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Abstract—Many practical methods for finding maximally sparse
coefficient expansions involve solving a regression problem using a
particular class of concave penalty functions. From a Bayesian per-
spective, this process is equivalent to maximum a posteriori (MAP)
estimation using a sparsity-inducing prior distribution (Type I esti-
mation). Using variational techniques, this distribution can always
be conveniently expressed as a maximization over scaled Gaussian
distributions modulated by a set of latent variables. Alternative
Bayesian algorithms, which operate in latent variable space lever-
aging this variational representation, lead to sparse estimators re-
flecting posterior information beyond the mode (Type II estima-
tion). Currently, it is unclear how the underlying cost functions of
Type I and Type II relate, nor what relevant theoretical proper-
ties exist, especially with regard to Type II. Herein a common set
of auxiliary functions is used to conveniently express both Type I
and Type II cost functions in either coefficient or latent variable
space facilitating direct comparisons. In coefficient space, the anal-
ysis reveals that Type II is exactly equivalent to performing stan-
dard MAP estimation using a particular class of dictionary- and
noise-dependent, nonfactorial coefficient priors. One prior (at least)
from this class maintains several desirable advantages over all pos-
sible Type I methods and utilizes a novel, nonconvex approximation
to the /o norm with most, and in certain quantifiable conditions all,
local minima smoothed away. Importantly, the global minimum is
always left unaltered unlike standard ¢, -norm relaxations. This en-
sures that any appropriate descent method is guaranteed to locate
the maximally sparse solution.

Index Terms—Bayesian learning, compressive sensing, latent
variable models, source localization, sparse priors, sparse repre-
sentations, underdetermined inverse problems.

I. INTRODUCTION
H ERE we will be concerned with the generative model

y=>x +¢ (D)

where & € R™*™ is a dictionary of unit £-norm basis vectors
or features, x is a vector of unknown coefficients we would like
to estimate, y is the observed signal, and € represents noise or
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modeling errors often assumed to be Gaussian. In many prac-
tical situations where large numbers of features are present rel-
ative to the signal dimension, implying m > n, the problem of
estimating z is fundamentally underdetermined.

A typical remedy for this indeterminacy is to apply a penalty
term into the estimation process that reflects prior, disam-
biguating assumptions about z. This leads to the canonical
regularized regression problem

Z(1) 2 argngn lly — fbx”% + /\Z(J(%) 2)

which produces what is often called a Type I estimator denoted
z(r).! The first term in (2) enforces data fit (consistent with a
Gaussian noise model), while g(z;) is a fixed penalty on indi-
vidual coefficients and ) is a tradeoff parameter. For example, if
we would like to penalize the /5 norm of z, favoring minimum
energy solutions, then we can choose g(z) = 2.

Recently, there has been a growing interest in finding some %
characterized by a bi-partitioning of coefficients, meaning most
elements equal zero (or are very small), and a few large unre-
stricted values, i.e., we are assuming the generative x is a sparse
vector. Such solutions can be obtained by using

g9(z) = h(2%) A3)

with h concave and nondecreasing on [0,00) [27], [28].
Roughly speaking, the “more concave” h, the more sparse
we expect global solutions of (2) to be. For example, with
h(z) = z, we recover the /5 norm penalty, which is not sparse
at all, while h(z) = /z gives an £; norm penalty, which
under many circumstances is well-known to produce a  with
numerous elements (at least m — n) equal to exactly zero [8],
[30]. In arguably the most extreme case, maximally sparse
solutions are said to occur using h(z) = Z(.)[2], which
penalizes any deviation from zero uniformly, so once any
deviation from zero exists, no additional penalty is incurred
(Section I-B will discuss this penalty in more detail). Other
common selections include ¢g(z) = |z|P,p € (0,2] [7], [22],
[28] and g(z) = log(|z| + €), e > 0 [6], [14], [15], [19].

If we define the a prior distribution p(z) and likelihood func-
tion p(y|z) via

1
p(z) < exp | —5 > g(zi)| and

1
plalo) x exp |~ 1l - 2l @

I'While typically the global solution of (2) is unique, in certain cases it is
possible to have multiple minimizers. We then adopt the convention that (1 is
an arbitrary element of this nontrivial solution set (likewise for other arg min
or arg max expressions in this paper).
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then from a Bayesian perspective (2) is equivalent (via Bayes
rule [1]) to solving the maximum aposteriori (MAP) estimation
problem

x(;) = arg mgxp(ﬂy) = arg mgxp(yIZ)p(z)- ®)

At this point, the Bayesian viewpoint has essentially offered
nothing new, since the posterior mode (or maximum) equals
the same estimator z(;) we had before. However, what if we
consider alternative estimators based on p(z|y) but sensitive
to posterior information beyond the mode? Using variational
methods [21], we will demonstrate that it is possible to develop a
broader class of Type II estimators that is particularly well-suited
to finding maximally sparse coefficients and includes (2), and
therefore (5), as a special case. We should stress at the outset
that, while Bayesian methodology forms the starting point and
inspiration for many of the ideas forthcoming in this paper, ulti-
mate justification of Type II estimation techniques will be com-
pletely independent of any Bayesian formalism. Instead, our
strategy is to extract the underlying cost functions that emerge
from this formalism, and then analyze them abstractly in the
same manner that many others have analyzed (2). This is not un-
like the situation surrounding the widespread use of the /1 norm
for solving underdetermined inverse problems where sparse so-
lutions are desired. While the associated Type I algorithm can
be interpreted as performing MAP estimation using a Lapla-
cian prior, the rich theory quantifying performance guarantees
is completely independent of any putative association with the
Laplacian distribution. We will return to this topic in more de-
tail in Section VI.

