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Abstract A clinical process is typically a mixture of vari-
ous latent treatment patterns, implicitly indicating the like-
lihood of what clinical activities are essential/critical to
the process. Discovering these hidden patterns is one of
the most important components of clinical process anal-
ysis. What makes the pattern discovery problem complex
is that these patterns are hidden in clinical processes, are
composed of variable clinical activities, and often vary sig-
nificantly between patient individuals. This paper employs
Latent Dirichlet Allocation (LDA) to discover treatment pat-
terns as a probabilistic combination of clinical activities.
The probability distribution derived from LDA surmises the
essential features of treatment patterns, and clinical pro-
cesses can be accurately described by combining different
classes of distributions. The presented approach has been
implemented and evaluated via real-world data sets.

Keywords Clinical process analysis · Latent Dirichlet
Allocation · Pattern discovery · Careflow log

Introduction

Clinical processes (CPs), as unique type of patient-linked
processes (i.e., diagnostic and therapeutic procedures to
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be carried out for a particular patient), are becoming an
important issue in the health-care domain [1–6]. Health-care
organizations are constantly pushed to improve the quality
of care services in an unfavorable economic scenario and
under financial pressure by governments [3, 7, 8]. Improv-
ing clinical process efficiency is of utmost importance to
care service delivery.

Clinical process analysis (CPA) has experienced
increased attention over the years due to its importance to
health-care management in general and to its usefulness
for capturing the actionable knowledge to administrate,
automate, and schedule the best practice for individual
patients in their therapy and treatment processes [7–10].
This has resulted in various successful approaches that are
capable of analyzing clinical activities in CPs. The majority
of research has focused on CP pattern discovery that aims
to recognize what clinical activities are essential/critical for
CPs, and also where temporal orders of these activities are
quantified with numerical bounds. Research in CP pattern
discovery exploits the fact by automatically measure clin-
ical activities to aid clinical experts analyze and improve
CPs [7, 9, 10].

However, the task of CP pattern discovery is not easy.
Patient careflow are typically executed according to a
diagnostic-therapeutic cycle, comprising observation, rea-
soning and action [6, 11–14]. The diagnostic-therapeutic
cycle heavily depends on medical knowledge to deal
with case-specific decisions that are made by interpreting
patient-specific information [7, 8, 11]. During CP execu-
tion, the patient state might be changed dynamically, such as
complications, infections, or poisonings, which in turn leads
to various clinical activities occurred in CPs, and urges the
process to be a mixture of latent treatment patterns as well.
What makes the discovery of such patterns more complex
is that they are typically unknown in prior. In fact, these

mailto:zhengxing.h@gmail.com
mailto:lxd@vico-lab.com
mailto:dhl@vico-lab.com


9915, Page 2 of 10 J Med Syst (2013) 37:9915

patterns are composed of several clinical activities and that
the composition of activities has a large variability depend-
ing on factors such as time, location and patient individual.

Although many excellent studies have been proposed for
CP pattern discovery [7, 10, 15], they assume prior knowl-
edge about CP [16, 17], using which treatment patterns
are derived in a completely supervised manner. In addition,
many approaches are based on the experiences and knowl-
edge of clinical experts [18, 19]. The analysts interpret large
amounts of collected data, and elaborate treatment patterns
in patient traces of CPs, piece after piece, which can be very
tedious. Furthermore, it appears that analysis results are
somehow influenced by perceptions, e.g., treatment patterns
in CPs are often normative in the sense that they state what
should be done rather than describing the actual patterns
in CPs. As a result, it tends to be rather subjective.
The challenge, therefore, is how to discover latent pat-
terns automatically and objectively without prior knowledge
of CPs.

