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Latent Traits or Latent States?
The Role of Discrete Models for Ability and Performance

Edward H. Haertel
Stanford University

Abstract

Classical test theory, item response theory, and generalizability
theory all treat the abilities to be measured as continuous
variables, and the items of a test as independent probes of

underlying continua. These models are well suited to measuring
the broad, diffuse traits of traditional differential psychology,
but not for measuring the outcomes of school learning. Unlike the
items on an objective test, which may be regarded as statistically
independent of one another, the subtasks of "real-world" tasks
often depend on successful completion of prior subtasks. That is
one reason why scoring and analyzing performance tests using
traditional models is proving problematical.

Discrete latent structure models offer a powerful and promising
alternative. Abilities can be modeled as partially ordered sets
of discrete states (at a minimum, "nonmastery" and "mastery"), and
may linked according to an asymmetric "prerequisite" relation.
Narrower, simpler abilities may be combined into broader, more
complex abilities.

The various possible outcomes of performing a task can be modeled
as a partially ordered set of task performance states. Under this
conception, abilities and task performances are.clearly
distinguished from one another, and more than one ability pattern
may permit successful performance of a given task. Unlike the
items of tests conforming to the usual IRT assumptions, subtasks
need not be modeled as conditionally independent given ability.

The mapping from ability states to task performance states shows
clearly what a given test can and cannot measure and what may be
inferred from a given pattern of test performance.

These models for ability and task performance, together with the
mapping between them, may be augmented with a suitable model for
measurement error (misclassification) to complete an alternative
framework for scoring, analyzing, and interpreting test
performance. This framework has the potential to solve
significant measurement problems inherent in performance testing

and other applications.
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Latent Traits or Latent States?
The Role of Discrete Models for Ability and Performance

Edward H. Haertel
Stanford University

These are interesting times for educational research, and
especially for educational measurement. Jason Millman
observed at an AERA meeting a couple years ago that the 70s
had been the decade of criterion-referenced testing and the
80s of item response theory, and predicted that the 90s would
be the decade of performance testing. So far, it looks as
though he's right. Having failed to solve all the problems
of our educational system by mandating more CRTs, minimum
competency tests, teacher competency tests, and other
multiple-choice instruments, legislators and educational
policy makers concluded, not that "more testing won't solve

our problems," but rather, that "we need a different kind of

test." More telling, a majority of educational researchers,
measurement specialists, and classroom teachers also seem to
concur that we've been relying too heavily on objective
tests. The consensus seems clear: We da need new kinds of

tests. Evaluating schools, curricula, and learning outcomes
on the basis of students' actual performance of meaningful
tasks makes a lot of sense. (That's not to say, of course,
that Any kind of testing, in itself, is enough to reform U.S.
education, but performance testing may well contribute to the

solution of many educational problems.).

Performance testing poses major new challenges to the
philosophy as well as the technology of educational
measurement. Just building these new tests will be
difficult, but even that alone will not be enough. We will
need to think about and talk about intended learning outcomes
in different ways; and we will need to develop new
measurement models to score, analyze, and report test

performance.

I'm going to begin this morning by describing a major
difficulty with the straightforward application of classical
test theory, item response theory, or even generalizability
theory to performance test data. After that, I'll talk some
about a different conception of ability and task performance,
which leads naturally to methods of data analysis using
latent class models, and describe some work David Wiley and I
are doing, applying these models to item response data. I'm
afraid all the examples I have to show you today use
multiple-choice item responses, but even so, I think I'll be

able to demonstrate the importance of thinking about student
Abilities in different terms if we are to do justice to the
potential of performance testing for educational improvement

and reform.
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The major difficulty I see in applying classical test theory,
IRT, or G-theory to performance test data is related to what
may be called the granularity of performance tests.
Responses from performance tests come in big chunks. Each
performance exercise takes much longer to administer than an
objective test item, and so an entire assessment necessarily
consists of only a few exercises, often only a single one.
This is a problem because, as stated by the well-known
Spearman-Brown prophesy formula, reliability increases with
test length. All of our major psychometric tools are
designed for use with tests that consist of a fairly large
number of small, separate pieces of evidence about the
respondent. We generally assume that separate item responses
are conditionally independent given examinee ability; in
other words, that the only reason test items correlate with
one another is because they depend on the common, underlying
ability or abilities the test is designed to measure. This
"conditional independence" assumption is important. It means
that we cannot, for example, treat each step of a multi-step
word problem as a separate test item, because students who
fail earlier steps may never have a chance to demonstrate
whether or not they could have accomplished later steps.

A performance exercise generally sets forth much more
information for the student to take in than does a multiple-
choice question; even more information than the reading
passage that might precede a set of several multiple-choice
questions. One reason for presenting more information is to
provide more realistic contexts for students to-demonstrate
what they have learned. Another is to enable the measurement
of higher-order thinking. In order for students to
demonstrate their ability to, for example, integrate large
amounts of information, sort out the relevant from the
irrelevant, or apply what they know to solve real-world
problems, the statement of the problem must be more complex
than a multiple-choice question. Some performance exercises
may also present more information because by design, they
require students to interpret pictures, graphs, or other
sources of information. Student responses are also more
elaborate than their responses to objective tests. They may
write extended responses, keep notebooks, or demonstrate
their use of equipment. The fact that performance exercises
present more information and elicit more elaborate responses
has a couple of consequences for measurement. Most
obviously, a performance exercise takes a lot longer to
administer than a single test item. In addition, even if in
the course of carrying out the performance exercise a student
produces a series of separate, scorable responses, these are
unlikely to be conditionally independent due to their common
dependence on the same problem stimuli as well as the
student's prior actions. (I note in passing that violations
of conditional independence due to common stimuli could arise
in multiple-choice reading comprehension tests where several
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items depend on the same passage, but there, test developers
usually work at writing items that are as independent of one
another as possible.)