A. Type Il Bayesian Estimation

The starting point for creating the Type II estimator involves
reexpressing the prior p(z) in terms of a collection of nonnega-
tive latent variables y = Y1, m]T € R’"'. The latent vari-
ables dictate the structure of the prior via

p(z) = Hp(xa:% p(wi) = max N'(z;;0,7)e(vi)  (6)

v >0

where ¢(;) is a nonnegative function? and N (z; 1, 2) hence-
forth denotes a Gaussian over z with mean g and covariance
Y. In a machine learning context, (6) is commonly referred to
as a variational representation whose form is rooted in convex
analysis and duality theory [21], and when the maximization is
dropped, provides a family of strict lower bounds on p(z) pa-
rameterized by -y [27]. Note that any prior p(z), constructed via
g(z;) = h(2?) as in (4), with h concave and nondecreasing
on [0, c0), is expressable using (6) given the appropriate ¢ [27].
Consequently, virtually all sparse priors (based on sparse penal-
ties) of interest can be decomposed in this manner, including

2Here we are assuming continuity for simplicity, and so (6) will have a max-
imum; otherwise we require a supremum operator instead.
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the popular Laplacian, Jeffreys, Student’s ¢, and generalized
Gaussian priors.3

The utility of (6) comes in forming approximations to the
posterior p(z|y), or for practical reasons the joint distribution
p(z,y) x p(x|y), which in turn can lead to alternative sparse es-
timators. For example, while computing the posterior mean of
p(z|y) is intractable, given an appropriate approximation, the
required integrals lead to analytic solutions. One practical op-
tion is to form a Gaussian approximation using (6) as follows.

For a fixed vy, we obtain the approximate (unnormalized) prior

Py (@) = [N (i:0,7:)9(7:) )
which leads to the approximate (normalized) posterior
5 p(ylz)p, ()
Py(zly) = s =N (mp,, X ®)
") = Tyl e N e

with
p, =107 (Al + oT07) 'y
S, =T —T®" (AT + 0T3") ' & )

where T' £ diag[y]. The key task then is to choose values for
the latent variables -y such that, to the extent possible, p(z|y) ~
N (z; p,, ;). One useful criterion that leverages the varia-
tional represention involves solving

argin [ p(ale) (@) - i (2)| do

= argmax /p(y|:l:)H./\/(xi;O,'yi)go(%)dxi (10)

Yar)

where the absolute value can be conveniently removed by
virtue of the variational lower bound (y-independent terms
are omitted). The idea behind (10) is that we would like to
minimize the sum of the misaligned mass between the true prior
p(z) and the approximate one p-(z), but only in regions where
the likelihood p(y|z) is significant. If p(y|z) ~ 0, then we
do not really care if the prior approximation is poor, since the
ultimate contribution of this error to the posterior distribution
will be minimal (see [34, Ch. IV] for more details).

Once () is obtained, a commonly accepted point estimate
for z is the posterior mean p, with 7y set to yrp)

-1
zry = Tn®T (M + 0 (n@7) v (11)

Note that if -y(;y) is sparse, the corresponding coefficient es-
timate x () will be sparse as well, consistent with our mod-
eling assumptions. Type II is sometimes referred to as empir-
ical Bayes, since we are (somewhat counterintuitively) using

3The function ¢(;) can either be chosen constructively to produce some
prior p(«;), or alternatively, for a given sparse p(x;), the associated value of
(i) can be computed using convexity results [27]. However, technically there
is some ambiguity involved here in that »(7;) need not be unique. For ex-
ample, consider a prior p(x;) composed as a maximization over two zero-mean
Gaussian kernels with variances o7 and 2. In this situation, the value of ¢ (;)
need only be rigidly specificed at (%) and ¢ (o2); at all other points its value
is constrained but need not be unique. Regardless, a natural, unique selection for
(:) does exist based on the concave conjugate of h from (3). We will accept
this convention for (+;) and discuss how it may be computed below.
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the data to empirically “learn” a prior on x [1]. Relevant Type
IT examples include sparse Bayesian learning (SBL) [31], [34],
automatic relevance determination (ARD) [26], [35], evidence
maximization [29], and methods for learning overcomplete dic-
tionaries [17].

B. Preliminary Definitions and Problem Statement

To begin, the ¢y norm is defined as

I2llo £ e, 20) [24] (12)
1=1

where the indicator function Z,, +o) takes a value of 0 if z; = 0
and 1 otherwise.# With regard to the dictionary ®, the spark
represents the smallest number of linearly dependent columns
[13]. By definition then, 2 < spark(®) < n + 1. As a special
case, the condition spark (®) = n+1 is equivalent to the unique
representation property from [19], which states that every subset
of n columns is linearly independent. Finally, we say that ® is
overcomplete if m > n.