To this end, the methods using data mining and machine
learning technologies to analyze CPs based on associated
careflow logs are receiving gradual attentions in medical
informatics [7, 10, 11]. These techniques are also called
process mining [20–23]. Process mining techniques have
been widely studied in the domain of business process man-
agement, which attempt to extract non-trivial and useful
information from workflow logs [7, 23]. One important
aspect of process mining is control-flow discovery, i.e.,
automatically constructing a process pattern (e.g., a BPMN
model [24]) describing the causal dependencies between
activities. Such discovered processes have proven to be very
applicable to the understanding, redesign, and continuous
improvement of business processes [23].

In clinical settings, many hospital information systems
can monitor various clinical activities in CPs, which pro-
duce large careflow logs. It is, therefore, possible to apply
process mining techniques to extract non-trivial knowledge
from these logs and exploit these for further analysis. How-
ever, the diversity of clinical activities in CPs is far higher
than that of common business processes. The use of tradi-
tional process mining techniques may generate spaghetti-
like treatment patterns that are difficult to be comprehended
by clinical experts [7, 10], such incomprehensible patterns
are either not amenable or lack of assistance to efforts
of analysis and improvement of CPs. In addition, existing
process mining algorithms often produce excessive vol-
ume of patterns that may overwhelm the analysts [7]. In
particular, the meanings or significance of the discovered
patterns sometimes goes untold. As indicated in [7, 10, 25],
the use of traditional process mining techniques can prove
inadequate in CP pattern discovery.

In this regard, we introduce a novel approach to discover
CP patterns from careflow logs. For this we propose to

leverage the power of probabilistic topic models (1) to auto-
matically extract latent treatment patterns from careflow
logs and (2) to enable the recognition of CPs as a composi-
tion of such treatment patterns. Our approach is based on an
assumption that we can discover latent treatment patterns by
mining careflow logs which regularly record various clini-
cal activities in CPs. As the heart of the assumption is the
question, whether we can have appropriately descriptive yet
robustly detectable careflow logs to record clinical activities
in a variety of clinical settings. Since many hospital infor-
mation systems regularly record a wide range of valuable
data, such as which clinical activities are performed, and
when, these data can be organized in such a way that they
contain a history of what occurred during CP execution, in
a manner that facilitates making useful higher-level infer-
ences. The idea of discovering latent treatment patterns from
careflow logs is therefore, essential to move us away from
the traditional subjective approaches for CPA, and adopt a
more objective perspective.

The rest of the article is organized as follows.
Section “Related work” summarizes some related stud-
ies. Section “Method” describes steps for discovering
latent treatment topics for CPs. Section “Case study”
carefully presents our experimental results and the result
analysis. Finally, some conclusions are given in section
“Conclusion”.

Related work

The application of information technologies for CPA is a
relatively unexplored field, although it has already been
attempted by some researchers from academia and industry.
For example, commercial business intelligence and business
activity monitoring tools have been used to analyze CPs,
which typically look at aggregated data seen from the mea-
sures, e.g., length of stay, mortality, and infection rate, etc
[9]. As valuable as these tools are, they restrict the atten-
tion to an external perspective of CPA. In clinical practice,
actual work can deviate from the definitions of CPs due
to many reasons, and it is very important for health-care
organizations to discover and analyze these differences to
improve CPs.

In this context, process mining [20, 21], as a general
method in business process analysis, is gaining increasing
attention in analyzing CPs and other kinds of health-care
processes [7, 9, 10]. The underlying idea of process mining
is to discover CP models from careflow logs that record their
executions. Being transferred into medical settings, process
mining methods may be applicable, for example, in retriev-
ing frequent CP patterns from careflow logs, which might
be further utilized to refine CP itself [10]. In fact, process
mining has already been attempted in clinical environments
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by some researchers. In [9], Lin et al. reported a technique
that was developed to discover the time dependency pattern
of CPs for managing brain stroke. In [22], Yang et al. pro-
pose a process mining algorithm to facilitate the automatic
and systematic detection of health-care fraud and abuse for
CPs. In [26], Mans et al. applied process mining to discover
how stroke patients are treated in different hospitals. In [7],
a methodology of using process mining techniques to sup-
port health-care process analysis is thoroughly investigated.
Especially, a case study was conducted in the Hospital
of São Sebastião in Portugal by gathering data from the
hospital information system and analyzing the data set by
utilizing a set of process mining techniques for the selected
radiological examination processes. In our previous work
[10], we have developed a new process mining algorithm
to discover a set of treatment patterns given an input event
log and a minimum support threshold value, such that
it can find what critical clinical activities are performed
and in what order, and provide comprehensive knowl-
edge about quantified temporal orders of clinical activities
in CPs.

