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The present study was conducted to better describe age trends in cognition among older adults in the
longitudinal Health and Retirement Study (HRS) from 1992 to 2004 (N > 17,000). The authors used
contemporary latent variable models to organize this information in terms of both cross-sectional and
longitudinal inferences about age and cognition. Common factor analysis results yielded evidence for at
least 2 common factors, labeled Episodic Memory and Mental Status, largely separable from vocabulary.
Latent path models with these common factors were based on demographic characteristics. Multilevel
models of factorial invariance over age indicated that at least 2 common factors were needed. Latent
curve models of episodic memory were based on age at testing and showed substantial age differences
and age changes, including impacts due to retesting as well as several time-invariant and time-varying
predictors.
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Classical research in gerontology has sought to determine the
nature of adult age-related changes in cognitive functioning (e.g.,
Baltes & Schaie, 1976; Bayley, 1966; Botwinick, 1977; Bradway
& Thompson, 1962; Horn, 1991; Jones & Conrad, 1933; Park,
2000; Schaie, 1996). Recent methodological studies have followed
the same principles but have examined both age and cohort effects
(Donaldson & Horn, 1992; McArdle & Anderson, 1990) and the
influences of practice or retesting effects (McArdle, Hamagami,
Meredith, & Bradway, 2001; Rabbitt, Diggle, Holland, &
Mclnnes, 2004). Researchers have also been interested in the
observation of large positive shifts in cognitive abilities among
more recent birth cohorts (e.g., the Flynn effect; Flynn, 1984;
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Neisser, 1998). In research on older populations, some investiga-
tors have found a consistent cohort-related trend of decreased
decline in cognitive functioning (Freedman & Martin, 1998, 2000).
In contrast, Rodgers, Ofstedal, and Herzog (2003) recently refuted
these claims on the basis of large-scale data analysis from the
Health and Retirement Study (HRS) and the Asset and Health
Dynamics of the Oldest Old Study (AHEAD; see Juster & Suz-
man, 1995). The purpose of the present study is to examine key
questions related to age trends in cognition among older adults
using contemporary techniques in latent structure modeling (e.g.,
McDonald, 1999; Meredith & Tisak, 1990; Park et al., 2002).

Previous Cognitive Research on the HRS

The HRS/AHEAD studies provide an excellent source of data
for examining age trends in cognitive ability in the older U.S.
population. The HRS and AHEAD studies began in 1992 and
1993, respectively, and in 1998 were combined into one study that
attempts to be nationally representative of Americans over 50
years of age. The studies use a panel design in which the same
respondents are interviewed every 2 years, and new respondents
are added to the sample every 6 years to replenish the sample to
adjust for aging and attrition (see Heeringa & Connor, 1996;
Leacock, 2006; http://hrsonline.isr.umich.edu).

Herzog and Wallace (1997) conducted the most complete study
to date examining the quality of the HRS cognitive measures in the
HRS samples. They provided results for simple internal consis-
tency reliability (using alpha indexes), exploratory factor analysis,
and regression with demographic variables. Some of these findings
show the limitations of the HRS cognitive battery, including lower
than expected discriminations and reliabilities, and suggest a rel-
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atively complex two-factor structure. Other findings show that
some of the cognitive tasks are clearly related to age, education,
and health.

Differences due to testing modality—face-to-face versus tele-
phone interviews—were studied in the recent work of Herzog and
Rodgers (1999). Using the AHEAD data, they highlighted impor-
tant issues in survey design requirements for working with an older
sample. They pointed out the potential limitations of population
estimates of measured cognition when only noninstitutionalized
adults are used, demonstrated changes in nonresponse from one
wave to the next, and studied differences between spouses. They
also evaluated an HRS/AHEAD randomized experiment on ad-
ministering the HRS cognitive test battery in a telephone versus
face-to-face mode and found negligible differences in performance
on the cognitive measures due specifically to mode of testing.

Other studies have used the HRS cognition measures as the
main outcome of interest, as a key predictor of some other out-
come, or as a control variable. One study examined the impact of
education and wealth on cognitive function (Cagney & Lauder-
dale, 2002), another used HRS cognition measures to estimate the
association of life expectancy and cognitive impairment (Suthers,
Kim, & Crimmins, 2003), and a third examined lifestyle predictors
of cognitive function and change in cognitive function (Ofstedal &
Herzog, 2004). Another set of studies focused on cognition as a
key predictor of health care utilization and behavioral outcomes,
including physical functioning (Blaum, Ofstedal, & Liang, 2002;
Fultz, Ofstedal, Herzog, & Wallace, 2003; Herzog & Wallace,
1997), informal caregiving (Langa et al., 2001), nursing home
admission (Langa et al., 2004), and cohort trends in severe cog-
nitive impairment (Freedman, Aykan, & Martin, 2001, 2002). The
recent studies by Adams, Hurd, McFadden, Merrill, and Ribeiro
(2003); Zelinski, Crimmins, Reynolds, and Seeman (1998); and
Zelinski and Gilewski (2003) offered multivariate analyses of the
relationships among multiple measures of physical health and HRS
cognitive functioning.

Two recent analyses of HRS data examined cohort trends in
cognitive functioning among older Americans. For example,
Freedman, Aykan, and Martin (2001) investigated aggregate
trends of cognitive impairment in a cohort of older Americans
between 1993 and 1998 using two waves of data from HRS/
AHEAD. They concluded that there was a decline in severe
cognitive impairment between the two waves (6.1% in 1993 and
3.6% in 1998) that was not fully explained by differences in
demographic, socioeconomic, and health characteristics between
the two waves. In a related study, Rodgers et al. (2003) extended
Freedman et al.’s (2001) work by examining cohort-level trends in
cognitive scores across four waves of HRS/AHEAD (1993, 1995,
1998, and 2000). They conducted four sets of analyses to examine
the trends in cognitive scores across the four waves of data. First
they examined unadjusted scores and looked at changes from one
wave of testing to another. In the second set of analyses they used
multivariate regression to evaluate whether study design and de-
mographic characteristics (including age) accounted for differ-
ences across waves. In a third set of analyses, the authors used
similar regression models to adjust for additional respondent de-
mographic characteristics related to cognitive scores, including
gender, race, ethnicity, and educational attainment. Finally, Rodg-
ers et al. (2003) addressed mode effects (telephone vs. face-to-face
administration of the interview) and sample selection effects due to

attrition and addition of new sample members in 1998 by adding
specific contrast codes to this model.

Rodgers et al. (2003) concluded that there was little improve-
ment in cognitive functioning across the cohorts. They suggested
that the differences in the results between the two studies could be
explained by statistical adjustments for methodological factors in
the complex panel study of the HRS. They also examined the
impacts of (a) prior exposure (practice), (b) mode of testing, and
(c) alternative test forms but found only small differences due to
these design features. In particular, they found that scores on the
two word recall tasks were consistently higher after one exposure,
whereas scores on the Serial 7s task (see below) were consistently
lower. Another result was that cognitive scores of those who were
interviewed by telephone were substantially higher on all four of
the cognitive tests. However, because the in-home interview mode
might have been chosen because of previously low cognitive
scores, this was not resolved in their statistical analysis. Finally,
Rodgers et al. also studied whether the alternative forms (i.e., four
word lists) were equivalent to one another, and they found that one
of the word lists was more difficult than the others.

The Current HRS Research

The analyses presented in this article differ in both form and
purpose from those presented in any previous work with the HRS.
To start, we describe the combination of all the available cognitive
data from the 1992 to 2004 HRS/AHEAD surveys, using the final
release version of the 2004 data (available as of August 2006).
Most previous HRS research has used multiple regression analyses
to understand changes across waves of testing, including specific
demographic differences and design confounds, and cognition
scores have been combined into a single composite score. Our new
analyses add to the prior HRS analyses in several ways. First,
because age is the major substantive issue of interest, we highlight
age as the major methodological frame of reference, and we use
contemporary versions of latent structure analysis to deal with key
questions about the age-related structure and age-based dynamics
of the cognitive variables measured in the HRS. We use latent
structure models in the determination of common factors, latent
path models to deal with demographic impacts on common factors,
latent multilevel models to evaluate factorial invariance over time,
and latent growth—decline curve models to deal with age-based
changes in cognition. We deal with other key demographics, such
as gender and birth cohort, as second-order effects in the latent
growth—decline models (Jones & Meredith, 2000; McArdle &
Anderson, 1990).

In general, we use these new latent structure analyses to evaluate
the importance of age effects and the role of several key covariates,
including the potential for test-practice effects, differences due to
educational level or birth cohort, and differences for gender and
marital status. All latent variable analyses presented in this article
rely on common statistical assumptions about the reasons for
incomplete data, and we discuss but do not elaborate on these
assumptions (but see Ferrer, Salthouse, McArdle, Stewart, &
Schwartz, 2005; McArdle, Ferrer-Caja, Hamagami, & Woodcock,
2002; McArdle & Woodcock, 1997). The analyses presented in
this article raise issues that should be considered in future work
and set the stage for necessary and potentially complex analyses of
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the role of specific cognitive factors in the HRS and other longi-
tudinal cohort sequential or panel studies.

Method
Participants in HRS/AHEAD

The HRS is a nationally representative longitudinal study spon-
sored by the National Institute on Aging and conducted by the
University of Michigan. The HRS researchers targeted
community-dwelling adults in the contiguous United States who
were 51 to 61 years old in 1992, when the baseline interview was
conducted. Blacks, Hispanics, and Florida residents were over-
sampled (for details, see Heeringa & Connor, 1996). The initial
HRS in-home interviews were conducted in over 7,700 households
(with an 82% response rate), yielding more than 9,800 participants
between the ages of 51 and 61. Within each household, the spouse
or domestic partner of the sampled respondent was also inter-
viewed, regardless of age. Follow-up interviews were conducted
every 2 years. In 1993 and 1995, the AHEAD study was conducted
among a national sample of adults age 70 or older. In 1998, the
HRS and AHEAD studies merged, both assuming the name HRS,
and two new cohorts were added to the HRS sampling frame. As
a result, in 1998 the overall HRS sample of self-respondents was
representative of the U.S. population of adults born in 1947 or
earlier who resided in the 48 contiguous states. Data are now
available from nine waves of testing: HRS 1992, AHEAD 1993,
HRS 1994, AHEAD 1995, HRS 1996, HRS 1998, HRS 2000, HRS
2002, and HRS 2004. These data include information on more than
30,000 people in more than 17,000 families measured on over
100,000 interviews.