Turning to the problem of obtaining sparse point estimates Z,
we start with the most straightforward case where € from (1) is
zero. If ® is overcomplete, then we are presented with an un-
derdetermined inverse problem unless further assumptions are
made. For example, if a vector of unknown, generating coeffi-
cients Tz, satisfies

|Zgenllo < spark(®)/2 (13)
then no other solution z can exist such that y = &z and ||z||o <
|Zgen|lo [131, [18]. Furthermore, if we assume suitable random-
ness on the nonzero entries of T4, then this result also holds
almost surely under the alternative inequality

[€genllo < spark(®) — 1 (14)
which follows from [34, Lemma 2]. Given that (13) and/or (14)
hold, then recovering Zge, is tantamount to solving
Tgen = T = argngn =0, s.t.y=Pz. (15)
This cost function encourages feasible solutions = with the
largest possible number of elements identically equal to zero
and a few unrestricted coefficients; such solutions are often
referred to as maximally sparse. While ideal in spirit for many
applications that require exact sparsity, finding the global
minimum is combinatorial (NP-hard [25]) and therefore often
difficult to obtain in general. Fortunately, many Type I and Type
II methods represent viable surrogates that provide tractable
approximations that solve (15) in many practical situations. In
Sections III and IV, we will examine the solution of (15) in
much further detail. For the remainder of this paper, whenever
€ = 0, we will assume that ., satisfies (13) or (14), and so
To and Tge, can be used interchangeably.

Although not the primary focus of our analysis herein, when

€ # 0, things are decidedly more nebulous. Because noise is

4Note that ||z o, because it does not satisfy the required axioms, is not tech-
nically a norm.
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present, we typically do not expect to represent y exactly, sug-
gesting the relaxed optimization problem
o(A) £ argmin |ly — @3 + Allz]lo (16)

where ) is a nonnegative tradeoff parameter balancing estima-
tion quality with sparsity, noting that in the limit as A — 0, the
problems (15) and (16) are equivalent (the limit must be taken
outside of the minimization). Unfortunately, solving (16) is also
NP-hard, nor is it clear how to select \ so as to best approximate
Tgen.

In this paper, we will consider the application of general Type
I and Type II methods to the solution of (15) and/or (16) for the
purpose of estimating Zgen. On the surface, the above develop-
ments suggest that Type I methods are much more closely re-
lated to canonical sparse recovery problems; however, we will
demonstrate that Type II is quite suitable, if not advantageous,
as well. In general, most of the analytical results will address
solutions to (15), which lends itself more directly to theoretical
inquiries. Regardless, the underlying ideas still carry over to the
case where noise is present.

C. Overview

In applying the many existing variants of Type I and Type
II in practice, the performance recovering sparse generative co-
efficients can be highly varied because of convergence issues
and properties of global and local minima. Moreover, the rela-
tionship between Type I methods, which involve transparently
optimizing a cost function directly in z-space, and Type II ap-
proaches, which effectively operate less intuitively in ~y-space,
is very ambiguous. Additionally, it is not clear with Type Il how
to implement extensions for handling alternative noise models
or constraints such as nonnegativity, etc., because the required
integrals, e.g., (8) and (10), become intractable. To address all
of these issues, this paper will investigate the cost functions that
emerge from latent variable characterizations of sparse priors,
with a particular emphasis on special cases of Type II that per-
form exceedingly well on sparse estimation problems.

Starting in Section II we will demonstrate a fundamental du-
ality between Type I and Type II sparse estimation methods,
showing that both can be expressed in either x-space or y-space
with a common underlying set of objective functions uniting
all possible methods. This perspective facilitates direct compar-
isons and demonstrates that, for all methods, optimization or ad-
ditional/alternative solution constraints can be implemented in
either space depending on the application. Perhaps surprisingly,
the analysis also reveals that Type I is a special limiting case of
Type 11, suggesting that the broader Type Il may offer an avenue
for improvement.

Because Type I has been thoroughly analyzed by others in a
variety of contexts, we focus the next two sections on properties
of Type II with respect to finding maximally sparse solutions.
Working in coefficient space, Type II is shown to be exactly
equivalent to standard MAP estimation using a large class of
potentially dictionary- and noise-dependent, nonfactorial coef-
ficient priors (meaning a prior which cannot be expressed in the
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factored form p(x) = [, p(z;)). This is unlike Type I, which
is always restricted to factorial priors independent of A and ®.
In Section III we demonstrate that one prior (at least) from this
class maintains several desirable advantages over all possible
Type I methods in finding maximally sparse solutions. In par-
ticular, it utilizes a novel, nonconvex approximation to the ¢
norm with most local minima smoothed away; importantly, the
global minimum is left unaltered. This prior can be viewed in
some sense as a dual form of sparse Bayesian learning (SBL)
[31] or automatic relevance determination (ARD) [26].

Necessary conditions for local minima are derived and de-
picted geometrically in Section IV providing insight into the
best- and worst-case performance. Additionally, we describe
how the distribution of nonzero generating coefficients affects
the sparse recovery problem, defining a limited regime whereby
Type 1II is unequivocally superior to any possible Type I ap-
proach and guaranteed to find maximally sparse solutions using
a simple iterative algorithm.

Section V contains empirical experiments comparing an it-
erative reweighted /s-norm implementation of SBL (Type II)
with basis pursuit (BP) and orthogonal matching pursuit (OMP)
(Type I) recovering sparse coefficients as the dictionary size,
sparsity level, and coefficient distribution are varied. In all cases,
Type 1I is significantly more successful than Type I, even in
the worst-case regime for Type II. Finally, Section VI has con-
cluding remarks and provides an abstract perspective on the
success of Type II that deviates somewhat from the underlying
Bayesian model. All proofs are contained in the Appendix so as
not to disrupt the flow of the main text.