However, the diversity of medical behaviors in clinical
processes is far higher than that of common business pro-
cesses. The use of traditional process mining techniques
may generate spaghetti-like process models that are dif-
ficult to be comprehended by clinical experts [7], such
incomprehensible models are either not amenable or lack of
assistance to efforts of analysis and improvement of clinical
processes. In addition, existing process mining algorithms
often produce excessive volume of models that may over-
whelm the analysts [7]. In particular, the meanings or sig-
nificance of the discovered models sometimes goes untold.
As indicated in [7, 25], the use of traditional process mining
techniques though successful in discovering clinical process
models can prove inadequate in CP analysis. Furthermore,
although a patient trace is generally guided by a specific
clinical process model, it is possible that clinical activ-
ities of that patient trace represents multiple underlying
treatment topics. For example, a patient who follows the
bronchiole lung cancer careflow may also be performed
specific activities for his/her diabetes treatment. Even for
the patients with the same disease, a slight dissimilarity of
patient states may result in different patient careflow. As the
obtained log contains patient traces that deal with a vari-
ety of medical problems, it can be assumed that the log is
actually generated by multiple underlying treatment patterns
[10, 27].

Method

In this section, we propose a Latent Dirichlet Alloca-
tion (LDA)-based method to discover underlying treatment

patterns for CPs. We explain some notations and terminolo-
gies at first. Then we present our approach in detail.

Notation and terminology

The objective of this study is to discover latent treat-
ment patterns for CPs. In particular, the proposed approach
assumes that it is possible to record various clinical activi-
ties in CPs such that each activity refers to a well-defined
step of CPs. In order to explain the proposed approach, we
introduce the following notations and terminologies at first.

Let A be the set of clinical activities. A patient trace
is represented as a non-empty set of clinical activities per-
formed on a particular patient, i.e., c = 〈a1, a2, . . . , an〉,
where ai ∈ A (1 ≤ i ≤ n) is a particular clinical activity.
A careflow log L is a set of tuples 〈pid, c〉, where pid is a
patient identifier, and σ is a patient trace.

We depict a simple example of a careflow log L as shown
in Fig. 1, which are correctly recorded in intracranial hem-
orrhage CP, by using letters of the alphabet. The meaning
of the example alphabetic labels are described in Fig. 2. L
consists of nine patient traces. Each trace consists of a set
of clinical activities. For the particular trace (patient trace id
is 411676), its first activity is adm (admission), and its last
activity dis (discharge).

With respect to our LDA-based model, clinical activi-
ties are “words” in the model. A patient trace, which is
a “document” in our model, is a bag of clinical activities.
And a “corpus” is a collection of these “documents” (care-
flow logs).

We assume that clinical activities in CPs are regularly
recorded into careflow logs by various kinds of hospital
information systems, e.g., electronic medical record system
(EMRs), radiology information system, picture archiving
and communication system, laboratory information system,
etc., which effectively reflects the real executing conditions
in patient careflow.