The most straightforward way, then, to apply our familiar
psychometric models to performance test data would be to
treat each entire exercise as a single item. That is, each
exercise would be scored dichotomously, as "pass" or "fail";
a large number of performance exercises would be given to
each student; and an examinee's total score for the
assessment would be the number of exercises passed. If each
exercise were treated as a separate unit, then the
conditional independence assumption would be satisfied.

When an "exercise" is a laboratory activity, writing task, or
open-ended problem that may require anywhere from ten or
fifteen minutes to several days or more, this simply won't
do. Some way has to be found to wring more than a single bit
of information from such an extensive sample of respondent
behavior. An easy step in that direction would be to rate
overall performance on each exercise using, say, a six-point
scale. We know that a well-designed item with ordered
response categories can yield about as much information from
each response threshold as a single binary item. Thus, an
exercise scored on a six-point scale, with five thresholds
separating the successive response categories, might yield as
much information as about five dichotomous items. But if the
exercise takes several orders of magnitude more time -to
administer, this is still not nearly enough information to
justify the time required. ..

For their own instructional purposes (not just grading but
also evaluating curriculum or instruction; identifying
individual students' strengths, interests, or learning
difficulties; instructional grouping or pacing), teachers
will probably continue to get along without any more
sophisticated psychometric models. It's not clear that these
instructional purposes have ever been very well served by our
measurement theory. Teachers will continue to observe and
note, form tentative hypotheses and check them out, use
anecdotal evidence to capture and communicate their
understandings of the students in their care.

The granularity of performance exercise responses poses much
more serious problems in the context of testing programs that
must summarize the performance of many schools or students in
a common metric, on a common scale. If no individual scores
are provided, as with the National Assessment of Educational
Progress, for example, then matrix sampling provides a
feasible, if costly, solution--each student can be given only
one or a few exercises, and the responses of different
students to different exercises can be summarized to
characterize the overall performance of a population of
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examinees across a domain of exercises. This solution keeps
down the testing time for each individual respondent, but it
does not address the fundamental inefficiency of taking a
large block of student time and generating only a single
score. Moreover, matrix sampling is of little help if
comparable scores are required for individual examinees. In

the short run, most testing programs with mandates both to
include performance testing and to provide individual scores
are introducing a few performance exercises, but continuing
to rely mostly on objective test questions to attain
acceptable levels of reliability, at least until more and
better performance exercises can be developed. That may work
for now, but it seems likely that within a few years, better
methods for scoring the performance exercises themselves will
have to be found.

What might these better methods be? I believe that to find
an answer, we must begin with a reconsideration of the
structure of the abilities we are trying to measure, and of
the measurement tasks we use to gather information about

them.

The notion of "ability" in classical test theory, IRT, etc.

is pretty fuzzy. The ability is "whatever the test
measures." It is usually modeled as a unidimensional
continuum, a single scale along which different individuals
(and often test items) can be arrayed. Multidimensional
extensions of this basic model are essentially variants of a
Thurstone factor model: Two or more different abilities are
posited, which can be mixed like the colors of an artist's
palate to form the particular composite ability representing
degrees of proficiency on some given task. The relation of
abilities to one another is nearly always expressed as a
correlation, telling no more than the degree to which higher
levels of one ability tend to be associated with higher
levels of another. It is implicit in this model that having

more of one ability can compensate for having less of

another. Note also that the correlation coefficient is

symmetric. Neither ability X nor ability Y comes first, they
just go together. These models were developed to measure
broad human abilities, the traits of differential psychology,
like Gf or Gc. The boundaries of these abilities are
indistinct, and the span of tasks to which they apply is

enormous.

This conception of abilities as broad, unidimensional
continua symmetrically associated with one another is quite

unlike the conception of ability implicit in our organization

of the school curriculum. There, we treat different
abilities as ordered -more basic capabilities are taught

before more advanced ones, new learning building on what has
been learned before--and as specific--the particular skills
taught and learned in school each are applicable to a fairly
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well defined set of tasks. Moreover, abilities are pot
generally substitutable. If a child is having difficulty
with a math word problem that calls for reading, setting up
an equation, and carrying out some calculation, the skillful
teacher will not assume that improving any one of those three
abilities sufficiently will remove the difficulty.

(I should say in passing that I recognize the risk in
overstating the sequential nature of the curriculum. Even at
the early grade levels, work in reading, mathematics, and so
forth should be meaningful and should involve "higher-order"
thinking. I don't mean to imply that rote "tool skills" must
be well learned before the beginning of any "meaningful"

application. Moreover, different children can and will solve
the same problem in different ways, capitalizing on their
particular strengths and compensating for their particular
weaknesses. But that being said, if multiplication is taught
in a way that entails the addition of partial products and
addition is taught in a way that does not entail any
multiplication, then some facility with addition is
prerequisite to learning multiplication, and not the other
way around.)