In the HRS, the respondents can be interviewed at their conve-
nience. Interviewers attempt to set up appointments with spouses
or partners on the same day. If respondents do not want the
interviewer to come to their home, the interviews are carried out at
a convenient location. The HRS longitudinal assessments currently
use two modes of data collection. Baseline interviews and those
with respondents age 80 or older are conducted in person, but most
of the longitudinal follow-ups are administered over the telephone.
When two people are living as a couple, they are often tested at the
same occasion. Sample weights were designed to reflect the na-
tional representation of the sample by accounting for the oversam-
pling of Blacks, Hispanics, and households in the state of Florida;
compensating for unequal selection probabilities in geographical
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areas; and adjusting for geographic and race group differences in
response rates. In addition, the weights were poststratified to
match U.S. Census population totals (for details, see Heeringa &
Connor, 1996). In most analyses to follow, we use the HRS
respondent sampling weights, so the sample statistics and param-
eter estimates should reflect about 64 million people in the U.S.
over the age of 50.

HRS Participants Selected for the Current Analyses

The HRS data used in the current analyses were selected and
organized in a fashion similar to Rodgers et al. (2003). We started
this analysis with the current HRS database of all people at all
waves of testing and then eliminated any person who (a) was not
a primary respondent, (b) had no data on gender or age, (c) had a
sampling weight of zero, or (d) was under age 50. In addition, (e)
in cases in which there were two persons per family, we randomly
picked only one member of the family. Statistical information of
the resulting subset of data for 17,355 self-respondents is described
in Table 1. The demographic variables presented in this table
include (a) chronological age at baseline testing, (b) years of
formal education, (c) gender, (d) birth year (cohort), (¢) number of
waves of participation, (f) whether the participant was one member
of a couple, and (g) whether the individual was still a participant
in the most recent 2004 testing. The basic statistics and coding
schemes used are described in Table 1, and the pairwise correlation
coefficients among these same variables are described in Table 2.
These correlations describe the overall characteristics of the first
time of testing, and we refer to this as participants’ baseline
interview. Using this selection of data, we find a negative relation-
ship of age and education (r = —.29) and only a small differen-
tiation of age and birth cohort (r = —.95).

The simple correlation just presented does not fully define the
entire longitudinal pattern of participation in the HRS, but Table 3
lists longitudinal features in more detail. In this table we show how
the 17,355 participants provided 69,496 interviews by isolating
features of 13 groups of people on the basis of the patterns of
complete and incomplete data. We include the frequency (and
percentage) of all patterns of participation across all interviews,
and we summarize age, education, and gender within each group
as well. This information is presented separately for our selected
HRS participants who were measured in the most recent 2004
wave of data collection and for those who provided some data but

Table 1
Descriptive Statistics for the Entire Sample at Initial Testing (N = 17,355)
Variable M SD Minimum Maximum
Age in years® 61.88 10.99 50.00 103.25
Years of education® 12.37 3.27 0.00 17.00
Gender effect coded” 0.57 0.497 —0.5 = male 0.5 = female
Living as a couple effect coded” —0.033 0.499 —0.5 = living alone 0.5 = living in a couple
Birth cohort! 1,935 13.33 1,890 1,953
No. waves tested” 3.57 2.14 1 7
Tested in 2004 dummy coded® 0.678 0.467 0 = not tested in 2004 1 = tested in 2004

Note.

The statistical information presented used Health and Retirement Study respondent-level sampling weights.

4 Measured at Test 1. ® Of the total sample, 55.7% was female. © Of the total sample, 53.2% was living as a couple. ¢ Data include the Health and Retirement
Study and Asset and Health Dynamics of the Oldest Old study members. ¢ Of the total sample, 67.8% was tested in 2004.
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Table 2
Pearson Correlation Coefficients for the Entire Sample at the First Time of Testing for Each
Person
Variable 1 2 3 4 5 6 7
1. Age —
2. Years of education —.265 —
3. Gender effect coded 167 —.098 —
4. Couple effect coded —.283 151 —.253 —
5. Year born —.952 284 —.171 248 —
6. No. waves tested .017 —.004 .093 .058 —.235 —
7. Tested in 2004 —.467 214 —.020 141 513 .290 —

Note. N = 17,355, so correlations || > .01 are significant at the p < .0001 level.

dropped out for any reason sometime before 2004. Within each of
these two broad classes, we further organize individuals into
groups defined by the number of waves of participation. For
example, in our subsample of the HRS data, 1,948 people were
tested in 2004 for the first time, but 3,465 were tested in 2004 for
the seventh time. In contrast, 1,762 people were tested once and
not tested again, and 249 people were tested six times and then
were not tested in 2004. The dropout by 2004 occurred at different
times and could be due to many reasons (mortality, lack of interest,
etc.), but we used all data from all participants in our analyses.

The difference between the initial cross-sectional data and the
subsequent longitudinal data is a key feature of the HRS, and one
aspect of this issue is illustrated in Figures 1A and 1B . Figure 1A
is a frequency distribution of the ages at the first time of testing,
and this shows the clear separation of the HRS (younger) and
AHEAD (older) study samples. Figure 1B is a frequency distribu-
tion of the ages at all times of testing and is based on every
interview for every person selected, so this represents the full age
distribution available and the current overlap of the HRS study
samples.

Table 3

Cognitive Measures in HRS/AHEAD

The cognitive performance measures in the HRS/AHEAD
studies are used in this article, and these are outlined in Table
4. A more detailed description of these measures appears in
Brandt, Spencer, and Folstein (1988) and Ofstedal, Fisher, and
Herzog (2005). Specific cognitive measures included perfor-
mance on (a) immediate and delayed free recall of a list of 10
nouns (for a possible score of 0—10 on each measure); (b) Serial
7s, a working memory and mental processing task in which
respondents counted backward from 100 by 7s for a total of five
trials (for a possible score of 0-5); and (c) mental status
measures (with a possible combined score of 0—10), including
counting backward from 20, naming the U.S. president and vice
president by last name, naming two objects (scissors and cac-
tus) on the basis of a brief description, and providing the date
(month, day, year, and day of week) for an assessment of time
orientation. Among many others, Rodgers et al. (2003) used a
composite score they created by summing across the three
scores (range from O to 35), but this is not used in the present

Patterns of Longitudinal Participation and Frequency of Observations in the Health and Retirement Study for Demographic

Information (Unweighted Counts and Weighted Means)

No. tests Frequency Frequency Mean age at Education in
taken of people % of people of data % of data first test years % female
Measured in 2004
1 1,948 11.2 1,948 2.8 534 13.5 46.4
2 92 0.5 184 0.3 60.1 11.2 42.7
3 281 1.6 843 1.2 58.7 11.9 432
4 2,268 13.1 9,072 13.1 58.9 12.9 55.6
5 389 22 1,945 2.8 64.8 11.6 57.2
6 2,088 12.0 12,528 18.0 70.1 12.0 69.0
7 3,465 20.0 24,255 34.9 55.8 12.7 58.9
Not measured in 2004

1 1,762 10.2 1,762 2.5 70.8 11.1 55.1
2 1,622 9.4 3,244 4.7 69.7 11.2 56.2
3 1,373 7.9 4,119 5.9 68.9 11.5 58.1
4 988 5.7 3,952 5.7 68.9 11.4 60.2
5 830 4.8 4,150 6.0 68.5 11.8 60.4
6 249 1.4 1,494 22 56.6 11.4 50.0

Total 17,355 100 69,496 100 61.9 12.4 55.7
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Figure 1. Frequency distributions for all chronological ages in the current Health and Retirement Study. A:

Chronological age at the first time of testing (N = 17,355). B: Chronological age collated over all occasions
(D = 69,496).
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Table 4

A Description of Cognitive Measures in the Health and Retirement Study (HRS) and Asset and Health Dynamics of the Oldest Old

Study (AHEAD) Collections

Test waves
Measure Typical features Typical administration and scoring administered Testing notes
IR 10 words from four Typically given near end of All nine Up to 20 items used in HRS 1992
different lists survey; scores 0—10 and 1994
DR 10 words Given 5 min after the IR All nine Five-min delay between IR and
DR
Serial 7s Subtract 7 from 100 for Administered between IR and DR; All nine
five trials scores 0-5
Backward Beginning with 20, count Administered between IR and DR; Not used in HRS 1992 In AHEAD 1995 and later waves,
Counting backward for 10 scores 0 = incorrect, 1 = or 1994 participants were instructed to
continuous numbers correct count as quickly as possible. In
AHEAD 1995, HRS 1996, and
HRS 1998, backward counting
from 86 was added
Dates Today’s date including AHEAD 1995 and HRS 1996 Not used in HRS 1992 In HRS 1998 and later waves,
month, day, year, and administered between IR and or 1994 this question was only asked at
day of week DR; HRS 1998, 2000, 2002, baseline interview or of
and 2004 administered after respondents 65 years of age or
DR; scores 0—4 older
Names Object naming (scissors AHEAD 1995 and HRS 1996 Not used in HRS 1992 In HRS 1998 and later waves,
and cactus); U.S. administered between IR and or 1994 this question was only asked at
president and vice DR; HRS 1998, 2000, 2002, baseline interview or of
president naming by and 2004 administered after respondents 65 years of age or
last name DR; scores 0-2 older
Vocabulary Five words in one of two AHEAD 1995 and HRS 1996 Used in AHEAD 1995 In HRS 1998 and later waves,
lists from the WAIS-R administered after DR; HRS and later this question only asked at
1998, 2000, 2002, and 2004 baseline interview or of
administered after DR; scores respondents 65 years of age or
0-5 older
Similarities Seven word pairs as HRS 1992 administered between HRS 1992 (all) and In AHEAD 1993, six word pairs

modified from
WAIS-R

IR and DR; administered in
modules in AHEAD 1993 and
AHEAD 1994. Scores 0-7

1994 (module), were used instead of seven
AHEAD 1993

(module)

Note. IR = Immediate Recall; DR = Delayed Recall; WAIS-R = Wechsler Adult Intelligence Scale—Revised.

work. The last two scales are based on shortened versions of
Wechsler Adult Intelligence Scale—Revised subscales (Wechsler,
1981): (a) Similarities, which was measured on a subset of people
before 1996, and (b) Vocabulary (five items), which was measured
on everyone in HRS at least one time starting in 1996. All the
Vocabulary data are used, but, because of the limited data on
Similarities (less than 10%), they are not used in further analyses.