Overall, Type I methods, especially when viewed as forms of
sparse penalized regression, are much more prevalent in the sta-
tistics and signal processing community in the context of sparse
linear inverse problems. By demonstrating a fundamental du-
ality with Type II methods as well as some of the advantages
of the associated broader class of underlying cost functions, we
hope to inspire alternative means of estimating sparse solutions.
Portions of this work have previously appeared in conference
proceedings [35], [38], [39].

II. DUALITY AND UNIFICATION

Previously we have described how Type I methods minimize
a cost function in z-space while Type II approaches operate in
v-space. This distinction presently makes direct comparisons
difficult. However, this section will demonstrate a fundamental
duality between Type I and Type II. In particular, we will show
how the cost functions associated with both approaches can be
expressed either in z-space or in «y-space. This duality has sev-
eral important consequences. First, it facilitates straightforward
comparisons of the underlying cost functions and elucidates ac-
tual differences with respect to sparse estimation problems. Ul-
timately it will contribute substantial clarity regarding exactly
how the less transparent Type II operates, leading to a variety of
theoretical results linking Type I and Type II.

Secondly, it naturally allows us to impose constraints in ei-
ther y-space or z-space, depending on the application. For ex-
ample, in nonnegative sparse coding applications, we require
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the z-space constraint £ > 0 [4]. In contrast, to implement
certain iterative reweighting optimization schemes designed to
avoid local minima, or to allow for soft bounds on z, we can
include various variance constraints in y-space, e.g., 7y > €, as
described in [7] and [36]. Finally, this duality suggests alter-
native means of constructing cost functions and algorithms for
promoting sparsity. Other benefits, such as learning tradeoff pa-
rameters and quantifying sparsity with alternative data-fit terms,
are discussed in [37].

To begin, we will first reexpress the Type I objective from
(5) in an equivalent «y-space representation in Section II-A. A
byproduct of this analysis will be the demonstration that the
Type I cost function is a special limiting case of Type II. Later,
Section II-B will recast the Type II cost from (10) in z-space.

A. Cost Functions in y-Space

Computing the integral from (10), which is a standard convo-
lution of Gaussians for which analytic solutions exist, and then
applying a —2log(-) transformation gives the Type II cost func-
tion in y-space

Ll () 2 - 210g/p(y|$)HN(xi;Om)w(%)dxi

=y" S,y +1log [T, + > f(1)

(17)
=1
where
f(vi) & —2log p(:). (18)
and
Yy, 2 A+ oTo7. (19)

Here X, represents the covariance of the data y conditioned on
the latent variables vy (sometimes referred to as hyperparame-
ters) after the unknown coefficients « have been integrated out.
The function is then minimized to find some ;) and the point
estimate for (7 is subsequently obtained via (11). Note that
the data-dependent term in (17) can be shown to be convex in
v, while the log-det term is concave in <, and so in general
LZI 1 («) may have multiple unconnected local minima.

In contrast, Type I coefficient estimates z 7y are obtained by
minimizing

7 (x) 2 — 2log ply|z)p(z)

=y — (3 + 2D g(xi) (20)

with g defined via (3). These estimates can be obtained from an
analogous optimization procedure in y-space as follows:

Theorem 1: Define the «y-space cost function

Loy 2y y+ > fy(n)

i=1

1)
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with fory (i) £ Jog~y; + f(7i) and y > 0. Then Y(r) is a global
minimum of (21) iff

-1
(1) =T(n®" (M + 2T (H@") "y,

L(ry =diag |77 (22)
is a global minimum of (20). The correspondence extends to
local minima as well: 4, is a local minimum of (21) iff £z, =
1,07 (A + @, 7)™ y is a local minimum of (20).

So Type I methods can always be interpreted as minimizing
the Type Il-like cost function £/}, (y) in y-space, albeit without
the log-det term in (17), and with a particular selection for f,
i.e., f(I).S

Several points are worth mentioning with respect to this re-
sult. First, if g is known, as opposed to f or ¢ directly, then
f(r) can be computed using the concave conjugate [2, Sect. 3.3]
of h(z) = g(\/2),z > 0. When composed with the reciprocal
function v, 1, this gives

z

- ;) = min — — h(z). 23

fay(i) = min == = h(z) (23)

For example, using g(z) = |z|P gives the £,-quasi-norm penal-
ized minimization problem

z(r) = argmin [ly — @[3 + A|z[l}.p € (0,2).  (24)

The analogous problem in -y-space, using (23) to compute

fcry(7i), becomes

o1, (2=P) (p>—— =
- 5 ECP(BYVEEN L (o5
V) = argming’ X, Y+ , 5 2 Vi (25)

Secondly, when viewed in <y-space, it is straightforward
to add variance constraints to any Type I objective where
appropriate, e.g., minimize 52’1)(7) with 7; € [e,00) for
all ¢. If € is gradually reduced during optimization, we have
observed that local minima to [,EYI) (7) can often be avoided.
This notion is very similar in spirit to the algorithm from [7]
yet more straightforward when viewed in «y-space. In general,
convergence proofs, complementary analyses, and alternative
optimization strategies are possible using this perspective. It
also provides a particularly useful route for estimating the
tradeoff parameter A\, which as a noise variance, is more natu-
rally handled in the «y-space of variances [37].

Finally, the «y-space cost function E?I) () can be interpreted
as a special (limiting) case of the Type II cost function (17),
which leads to the following.