What I've described so far seems to be something of an
anomaly. How can it be that we've done as well as we have
taking measurement models devised for broad human traits,
things like "verbal ability" or "quantitative reasoning", and
using them to measure school achievement? And what does any
of this have to do with performance testing? I believe that
we've done as well as we have with classical test theory and
IRT because we've artificially limited ourselves.toan
extremely simplified and unrealistic task structure; one in
which there are no logical dependencies, no prerequisite
relations, among what David Wiley and I would refer to as the
subtasks! We limit ourselves to that kind of task when we
insist that items, the subtasks of a test, be conditionally
independent given ability, and that no item require the prior
solution of an earlier item.

This is a major reason why objective tests have been found so
unsatisfactory by educators and policy makers alike--in the
real world, subtasks are connected! And one of the major
reasons performance tests pose such an important challenge to
our psychometric models is that, unless they are simply
treated as indivisible units to be passed or failed or rated
on some ordered scale, their complex internal structure must
be acknowledged.

I believe that performance tasks can be constructed with an
ample number of distinct, scorable units. But those units,
i.e. subtasks, will depend on one another in complex ways.
Two important differences between conventional test items and
performance subtasks are first, that carrying out a given
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subtask may require other subtasks to be completed or
attempted first, and second, that most complex problems can
be completely and correctly solved without even attempting,
let alone correctly performing, all of the different subtasks
that might be part of one or another path to a solution.

I began this morning by saying that I'd first sketch some
problems I see with the application of most of our current
measurement models to performance test data, and then set
forth an alternative conception and give some examples. I'd
like to turn now to that second topic, and take a few minutes
to sketch an alternative view of abilities and task
performances that I believe is more than adequate to
characterize the kinds of subtask dependencies and
alternative solution paths that will occur in complex
performance exercises. The formal model is set forth in a
chapter David Wiley and I have written for a forthcoming
book, Test Theory for a New Generation of Tests, edited by
Norm Fredericksen, Bob Mislevy, and Isaac Bejar.

Insert Figure 1 about here

I've just been talking about tasks and subtasks, but now I'm
going to turn to the structure of the underlying abilities
that make it possible to perform different tasks. That's an
important distinction. Briefly, an ability is modeled not as
a continuum, but as a collection of two or more distinct
states. The simplest model is one with exactly two states,
not possessing the ability or possessing it, or, if you like,
nonmastery and mastery. More complex structures include
intermediate states (denoting different patterns of-partial
mastery), which are partially ordered. Note that in the
middle figure, for example, the intermediate states (0,1) and
(1,0) are not ordered--neither of these is lower or higher
than the other. Learning, in these models, is represented by
transitions from one ability state to another, always between
two states connected by an arrow. Reaching the "1" state
indicates full mastery. In the second illustration, full
mastery could be reached by either of two different paths,
each including just one of the two intermediate states. The
final illustration shows an ability with three distinct
states. This structure is called a chain, and has the
properties that there is only one path from the initial, pre-
instructional state to the final state, and that there is an
order relation between any two states of this ability. Much
more complicated structures are possible.

Insert Figure 2 about here

Another very important feature of this model is that
abilities may be combined to form more complex structures,
which also meet the definition of single abilities. This
next transparency shows two dichotomous abilities, a and b,
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and the three different ways they could be combined into a
single, more complex ability. The top box shows the
structure of the two separate abilities. Each has two
states, 0 and 1. The next box shows the way the two combine
if a is prerequisite to b, in other words, if mastery of
ability a is a necessary precondition for mastery of b. In

this case, the two separate dichotomous abilities could be
treated as a single ability with three states.

In our theoretical development, David Wiley and I model each
ability as a mathematical structure called a distributive

lattice. This a collection of discrete performance states
that are partially ordered and satisfy a few other specific

conditions. A collection of separate abilities (each one
itself a collection of performance states) forms a partially
ordered set, or ioset. It can be shown that, given sensible
rules for combining abilities, the set of distinct states an
individual might occupy with respect to all of the abilities
taken together also forms a distributive lattice. That's

what I illustrated in this last transparency. It is what
enables us to combine simple abilities into more complex
abilities. This means, for example, that in principle, we
could incorporate the relatively narrow instructional goals
of a series of separate learning units and the broader goals
of the year's course work within a single framework, showing
explicitly how learning outcomes at different levels of
generality and accomplished in different amounts of time were

related.

As I said before, it is important to distinguish between task
performances and the underlying abilities that enable them.

I think this is'one of the places where criterion-referenced
testing missed the mark in the 1970s--Formulating "behavioral
objectives" led us to identify underlying abilities too
closely with particular manifest performances. Most
educationally significant abilities, especially the so-called
"higher-order" abilities, should be relevant to a range of
disparate tasks. As we move into performance testing, we may
again be tempted to define intended learning outcomes in

terms of the performance of specific tasks. Maintaining a
clear conceptual distinction between abilities and task
performances will be critical if we want performance testing
and the instructional practices it encourages to take us
beyond low-level recapitulation of learned procedures. Just
getting students to do particular tasks will not be enough.

I'm going to turn now from abilities back to tasks again. In

our work, Wiley and I have defined tasks as goal-directed
activities, bounded in time, for which one or more outcomes
can be evaluated. Tasks are generally composed of subtasks,
which may be related in different ways. Superficially, the
structures of tasks look a little like the ability structures
I've shown you, with nodes representing subtasks and



different kinds of arrows showing how they're related, but
there are important differences between the mathematical
structures of tasks versus abilities.