Summary statistics on all cognitive data for all occasions of
measurement are presented in Table 5. This information is based
on the seven cognitive variables at the first time of testing or the
first time the participant had all seven tests (e.g., 1998 for

AHEAD). To provide comparability across all scales and to sim-
plify this measurement for further statistical analysis, we rescaled
each variable into a percentage correct score (i.e., based on divi-
sion by the maximum score and multiplication by 100). These
statistics show that the subscales of Immediate Recall, Delayed
Recall, and Vocabulary all had averages near 50% and had nearly
normal distributions (skewness and kurtosis nearly zero). The
Serial 7s scale was somewhat easier (M = 70.5), but it had a nearly
normal distribution as well. However, the other three subscales,
Backward Counting, Dates, and Names, had more than a 90%
correct response rate and were negatively skewed.

Table 5
Descriptive Statistics for All Persons From the First Testing With the Most Cognitive Variables

Statistic IR DR S7 BC DA NA VO Age Educ
M 55.79 43.93 70.46 95.23 94.16 91.32 56.42 64.60 12.35
SD 18.52 22.30 44.07 21.09 14.27 16.71 21.20 11.45 3.28
Skewness —0.15 —0.08 —0.68 —3.73 —2.98 —1.75 —0.37 0.53 —0.82
Kurtosis 0.01 —0.41 —0.96 12.01 10.75 2.61 —0.09 —0.87 0.98

Note. N = 17,355. This subsample was selected so there would be only one person per family, and respondent-level sampling weights were used to adjust
to a U.S. national norm. IR = Immediate Recall; DR = Delayed Recall; S7 = Serial 7s; BC = Backward Counting; DA = Dates; NA = Names; VO =

Vocabulary; Educ = education.
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In Table 6 we present the pairwise correlations among the
cognitive variables. Because there were some incomplete data on
all measures (1%—5%) and about 20% of the people were never
administered the Vocabulary measure (i.e., AHEAD 1995), these
correlations were estimated with an incomplete data algorithm
based on maximum-likelihood estimation (MLE-MAR in Mplus
4.0; Muthén & Muthén, 2006). The estimates presented in this
table do not have any correction for nonnormality, so they are
probably lower bound estimates. Nevertheless, the correlations
among the seven cognitive measures exhibited a positive manifold,
had a clear structure (i.e., were positive definite), and had negative
correlations with age and positive correlations with education.

A summary description of all available longitudinal data from
Table 3 is decidedly more complex, but some of the available
information about the scores over age is presented in the plots of
Figures 2A and 2B. In these figures we have plotted data from a
randomly selected 1% of the selected people, and both the incom-
plete and the complete trajectories of data points are presented.
The data for Figure 2A show the scores for Immediate Recall
(y-axis) and the age at testing (x-axis), and the longitudinal data for
each person are connected by a solid line. Figure 2B is the same
kind of trajectory plot for Vocabulary scores, and here the incom-
plete data are clear. The straight lines in these figures represent the
expectation of declining scores over age, and their derivation (from
latent curve models) is discussed in detail in our later analyses.

There are many ways to give information about all the longitu-
dinal cognitive data, but the complexity of the HRS data collection
limits the simplicity of presentation. In subsequent analyses we
characterize both longitudinal stability and fluctuations, so we use
this approach for the initial description as well. Table 7 is a
statistical summary of these kinds of associations among all the
available longitudinal data from Table 2 (D = 69,496), with the
total variance (o,%) of the scores separated into between-persons
variance (averages over time, ¢,,>) and within-person variances
(deviations over time, o). These terms provide initial estimates
of longitudinal stability and changes for each variable by (a)
collating the individual data on any score for each person (Y[t],)
and (b) separating the individual average of the scores over time
(Y,) from (c) the deviations around this average (Y[t], — Y,). In
the typical analysis of persons in families (Nagoshi & Johnson,
1987) or in classrooms (Muthén, 1991), this is a simple way to
separate the group differences from the individual differences

Table 6

within these groups. In the longitudinal context, however, this is a
simple way to separate the stable average of a person’s scores from
the unstable deviations around the person’s average. In this stan-
dard calculation, the unstable part includes the systematic
individual-specific changes as well as all the time-varying mea-
surement errors. It follows that the further calculation of longitu-
dinal intraclass correlations (i.e., eta-squared) for each variable can
be used to compare relative stability and change across the cog-
nitive variables, but it should not be interpreted as a standard
reliability coefficient (see McArdle & Woodcock, 1997). In these
data, we can easily distinguish the most stable variables (> ~ .63
for Backward Counting) from those that fluctuate most (1%s ~ .22
for Serial 7s and Dates).

In Table 8 we present the same description for each pair of
variables, and this is an initial description of the pattern of correlations
of the stable and fluctuating components. The between-persons cor-
relations (below the diagonal) indicate the similarities of the stable
parts of the variables, and most of these are p, > 0.50 (e.g., the
highest p,, = 0.96 for Immediate Recall and Delayed Recall). The
corresponding within-person (above the diagonal) correlations indi-
cate the similarities among the systematic changes in a pair of vari-
ables over time (i.e., without measurement error), and most of these
were much lower, around p,, < 0.20 (e.g., the highest p,, = 0.61 for
Immediate Recall and Delayed Recall). The relative pattern of these
between- and within-correlation matrices in Table 8 (in covariance
form) is difficult to discern from this table, but it is used as the basis
of longitudinal factor invariance analyses.

Latent Variable Modeling Analyses

The analyses we use are designed to characterize the basic structure
and age changes in the cognitive variables measured in the current
HRS. These questions can be answered via many different statistical
methods, but we used a sequence of four contemporary forms of latent
variable structural equation modeling:

1. latent common factor models—unrestricted or explor-
atory factor analysis to define the basic factorial structure
of the HRS cognitive measures,

2. latent path models—restricted or confirmatory factor
analysis techniques to define the cross-sectional relation-

Maximum Likelihood Estimate Missing at Random Estimates of Pairwise Correlation Coefficients for All Persons From the First

Testing With the Most Cognitive Variables

Variable 1 2 3 4 5 6 7 8 9
1. IR —
2. DR 72 —
3.87 367 .356 —
4. BC 187 169 226 —
5. DA 279 278 254 .200 —
6. NA 357 343 379 220 307 —
7. VO 373 341 .388 182 .193 391 —
8. Age —.401 —.403 -.215 —.099 —.202 —-.176 —.158 —
9. Education .390 .359 438 186 213 402 474 —.273 —

Note. Eigenvalues (7 X 7 submatrix) A = {2.97,0.99, 0.84, 0.79, 0.62, 0.57, 0.23}. Overall —2LL = —500,638. IR = Immediate Recall; DR = Delayed
Recall; S7 = Serial 7s; BC = Backward Counting; DA = Dates; NA = Names; VO = Vocabulary.
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Figure 2. Longitudinal trajectories of cognitive scores as a function of age at testing for a random sample of
Health and Retirement Study participants (1%; n = 174). Solid lines are mixed-model-based mean expectations,
and dashed lines are plus or minus one standard deviation. A: Longitudinal trajectories of Immediate Recall
scores. B: Longitudinal trajectories of Vocabulary scores.
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Table 7

Maximum Likelihood Estimate Missing at Random for Between- and Within-Person Variability

Statistic IR S7 BC DA NA VO
Between-persons o> 198.5 282.5 102.2 749.4 54.4 148.8 228.8
Within-person o, ? 271.6 3574 438.2 183.3 146.8 220.9 208.4
Intraclass correlation m? (n? = o, %/[0,* + 0,°]) 488 222 .631 229 .504 .509

Note. N = 17,355. Only one person was included per family, and respondent-level sampling were weights used. Ny ween= 17355; Nyinin = 52,141. IR =
Immediate Recall; DR = Delayed Recall; S7 = Serial 7s; BC = Backward Counting; DA = Dates; NA = Names; VO = Vocabulary.

ships between the HRS cognitive factors and the demo-
graphic variables,

3. latent multilevel models—restricted or confirma-
tory factor analysis techniques to evaluate the longi-
tudinal factorial invariance of the HRS common fac-
tors, and

4. latent curve models—mixed-effect modeling to define
the growth—decline functions that characterize all longi-
tudinal data as well as time-invariant and time-varying
covariates.

Decisions about the accuracy, direction, and size of effects were
made on a statistical basis. Of course, traditional criteria for statistical
significance of fit and effects are virtually guaranteed with a sample
size of more than 17,000. In this study, we routinely present overall
chi-squares but rely on the root-mean-square error of approximation
test statistic for the assessment of good fit (¢, < .05; Browne &
Cudeck, 1993). We also present individual Z values (parameters/
standard errors) and use the o« = .00001 significance test level (e.g.,
Z > 4.3) as a screening criterion for further discussion.

Modeling With Incomplete Data

The previous HRS analyses (e.g., Rodgers et al., 2003) de-
scribed the use of a multiple imputation procedure for handling
incomplete data (using IVEware). This approach is reasonable for
data that are missing within or over time, and it can be used when
the incompleteness is due to attrition and other factors and the data
are considered missing at random (MAR; after Little & Rubin,

Table 8
Maximum Likelihood Estimate Missing at Random for Between-
Persons and Within-Person Correlations

Test 1 2 3 4 5 6 7
1. IR — .605 .062 102 .146 133 .089
2. DR 958 — .052 .108 138 124 .060
3.87 462 432 — .050 .098 .065 .023
4. BC .570 .543 573 — 118 .103 .022
5. DA .657 .663 .589 557 — .208 .059
6. NA 611 .600 .546 .615 .636 — .066
7.VO .624 .601 494 671 459 .697 —

Note. N = 17,355. Only one person was included per family, and
respondent-level sampling weights were used. Between-persons correla-
tions are below the diagonal, and within-person correlations are above.
IR = Immediate Recall; DR = Delayed Recall; S7 = Serial 7s; BC =
Backward Counting; DA = Dates; NA = Names; VO = Vocabulary.