Corollary 1: Let z(ry denote Type I coefficients obtained by
minimizing (20) or (21) with A and f set to some arbitrary
X and f. Additionally, let .1:?‘1 n denote coefficients obtained
by implementing the Type II procedure with A := o~ '\ and
() == alogla(-)] + af [a(-)]. Then x5y = limy — o (i

In conclusion then, by choosing the appropriate sparse prior,
and therefore the function f, any Type I solution can be viewed

SAlternatively, it can equivalently be viewed as minimizing a Type II-like cost
function with log |T'| = 3°, log v; replacing log [,
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as a limiting case of Type II. This also implies that the less com-
monly adopted Type II framework offers a wider variety of po-
tential cost functions, relative to Type I, for tackling sparse es-
timation problems. Consequently, as we will argue in later sec-
tions, a selection from this larger set may possibly lead to im-
proved performance.

B. Cost Functions in z-space

Borrowing ideas from the previous section, we now demon-
strate a simple means of computing zrr) directly in z-space.

Theorem 2: Define the x-space cost function
Lirn () £ |ly — 03 + Ag (11 (=) (26)

with penalty

2
A . xi ) )
oun(e) S pind e +log B+ f(n)- @D
Then
_1 .
z(II) = F(II)(I)T (AI-F (DF(II)(DT) vy, F(I) = dlag[’y(‘,])}

(28)

is a global minimum of (26) iff 7y is a global minimum of
(17). Moreover, if flexp(+)] is convex, then (27) can be com-
puted with a convex program and the correspondence extends
to local minima as well: z, = I',®T (AT + (PF*(I)T)_I yisa
local minimum of (26) iff =y, is a local minimum of (17).

Consequently, Type II solutions can be obtained by mini-
mizing a penalized regression problem similar in form to Type
L. Note that the sufficient (but possibly not necessary) convexity
condition on f[exp(-)] for local minima correspondence is sat-
isfied in a wide variety of cases. For example, when g(z) = |z|?,
meaning p(z) is a generalized Gaussian, then with 3; = log~;
we have flexp(B)] = [exp(8)}/~0)— loglexp(f)] =
exp[pfi/(2 — p)] — B;.6 This expression is clearly convex in ;.

Additionally, a natural noiseless reduction of (26) exists
leading to a constrained optimization problem, analogous to
Type I methods. When A — 0, then Type II equivalently solves

() = )\li_n)lo arg ma%n gun(z), st.y= oz (29)
The only reason we retain the limit, as opposed to merely setting
A = 0in g(rpy(x), is because solutions with ||z]|o < n will
effectively involve taking the log of zero when minimizing over
v, which is undefined. Using the limit in this manner (outside of
the minimization) avoids this complication, although practical
implementations for solving (29) are well-behaved and stable
with A = 0 [36].

From an optimization standpoint, the cost functions from both
(26) and (29) can easily be supplemented with additional con-
straints, e.g., x > 0, facilitating the extension of Type II-like
methods to a much wider range of applications (e.g., see [36]).
Additionally, when viewed in z-space, it is very natural to con-
sider using different values for A, e.g., A; and A, given the
two instances that appear in (26) and implicitly in (29). In other

SHere we have used (23) to compute f(ry and therefore f while ignoring
constant terms.
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words, the value of A multiplying g(;7)(x) could be set to some
arbitrary \; while the value embedded in X, could be set to
Ao. For example, in (29) where it is assumed that A\; — 0, we
could easily allow a nonzero Ay (replacing A — 0 with As in-
side of 3J,)). While beyond the scope of this paper, when using
iterative reweighted /1 minimization algorithms to solve (26) or
(29), adjusting this Ay can potentially improve performance sub-
stantially [36], similar to the € factor in the reweighting method
of Candes et al. [6]. Note that it is only when we analyze Type
II in z-space (as a standard form of penalized regression) that
manipulating \ in this way makes any sense; in the original hi-
erarchical Bayesian model it is counterintuitive to maintain two
values of . This also opens the door to using a different dictio-
nary for constructing g(r)(x). This issue will be taken up again
in Section VL.

III. ANALYSIS OF THE TYPE II COST FUNCTION IN Z-SPACE

The distinguishing factor of Type II methods is the log-det
term in (17) and (27); the other regularization term based on
f(7:) is effectively present in Type I as well (see Section II-A)
and, when mapped into z-space, has been analyzed extensively
in this context [5], [7], [10], [13], [28], [33]. Consequently, we
will concentrate our attention here on the simple case where
f(vi) = 0 and flesh out the corresponding characteristics of the
underlying Type II cost function in z-space and examine the re-
lationship with popular Type I methods. Additionally, local min-
imum analyses in Section IV suggest that the choice f(vy;) =0
is particularly useful when maximal sparsity is concerned. Al-
ternative choices for f(-y;) in the context of sparse recovery are
examined in [38], further justifying the selection f(~;) = 0.

A. General Properties of the Type Il Penalty g ;;)(x)

It is well-know that concave, nondecreasing functions of
the coefficient magnitudes favor sparse solutions [28]. We
now demonstrate that g(;r)(z) is such a penalty, meaning
g (z) = b(|z|), where |z 2 |z, .., |zm|]" and b is a
concave, nondecreasing function of |z|.

Theorem 3: When f(v;) = 0, g(r1)(x) is a concave, nonde-
creasing function of |z|. Additionally, every local minimum of
(26) or (29) can be achieved at a solution with at most n nonzero
elements, regardless of .