A given subtask may be solved in different ways, but for each
subtask, there is at least one configuration of abilities (or

more accurately, configuration of ability states) enabling
its successful performance, and at least one configuration
that does not, enable its successful performance. Thus, a
subtask induces a partition of the set of all possible
ability states into those enabling and those not enabling its
performance. Given an interrelated set of subtasks, each
with its ability requirements, it is possible to determine
exactly what inferences about ability can be made from
different patterns of subtask performance.

I've talked now about abilities and about tasks, but I must
briefly describe one more piece of the puzzle, before turning
to some examples. That final piece is a method of accounting
for measurement error. In this framework, measurement error
includes two different sources of discrepancies between the
record of an individual's task performance and the task
performance state that would be predicted from that
individual's underlying abilities. First of all, people
don't always perform in a manner that accurately reflects
their underlying capabilities. Lapses of attention, failures
of motivation, careless errors may all lead to task
performances that fall short of what would be predicted from
the actual profile of underlying abilities. Likewise, lucky
guesses, inadvertent hints, or faulty solution procedures
that happen to work for particular _problems may lead to
manifest performances that exceed what would be predicted
from the true abilities. Second, in addition to the problem
of people not performing in a way that reflects their true
capabilities, the record of the performance may not
accurately reflect what actually occurred. For my purposes
today, there's no need to disentangle these sources of error
any further. In multiple-choice items, I model measurement
error using either one or two parameters for each item. An
item's "false positive" parameter gives the probability that
an examinee who does not, in fact, possess the requisite
abilities will nonetheless produce a correct response to the
item. A "false negative" parameter gives the probability
that an examinee who does possess the requisite abilities
will respond incorrectly. In some cases, I'll assume that
the false negative probability is zero, and model only false
positives.

One bia difference between classical test theory or the
continuous latent structure models of IRT versus the discrete
latent structure models I've been describing is in the amount
of attention that must be paid to the specific structure of

the problem. These are generally not "generic" models that



can be applied without any tailoring or modification to any
old test.

It's remarkable, sometimes, how little IRT and factor models
require one to know about what one is testing. Several years
ago, I had a paper accepted in which I had reanalyzed one of

those "classic" data sets that appear in the literature and
are reanalyzed by many different authors. These were the
data from the Law School Admissions Test, or "LSAT", first
published by Bock and Lieberman in 1970. No Molenaar, the
editor of the journal, wisely asked me whether I might obtain
the actual LSAT items from which the original data were
obtained and see whether my interpretation of the data, that
there were two distinct types of items, was supported. In
the course of tracking down the actual test, I found that
even though several leading scholars had used these data in
first-rate papers introducing major new analytical
techniques, none of these authors had ever had occasion to
actually inspect the items themselves. Bock and Lieberman's
published table of the number of examinees giving each
possible response pattern was all they needed, and all I'd

used in the first draft of my paper. I found myself
stumbling in trying to explain to a very helpful and well
intentioned secretary at the Law School Admissions Council
how it could be that so many psychometricians had studied the
test and published so many papers about it without ever
having seen it!

Insert Figure 3 about here

Let me show you a couple different analysis of the LSAT data
I just told you about. This figure shows the varimax-rotated
factor loadings for items 11-15 from Section 7 of the LSAT.
This is essentially the solution published by several authors
who have used these data to illustrate computational methods
for the factor analysis of dichotomized variables. It is
well accepted that two factors are required to account for
the pattern of associations among the five items. Two things
are evident from this figure. First, items 12 and 13 load
most heavily on factor 2, while items 11, 14, and 15 load
most heavily on factor 1. Second, the communalities of items
11 and 13 are markedly higher than those of the remaining
three items. (Because the axes are orthogonal, the
communality is simply the sum of the squares of the two
factor loadings for a given item. On the figure, it's also
the square of the distance from the origin to the point
plotted for an item.) This two-factor solution suggests that
the five items each require a different mixture of the two
underlying abilities. Look at item 11, for example. Because
.798 is about five or six times .139, it appears that in
solving item 11, the ability represented by the first factor
is five or six times as important as the ability represented
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by the second. For item 14, the ratio is only about 1 1/4 to

one
Insert Figure 4 about here

Now let me show you the results of fitting a latent class
model to the same data. In this model, there are two
dichotomous abilities, which I've labeled 1 and 2. You'll

notice that these two abilities define three ability

patterns: Neither 1 nor 2; 1 only; or 1 and 2. Items 11,

14, and 15 require only ability number 1, whereas Items 12
and 13 require ability 2. The model doesn't distinguish
whether Items 12 or 13 also require ability 1 or not.
Because everyone who has the second ability must also have
the first, exactly the same examinees will be able to solve
these items whether or not they require the first ability.
The top part of the table shows the false positive and false
probabilities estimated for each item, and the lower part
shows the proportions of examinees with each combination of

Abilities. All in all, this model requires estimation of
about as many parameters as the continuous model, and
provides about as good a fit. In the figure at the top of
the transparency, I display this solution in a form analogous
to the continuous solution.

When I actually examined the items, I did find major
differences between items 12 and 13 versus 11, 14, and 15 in
the structure of the items and the processes required for

their solution. I did not find.any-reason.why items 11 and.