1987). The same assumptions underlie analyses based on any
latent variable structural equation model that includes all the
data—not simply the complete cases (e.g., Horn & McArdle, 1980;
McArdle, 1994). We expect nonrandom attrition, but our goal is to
include all the longitudinal and cross-sectional data to provide the
best estimate of the parameters of change as if everyone had
continued to participate (Diggle, Liang, & Zeger, 1994; Little,
1995; McArdle & Anderson, 1990; McArdle & Bell, 2000;
McArdle & Hamagami, 1991; McArdle, Prescott, Hamagami, &
Horn, 1998). In computational terms, the available information for
any participant on any data point (i.e., any variable at any occa-
sion) is used to build up maximum likelihood estimates that
optimize the model parameters with respect to any available data.

These incomplete data techniques are available in many current
computer programs, and we use both Mplus 4.0 (Muthén & Mu-
thén, 2006; see Ferrer, Hamagami, & McArdle, 2004) and SAS
PROC MIXED (Littell, Milliken, Stroup, Wolfinger, & Schaben-
berger, 2006; Verbeke, Molenberghs, Krickeberg, & Fienberg,
2000). The Mplus program is advantageous because it also allows
us to deal with (a) survey sampling weights, (b) categorical mea-
surement models, (c) multilevel models, and (d) a random-slopes
approach to latent curve models. We assess the goodness of fit of
each model using classical statistical principles about the model
likelihood (fy; ) and change in fit (chi-square). In most models to
follow, we use the MAR assumption to deal with incomplete
longitudinal records, and we discuss these assumptions later (e.g.,
Cnaan, Laird, & Slasor, 1997; Little, 1995).

Results
Latent Common Factor Modeling

The first set of results is based on an exploratory common factor
analysis of the raw data used to form the correlation matrix of
Table 6. This is an unrestricted analysis because we used minimal
identification constraints and rotated the factors using an oblique
(PROMAX) solution (see McArdle, 2007; McDonald, 1999).
These are standard exploratory factor analysis techniques, except
that we accounted for both incomplete data (by MAR, with 36
patterns of incomplete data) and survey sampling weights (see
Asparouhov, 2005; Pfeffermann, Skinner, Holmes, Goldstein, &
Rabash, 1998; Stapleton, 2002). The results of a sequence of factor
analysis models are presented in Table 9.

The first set of columns (Model 1) shows the result for a
one-factor model, with dominant loadings on the Immediate Recall
(A = .88) and Delayed Recall (A = .86) subscales, but with
significant loadings on all seven measures. However, the goodness
of fit, x*(14) = 3,991 (g, = .128), was not adequate (i.e., p{g, <
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Table 9

Results From Unrestricted/Exploratory Common Factor Analyses of the Seven Health and Retirement Study Cognitive Measurements
at First Testing Occasion With Continuous Variables and Sample Weights

Model 1: One
common factor
x>(14) = 3,991

Model 2: Two common factors

Model 3: Three common factors

(g, = .128) X2(8) = 258 (g, = .042) X>(3) = 24 (g, = .020)
Measure N U N s U N b s U
IR .88 23 .79 13 24 70 .10 11 32
DR .86 27 .85 .06 21 94 .04 —.01 09
S7 46 .79 .04 .59 63 04 .30 34 64
BC 24 94 —.04 .38 87 —.05 .38 04 85
DA 35 .87 .06 40 81 03 .61 —.13 70
NA 45 .80 —.03 .67 58 —.02 42 30 59
VO 45 .80 .04 58 63 —.00 .00 72 48
Fac p 58 51 65 52

Note. N = 17,355. Results are from the Mplus 4.0 EFA MISSING option with frequency weights and maximum likelihood with robust standard errors
followed by Promax rotation. Italics are used to isolate the significant loadings. IR = Immediate Recall; DR = Delayed Recall; S7 = Serial 7s; BC =
Backward Counting; DA = Dates; NA = Names; VO = Vocabulary; Fac p = factor intercorrelation.

.05} > .0001). The second set of columns (Model 2) shows the
result for a two-factor model, and here the loadings were all
relatively strong, and the goodness of fit, x*(8) = 258 (g, = .042),
was very good (i.e., p{g, < .05} > .80). The first factor now had
significant loadings only on the Immediate Recall (A = .79) and
Delayed Recall (A = .85) subscales, the second factor had high
loadings on Names (A = .67) and Serial 7s (A = .56), and these
two factors were positively correlated (p,, = .58). The first factor
was the most obvious one, and we labeled it HRS Episodic
Memory. The second factor was a bit more difficult to interpret,
but the common features all represented very simple mental pro-
cessing capacity and alertness, so we labeled it HRS Mental Status
(after Herzog & Wallace, 1997). The two-factor model fitted very
well, but the three-factor model was informative. The third set of
columns of Table 9 shows a solution in which the fit was nearly
perfect (¢, = .020). In this model, the first two factors were
basically the same as before, but the third factor was dominated by
Vocabulary (A = 0.72). If we isolated the Vocabulary scores, the
second factor loaded only on the four original Mental Status
variables.

The previous factor analytic results might be confounded by the
fact that we were mixing three normally distributed continuous
variables (Immediate Recall, Delayed Recall, and Vocabulary)
with four categorical variables with substantial skewness (Back-
ward Counting, Names, Dates, and even Serial 7s). To investigate
any biases due to these standard assumptions, we next replicated
the earlier sequence of factor analytic models using new methods
that allowed a mixture of continuous and categorical variables in
the same model (after Muthén & Muthén, 2006). This alternative
approach to estimation (weighted least squares with minimum
variance) started with the calculation of thresholds (k — 1) for each
of the categorical variables, followed by a reestimation of the
correlations (of Table 6), followed by the same factor model
extraction and rotation. The results are presented in Table 10. As
expected, the use of thresholds yielded higher positive correlations
for relationships with the categorical variables and better model fit
in every case. However, the results for the factor patterns were
virtually identical to the previous results from Table 9. That is, the

one-factor model was a poor fit, the two-factor model was very
good and separated Episodic Memory from Mental Status vari-
ables, and the three-factor model was a perfect fit, suggesting the
useful isolation of Vocabulary. This second approach, although not
necessary in the overall sample, might be very useful in subsets of
this population with less variation on some of the categorical
variables, so we explore this again at various points in further
analyses.

Latent Factor Path Modeling

The next set of analyses added a restricted set of factor loadings
(e.g., as in confirmatory factor analysis) combined with selected
sets of latent variable regressions (e.g., McArdle & Prescott, 1992;
Park et al., 2002; Tulsky & Price, 2003). That is, we extended the
previous common factor model with three continuous and four
categorical variables (Table 10, Model 3) by adding (a) fixed zero
loadings and (b) prediction of the common factor scores from key
demographic variables. Although these were not strictly confirma-
tory models (i.e., with a priori hypotheses), the restricted set of
loadings allowed us to examine other model features with addi-
tional precision.

The results of Table 11 represent a single latent variable path model
that fitted fairly well (¢, = .030). This model included the over-
restricted factor pattern, in which the first factor was only the Episodic
Memory variables (Immediate Recall and Delayed Recall), the second
factor was only the four Mental Status variables (Serial 7s, Backward
Counting, Dates, and Names), and the third factor was only Vocab-
ulary. This measurement part of the model fitted the seven variable
correlations nearly perfectly, with strong positive loadings and rea-
sonably small uniquenesses. Of course, this is not surprising, as we
based this pattern on the prior results of Table 10. The equations for
the influences of the predictors of these two factor scores and Vocab-
ulary are in the second set of columns in Table 11. Here we included
age, education, gender, cohort, whether the participant was coupled,
and mode of testing (i.e., telephone or face to face), with coding
previously defined (Table 1). Raw estimates, standardized estimates,
and Z values are included.
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Table 10
Results From Exploratory/Unrestricted Common Factor Analysis With Three Continuous and Four Categorical Measures

Model 1: One

common factor

x2(12) = 1,861 Model 2: Two common factors Model 3: Three common factors

(g, = .094) A7) = 171 (g, = .037) X2(2) = 30 (¢, = .028)
Measure N U N N 2 N N s U
IR .74 46 .72 17 31 .81 .08 .04 24
DR 71 49 .93 .01 12 .86 .06 —.02 22
S7 .61 .63 —.01 .67 56" .02 .59 A1 57
BC .57 .67 —.03 .65 .61°% —.05 .73 —.06 .55%
DA 52 73¢% .10 45 73% .08 57 —.11 .67%
NA .66 .56 .00 .73 A7 —.03 .59 17 .50*
VO 53 72 .02 55 .68 —.01 .07 .82 27
Fac p 59 38 .52 58

Note.

N = 17,355. Results are from the Mplus 4.0 EFA MISSING option with frequency weights based on weighted least squares with minimum variance

followed by oblique Promax rotation. The exact change in fit required additional rescaling proportions. Italics are used to isolate the significant loadings.
IR = Immediate Recall; DR = Delayed Recall; S7 = Serial 7s; BC = Backward Counting; DA = Dates; NA = Names; VO = Vocabulary, Fac p = factor

intercorrelation.

* A uniqueness parameter (y) based on estimation of a set of thresholds for S7, BC, DA, and NA.

The results for the Memory factor include independent effects,
which were negative for age (—9.9 decline per decade) and cohort
(—3.7 decline per decade) and positive for education (1.8 per
year), gender (5.5 higher for women), mode of testing (3.4 better
on the telephone), and whether the participant was coupled (2.0
higher for a person in a couple). The impacts of education and age
were the strongest effects, and the raw coefficients could be
translated into the number of words lost or gained over specific
years (i.e., B, = 55.7 at age 65 implies about 5.5 words remem-
bered at age 65, B, = —9.9 means a loss of a full word every
decade, and B, = 1.8 implies that 5 years of education add up to
about one word recalled). The explained variance for the Memory
factor was R* = .35.