Generative process

In this study, we assume that a patient trace is represented
by a mixture of treatment patterns, with regard to spe-
cific categories of clinical activities in CPs. As shown in
Fig. 3a, patient traces are coded as the bag of multinomial
vectors. Each trace in the log is modeled as a finite mix-
ture over an underlying set of K treatment patterns. The
treatment pattern mixture is drawn from a Dirichlet prior
to the entire careflow log. Figure 3b indicates the LAD-
based model we employed for this study. Especially, we
denote the pattern-trace distribution as θ , each being drawn
independently from a symmetric Dirichlet prior α, and the
activity-pattern distribution as φ, each being drawn from a
symmetric Dirichlet prior β.
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Fig. 1 An intracranial hemorrhage log example. The traces are simplified information extraction from patient records of Zhejiang Huzhou Central
Hospital of China
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Fig. 2 The meaning of the example alphabetic labels of the example log

The generative process is as follows:

1. For each patient trace c in a clinical workflow log L, a
multinomial parameter θc over K treatment patterns is
sampled from Dirichlet prior θc ∼ Dir(α).

2. For each clinical activity a in c,

(a) A treatment pattern t is sampled from multino-
mial distribution zt,c,a ∼ Mult(θz,c).

(b) The value wt,c,a is sampled from multinomial
distribution wt,c,a ∼ Mult(φt,zt,c,a ).

From the generative graphical model depicted in Fig. 3b,
we can write the joint distribution of all known and hidden
variables given the Dirichlet parameters as follows.

p(c, t, θ |α, β) = p(θ |α) �
a∈c

p(t |θ)p(a|t, β) (1)

And the likelihood of a patient trace c is obtained by
integrating over θ and summing over t as follows.

p(c|α, β) =
∫

p(θ |α) �
a∈c

p(a|θ, β)dθ (2)

Finally, the likelihood of the careflow log L is product of
the likelihoods of all patient traces in L:

p(L|α, β) = �
c∈L

p(c|α, β) (3)

Parameter estimation for LDA by directly and exactly max-
imizing the likelihood of L in Eq. 1 is intractable. One solu-
tion is to use approximate estimation methods such as Varia-
tional Methods and Gibbs Sampling [28]. Gibbs Sampling is
a special case of Markov-chain Monte Carlo (MCMC) and
often yields relatively simple algorithms for approximate
inference in high-dimensional models such as LDA [29].
In this study, we use Gibbs sampling to estimate treatment

Fig. 3 Graphical representation
of LDA-based model
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patterns from the collected log as well as to estimate the
activity-pattern and pattern-trace probability distributions.

Using this generative model, the pattern assignment for
a particular clinical activity can be calculated based on the
current pattern assignment of all the other activity positions.
More specifically, the pattern assignment is sampled from:

p(ti = k|t¬i , c) = na
k,¬i + β∑

b∈A nb
k + β|A|

nk
c,¬i + α∑

j∈T n
j
σ + αK

(4)

where ti = k represents the assignment of the ith occurrence
to pattern k, t¬i represents all treatment pattern assignments
not including the ith occurrence, na

k,¬i is the number of
times the activity a is assigned to pattern k, not including
the current instance, and nk

c,¬i is the number of times pat-
tern k is assigned to the patient trace c, not including the
current instance.

After finishing Gibbs Sampling, two matrices θ and φ are
computed as follows.

θk,a = na
k + β∑

b∈A nb
k + β|A| (5)

φc,k = nk
c + α∑

k∈T nk
c + αK

(6)

where θk,a is the probability of containing activity a in the
treatment pattern k, and φc,k is the probability of the trace c

has the treatment pattern k. The algorithm randomly assigns
a pattern to each activity, updates the pattern to each activity
using Gibbs sampling, and then repeats the Gibbs sampling
process to update pattern assignment for several iterations
[28]. Suppose there are K treatment patterns, |A| clinical
activity types, the total computational complexity of run-
ning l Gibbs sampling iterations for a clinical careflow log
L is O(|A| · |L| · K · l).

Before doing Gibbs sampling to discover latent treatment
patterns from careflow logs, we need to identify the num-
ber of patterns contained in the collected log. Perplexity is a
common measure of the ability of a model to generalize to
unseen data. It is defined as the reciprocal geometric mean
of the likelihood of a test corpus given a model. The per-
plexity score has been widely used in LDA to determine the
number of topics, which is a standard measure to evaluate
the prediction power of a probabilistic model [28]. In this
study, we calculate the perplexity score for a particular col-
lected log to determine the number of underlying treatment
patterns in the log.

