model

Alternatively, it may be assumed that the two-parameter logistic model describes the data. The
model is now given by

where a,, ..., ~ are item discriminations. The probability of a given response vector ~.i, ..., y~ now be-

comes

As first noted by Birnbaum (1957) and further discussed in his contribution to Lord and Novick
(1968), the sufficient statistic for 0, in this model is

so that the latent individual parameter is scored by multiplying the responses with the item dis-
criminations. This is in contrast to the Rasch model, where the scoring of individuals is independent
of the parameters to be estimated. It is possible to obtain I~~ estimates for the various parameters of
this two-parameter logistic model, although there are numerical problems. As yet, little is known

about the statistical properties of these estimates. It seems, however, that actual data exhibits a struc-
ture with varying item discriminations in many applications. In addition, even rough estimates of the
a/s can shed light on possible modifications of the model.

~~~~~s~~~f~~~t ~ ~~t~

There have been a number of suggestions in the literature for checking a latent trait model. The
most direct approach is to calculate the probabilities for all the possible response patterns and then to
compare the observed and the expected numbers by of an ordinary X2 test. Such a procedure
will be considered in connection with the latent class model. Just recently there have been a number of
papers that describe and discuss various alternative goodness-of-fit tests. References can be made to
Gustafsson (1980) and van den Wollenberg (in press). In this paper the test for the Rasch model sug-
gested by Andersen (1973) based on CML estimation of the item parameters, will be applied.

Multiplying Equation 16 over all individuals gives the conditional probability of all observed re-
sponse patterns, given the individual scores. In ~1~I~ estimation this is considered the likelihood func-
tion. It depends only on (b ...... ~) and the observations. For simplicity I~.(&i, ..., &J is written for this

function.

As it only depends on the b’s, L~ can be expected to give the estimates apart from random
errors when derived from different samples of individuals. The model can, therefore, be checked by
comparing the estimates from various subsamples, if such subsamples are large enough to guarantee
reasonable small standard errors on the estimates, In choosing the subsamples the aim should, in ad-
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dition, be to find groups of individuals with very different 0’s, as the test is based on examining
whether the conditional likelihood really is 0-independent. The individual score M,. is a criterion that
is likely to discriminate between individual with high, r~ed~~~a9 and low values of 0. Hence, the test is
based on estimating bb~ ...9 bk from various score groups.

Define, therefore such score groups ranging from low to high scores and denote by
1~ (h ..., b,~) the conditional likelihood for the individuals in score group r. If ~b~9 ..., ~) are the over-
all CML estimates and (blr’9 ...9 bk‘’~ the CML estimates from score group r, these estimates can be
compared either graphically or by a goodness-of-fit test, which takes the form

As proved in Andersen (1973), this test statistic is approximately X’ distributed with (~ - ~) (k - 1)
degrees of freedom.

As z is always positive and dose to zero if the 1§~> ’s are close to the overall estimates the model
is rejected if the observed value ~f z is larger than, for example, the 95th percentile of the yldistribu-
tion with (R - 1) (k - 1) degrees caf freedom. A discussion of the power of this test against the alterna-
tive of a two-parameter logistic model is given in Andersen (1973).

Illustrative Data

Table 5 shows the score group estimates Li’l for three score groups of the complaint data. In
Figure the score group estimates are plotted against the overall estimates, with the short lines cor-
responding to twice the standard error of the blj&dquo;’s measured from the identity line. The test statistic z
becomes z = 17.4, df = 10. As ~~.9s (f ~) ~ 18.3, there is a reasonably good fit, and it can be concluded
that the Rasch model fit the data well.

Table 5

Overall and Score Group Estimates of the Item Parameters

An evaluation of the fit of the model can also be based directly on comparing the observed and ex-
pected response patterns under the model. There will not be an assumption of any knowledge of the
form of the latent density ~p(O). Hence, the probabilityform of the latent the

is estimated by the observed frequency nln of individuals in score group r. In this way the probability
of response U19 00°’ Uk is
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1
Score Group Estimates of Item Parameters

Plotted Against Overall Parameters

and the estimated expected numbers are

~b~r~.~~~y9 a~a9 ukI ~’~ is the conditional probability of Equation 16 with the estimates ~~9 ...~ hk inserted.