The results for the Mental Status factor were not the same, and
the raw weights were not in percentage units because of the
rescaling of the common factor in categorical estimation, so we

Table 11

focus on standardized effects. We found significant effects only for
education (f = .56), couple status (B = .11), and gender (} =
—.08). The Vocabulary variance was strongly related to education
(B = 3.0 per year), with smaller negative influences of age (B =
—3.9 per decade) and cohort (B = —3.5 per decade). The removal
of three coefficients for each variable produced a simpler model
(df = 3) but led to significant misfit: education, x*(3) = 2,567;
age, x*(3) = 567; gender, x*(3) = 556; cohort, x*(3) = 520;
couple status, x*(3) = 520; and telephone, x*(3) = 520. The
explained variance was R? = .45 for the Mental Status factor and
R? = .22 for the observed Vocabulary factor. The largest effects
(where Z > 5) are highlighted in the latent variable path diagram
of Figure 3.

We considered the possibility of more complex age interac-
tions in this latent path, and Table 12 is a list of the additional
results. We started with the same path model but added inter-

Restricted/Confirmatory Latent Path Results With Three Continuous and Four Categorical Measures, Two Common Factors, and Six

Main Effects

Model 1: Restricted factor loadings

Model 2: Latent variable regression weights

Memory VO Unique Memory

Measure factor Status factor score variance Latent equation factor Status factor VO score
IR 1.00/.93* 0.00 0 46/.13 (16) Constant at 65 55.7/0.0 (329) 0.00/0.0* 56.9/0.0 (178)
DR 1.04/.83 (66) 0.00 0 150/.31 (43) Age —9.9/—.65 (20) 0.03/.05 (<1) —3.9/—.22(5)
S7 0.00 1.00/.67% 0 67° Educ 1.8/.33 (41) 0.13/.56 (46) 3.0/.47 (60)
BC 0.00 0.82/.57 (27) 0 790 Gender 5.5/.52(19)  —0.12/—.08 (7) 1.5/.04 (4)
DA 0.00 0.67/.48 (31) 0 .86° Cohort —3.7/—.28 (8) 0.117.19 (<4) —3.5/—.22(5)
NA 0.00 1.10/.73 (45) 0 .62° Coupled 2.07.06 (7) 0.16/.11 (10) .06/.00 (< 1)
VO 0.00 0.00 1* 333/.78 (33) Tele-FTF 3.4/.10 (13) 0.12/.08 (7)  —1.3/—.03(3)

Latent variable R* 347 448 220
Note. N = 17,355. Estimates are raw values from Mplus 4.0 with MEANSTRUCTURE MISSING model and weighted least squares with minimum

variance missing at random estimates. Standardized values are listed after the slash, and Z values are in parentheses. Fit x*(24) = 405 (g, = .030). IR =
Immediate Recall; DR = Delayed Recall; S7 = Serial 7s; BC = Backward Counting; DA = Dates; NA = Names; VO = Vocabulary; Educ = education;
Tele = telephone; FTF = face to face.

 Fixed nonzero value. ° Uniqueness parameter from a threshold.
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Figure 3. A cross-sectional latent path model for the seven Health and Retirement Study cognitive measures.
This model includes three cognitive factors (Episodic Memory [EM], Mental Status [MS], and Vocabulary
[VO]) and six second-order demographic predictors. On the basis of all cross-sectional data, N = 17,355. Only
standardized parameters with Z values greater than 5 are included. The demographic variables are all assumed
to be correlated, but these correlations are not included in the figure. Educ. = education; Tele. = telephone;
FTF = face to face; IR = Immediate Recall; DR = Delayed Recall; S7 = Serial 7s; BC = Backward Counting;

DA = Dates; NA = Names.

actions of all six predictors with age, and this model also fitted
very well (¢, = .027). The resulting factor loadings were
virtually identical (to Table 11), so they are not listed again, and
the latent variable explained variances did not change much
either. However, the removal of the interaction coefficients for
the latent variable outcomes led to significant misfits, so some
interactions described above were needed for a complete ex-
planation of the factor scores. The key results for the Memory

Table 12

Latent Path Results With Six Main Effects and Six Age Interactions

factor included an Age X Age quadratic effect (age, B = —6.6;
Age X Age, B = 11.2), and the previous cohort effects inter-
acted with age (cohort, B = 0.6; Age X Cohort, B = 6.5), but
there were no other notable effects (i.e., not Age X Education
or Age X Gender). The Mental Status factor equation changed
very little, with only a small Cohort X Age interaction. The
equation for the Vocabulary score required no additional age
interactions.

Latent equation Memory factor

Status factor Vocabulary score

Model 1: Latent variable regression weights for main effects

Constant at 65 56.3/0.0 (263) 0.00/0.0* 56.6/0.0 (135)
Age —6.6/—.44 (13) 0.11/.16 (<3) —3.9/-224)
Educ 1.8/.33 (41) 0.13/.57 (46) 3.0/.47 (61)
Gender 5.4/.15 (19) —0.13/—.07 (8) 1.6/.04 (4)
Cohort 0.6/.05 (< 1) 0.18/.31 (6) —3.1/-.20(2)
Coupled 1.5/.04 (5) 0.15/.10 (9) .20/0.0 (<1)
Tele-FTF 2.31.07 (8) 0.06/.04 (3) —1.2/-.03 (3)
Model 2: Latent variable regression for age interactions
Age X Age 11.2/.43 (13) 0.18/.16 (3) —0.5/-.02(<1)
Educ X Age —0.1/—.02 (<3) 0.00/—-.02 (<2) 0.0/=.01(<1)
Gender X Age —.20/—.01(<1) —0.03/-.02 (2) 0.2/0.00 (< 1)
Cohort X Age 6.5/.52 (16) 0.15/.28 (6) 0.9/.06 (< 1)
Coupled X Age —1.0/—.03 (4) 0.15/.28 (6) 0.1/0.00 (< 1)
Tele-FTF X Age 0.4/.01 (<2) 0.03/.02 (<2) 0.0/0.00 (< 1)
Latent variable R* .365 458 233

Note. N = 17,355. Fit x*(33) = 451 (g, = .027). Standardized values are listed after the slash, and z values are in parentheses. Educ = education; Tele

= telephone; FTF = face to face.
“ Fixed nonzero value.
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Latent Multilevel Longitudinal Invariance Modeling

One of the key assumptions in studies of longitudinal changes in
score levels is that the same constructs are indicated by the same
scores over time. Thus, as a prelude to further analyses of longitudinal
changes, we examined the longitudinal invariance of the factorial
structure just described in the first two sections of the Results. The
principles of factorial invariance we use here are well known and have
been discussed by many others (e.g., Horn and McArdle, 1992;
Meredith & Horn, 2001). However, in this case we focused our
studies on the longitudinal scores over time and age and under various
procedures of measurement. Using a classic longitudinal approach,
we could analyze the seven cognitive variables measured over all nine
times and base this model fitting on a 63 X 63 covariance matrix
(with 63 means). This multiple-wave approach would allow the in-
clusion of incomplete data patterns, provide a standard test of the
invariance of the factor loadings over wave, and allow the common
and unique factor variances (and means) to change over wave (see
Meredith & Horn, 2001). However, as soon as we considered age as
a key categorization of people, we created a much larger multiple-
groups problem (i.e., longitudinal matrices of scores for each age
group; see Horn & McArdle, 1980), so we needed a more concise
computational approach.

Prior work in longitudinal factor modeling has shown how the
principles of invariance over time can be applied to sums and differ-
ences (e.g., Hultsch, Hertzog, Dixon, & Small, 1998; McArdle &
Nesselroade, 1994; Nesselroade & Cable, 1974). The key result of
this prior work is that two occasion scores can be transformed into
sums and differences without any loss of information, so the model of
invariant factors can be evaluated the same way with original or
transformed scores. We extended these principles to fit factor patterns
to the between-persons and within-person matrices calculated over
multiple occasions (as in Tables 7 and 8). In this approach, we
examined the key questions of factorial invariance over time in a
global way by examining the degree to which the same factor pattern
could be used to fit the between-persons covariance matrix and the
within-person covariance matrix (for further details, see McArdle,
2007). This global approach is used to indicate the overall invariance
properties of each variable and each common factor. Model fitting
follows the logic of analyzing persons in families (Nagoshi & John-
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son, 1987) or in classrooms (Muthén, 1991) and uses recent tech-
niques for multilevel invariance (see Lubke, Dolan, Kelderman, &
Mellenburgh, 2003). We recognize that lack of fit will not (a) tell us
about which particular occasions are different from one another, (b)
separate out specific factor covariance over time, or (c) provide
information about possible subgroups of persons (e.g., men and
women) who have different factor patterns.

The specific approach we used was to fit all longitudinal data on
all persons (D = 69,496) by first creating estimates of the 7 X 7
between- and within-person covariance matrices presented earlier
(e.g., Table 7 and 8). Using these estimates as a saturated model,
we then fitted and compared models of (a) configural invariance
(same nonzeros in the between- and within-person loadings) ver-
sus (b) the same pattern with metric invariance (i.e., exact values
in the between- and within-person loadings). The models fitted
here included (a) a one-factor model for all seven cognitive mea-
sures, (b) a two-factor restricted model for all seven cognitive
measures, and (c) a two-factor restricted model for six cognitive
measures (i.e., without Vocabulary). In all models fitted here, the
common and unique factor variances were allowed to vary for the
between-persons and within-person matrices. These alternative
models were easily fitted via a multilevel modeling approach
(Mplus 4.0), with the individual as a cluster and sampling weights
applied to all the data on the person. We did not estimate category
thresholds because of the size of the computational problem. The
overall estimates and goodness-of-fit statistics are described in
Table 13 and these results showed a remarkable degree of consis-
tency across time and among people. The comparison of models
for the one-factor solution (a vs. b) yielded m* = .65 for the one
metrically invariant factor but a relatively large misfit, normal
x*(6) = 2,616. The comparison of models for the two-factor
solution (c vs. d) yielded m*s = .61 and .81 for the metrically
invariant factors and a much smaller misfit, x*(5) = 651. The
comparison of models for the six-variable solution (e vs. f) again
yielded n%s = .61 and .82 for the metrically invariant factors, and
the misfit of the metric invariant model was the best found, X2(4)
= 399. These intraclass estimates for the common factors are
informative because they indicate a high degree of stability at the
common factor level, especially in the second Mental Status factor.