Perplexity = exp

[
−

∑
c∈L log p(c|L)∑

c∈L |c|
]

(7)

where |c| is the number of clinical activities in c, L is the
careflow log. The perplexity of a set of activities from a spe-
cific patient trace, is defined as the exponential of the nega-
tive normalized predictive log-likelihood under the training
model. As indicated in [28], the perplexity is monotonically
decreasing in the likelihood of the test data. Therefore, a
lower perplexity score over a held-out log indicates a better
generalization performance. The value of K , which results
in the smallest perplexity score over a randomly selected test
data-set, is selected as the number of treatment patterns.

Taking the log shown in Fig. 1 as an example, it achieves
the smallest perplexity score when K = 2. The typi-
cal activity labels for the derived patterns are (p(a|t) ≥
0.01) shown in Fig. 4. Clinical experts from the cooperated
hospital have indicated that the two derived patterns have
specific clinical intentions, i.e., cerebral hemorrhage treat-
ment (ICD-10: I61), and subdural hematoma treatment
(ICD-10: I62.006), respectively. If we look at the associ-
ated activities, most of them are related with the particular
pattern, for example, the first pattern does not include

Fig. 4 The typical activity
labels for the derived patterns
from the log example
shown in Fig. 1
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Table 1 Pattern-trace distribution of the example log

Patient Pattern Probability Pattern Probability

trace no. no. no.

411676 1 0.308 2 0.692

419894 1 0.451 2 0.549

420425 1 0.463 2 0.537

425419 1 0.463 2 0.537

444499 1 0.589 2 0.411

432259 1 0.599 2 0.401

432279 1 0.538 2 0.462

432353 1 0.604 2 0.396

439594 1 0.517 2 0.483

the surgery, while the second does. In addition, the dis-
covered patterns from the example log demonstrates the
implicit relationships between activities, for example, clin-
ical activities “Surgery: Intracranial hematoma (including
simple epidural)” and “Order: Postoperative drainage” are
correlated with each other, and they have the same value
of activity-pattern distribution. The relationships between
activities via patterns can be used to provide good classifi-
cation of patient traces.

In addition, the pattern-trace distribution p(t |c) measures
the connection (or relatedness) of a specific patient trace
with a specific treatment pattern (i.e., the conditional prob-
ability of a treatment pattern in a given patient trace). We
used this statistical probability to group patient traces by
associating them with patterns. Taking the log shown in
Fig. 1 as an example, the pattern-trace distribution values
are listed in Table 1. The traces are grouped into specific
clusters based on their pattern-trace distribution values. For
example, the traces “420425” and “425419” have the same
probability to belong to pattern 2 (with surgical treatment).
Thus, both traces will be grouped into the same cluster.

Case study

To test the feasibility of the proposed approach, experi-
ments on data-sets collected from Zhejiang Huzhou Central
Hospital of China were performed. The explanation of
the experimental setups and obtained results are presented
in the following (Table 2).

Experimental design

The experimental data set was extracted from Zhejiang
Huzhou Central hospital of China. The application of infor-
mation technology in this hospital is at a relatively high
level, and the EMRs has been gradually used since 2004.
The system regularly records all kinds of information of
CPs in the hospital. In the experiments, we extracted two
specific careflow logs about intracranial hemorrhage and
cerebral infarction from the system. The collected data is
from 2007/08 to 2009/09. In addition, we removed those
unclosed or incomplete patient traces, e.g., the trace of
which the patient died or was transferred during his or her
length of stay (LOS) from the collected log. The details of
reserved logs are shown in Table 1, including the patient
trace number, clinical activity number, activity type number,
the average LOS, the minimum LOS, and the maximum
LOS of each log. For example, the intracranial hemorrhage
log consists of 259 patient traces. The average LOS of these
traces is 22.95 days while some traces take a very short
time, e.g., only two days in hospital, and other traces take
much longer, e.g., 100 days in the hospital, which implicitly
indicates the diversity of treatment behaviors in intracranial
hemorrhage CP.