13 should have had such high communalities relative to the
other items, which gives me an additional reason for
preferring my discrete solution to the continuous solution.

Let me present just one more illustrative analysis, this one
not yet published, using the ten core test items in physics
from the second IEA science study. These are all multiple-
choice items, each with five response alternatives. The data

are from the United States population 2(B), N = 2,519, which
I treated as a simple random sample. I'd like to describe
the steps I went through in analyzing the data in some
detail, but I should say in advance that I'm still
experimenting with these methods, and the details are still

in flux.

My method of looking at the data focuses on particular
patterns of responses across the ten items. I assume that
there are some small number of "real" patterns, what I'll
refer to as latent response Patterns, each of which
corresponds to some set of ability patterns that might be
found in the group of examinees tested. If there were no
measurement error, no false positives or false negatives,
then every examinee's actual responses, their manifest

response patterns, would be identical to one of these latent

response patterns. In practice, of course, because of



measurement error, examinees may guess the right answer to
questions they can't really solve, so not all of the manifest
response patterns found in the data correspond to possible
latent response patterns.

In order to discover the latent response patterns, I wanted
to remove the effects of measurement error from the data.
For this analysis, I assumed that there were no false
negative errors, just false positives, so I needed to

estimate just one misclassification parameter for each of the

ten items, namely its false positive probability. If I knew

in advance what the latent response patterns were, it would
be straightforward to get maximum likelihood estimates
simultaneously of both the proportions of respondents
conforming to each latent response pattern and the false
positive probabilities for each item, using a program like
Cliff Clogg's MLLSA. (I've run models for ten items and over
50 latent classes on a Macintosh Powerbook 170.) In this

case, though, I didn't know in advance what the latent
response patterns were. In order to estimate the
misclassification probabilities without knowing the latent

response patterns, I took all possible subsets of 4 items
from among the ten physics items, and fit the same model to
each of those 210 four-item subsets. (There are 210 ways of
choosing 4 items from a set of 10.) I was pretty sure that
the model I chose included all of the latent response
patterns to just those four items. If there were some extra
latent response patterns, for my purposes that didn't:_ matter.

To fit these 210 models, I arranged the items in-each four-
item set in order of decreasing p-value, and fit a model with
the twelve latent response patterns shown on the: next

transparency.

Insert Figure 5 about here

With four items, there only are 16 possible latent response
patterns, and my models included twelve of them. The only

patterns not included were: being able to solve only the most
difficult of the four items and none of the three easiest
(that would be the pattern "0001"); only being able to do the
second most difficult (that would be "0010"; only the two

most difficult ("0011"); or only the three most difficult
("0111"). With 12 latent classes and 4 misclassification
probabilities, you might expect these models each to fit
perfectly--counting parameters suggests that they should be

just identified. In fact, the fits were very good, but not
perfect--The models are what Goodman referred to as "pseudo-

identified." The parameter values required to reproduce the

data exactly sometimes fell slightly outside of the range
from zero to one, and so the corresponding parameter estimate

would go to the boundary. In particular, I expected, and

found, that many of the latent class proportions were
estimated to be zero. That was fine. Putting an extra



latent response pattern into the model and having the
proportion in that class go to zero was essentially the same
as not putting it in at all, and would not affect the
estimates of the false positive probabilities, which were all
I cared about at this stage. Each item was included in 84 of
these 210 analyses, so I got 84 separate estimates of its
false positive probability. (After choosing one item, there

are 84 ways of choosing 3 more from among the remaining 9.)
I sorted these 84 separate estimates, constructed stem-and-
leaf diagrams, and used the stem-and-leafs to determine the
final estimated false positive rate for the item.

Insert Figure 6 about here

Item 6 illustrates how this worked. Originally, I'd intended
to simply take the median of the 84 estimates for each item,
but things turned out not to be quite that simple. From the
latent response patterns in the previous transparency, you'll
recall that patterns are included for examinees able to solve
only the easiest item (pattern 1000) or only the second
easiest item (pattern 0100). Item 6 happens to be the fifth

easiest item, with four easier and five harder. That meant

that in the 84 runs involving item six along with some three
others, item six was the easiest or second easiest 50 times,
and was the hardest or second hardest 34 times. Thus, there

were 50 runs that included a latent response pattern for
examinees able to solve item 6 and none of the other items.
These 50 runs all yielded estimated false positive rates
between .151 and .169, with a median of .158, so .158 was= .

used as the false positive rate for item 6. -The remaining 34
models did not include such a class, and turned out to be

misspecified. Because.they did not include one of the actual

latent response patterns, they yielded biased estimates of
the false positive probability for item 6. This kind of

split, with markedly higher false positive estimates
resulting from runs that did not include a latent response
pattern for ability to solve the target item only, was found
only for the easier items--there was no evidence for the two

or three most difficult items that any examinees could solve

one of them and no other items.

Insert Figure 7 about here

The false positive probabilities for the ten items ranged
from .126 to .242, with a median of .164. There's little
evidence of any correlation with item difficulty. Note that

under this model, observed correct responses may represent
either actual knowledge of the answer to the item, or a false
positive by an examinee who in fact does not know the answer.