Table 13
Goodness of Fit for Longitudinal Multifactor Multilevel Models for All Seven Cognitive Scores Over All Longitudinal Occasions
Model C: Model D: Model E: Model F:
Model A: Model B: Restricted Restricted Restricted Restricted
One-factor One-factor two-factor two-factor two-factor two-factor
Goodness of fit configural metric configural metric configural—vVO metric—VO
Variance between persons o> 185.3 209.1 196.9/448.5 198.7/398.3 195.5/428.0 197.1/350.0
Variance within person o> 139.2 113.7 127.0/29.4 125.8/64.9 129.0/30.9 125.4/78.1
Intraclass corr. 1° .648 .612/.810 .611/.818
x*/df 4,617/28 7,629/34 577126 1,347/31 237/16 699/20
MLR scaling 1.454 1.535 1.420 1.483 1.442 1.512
€, .049 .057 017 .025 .014 022
ML x*df 4,990/6 1,178/5 715/4
Normal x*/df 2,616/6 651/5 399/4

Note.

See the matrices in Tables 7 and 8. Models were fitted with the Mplus 4.0 TWOLEVEL MISSING option with N = 17,355 and D = 69,496 via

MLR/missing at random estimation. The Mplus 4.0 MLR correction factor was used to adjust the chi-square difference. Attempts to use categorical
thresholds with weighted least squares with minimum variance estimation were limited by the large sample size. VO = Vocabulary; MLR = maximum

likelihood with robust standard errors; ML = maximum likelihood.
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Age-Based Latent Curve Models of Longitudinal Age
Changes

The final set of analyses presented here is based on statistical
research termed multi-level, random coefficients, or latent curve
models (Bryk & Raudenbush, 1992; Jones & Meredith, 2000;
McArdle & Hamagami, 1996, 2001; McArdle & Nesselroade,
2003; Snijders & Bosker, 1999; Verbeke et al., 2000). These
statistical procedures are used to fit a model directly to the ob-
served scores on the basis of various kinds of mathematical forms
of curve or decline. The most common form of a latent curve
model is based on a statistical model for a trajectory over time.
This model typically includes latent scores representing (a) a latent
intercept or initial level, (b) latent slopes representing the change
over time, and (c) unobserved unique scores within each time. In
most variations of this latent curve model, we added (d) a set of
group weights or basis coefficients describing the timing of the
observations (e.g., A[t] = 0 or 1 or A[t] = Age[t]). The error terms
are assumed to be normally distributed with mean zero and vari-
ance (0,%) and are presumably uncorrelated with all other compo-
nents (as in McArdle & Hamagami, 2001; McArdle & Nessel-
roade, 2003). As usual, the initial level and slopes are often
assumed to be latent random variables with fixed means (., )
but random variances (o>, o,%) and correlations (p,).

In this latent curve model, the timing of changes was initially
based on the age at testing (as in Figures 2A and 2B). As men-
tioned earlier, this approach differs from the more typical HRS
over-time regression analyses (e.g., Rodgers et al., 2003). In this
model, the age at any particular time was not considered as a
random variable—instead, the changes over age in the scores were
considered as the random intercepts and slopes, and the average
group changes were described by the fixed basis parameters (A[t]
= {Age[t] — 65}/10). The use of age as a basis represents the
fitting of a linear curve model through the longitudinal trajectory
data presented in Figures 2A and 2B, once again considering both
the incomplete and the complete trajectories of data points. Of
course, for this age-basis model to be viable, we need to assume
that the untestable MAR assumptions apply to this age dimension.
The score measured on a person at each age gives us some
indication of his or her likely scores at the ages not measured, and
persons measured at specific ages represent the age-based scores
for anyone. MAR in this incomplete data design problem includes
accounting for age changes in different cohorts (e.g., McArdle &
Anderson, 1990; McArdle & Bell, 2000; Meredith & Tisak, 1990;
Miyazaki & Raudenbush, 2000).

All models presented up to now were fitted with sample survey
weights and all longitudinal data on all persons (via Mplus 4.0
MLR-MAR; see Asparouhov, 2005). This approach was reason-
ably easy for the normally distributed variables but computation-
ally difficult for the skewed categorical outcomes. Therefore, to
simplify this analysis, we now focus on the episodic memory data in
the HRS; the initial latent curve results are presented in Table 14.

The first age-based model was fitted to Immediate Recall scores,
and this linear age-change model fit was a dramatic improvement
over a no-change or intercept-only model, corrected x*(3) =
7,966. This model was fitted with chronological age scaled so the
results included the three time-constant parameters at age 65 (., =
477, 6,2 = 119; Immediate Recall, {* = 183) plus three time-
dependent slope parameters indicating decreases in means (., =

—8.73) over every decade of age, with increases in variances and
covariances (0,> = 21; o,, = 6) over each decade. In terms of
Figure 2A, this result represents a relatively large average impact
compared with the apparent variation in the individual decline
curves (i.e., —8.73 points lost per decade), with some systematic
increasing individual differences. These changes in individual
differences came from both variances and covariances, so for ease
of interpretation we also added four rows representing the orthog-
onal decomposition of each term (e.g., the total slope variance was
26.9, or 8% of the total). The bold lines in Figure 2A are the
expected values of age-based declines from this mixed-effects
model of Immediate Recall scores, and the dashed lines represent
plus or minus one standard deviation around the expected latent
curve. Similarly, the lines in Figure 2B are the expected values of
far smaller age-based declines from the latent curve estimated
from the available Vocabulary scores (p, = 55.0; u, = —1.7).

The second column of results gives the same parameters and
decomposition for the Delayed Recall scores on the same people
over the same ages, and, although the improvement in fit was also
large, corrected x*(3) = 7,071, the numerical results were not
exactly the same. Although the mean decline was approximately
the same (u, = —8.47), the expected score at age 65 was much
lower (v, = 31.7), indicating that Delayed Recall was a generally
harder task. More important, the decomposition of the latent vari-
able variance showed no systematic linear age variance, and the
improvement in fit was largely based on the average decline. These
results may change with a different model for the age trajectory,
and we explore this in more complex models to follow.

The third column gives results attained when we fitted a latent
curve model to a common factor formed from the two previous
indicators. This model (a) used all longitudinal data from both
Immediate Recall and Delayed Recall, (b) defined an invariant
measurement model for Immediate Recall and Delayed Recall, and
(c) allowed all age changes to be captured by the single common
factor of Episodic Memory (for details, see alternative models in
McArdle, 2007; McArdle et al., 2002). The results for this model
were fairly good by all previous criteria—the measurement model
fit was balanced across both variables (i.e., Immediate Recall, N =
1.00; Delayed Recall, A = 1.15) and reflected a good fit to the raw
data, the age changes in the factor score represented a substantial
improvement over the no-change baseline, and there was a small
but potentially important age-change variation (1%). The good fit
of this measurement + curve model (Model C in Table 14) added
developmental evidence about the construct validity of this factor.

To deal with complex numerical problems of the simultaneous
estimation of latent factor and slope parameters, we approached
the same problem from an alternative perspective—we formed a
simple composite from the unweighted average of the Immediate
Recall and Delayed Recall scores. The results of the age-based
latent growth model fitted to these data are presented in the last
column of Table 14. This model was very different from its
no-change baseline, x*(3) = 8,168. The mean (fixed) parameters
for these results looked very much like all previous results, with
the age decline of —8.77 per decade (—1 word), but the other
age-related variation was negligible. This implies that the Episodic
Memory composite score can be used to carry much of the infor-
mation in the common factor of Memory but also that these are not
exactly the same.
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Table 14

Numerical Results for Longitudinal Latent Curve Models With a Linear Age Basis for Four Alternative Forms of Health and

Retirement Study Episodic Memory Scores

Model C: Model D:
Common factor Composite score
Parameters and fits Model A: IR Model B: DR of memory of memory
Fixed parameter
Age 65 intercept 47.68 (342) 31.73 (170) 56.33 (460) 50.26 (388)
Age slope/decade ., —8.73 (87) —8.47 (77) —8.29 (89) —8.77 (89)
Factor loading IR[t] A\ 1.0* 0.0* 1.0* 1.0*
Factor loading DR[t] Apr 0.0* 1.0° 1.146 (996) 1.0%
Unique intercept ppg —21.04 (69)
Random parameter
Intercept at 65 variance ¢,> 119.9 (43) 161.4 (40) 132.0 (54) 153.3 (55)
Age slope/decade o> 20.9 (12) 4.9 (9) 13.5 (10) 12.6 (9)
Covariance intercept and slope 6.0 (< 4) —4.8 (< 4) —11.7 (10) —13.3 (10)
Unique variance s, 103.1 (74) 171.1 (110)
Unique variance s> 182.8 (109) 83.7 (69)
Unique variance ipg?> 225.8 (107) 129.0 (63)
Combined random parameters (% variance)

Intercept at 65 variance o> 125.9 (38) 156.5 (41) 120.3 (53) 140.0 (45)
Age slope/decade o,” 26.9 (8) 0.1 (0) 1.8 (1) —=0.7 (0)
Unique variance o, 182.8 (54) 225.8 (59) 103.1 (46) 171.1 (55)
Total variance o-y2 335.6 (100) 382.5 (100) 225.2 (100) 310.4 (100)

Goodness of fit

No change baseline—f/MLR correction
Linear age model/MLR correction
Improvement x*/parameters

Corrected x*/df

264,876/1.276

260,145/1.232
9,462/6
7,966/3

270,768/1.353

267,639/1.119
6,258/6
7,071/3

514,673/1.633

510,056/1.491
9,234/9
6,845/3

263,751/1.295

259,238/1.200
9,026/6
8,168/3

Note. Models were fitted with Mplus 4.0 RANDOM MISSING options with N = 17,355 and D = 69,496 via MLR/missing at random estimation. Values
in parentheses are Z values to indicate parameters that were significant at various alpha test levels. Age was individually coded for each occasion as { Age|[t]
— 65}/10, so the intercept was at Age = 65, and the Age slope represented 1 decade. IR = Immediate Recall; DR = Delayed Recall; MLR = maximum

likelihood with robust standard errors.
@ Parameter is fixed at the current value.