LDA-based model construction

Constructing LDA-based model is to fit latent treatment
patterns to careflow logs. In this study, we evaluate the con-
structed model by using measures like likelihood on the
collected log. Our goal is to derive clinical activity dis-
tribution density estimation, and a high likelihood on the
collected log is expected.

The Dirichlet prior α and β of LDA are set to 0.2
and 0.1, which are common settings in literature. The
number of iterations of the Markov chain for Gibbs sam-
pling is set to 10000. Note that Gibbs sampling usually
converges before 10000 iterations for the collected logs. In
addition, to expand the number of trials when we construct
LDA-based model, we adopt a fivefold cross-validation
strategy. For each collected log, we split it randomly into
five mutually exclusive subsets of equal size. We then desig-
nate each subset as the testing data set are used to compute
the perplexity score while the others serve as the training
data set. To minimize potential biases that may result from
the randomized folding process, we perform this fivefold

Table 2 Careflow logs used in
the experiments Disease Trace # Activity # Activity Average LOS Min LOS Max LOS

type # (days) (days) (days)

Intracranial hemorrhage 259 14194 274 22.95 2 100

Cerebral infarction 419 12038 269 15.2 4 100
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Fig. 5 Perplexity on the collected logs

cross-validation process five times and estimate the over-
all performance by averaging the performance estimates
obtained from the 250 individual trials.

While performing LDA estimation, the number of pat-
terns K varies from 1 to 20. As mentioned above, perplexity

is algebraically equivalent to the inverse of the geomet-
ric mean per-activity likelihood. As mentioned above, a
lower perplexity score indicates better generalization per-
formance of the likelihood, which is in form of perplexity
can be computed on the collected logs. Thus, for each log,

Table 3 Significant activities associated with the derived patterns from the collected logs

Pattern id Significant activities Support

Intracranial hemorrhage log

1–1 Admission, Conventional ECG, Venipuncture catheter, Oxygen saturation monitoring, Catheterization, 0.584

Color Doppler routine inspection, 24-hour Holter, Physical cooling, Low-frequency pulse electric treatment,

Determination of left ventricular function, Serum troponin T determination, Electrolyte, Liver and kidney function,

Blood test, CSF examination, Blood test + ultra-sensitivity CRP, Sputum culture, Emergent blood test,

The hepatorenal sugar, Urine test + sediment, Urine culture, Emergency ultra-sensitivity CRP, Emergent electrolyte,

Hepatorenal sugar lipase, Coagulation + D-dimer, Hemorheology full set, Inflammation 3 items, Emergent kidney,

sugar, Emergent PT, Stool test + OB, Thyroid function 7 items, Analysis of urine microalbumin, Tumor 10 items,

Anemia 3 items, ECG, Physical therapy, Osmotic pressure, Discharge

1–2 Admission, Conventional ECG, Venipuncture catheter, Oxygen saturation monitoring, Catheterization, 0.416

Replace the drainage bag, High-frequency oxygen, Intracranial hematoma surgery, Drainage after surgery,

Oxygen mask, Micro-jet atomization mask, Oxygen inhalation, Catheterization, Lumbar puncture, Physical cooling,

Gastrointestinal high nutritional treatment, Electrolyte, Blood test, CSF examination, Cerebrospinal fluid

biochemical, Bacteria and fungi culture and identification, Sputum culture, Emergent blood test,

The hepatorenal sugar, Urine test+sediment, Coagulation + D-dimer, Myocardial enzymes, Stool test + OB,

Lipids 7 items, Sex hormone, Emergent kidney and sugar, Physical therapy, Osmotic pressure, Discharge

Cerebral infarction log

2–1 Admission, Glucose determination, Venipuncture catheter, Electrolyte, Emergent blood test, 0.377