In Table 6 the observed and expected response patterns are shown as columns (a) and The two ad-
ditional columns and refer to models that will be discussed in subsequent sections. As the ob-
served and expected numbers are small for the last 32 response patterns, these are omitted in Table 6.

Latent Class Analysis

In the latent class model of Equation 8, there is for each latent class k probabilities ~;~’ 9
q = 1, ..., k for a positive answer on item j given latent class v. As there areM latent classes, this gives
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Table 6
. 

Observed Number of Individuals for Selected Response
Patterns and Corresponding Expected Numbers

Under Three Models

~~ ~ ~ ~;,qj’s and M - c~~9sa For the binary case this compares to the 2~ - free item response prob-
abilities. Thus, the model is only identifiable if 2~ >M(~ + 1). For the complaint data, where k = 6
and 2’~ = 64, models with up to nine latent classes can thus be fitted, but ordinarily the number of la-
tent classes will be kept relatively small to facilitate an interpretation.
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Establishing the equations to be solved in order to obtain l~~ estimates for the parameters is

straightforward. For many years it was considered rather difficult to solve the likelihood equations,
but this has been a misconception. Formann (1978) described a simple computer program and Good-
man (1979) showed that the estimates could be obtained by a simple marginal fitting algorithm, now
known as the ~l~ algorithm, which was introduced by Dempster, Laird, and Rubin (1977). Details of
the formulas will not be given here. Explicit expressions are available in Goodman (1978, chaps. 8-10)
or Haberman (1978, chaps. 10). Instead, it will be shown how the method worked on the complaint
data. The calculations are all from Poulsen (1981), who used his own computer program.

lliuxtrative Data

In Table 7 the parameter estimates for a model with three latent classes are shown. Poulsen de-
scribes the three classes as &dquo;complainers,&dquo; &dquo;noncomplainers,&dquo; and &dquo;scalables.&dquo; These descriptive
terms refer, of course, to the behavior of the~v9’9s, where there is generally a very high probability of
complaining in Class 3, a generally very small probability of complaining in Class 2, and a probability
of complaining dependent on the item, i.e., the consumer situation, in Class 1. The relatively high
percentage in Class 3 corresponds to the high frequencies of response patterns with many I’s.

~~b~~ 7 
(q)Estimates of the Parameters

of a 3-Class Latent Model
for the Complaint Data

In column (d) of Table 6, the estimates of the expected number of individuals for each response
pattern are shown. As can be seen, the model gives a relatively good fit to the observed numbers. By
collapsing a number of patterns the model may be checked by a X’ test. Based on 33 groups of re-

sponse patterns, this gives a value of z = 23.6, df = 12, which is between the 95th and 97.5th percen-
tiles &reg;f ~ ~2 distribution, indicating a less than satisfactory fit.

It is now interesting to compare this type of analysis with the analysis by the latent trait Rasch
model. As there are two relatively good fits, it should be expected that the two models will be more or
less the same model. One way to illustrate that this is in fact the case, is to check whether the three la-

tent classes should correspond to three intervals on the latent scale of 6. As cw is the probability of
~v-~ < ~ ~ w9,~vq’ can be interpreted as an average value ofp~(6) in this interval. Since the exact
form of p < Q > (8) under the Rasch model is known, the equation
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can be solved for each value &reg;~ ~e This should give solutions for 0 in the interval (0,-,, 0~). Since indi-
viduals in the Vh latent class are actually assumed to have identical latent values 0, it should even be
expected that the q solutions to Equation 26 are very close.

In Table 8, the solutions to Equation 26 are shown for all three latent classes and q = 1, ..., l~e
Table 8 clearly indicates that the two models are close. Since the 0’s do not vary much within a latent
class and are clearly separated between classes, th~ p;,9~’s can be modeled by a logistic latent trait
model. Table 8, on the other hand, also clearly indicates that an assumption of strictly equal latent
value within a class is very doubtful. Finally, the latent class model represents a clear overparam-
etrization, as there are 20 parameters, while for the Rasch model there are only ~, namely, 5 item pa-
rameters and 6 marginal score frequencies.

Table 8

Solutions to Equation 26 for a Model
with Three Latent Classes
_ ~-- -

A slightly different way to compare results from the two types of analysis is to determine to which
latent class each response vector most likely belongs, and to compare this with the score group. An in-