Extended Latent Curve Models of Longitudinal Age
Changes

In further analyses based on the same logic, we again faced
computational problems using current computer software (i.e.,
Mplus 4.0). That is, fitting large-scale longitudinal models with
sample weights and incomplete data is computationally demand-
ing, and more complex latent curve models were not easy to fit the
same way. To explore these models, we used standard mixed-
model software without adjustment by sampling weights (i.e., SAS
9.1, PROC MIXED; Littell et al., 2006). A selected set of new
results for Episodic Memory is presented in Table 15.

The first column gives new estimates for the linear age-based
model with incomplete data (with maximum likelihood estimation
MAR assumptions) for the HRS Memory Composite score. Sim-
ilar to the previous Mplus estimates (Model D in Table 14), the
linear age-change model provided (a) a dramatic improvement in
fit over a no-change or intercept-only model and (b) significant
time-constant parameters at age 65 plus time-dependent slope
parameters indicating decreases in means over every decade of
age, with increases in variances and covariances over each decade.

These unweighted results yielded strong expectations about age-
related declines in episodic memory.

The linear results naturally led to considerations of nonlinearity of
the changes over age. The most typical way to do this is to add more
complexity to the basis (as in McArdle & Nesselroade, 2003). The
linear mixed model can be compared with the well-known use of a
quadratic change model (Bryk & Raudenbush, 1992). Although the
quadratic model offered a slight improvement in fit, x*(3) = 308, this
overall model was not well behaved for this overall sample. Unfor-
tunately, as soon as we introduced these kinds of more advanced
models into the current analyses of all HRS data, we experienced
serious practical problems (e.g., negative variances and convergence
problems in the quadratic; see Table 15, Model B). An alternative
variation on nonlinear age relations is a two-part linear spline model
fitted by first defining an age of turning or knot point (e.g., T = 65; cf.
Cudeck & Klebe, 2002; Hall, Lipton, Sliwinski, & Stewart, 2000).
These two-part models did not improve the fit at all—for example,
two-part splines, x*(5) = 80. Although our results do not suggest
anything new, we do expect nonlinear age functions to be reasonable
for some selections of HRS longitudinal data.
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Table 15

MCcARDLE, FISHER, AND KADLEC

Numerical Results for Health and Retirement Study Episodic Memory Composite Score in Alternative Longitudinal Latent Curve

Models Based on Age, Retest, Time-Invariant Covariates, and Time-Varying Covariates

Estimates from alternative latent growth models

Model C: Linear

Model A: Linear Model B: Quadratic ~ age with retest

Model D: Adding time-

Model E: Adding time-varying

Parameters and fits age basis model age basis model basis invariant covariates covariates
Fixed parameter

Age 65 intercept 50.60 (416) 50.89 (369) 49.60 (331) 51.77 (293) 51.91 (288)

Age slope/decade ., —9.59 (104) —9.17 (83) —10.06 (104) —14.00 (78) —12.39 (63)

Age change in slope ., —0.065 (5)

Retest (t > 1) shift w, 1.79 (12) 3.10 (19) 2.02(11)

Time-invariant educ

Educ X Intercept at 65 2.06 (50) 2.04 (50)

Educ X Age —0.28 (11) —0.28 (11)

Slope/Decade

Educ X Retest t > 1 =001 (<1 —-0.02(<1)
Time-invariant gender

Gender X Intercept at 65 4.78 (17) 5.22 (18)

Gender X Age —1.01 (6) —0.81 (4)

Slope/Decade

Gender X Retest t > 1 1.31 (5) 1.08 (<4)
Time-invariant cohort

Cohort X Intercept at 65 —6.25 (33) —4.99 (24)

Cohort X Age 1.64 (20) 1.77 (21)

Slope/Decade

Cohort X Retest t > 1 —=0.97 (7) -1.24(9)

Time-varying dyad

Dyad X Intercept at ¢ 1.61 (9)
Time-varying tele-FTF

Tele-FTF X Intercept at ¢ 0.24 (<2)

Combined random parameters (% variance)

Intercept at 65 variance o, 169.4 (46) 173.5 (43) 199.4 (46) 144.6 (38) 156.5 (40)

Age slope/decade o> 17.5 (5) 77.0 (19) 13.3(3) 12.4 (3) 8.7(2)

Age change in slope o,” —14.7 (—4)

Retest variance o, 56.9 (13) 56.1(15) 70.5 (40)

Unique variance o, 178.0 (49) 171.8 (42) 166.5 (38) 165.2 (44) 156.5 (18)

Total variance (ryz 364.9 (100) 407.5 (100) 456.0 (100) 436.0 (100) 392.2 (100)

Goodness of fit
Improvement leparameters 11,065/6 11,373/9 11,567/9 16,727/18 41,921/20
Change x*/df 11,065/3 308/3 498/3 5,164/9 25,194/2

Note. Models were fitted with SAS 9.1 PROC MIXED without sampling weights but with N = 17,355 and D = 69,496 (observed mean = 50.13,

variance = 437.4). The baseline model of equal means, deviations, and correlations yielded a fit of —2LL = 597,874, with ouz = 202.6, and intraclass
correlation m? = .549. Values in parentheses are Z values to indicate parameters that were significant at various alpha test levels. Coding schemes follow
Table 1: (a) Age was individually coded as {Age[t] — 65}/10, so the intercept was at age = 65 and the age slope represented one decade. (b) Retest was
individually dummy coded so O = first testing and 1 = retesting. (c) Gender was half effect coded, with men = —0.5 and women = 0.5. (d) Education
was coded as years —12. (e) Birth cohort was coded as cohort = (birth year — 1930)/10 to be approximately centered, so change represents a decade. (f)
Dyad at testing was half effect coded for each wave, with not tested in dyad = —0.5 and tested in dyad = 0.5. (g) Telephone-face to face was half effect
coded for each wave, with face-to-face testing = —0.5 and telephone testing = 0.5. Educ = education; Tele = telephone; FTF = face to face.
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The latent curve model can also be expanded to account for
multiple basis variables and multiple predictor variables (e.g.,
McArdle & Anderson, 1990). This leads to a simple way to
consider practice effects in terms of components of change. Var-
ious representations of an age-based curve plus practice effects
model have recently been discussed by other researchers, espe-
cially to eliminate confounds due to test practice or to model other
time courses (e.g., Ferrer et al., 2005; Lovdén, Ghisletta, & Lin-
denberger, 2004; Rabbitt et al., 2004; Rabbitt, Diggle, Smith,
Holland, & Mclnnes, 2001; Sliwinski, Hofer, & Hall, 2003).
McArdle and Woodcock (1997) used a model with two basis
coefficients describing the observations at different ages and oc-
casions of retest. In particular, in the models to follow, we fixed
Alt] = {Age [t] — 65}/10 and also fixed R[t] = {0 ift = 1, and
1ift > 1}. This assumed that retest can be described as a function
that has no impact at Time 1 and then has a constant impact
thereafter (i.e., an initial retest effect that persists, after McArdle et
al., 1998). In contrast to other treatments of retest effects in which
patterns of retest basis (R[t]) were considered (e.g., Lovdén et al.,
2004; Rabbitt et al., 2001, 2004), this retest model allows the
estimation of a retest mean and variance (., and ¢,%) as well as
correlations with other latent components.

The results of the addition of a retest basis to an age basis for the
HRS Memory Composite are presented in the third column of
Table 15 (Model C). The overall change in fit was reasonably
large, x*(3) = 498, and the resulting parameters seemed sensi-
ble—a larger age-based decline (i, = —10.1 per decade) com-
bined with a positive retest effect (., = 1.8 after the first test). The
overall variance components (accounting for both variance and
covariance) showed that the age variance per decade (o,> = 13.3)
was substantially less than the variance associated with the retest
(0, = 56.9). Of course, more complex alternative hypotheses
about the nature of the retest basis can be fitted as well (as in
McArdle & Woodcock, 1997). The only alternative we examined
in this work was an increasing linear practice effect (R[t] =
{0,1,2,3 ... T}), and this alternative did not improve the fit
substantially, x*(3) = 18.

We extended the previous model with an age basis and a retest
basis by adding three key demographic variables as time-invariant
predictors—education, gender, and cohort. These variables were
known to be correlated (see Table 2), so the results of separate
demographic influences were likely to be confounded. To examine
the independent impacts of these variables, we fitted a set of more
complex mixed-effects models in which all variables and all their
possible interactions were included. The numerical results in Model D
of Table 15 show that the addition of these three variables as predic-
tors of intercepts and slopes made a large difference in fit, x*(9) =
5,164. The increases in educational level had a large positive impact
at age 65 (2.0) and a small negative impact on the age slope (e.g.,
higher education with slightly more decline) but no impact on the
retest. The women’s significantly higher scores at age 65 (by 4.8, or
half a word) declined at a slightly more rapid rate (—1.0) and had a
slightly higher retest benefit (1.3). The cohort effect at age 65 was
large and negative (—6.3 per decade) but was positive on the age
slope (1.6 per decade) and negative on the retest (—1.0). This implies
that significant differences between people born in different years
were seen to be relatively large at age 65 but that, possibly more
important, the age declines were significantly slower per decade for
more recent birth cohorts. The overall reduction in the estimates of the

latent variable variance was a key estimate of the explained variance
due to these effects, and this reduction was relatively large for the
intercept (from 199 to 145) but small for the age (13 to 12) and retest
(57 to 56) slopes (see Xu, 2003).