Emergent calcium determination, HCT, Emergent potassium determination, Emergent Sodium determination,

Whole blood lactic acid, Blood gas analysis, Emergent serum bicarbonate determination, Hemoglobin,

The hepatorenal sugar, High-frequency oxygen, Color Doppler routine inspection, Discharge

2–2 Admission, Conventional ECG, Glucose determination, Venipuncture catheter, Laser therapy, 24-hour Holter, 0.623

Low-frequency pulse electric treatment, Stool test + OB, Electrolyte, Hepatorenal sugar lipase, Emergent PT,

Emergency ultra-sensitivity CRP, Emergent blood test, Thyroid function 7 items, Urine test + sediment,

Analysis of urine microalbumin, Coagulation + D-dimer, Blood test + ultra-sensitivity CRP, Hemorheology full set,

Inflammation 3 items, Chronic brain stimulation, Color Doppler routine inspection, Intracranial Doppler flow imaging,

Determination of left ventricular function, Emergent kidney and sugar, Anemia 3 items, Tumor 10 items, Discharge
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the number of latent treatment patterns is chosen so that
it balances model complexity and fitness according to per-
plexity. As shown in Fig. 5, the perplexity decreases quickly
before stabilizing. Note that the greater the value of K , the
more likely the model over fits the data and more sam-
pling computation and storage are required. The general rule
of thumb is to choose a balance between simplicity of the
model and the degree of fitness. As shown in Fig. 5, when
K = 2, the perplexity achieves a relatively stabilized value
for both the intracranial hemorrhage log and the cerebral
infarction log.

Pattern extraction

Let’s now turn to the contents of the patterns, i.e. the
learned activity labels that have a high probability of being
part of a particular pattern. We examine clinical activities
associated with each treatment pattern to evaluate the qual-
ity of discovered patterns. For each treatment pattern t , we
list all activity labels a with p(a|t) ≥ 0.01. As shown in
Table 3, the content often represents a meaningful set of
activity labels.

Pattern support is predicated on the learned model. The
underlying assumption is that if clinical activities belong-
ing to a certain treatment pattern occur more frequently,
then this pattern has high support. For example, in Table 3,
the support value of pattern 1–1 is 0.584. It indicates that
about 58.4 % patient traces in the intracranial hemorrhage
log support that treatment pattern.

In addition, the aforementioned analysis procedure was
conducted to investigate whether our approach can group
and classify various activities according to their clinical
intention. Taking the collected intracranial hemorrhage log
as an example, both derived patterns covered various clini-
cal activities in the cerebral infarction CPs. The discovered
patterns were related to activities used for cerebral hem-
orrhage medical treatment (patterns 1–1), and intracranial
hematoma surgical treatment (pattern 1–2), respectively.

Note that each treatment pattern represents certain com-
mon properties, which reflects the pattern in CPs. The
patterns populated with more activities do not neces-
sarily correlate with the degree of shared commonality
among activities. Finding out the exact meanings of the dis-
covered patterns require additional information and domain-
specific knowledge. For example, pattern 1–2 was signif-
icant in both subdural hematoma treatment purpose and
epidural hematoma treatment purpose. This result also indi-
cates that a pattern is not necessary associated with only
one concept, and it could be related to several common-
alities shared by clinical intentions. However, in order to
discern the hidden meanings of a pattern, careful analy-
sis and domain-specific knowledge are required, indicating
that the presented method can be a powerful hypothesis

generation tool to guide systemic investigation on the rela-
tionship between the discovered treatment patterns and
clinical intentions.

Conclusion

In this paper, we have introduced a novel approach for dis-
covering latent CP patterns from careflow logs. The main
idea is to collect careflow logs and then estimate latent
patterns for the collected logs based on Latent Dirichlet
Allocation. In an evaluation using real-world careflow logs,
we showed that our method can discover the gist and hidden
treatment patterns for CPs. In addition, discovered patterns
can be successfully used for grouping and identifying clin-
ical activities within the same therapy and treatment inten-
tion. Last but not least, the findings provide a foundation for
future research using our approach.