In the noiseless case, such solutions = with ||z||o < n are
referred to as basic feasible solutions (BFS). The second point
in Theorem 3 has also been shown for the analogous Type II cost
function directly in y-space [34], meaning local minima can be
achieved with at most n nonzero elements of <y, but the result
is much less transparent. Theorem 3 also holds for any f(-y;)
that is concave and nondecreasing. As an aside, it also implies
that globally convergent, reweighted 1 minimization is possible
for optimizing L, () [36], assuming again that f(v;) that is
concave and nondecreasing.

Regarding global minima we have the following result.

Theorem 4: Givenspark(®) = n+1, assume that there exists
at least one feasible solution to y = Pz with ||z||o < n. Then
the set of coefficient vectors that globally minimize (29) with
f(vi) = 0 also globally minimize (15).
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Consequently a global minimum of (29) will always corre-
spond with a global minimum of (15). (Theorem 4 actually holds
for any f that is bounded.)

Thus far we have not provided any reason why the Type II
penalty g(;r)(x) has any direct advantage over Type L. In fact,
both Theorems 3 and 4 are also trivially satisfied by replacing
9(rr)(x) with the canonical sparse penalty ||z||o, which is a spe-
cial case of Type I. However, several factors distinguish g ;) ()
in the context of sparse approximation.

First, g(;r)(x) is nonseparable , meaning g(;p)(z) #
>_i 91y () for some function g(; ). Equivalently, the implicit
prior distribution on = given by p(rr) () o exp[—38(rr)(x)],
is nonfactorial, implying dependencies between elements of .
Additionally, unlike traditional Type I procedures (e.g., Lasso,
ridge regression, etc.), this penalty is explicitly dependent on
both the dictionary ® and potentially the regularization param-
eter A (assuming we only use a single A as discussed above).
The only exception occurs when ®T® = I; here g(rr)(x)
separates and can be expressed in closed form independently of
®, although A-dependency remains.

In general, the ¢; norm is the optimal or tightest convex
relaxation of the ¢y norm, and therefore it is commonly used
leading to the Lasso and related /; penalty algorithms [30].
However, the /1 norm need not be the best relaxation in gen-
eral. In Sections III-B and III-C we will demonstrate that the
nonseparable, A-dependent g;r)(x) provides a tighter, albeit
nonconvex, approximation that promotes greater sparsity than
|lz||1 while conveniently producing many fewer local minima
than when using ||z||o directly. We also show that, in certain
settings, no separable, A-independent regularization term can
achieve similar results. Consequently, the widely used family
of £, quasi-norms, i.e., [|z|5 = > |z:[P,p < 1[9], or the
Gaussian entropy measure . log|z;| based on the Jeffreys
prior [15] provably fail in this regard.

Finally, at a superficial level, the ®-dependency of g(;r)(x)
leads to scale-invariant solutions in the following sense. If we
rescale ® with a diagonal matrix D, i.e., ® — ®D, then the
optimal solution becomes x(;7) — Dz ;). In contrast, when
minimizing the ¢; norm, such a rescaling leads to a completely
different solution which requires solving an entirely new
convex program; there is no simple linear relationship between
the solutions.

B. Benefits of a Nonseparable Penalty

The benefits of the nonseparable nature of grr) (x) are most
pronounced in the overcomplete case, meaning there are more
dictionary columns than dimensions of the signal y. In a noise-
less setting (with A — 0), we can explicitly quantify the poten-
tial of this property of g(;r)(z). As discussed previously, the
global minimum of (29) will equal ¢, the maximally sparse so-
lution to (15), assuming the latter is unique. The real distinction
then is regarding the number of local minimum. In this capacity
g(rr) (%) is superior to any possible separable variant:

Theorem 5: Inthelimitas A — 0,noseparablepenalty g(z) =
>, 9(x;) exists such that, forally and ® with spark(®) = n+1,
the corresponding Type I optimization problem

min Z g(z;) st.y=dx (30)
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Fig. 1. Plots of the Type II penalty (normalized) across the feasible region as parameterized by . A separable penalty given by g(z) o 3. |2:|%°t & ||z||o
is included for comparison. Both approximations to the ¢, norm retain the correct global minimum, but only the Type II penalty smooths out local minima.

Left: ||zo]lo = 1 (simple case). Right: ||zo||o = 9 (hard case).

is: (i) Globally minimized only by solutions that minimize (15);
and (ii) Ever has fewer local minima than when solving (29).

Note that the spark condition is merely included to simplify
the proof (see the Appendix); Theorem 5 can be extended with
additional effort to include other spark values.” In general, The-
orem 5 speaks directly to the potential limitations of restricting
oneself to separable penalties (or equivalently factorial priors)
when maximal sparsity is paramount. As aforementioned, use
of the separable ¢; norm has traditionally been advocated
because it represents the tightest convex approximation to the
£o norm. However, a viable alternative relaxation is to replace
the convexity requirement with condition (i) from above (i.e.,
matching global minimum) and then ask what is the smoothest
approximation to the ¢y norm, separable or not, consistent with
this assumption. The Type II method discussed above provides
very substantial smoothing at the expense of convexity, yet
can still be implemented with tractable updates characterized
by provable convergence to some local minimizer (possibly
global) that can never be less sparse than the minimum ¢; norm
solution [36].

While generally difficult to visualize, in restricted situations
it is possible to explicitly illustrate the type of smoothing over
local minima that is possible using nonseparable penalties. For
example, consider the case where m = n + 1 and spark(®) =
m, implying that ® has a null-space dimension of one. Conse-
quently, any feasible solution to y = ®x can be expressed as
T = g + aw, where v € null(®), « is some real-valued scalar,
and = is the maximally sparse solution. We can now plot any
penalty function g(z) over the 1D feasible region of z-space as
a function of « to view the local minima profile.