The final model fitted here (Model E in Table 15) used an age basis
and a retest basis, the three key demographic variables as time-
invariant predictors, and two additional variables as time-varying
covariates—whether the person was coupled at the time of testing and
whether the test was administered by telephone or in face-to-face
mode. The results showed that the addition of these two variables at
each occasion as predictors of the outcome at the same occasion made
a large difference in fit, x*(2) = 25,194. The final results seemed to
suggest that there was a significant positive impact on episodic
memory for people in a current couple (1.6) but that there was no
positive difference in memory scores for telephone versus face-to-face
testing. The previous demographic effects above did not change
direction, but some increased in size (age, § = —12.9), whereas
others diminished (i.e., cohort, B = —5.0; retest, B = 2.0).

In a last effort to simplify this final model, we reevaluated the
goodness of fit, leaving out each of the demographic predictors.
The reduction in the overall likelihood showed the relative impor-
tance of each variable (education, cohort, and gender). The signif-
icance of these misfits leads us to conclude that all independent
demographic effects were needed in the final model. The largest
results from these models are presented in the mixed effects path
diagram of Figure 4 (for diagram details, see McArdle &
Hamagami, 1996).
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156.6\3g¢ 65

R[t]={0,1 if t>1} [ A[t]=(Age[t]-65)/10
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Figure 4. A longitudinal mixed-effects path diagram (after McArdle &
Hamagami, 1996) for the Health and Retirement Study Episodic Memory
(EM) composite scores. This model includes three latent components
(intercept, age changes, retest), three demographic predictors (gender,
education, cohort), and two time-dependent predictors (couple status, tele-
phone). Results are based on all longitudinal data (D = 69,496). Values are
raw maximum likelihood estimates with Z values greater than 5. Age
Change Dec. = per decade age change; [t] = dependent on time.
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Discussion

This research presents a set of new results on the longitudinal
cognitive data from all available waves of HRS/AHEAD (1992—
2004). The primary purpose of this research is to describe age
trends of cognition among older adults in the HRS. We selected a
representative national sample of more than 17,000 individuals on
the basis of data from more than 69,000 interviews in the HRS. We
used a set of latent variable models to organize this information in
terms of both cross-sectional and longitudinal inferences about age
and cognition and examined how additional variables explain
individual differences in these constructs. These results are impor-
tant for further HRS research and, more generally, for further
research on age and cognition.

Although other researchers have used the HRS cognitive data by
constructing a single composite score, the latent variable factor
models presented in this article strongly suggest that a single factor
of cognition was not measured in the HRS interviews. The facto-
rial structure of the HRS cognitive measures was first investigated
by Herzog and Wallace (1997) via a subset of the current data and
classical methods. The new results we present are largely consis-
tent with Herzog and Wallace (1997) and suggest at least one
factor related to episodic memory (Immediate Word Recall and
Delayed Word Recall) and a second factor related to the four other
HRS tasks (Serial 7s, Backward Counting, Names, and Dates). The
second factor was labeled Mental Status, and, although this is not
a traditional common factor in multifactor theories of intelligence
(e.g., Horn, 1991), it may be quite useful in identifying serious
deficiencies that make it impossible to further measure a person on
standard cognitive tests (e.g., Herzog & Wallace, 1997). Our
inclusion of Vocabulary scores and the subsequent isolation of a
Vocabulary variable into a third dimension make it likely that
vocabulary is the only indicator of crystallized knowledge (after
Horn, 1991) in the HRS. Perhaps more important, the common
factor models we present point to the fact that the cognitive
measures in the current HRS do not measure a number of other
important factors in aging, such as Working Memory, General
Speed, or Fluid Reasoning (e.g., Horn, 1988; Lachman & Spiro,
2002). It follows that measures of these and other important
cognitive factors may need to be added to the HRS battery (e.g.,
McArdle, Rodgers, Fisher, Woodcock, & Horn, 2006).

The latent variable path model we present shows different
prediction patterns among these common factor scores, and this
adds additional external validity for their factorial separation (e.g.,
McArdle & Prescott, 1992; Park et al., 2002; Tulsky & Price,
2003). The most pervasive age and cohort declines were found for
the Episodic Memory factor, and these declines were consistent
with prior work in cognitive aging (e.g., Cerella & Hale, 1994;
Hultsch et al., 1998; Park, 2000; Zacks & Hasher, 2006). The
broad and representative sampling of people in the HRS makes this
result more potent and allows us to examine other effects related to
decline. In these path models, we found that, given the same cohort
and the same age, there was less memory decline among women,
those in a couple, and those who took the test over the telephone.
In addition, there were several nontrivial age interactions. All of
these effects require far more explanation than can be offered from
these analyses, but they should be considered in future work.

The current HRS data collection also allowed us to reexamine
the inferences about age differences from cross-sectional informa-

tion in terms of inferences about age changes within a person from
longitudinal data. Our first step was to examine the factorial
invariance of the longitudinal measurement models in terms of
multilevel factor analyses. These contemporary statistical models,
combined with our large sample size, provided a powerful way to
reject the hypothesis of metric invariance. However, the results we
present here clearly suggest that, as long as we use two or three
common factors instead of one common factor, we can reasonably
fit a metric invariant model. These analyses suggest that the seven
cognitive variables can be used to measure the same two or three
common factors at each occasion (i.e., measurement invariance
over wave of testing). As used in our work, this result provides a
necessary psychometric platform for carrying out further longitu-
dinal analyses. However, we recognize that there was much more
between-persons information than within-person information, so
this global approach was only capable of providing a first look at
one limited view of factorial invariance over time. Additional
invariance analyses over specific occasions, ages, and other group-
ings (e.g., gender, ethnicity, telephone vs. face-to-face interview)
should follow and may uncover important qualitative differences
in the sources and structure of these cognitive measurements.
Use of a latent curve model allowed us to organize age-related
declines in terms of both group means and individual differences
around these means. In the HRS, as in many other studies, the
participants were not all measured at the same initial ages, so wave of
measurement was not equivalent to age of measurement. This longi-
tudinal modeling approach also allowed a statistical separation of the
impact of age differences for participants who grew up in different
birth cohorts. Although they are not emphasized in this article, dif-
ferences in results and inferences can occur because different model-
based organizations of the longitudinal data do not always yield the
same results (even when age is included as a covariate; e.g., Sliwinski
& Buschke, 1999; cf. McArdle et al., 2002). Of course, this means
that age is not always the most important dimension of the changes.
In research in which the participants are all measured at the same
initial ages or after a specific incident (e.g., recovery time from
surgery), the time passed between tests (e.g., later time lag) is often
used as the basis of the trajectory (e.g., McArdle & Woodcock, 1997;
Snijders & Bosker, 1999; Verbeke et al., 2000). Other more informa-
tive bases for time may be time since an illness or time before death
(see Alwin & McCammon, 2001; Lindenberger, Singer, & Baltes,
2002; Singer, Verhaeghen, Ghisletta, Lindenberger, & Baltes, 2003).
The age-based approach applied to longitudinal scores clearly
showed linear declines over age and did not suggest that more
complex, nonlinear functional forms were needed. A simple for-
mulation of retest effects was represented and showed small but
positive increases in scores from first to subsequent testings, so
models without retest effects tend to underestimate the basic aging
declines in cognition (Ferrer et al., 2005; Lovdén et al., 2004;
Rabbitt et al., 2004; Roediger & Karkicke, 2006). We used addi-
tional variables to understand some of the individual differences in
age changes, and education, cohort, and gender had powerful
independent effects. These demographic effects were largely de-
scriptive features, and any shift in individual expectations required
all demographic information. The time-varying information was
similar—the positive effect of being in a couple was consistent
with the positive cross-sectional effect, but the lack of an effect for
being tested on the telephone was not consistent. These and other
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methodological features of the HRS require further analyses (see
Park, 1999).

These results set the stage for many other HRS analyses not
presented here. For example, we have not fully studied the impact
of participant attrition in the HRS. We attempted to account for
this nonrandom attrition by including all longitudinal and cross-
sectional data in the models, but we recognize this potential
confound, especially as it is related to other key variables, such as
age selectivity of cohort selection (e.g., Alwin & McCammon,
2001; McArdle & Anderson, 1990; Miyazaki & Raudenbush,
2000). In other longitudinal studies, the persons who drop out are
somewhat lower in cognitive performance at baseline than those
who participate in the follow-up, and it is possible to introduce
pattern-mixture assumptions to improve the accuracy of the model
parameters (e.g., Hedeker & Gibbons, 1997 Little, 1995). One key
concern for latent curve analyses with an older population is a
statistical accounting for the relations of mortality status to cog-
nition (Singer et al., 2003), and new statistical models merge latent
curve analysis with survival or frailty analysis (e.g., Ghisletta,
McArdle, & Lindenberger, 2006; Guo & Carlin, 2004; McArdle,
Small, Backman, & Fratiglioni, 2005). More appropriate age-
based models can be fitted with latent class mixture models for
subgroups with different trajectories (Muthén & Masyn, 2005).
After age-based confounds are considered, the HRS cognition data
can be used in the investigation of causal models of health and well
being (e.g., Adams et al., 2003; Blanchard-Fields, 2005; Zelinski
et al., 1998; Zelinski & Lewis, 2003). Models using latent dynamic
variables seem appropriate for the HRS cognitive measures within
spouse pairs (Ghisletta & Lindenberger, 2003; McArdle, 2001;
McArdle et al., 2001, 2004; Sliwinski et al., 2003).

The HRS/AHEAD data offer an opportunity for understanding
cognitive functioning and age. The HRS longitudinal data studied
in this article have features common to many data sets on aging
(Hauser & Willis, 2005). The HRS data were not collected in a
randomized controlled pretest—posttest design, and, as a result,
independent causal impacts among variables are confounded and
difficult to isolate. Also, there are large differences in initial
cross-sectional ages and smaller differences in longitudinal time
lags. Given these kinds of limitations, the HRS longitudinal data
are unique in many respects, especially regarding the collection of
a large representative sample of the U.S. older adult population
and the attempt to measure several aspects of cognition (see
McArdle et al., 2006). As we have tried to demonstrate, the HRS
cognitive data offer many future opportunities for research on both
the predictors and the outcomes of cognitive aging.
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