Given the observed p-value and the conditional probability of
such an errorful response, it's easy to calculate the
underlying proportion of examinees who actually possess the
abilities required to solve the item. These are the "true"

(or latent) p-values in the rightmost column. You'll note
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that because of the exceptionally high false positive
probability for item 3, it has the lowest true p-value of any
of the ten items, even though it's only ninth in order of

observed p-value.

Assuming that misclassifications occur independently for each
item, it is straightforward to calculate the probability of

an examinee conforming to any possible latent response
pattern producing any possible manifest response pattern.
All these probabilities can be arranged in a 1024 by 1024

matrix. By inverting that matrix and premultiplying it by
the vector of observed response pattern frequencies for the
1024 response patterns, it is straightforward to reproduce
the vector of latent response patterns. (Fortunately, the
1024 by 1024 matrix is the Kronecker product of ten two-by-
two matrices, one for each item, so its inverse can be
calculated just by inverting the ten two-by-two matrices and
taking the Kronecker product of the inverses.) The next
transparency shows the effect of this operation on the
distribution of response pattern frequencies.

Insert Figure 8 about here

You can see that the effect is to "concentrate" the examinees

in fewer high-frequency response patterns than before. The

top 30 observed response patterns accounted for only 37
percent of all the examinees, but the top 30 latent response
patterns accounted for 62 percent. I should point t-aut- that

these are different patterns. The most frequent observed
pattern (90 students) was 1100011100, i.e., getting items 1,
2, 5, 6, and 7 correct.. The pattern represented by ten
zeros, getting all the items wrong, was eleventh-on, the list.
In the latent response patterns, the pattern of all zeros was
at the top of the list, and the 1, 2, 5, 6, 7 pattern was

second. There are other rearrangements throughout. In the
observed data, 532 of the 1024 possible patterns occurred,
although over 200 of those were produced by only one

examinee. Estimated frequencies were nonzero for all 1024 of

the latent response patterns, but the great majority had very
small or slightly negative frequency estimates.

Insert Figure 9 about here

Here are all the latent response patterns with estimated
frequencies of 25.000 or higher. I've rearranged the items
in order of decreasing p-value, from easiest to hardest. I

also inserted a space between the first five items and the
last five, to highlight an apparent break between these two
sets of items. You'll notice that with the exception of the

two patterns I've marked with an asterisk, all these patterns
show either partial mastery of the first five items and
complete nonmastery of the second five, or else complete
mastery of the first five items and partial mastery of the
second five. To put it differently, except for the starred
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patterns, no one in these high-frequency patterns is able to
do any of the last five items unless they're able to do all

of the first five. Based on an inspection of the actual
items, I believe that the first five items each can be solved

on the basis of general reasoning and out-of-school
experience, whereas the last five also require specific
knowledge that students would be unlikely to obtain outside
of formal coursework in science.

Insert Figure 10 about here

Let me focus in on the structure of these two separate sets

of items. You'll recall that all ten items define 1,024
possible latent response patterns, but focusing on just five
items at a time, there are only 32 latent response patterns.
This next transparency shows the estimated frequencies of all,

those patterns for the first five and for the last five

items. There's a striking difference apparent here. For the

first five items, nearly all of the possible latent response
patterns occur with significant frequencies, whereas for the
last five items, there are a few high-frequency patterns and
a good number of patterns that are very rare, even some with
estimated frequencies less than zero! This difference is
reflected in the relative complexity of the lattice
structures required to represent these high-frequency
patterns.

Insert Figure 11 about here

For the easy items, the ones that I hypothesize may be
answered on the basis of out-of-school learning, I required
three separate structures to accommodate all of the highest-

frequency patterns. (These structures must follow certain
rules, which I describe in the chapter David Wiley and I
wrote for the forthcoming book by Fredericksen, et al.) What
this says is that individual items may be solved in more than

one way, or by using more than one mix of abilities. The

sample of examinees represents a mixture of students at
different points within these different structures. The
difficult items, which I hypothesized to be more closely tied
to formal schooling, show a cleaner, simpler structure. This

makes sense. Informal, out-of-school learning is less
systematic than school course work, and it is reasonable to
suppose that students might pick up the particular abilities
or bits of information required to answer different items
more-or-less independently of one another. Consequently,
there are a lot of different knowledge patterns manifested.

The harder items, which I have suggested are more closely
tied to the school curriculum, show a more linear, sequential
structure, and just one lattice suffices to show all of the
high-frequency latent response patterns. This may mean that
these items are each more likely to be solved in just one

way, and it also means that students are more likely to



acquire the abilities to solve these items in a more-or-less

fixed order.

My final transparency shows an alternative analysis of these
items, based on all of the latent response patterns rather
than just the high-frequency patterns. To construct this
table, I first constructed two-by-two tables for all possible
pairs of items, showing the estimated numbers of examinees
actually able to solve neither item, only the first, only the

second, or both. I expressed the numbers in all these four-
fold tables as proportions, then took the numbers in the two
off-diagonal cells of each four-fold table and arranged them

in a single, large table.