In this simplified situation, the maximum number of local
minima equals n + 1, since removing any column from & pro-
duces a BFS. However, if ||zo]lo < n, then not all of these
BFS can be unique. For example, if ||zg||lo = 1, then only two
BFS will be unique: one solution that includes all columns of
® not used by z(, and then the solution g itself. In contrast,
if ||zollo = n — 1, then there will be n unique BFS (because
o will have two zero-valued elements and removing either as-
sociated dictionary column will lead to the same BFS). There-

TWe can also always add an arbitrarily small amount of randomness to any
dictionary to satisfy the spark constraint.

fore, the local minima problem is exacerbated as ||z ||o becomes
larger, consistent with expectations. Ideally then, a nonseparable
penalty will provide additional smoothing in this regime.

We demonstrate these ideas with two test cases, both of which
involve the same 10 x 11 dictionary ® generated with i.i.d. unit
Gaussian entries. In the first case we compute y = ®x(, where
T is a sparse vector with ||zo||o = 1; the single nonzero el-
ement is drawn from a unit Gaussian. Fig. 1 (left) displays the
plots of two example penalties in the feasible region of y = ®x:
(i) the nonseparable Type II penalty g(;1)(z), and (ii) the con-
ventional penalty g(z) = ). |z;[’, p = 0.01. The later is a
separable penalty that converges to the canonical £y norm when
p — 0. From the figure, we observe that, while both penalties
peak at the maximally sparse solution zg, the Type I penalty
has a second, small local minima as well located at « ~ 2.
While the Type II penalty displays a single basin of attraction,
its smoothing benefits are not very pronounced in this situation.

In the second case, we repeat the above with ||z¢||o = 9. This
is the largest number of nonzeros such that a unique, maximally
sparse solution still exists [with high probability by virtue of
(14)]. Hence it is the most difficult sparse recovery problem to
solve, with 10 unique local minima per the discussion above.
Fig. 1 (right) shows the results. Now the Type I penalty reflects
all 10 local minima (9 are shown), while Type II demonstrates
dramatic smoothing. While the ¢; norm (which is equivalent
to the assumption p = 1) also smooths out local minima, the
global minimum may be biased away from the maximally sparse
solution in many situations, unlike Type II which provides a
nonconvex approximation with its global minimum anchored at
xo. We will revisit this issue in much more detail in Section IV.

In general, the Achilles heel of standard, separable penalties
(Type I) is that if we want to retain the global minimum of (15),
we require a highly concave penalty on each x;. However, this
implies that all BFS will form local minima of the penalty func-
tion constrained to the feasible region (see the proof of The-
orem 5 in the Appendix). This is a very undesirable property
since there are on the order of (™) unique BFS with ||z|lo = n
(assuming spark(®) = n + 1), which is not very sparse. In
the example from Fig. 1 (right) there are 10 such solutions and
hence 10 local minima to the Type I cost. We would really like
to find degenerate BFS, where ||z||o is strictly less than n. Such
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represents a more practical nonseparable approximation that retains slope information pointing towards the global solution that could, at least in principle, be used

for optimization purposes.

solutions are exceedingly rare and difficult to find, yet it is these
very solutions that can be favored by the proper construction of
highly concave, nonseparable penalties.

A simple example serves to illustrate how a nonseparable
penalty can remove nondegenerate BFS that act as local minima.
Consider the penalty function ho(z) £ min(||z|o,7), where
ho(x) is equivalent to taking the £ norm of the largest (in mag-
nitude) n elements of x; this leads to the optimization problem

mzin ho(x), s.t.y= Px. 3D
While the global minimum remains at x, all local minima oc-
curring at nondegenerate BFS have been effectively removed. In
other words, at any feasible solution z, with n nonzero entries,
we can always add a small component aw € null(®) and main-
tain feasibility without increasing §o(z), since ho(z) can never
be greater than n. Therefore, we are free to move from BFS to
BFS without increasing ho(z). Also, the rare degenerate BFS
that do remain, even if suboptimal, are sparser by definition.
Therefore, locally minimizing the new problem (31) is clearly
superior to locally minimizing (15). This is possible because we
have replaced the troublesome separable penalty ||z||o with the
nonseparable surrogate ho(x).

This notion is illustrated with a simple graphic in Fig. 2 (left),
which compares the £; norm with o (z) in a 1D feasible region
parameterized by « with the same setup as in Fig. 1 (right).
In this situation, all local minima are removed by the simple,
nonseparable “truncated” ¢y norm ho(z).

To create effective sparsity penalties in general, it may not be
optimal to apply concave, sparsity-inducing functions directly
to the individual coefficients (or latent variables) in an elemen-
twise fashion (separable), which is characteristic of all Type I
methods. Rather, it can be useful to map the coefficients to a
lower-dimensional space first. The latter operation, which is ef-
fectively what Type II accomplishes, then necessitates that the
resulting penalty be nonseparable in the original full-dimen-
sional space. For example, §(z) first maps to an n-dimensional
space (the n largest coefficients of x), before applying the ¢
norm. Of course fo(z) is not viable practically since there is no
gradient information or curvature, rendering minimization in-
tractable. However, a simple alternative is b, (x), which applies

the £, quasi-norm (with 0 < p < 1) to the n largest elements
of x. Fig. 2 (right) compares h,(z) with direct application of
l|lz||, using p = 0.01 and the same experimental setup as be-
fore. Notice that the smoothing of local minima closely mimics
that of the Type II penalty g(;7)(z). While this may on the sur-
face be a surprising result, analysis of Type II in y-space pro-
vides strong intuitive evidence for why this should be the case;
however, for space considerations we defer this analysis to a fu-
ture publication.