We believe that our approach is highly appealing for
the field of CPA, and that so far we have only exploited
some of its potential, e.g., the probabilistic nature of the
approach allows for handling of concurrent and overlap-
ping treatment patterns, and also correlations between these
patterns. We consider these properties, together with the
ability to decompose CPs into their low-level constituents,
as a crucial advantage over traditional techniques for CP
analysis and optimization. In addition, for our approach,
discovering latent treatment patterns is not limited to explor-
ing the intrinsic property, i.e., activity labels. For example,
we can use alternatives such as the occurring time-stamps
of activities, resources to perform clinical activities, and
patient-specific information, etc. We will investigate this in
the future work.

Discovered patterns can profitably be exploited as a basis
for further CPA tasks, e.g., to measure and understand the
similarities among patient traces, to rank and retrieval sim-
ilar patient traces as references for a specific patient in his
or her careflow, to obtain patient trace clusters in which a
patient trace mixed with manifold treatment patterns should
be put in multiple clusters, and to refine/redesign CPs based
on the ascertained treatment patterns, etc. We will address
these tasks in our future studies.

Acknowledgments This work was supported by the National Nature
Science Foundation of China under Grant No 81101126. The authors
would like to give special thanks to all experts who cooperated in the
evaluation of the proposed method.

References

1. Lee, K. H., and Anderson, Y., The association between clinical
pathways and hospital length of stay: A case study. J. Med. Syst.
31:79–83, 2007.



9915, Page 10 of 10 J Med Syst (2013) 37:9915

2. Wakamiya, S., and Yamauchi, K., What are the standard functions
of electronic clinical pathways? Int. J. Med. Inform. 78(8):543–
550, 2009.

3. Lenz, R., Blaser, R., Beyer, M., Heger, O., Biber, C., Aumlein, M.,
and Schnabe, M., IT support for clinical pathways-lessons learned.
Int. J. Med. Inform. 76(3):S397–S402, 2007.

4. Schuld, J., Schaer, T., Nickel, S., Jacob, P., Schilling, M. K., and
Richter, S., Impact of IT-supported clinical pathways on medical
staff satisfaction. A prospective longitudinal cohort study. Int. J.
Med. Inform. 80(3):151–156, 2011.

5. Lu, X., Huang, Z., and Duan, H., Supporting adaptive clinical
treatment processes through recommendations. Comput. Methods
Prog. Biomed. 107(3):413–424, 2012.

6. Tello-Leal, E., Chiotti, O., and Villarreal, P., Process-oriented
integration and coordination of healthcare services across organi-
zational boundaries. J. Med. Syst. 36(6):3713–3724, 2012.

7. Rebuge, A., and Ferreira, D. R., Business process analysis in
healthcare environments: A methodology based on process min-
ing. Inf. Syst. 37(2):99–116, 2012.

8. Huang, B., Zhu, P., and Wu, C., Customer-centered careflow
modeling based on guidelines. J. Med. Syst. 36(5):3307–3719,
2012.

9. Lin, F., Chen, S., Pan, S., and Chen, Y., Mining time dependency
patterns in clinical pathways. Int. J. Med. Inform. 62(1):11–25,
2001.

10. Huang, Z., Lu, X., and Duan, H., On mining clinical pathway
patterns from medical behaviors. Artif. Intell. Med. 56(1):35–50,
2012.

11. Lenz, R., and Reichert, M., IT support for healthcare processes-
premises, challenges, perspectives. Data Knowl. Eng. 61(1):39–
58, 2007.

12. de Luc, K., Care pathways: an evaluation of their effectiveness.
J. Adv. Nurs. 32(2):485–496, 2000.

13. Chen, C. (Cliff)., Chen, K., Hsu, C. Y., and Li, Y. C. (Jack)., Devel-
oping guideline-based decision support systems using protègè and
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