Insert Figure 12 about here

Once again, I've arranged the items in order of decreasing p-
value, from easiest to hardest. The proportion of examinees
estimated to be able to answer item x correctly and not item

y appears in row x, column y. For example, just over twelve

percent of the examinees, .124, could solve item 2 and not

item 8. About 17 percent could solve item 8 and not 2. I've

put in dashed lines separating the easiest five items from
the hardest to make the table easier to read, but also to
highlight their structure. Like the lattices I just showed
you, this table shows sharply defined prerequisite relations
between many pairs of items, but a linear ordering, a Guttman
scale, is not complex enough to capture it. The upper left
quadrant of the figure shows that taking any two of the first
five items, in either order, a substantial fraction of the
examinees, from about 10 to 25 percent, can solve the first

and not the second. The lower right quadrant shows that the

second five items are more strongly ordered. Within this
quadrant, the values below the diagonal are substantially
smaller than those above. The upper right and lower left
quadrants of the figure confirm the strong ordering between
the domains represented by the easier versus the more
difficult items. There are a lot of values in the lower left

quadrant that are very near zero, suggesting that the
abilities required by the column item are a subset of those
required by the row item. I should point out that a table
constructed in this way using the observed response patterns
rather than the estimated latent response patterns would show
similar trends, but would be much less sharply defined. The

underlying structure is revealed much more sharply after the
correction for guessing, which enabled me to focus on
underlying, latent response patterns rather than observed

(manifest) response patterns.

I hope that these examples have given you some idea of the
potential of discrete latent structure models to reveal more

about the meaning of task performance than do the continuous

models now in general use. Let me say again that I would



have liked to present an analysis of some performance test
data, so that I could show you how these methods can
accommodate more complex task structures, with logically
determined, prerequisite relations between pairs of subtasks
instead of the artificial independence of a collection of

test items. I'm presently pursuing work with performance
test data, funded by the National Science Foundation, and I
hope to have more to report at AERA next year in Atlanta.

Performance tests will be built and used whether or not more
adequate methods are developed for analysis and reporting. But
unless such methods are developed, I'm afraid that the performance
testing movement may fall far short of its potential to inform and
improve education. It's happened before. The criterion-
referenced testing movement of the 1970s offered the educational
research community a chance to explore much more deeply the
meaning of criterion-referenced test interpretations, the
substantive meaning of standards, and methods of standard setting
anchored empirically to students' real-world performances.
Important scholarly work was done on these issues, of course, but
by and large, educational practice was limited to the "80 percent
correct" standard, with interpretations driven more by the names
given to tests than by any serious study of the underlying
abilities their items elicited. The challenge I see for the 1990s
is to develop and demonstrate methods of analyzing, summarizing,
and reporting performance test data that fulfill the promise of
really showing what students know as well as what they can do.
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FACTOR 2

0.0

3LC 2FA
1.0

1.0

Two-Factor Solution
O Three-Latent Class Solution

FmwmI
Oblique two-factor and three-latent class solutions for LSAT/ items.

Item
Abilities
Required

False Positive
Probability

False Negative
Probability

11 1 only 0.5383 0.0915
12 1 and 2 0.3793 0.1859
13 1 and 2 0.4482 0.0466
14 1 only 0.2679 0.3000
15 1 only 0.6506 0.1035

Proportions of Examinees With Different Abilities

AM,

Neither 1 nor 2
1 only
1 and 2

0.2175
0.1415
0.641

Figure 4
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Four-Item Models Use'd to Estimate
False Positive Probabilities.

Latent Response Patterns*
0000
1000
0100
1100
1010
1001
0110
0101
1110
1101
1011
1111

*Items in order of decreasing p-value, i.e., least to most difficult.

Figure 5
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Stem-and-Leaf of False Positive Rate Estimates for Item 6
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Statistics fcir lEA Physics Items

item
false

positive rate
Observed
p value

"True" (latent)
p value

8 .163 .783 .741

2 .166 .743 .693

1 .166 .727 .673

7 .163 .696 .636

6 .158 .650 .586

10 .139 .417 .323

5 .126 .332 .236

9 .185 .319 .165

4 .139 .197 .067

3 .242 .275 .044

Figure 7
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Highest 30 Observed and Latent Response Pattern Frequencies

Manifest Response Patterns Estimated (latent) response patterns

frequency proportion cumulative
percent

frequency proportion cumulative
percent

7.721 90
.

0.0357 3.57 194.393 0.0772
2 74 0.0294 6.51 168.509 0.0669 14.41
3 50 0.0198 8.50 102.900 0.0408 18.49
4 43 0.0171 10.20 79.470 0.0315 21.65
5 41 0.0163 11.83 76.488 0.0304 24.68
6 41 0.0163 13.46 73.967 0.0294 27.62
7 3 7 0.0147 14.93 65.624 0.0261 30.22
8 35 0.0139 16.32 60.325 0.0239 32.62
9 34 0.0135 17.67 55.005 0.0218 34.80

10 34 0.0135 19.02 54.419 0.0216 36.96
1 1 3 2 0.0127 20.29 48.058 0.0191 38.87
12 32 0.0127 21.56 44.690 0.0177 40.65
13 31 0.0123 22.79 42.692 0.0169 42.34
1 4 2 9 0.0115 23.94 42.395 0.0168 44.02
15 26 0.0103 24.97 40.686 0.0162 45.64
1 6 2 6 0.0103 26.00 40.079 0.0159 47.23
1 7 26 0.0103 27.03 35.320 0.0140 48.63
18 25 0.0099 28.03 34.089 0.0135 49.98
19 23 0.0091 28.94 31.412 0.0125 51.23
20 23 0.0091 29.85 30.729 0.0122 . 52.45
21 21 0.0083 30.69 29.336 0.0116 53.62
22 21 0.0083 31.52 26.346 0.0105 54.66
2 3 20 0.0079 32.31 26.093 0.0104 55.70
24 19 0.0075 33.07 24.436 0.0097 56.67
2 5 1 8 0.0071 33.78 24.333 0.0097 57.63
2 6 1 8 0.0071 34.50 24.013 0.0095 58.59
2 7 1 8 0.0071 35.21 23.647 0.0094 59.53
2 8 1 7 0.0067 35.89 23.116 0.0092 60.44
2 9 1 7 0.0067 36.56 22.839 0.0091 61.35
30 16 0.0064 37.20 22.773 0.0090 62.25