dividual is assigned to latent class v, if for his/her observed response pattern u,, ..., u, the probability

is larger than the corresponding probabilities for the other classes. In Table 9 the observed number of
individuals for each combination of assigned latent class and observed raw score are shown. As can be
seen, only 21 individuals, or 30~~7&reg;, will be differently classified if Classes 1, 2, and 3 correspond to
Scores 2-4, 0-1 and 5-6. 

.

When the degree of fit between columns (b) and (d) of Table 6 is compared, of course there is a
better fit by the latent class model with almost twice as many parameters. When the goodness-of-fit
test previously given for the latent class model is compared with a corresponding test obtained from
column (b) in Table 6, where the same response patterns have been collapsed as for column (d), this

gives z &reg; 48.6, df = 22. There is actually not a very much better fit, considering the larger number of

degrees of freedom in this last test.
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Table 9

Joint Distribution of Assigned Latent Class
and Observed Raw Score for Complaint Data

Latent Structure Analysi5

This section will show some results, assuming a continuous latent density qp(8)~ it is neces-
sary to go back to Equation I and assume that cp~~l~a9 ~a~ ~s ~ normal distribution density with mean
value p and variance 02. As the conditional distribution ofush ..., Usk u,: = r the response
pattern the is of it is only necessary to consider the pr~b~b~~~t~ distr~b~xm
tion of the scores in order to make inferences the density ~p(Olp, cr2~o

From Equation 14 is obtained the distribution of us. = r given 0, as

and, hence, the marginal distribution &reg;~~° as

where ’00, is a certain function of ~ ...? It follows that the distribution of the observed
score group counts n,, ... I n, is multinomial with cel probabilities no, ...,71~~ where

For given values of (~i, ..., bk~9 ML estimates A and 6’ of IA and a’ can then be obtained and the model
checked by

which (still for given values of b~9 ..., b,r~ ~s approximately ~-distributed with df = I< - 2 degrees of
freedom, as the multinomial distribution has k + I cells and two parameters are estimated (cf. Ander-
sen &Madsen, ~9‘~~). 

-

If the bq9s are not known, the estimates bl9 ..., bk can be used. The test statistic is now not exactly
~-distributed, but for relatively precise estimates, the percentiles of the ~-distribution with
df = k - 2 will still give an indication of the goodness of fit of the model to the data
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Illustrative Data

The complaint data of Table 2 result in the estimates = 1.40 and 62 = 1.42. When inserted in
Equation 31 (score groups r = 0 and 1 are this gives a goodness-of-fit test statistic of
z = 12.0, of = 3, so that a latent normal density is clearly rejected.

The expected and observed values are shown in Table 10. From Table 10 it seems that the ob-
served frequencies exhibit a flatter curve at its maximum than can be accounted for by the normal la-
tent density.

Table 10

Observed Expected
Numbers in Each Score

Group With a Normal
Latent Density

In column (e) of Table 6 the expected response patterns under the Rasch model with a normal la-
tent density are shown. The poorer fit as compared with the latent class model and with the Rasch
model and a complete fit of score group numbers is very obvious. A ~ test parallel to those earlier
computed from columns (b)’and (d) of Table 8 gives a value of z = 70.1, df = 25, which is highly sig-
nificant.

The analysis described above has been further discussed in Andersen and Madsen (1977), Ander-
sen (1980a), and Sanathanan and Blumenthal (1978). Similar models have been discussed by Muthea
(1978, 1979), Christofferson (1975), Bock (1972), Bartholomew (1980), and Bock and Aitkin (1981). A
recent review of various models and the connection to contingency tables has been given by Andersen
(1982). Tjur (1982) has discussed the relationship between the tests to be applied at various stages of
the model control.

In several of these papers ML estimation is not applied. As the likelihood equations are somewhat
difficult to handle, various forms of weighted least squares are used. It often turns out that simple
computer algorithm give satisfactory estimates for use in the model check tests.

There is, of course, the problem of choosing a latent density. Often several possible densities will
give approximately equally good fit, and in such situations it may be desirable to choose a density
with easily interpretable parameters. Considerations of this sort are behind the choice of the normal
density above. When a normal density does not fit very well, alternatives may be explored. For the
case of the complaint data, however, this has as yet not been done. In Andersen (1980a) there are sev-
eral suggestions for extending the method to cover comparisons of several populations and time-de-
pendent models.
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