Figure 8
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Estimated Latent Response Pattern Frequencies 25.0

for 10 lEA Items, Ordered by Difficulty

1 194.393 00000 00000

2 168.509 11111 00000

3 102.900 11111 10000

4 79.470 11110 00000

5 76.488 11101 00000

6 73.967 11111 01000

7 65.624 11000 00000

8 60.325 10111 00000

9 55.005 11011 00000

10 54.419 01100 00000

11 48.058 10010 00000

12 44.690 10111 10000 *

13 42.692 11100 00000

14 42.395 11111 01100

15 40.686 11111 11000

16 40.079 11110 10000 *

17 35.320 11111 00100

18 34.089. 00000

19 31.412 .10001 00000

20 30.729 11010 00000

21 29.336 10110 00000

22 26.346 11111 10100

23 26.093 11111 11110

* Response pattern for which at least one of first 5 items is incorrect

And at least one of last 5 items is correct.

Figure 9
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Latent Response Pattern Frequencies for Latent Response Pattern Frequencies for

lEA Physics Items 8, 2, 1, 7, 6

1 663.639 11111
2 224.729 11110
3 187.227 00000
4 168.223 11101
5 118.793 10111
6 101.437 11011
7 99.664 11100
8 76.245 01111
9 62.462 11000

1 0 60.925 11010
11 58.604 10010
1 2 56.923 10011
13 56.366 10110
1 4 52.799 10101
15 50.528 11001
16 48.009 00100
1 7 45.652 01110
18 41.924 01000
19 40.796 01100
20 36.570 10001
21 32.612 10100
22 32.093 01011
23 28.722 01101
24 26.467 00010
25 25.985 00111
26 24.442 01010
2 7 22.939 01001

28 22.396 10000
29 20.045 00001
30 18.759 00011
31 11.572 00110
32 1.452 00101

lEA Physics Items 10, 5, 9, 4, 3

1 1166.733 00000
2 442.282 10000
3 230.748 01000
4 132.413 11000
5 105.869 00100
6 78.720 01100
7 54.034 10100
8 41.619 11110

9 39.729 10001
1 0 35.470 11100
11 25.164 00110
1 2 25.072 10010
1 3 24.411 01010
14 24.090 10110
15 22.544 00001
1 6 18.232 10101
1 7 15.738 01110
1 8 14.555 11011
19 13.669 00101

20 11.672 01001
21 5.298 11010
22 4.964 01101
23 4.498 11111
24 3.182 01011
25 2.956 00011
26 1.307 00010
27 0.773 11101
28 -1.295 01111
29 -1.392 00111
3 0 -5.446 10111
31 -8.255 11001
32 -10.350 10011

Figure 10
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Latent Response Pattern Lattices for First Five
lEA Items, Ordered by Difficulty (8, 2, 1, 7, 6)

00000-0.11000-* 11100

00000

00000 -0-10010

11010 11110

10011 10111

0 0 0 0 0 01111 11111

Latent Response Pattern Lattice for Last Five
lEA Items, Ordered by Difficulty (10,5,9,4,3)

10001

11111

10000

01000

00100

11000

10100

01100

1100-0.11110

Figure 11
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Estimated Proportions Able to Answer <Row> and Not <Column> Correctly

Item 8 2 1 7 6 10 5 9 4 3

8 0.173 0.179 0.209 0:245 0.469 0.545 0.592 0.677 0.708

2 0.124 0.158 0.205 0.238 i 0.450 0.513 0.552 0.634 0.651

1 0.111 0.138 0.187 0.222 0.421 0.493 0.508 0.613 0.638

7 0.104 0.148 0.151 0.202 0.396 0.468 0.489 0.573 0.604

6 0.090 0.132 0.135 0.151 0.361 0.420 0.459 0.521 0.560

10 0.051 0.080 0.071 0.083 0.098 0.233 0.254 0.284 0.302

5 0.040 0.056 0.056 0.067 0.070 0.146 0.164 0.193 0.224

9 0.016 0.024 -0.001 0.018 0.038 i 0.096 0.093 0.124 0.151

4 0.003 0.008 0.007 0.004 0.002 0.028 0.024 0.026 0.065

3 0.011 0.002 0.009 0.012 0.018 0.022 0.032 0.030 0.065

Highest-Frequency Latent Response Patterns

freq. 8
194.39
65.62
54.42
79.47
76.49
55.01
60.33

168.51
102.90

73.97

o

1

0

1

1

1

1

1

1

1

2 1 7 6 .10 5 9 4 3

0 0 0 0 0 0 0 o 0

1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0

1 0 1 1 0 0 0 0 0

0 1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 0 0

1 1 1 1 1 0 0 0 0

1 1 1 1 0 1 0 0 0

Figure 12
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