C. Benefits of A Dependency

To briefly explore the potential benefits of A\ dependency in
the Type II penalty g(;)() in a noisy setting, we adopt the
simplifying assumption ®7'® = I.In this special case, g(1)(z)
actually becomes separable and can be computed in closed form
via

2|xL|
8un(z) = ;9@1)(‘””) x2 | + /27 + 4

i

+ log (2)\ + 22 4 |z /2?2 + 4)\) (32)

which is independent of ®. A plot of g(7y(w;) is shown in Fig. 3
below. The A dependency of (32) contributes some desirable
properties to the Type II cost function. Before giving the main
result, we state that g(z) is a strictly concave function of |z| if
g(z) = h(|z]) and hlaz + (1 — a)y] > ah(z) + (1 — @)h(y)
forall ¢ € (0,1) and z,y € [0,00),  # y. This leads to the
following.

Theorem 6: Assuming ®7® = I, then the following hold:
1) The cost function (26) has no (nonglobal) local minima.
2) g(1r)(z;) is a nondecreasing and strictly concave function

of |z;|, and so provides a tighter approximation to ||z||o
than ||z||1 (see Appendix for more details).

3) No fixed, A-independent penalty can satisfy both of the
above properties for all A, y, and ®.

4) Direct minimization of (16) has 2™ local minima; any other
strictly concave, A-independent penalty function can po-
tentially have this many local minima as well, depending
on ® and y.
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Intuitively, when X is small, the Gaussian likelihood term (or
quadratic data-fit term) is highly restrictive, constraining most
of its relative mass to a very localized region of z-space. There-
fore, a tighter prior/penalty more closely resembling the £, norm
can be used without the risk of local minima, which occur when
the spines of a sparse prior overlap nonnegligible portions of
the likelihood (see Fig. 6 in [31] for a good 2D visual of a
sparse prior with characteristic spines running along the coordi-
nate axes). In the limit as A — 0, g7y () converges to a scaled
proxy of the £y norm, yet no local minimum exist because the
likelihood in this case only permits a single feasible solution
with z = ®T'y. To see this, consider reexpressing (32) as

2|
8(rn)(x) Xi:g(u) (5) o< P~y

i

+ Zlog (2/\ + 27 + |zily /22 + 4/\> . (33

With A — 0, the first summation converges to ||z||p while
the second reduces to ) . logl|z;|, ignoring an irrele-
vant scale factor and a constant. Sometimes referred to
as Gaussian entropy, this log-based factor can then be re-
lated to the 4y norm via ||z|lo = lim, —o>, |z’ and
lim, 0 23, (il — 1) = 3, log |,

In contrast, when ) is large, the likelihood is less constrained
and a looser prior (meaning a less concave penalty function) is
required to avoid local minima troubles, which will arise when-
ever the now relatively diffuse likelihood intersects the sharp
spines of a highly sparse prior. In this situation g(;7)(x) con-
verges to a scaled version of the ¢; norm. The Type II penalty
naturally handles this transition becoming sparser as A decreases
and vice versa.

Of course as we alluded to previously, we can potentially treat
the A embedded in g(;7)(z) as a separate parameter; in general
there is no guarantee that keeping the two instances of A\ equal
is necessarily optimal. But the analysis here does motivate the
point that varying the concavity of the penalty function to re-
flect, for example, differing noise levels can expand the utility
of nonconvex approximations.

In summary, use of the £; norm in place of g;y(x) also
yields no local minima; however, it is a much looser approxi-
mation of the £y norm and penalizes coefficients linearly unlike

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

g(rn)(x). As a final point of comparison, the actual coefficient
estimate obtained from minimizing (26) when ®7® = T is ex-
actly equivalent to the nonnegative garrote estimator that has
been advocated for wavelet shrinkage [16], [34].

IV. TYPE II LocAL MINIMA CONDITIONS

From Section III-A we know that any global minimum of the
Type II cost function (whether in z-space or «y-space) coincides
with a global solution to (15) when f(v;) = 0 and A — 0. Addi-
tionally, we have shown that Type II provides a way to smooth
local minima created by direct use of the #;, norm (or any close,
separable approximation). However, it remains unclear what de-
termines when and where local minima will occur or conditions
whereby they are all removed. From Theorem 3 we know that
every local minimum can be achieved with at most n nonzero
elements, i.e., a basic feasible solution (BFS). Assuming A — 0
(noiseless case) and spark(®) = n + 1, this provides an easy
way to bound the possible number of local minima

1 < # of Type II
— Local Minima

AC )

where the upper bound is from [19]. Any Type I (separable)
method whose global solution always globally minimizes (15)
necessarily will achieve the upper bound (see the proof of The-
orem 5 in the Appendix); however, with Type II this need not be
the case. In fact, most BFS will not end up being local minima
[e.g., see Fig. 1 (right)]. As we will show below, in some cases
it is even possible to achieve the ideal lower bound, i.e., a single
minima that is globally optimal. As before, we will focus our
attention to the case where f(;) = 0. Local minima analyses
for arbitrary f(+y;) are considered in [34].

# of BFS to
<
- y=9%ox

A. Necessary Conditions for Local Minima

Although we cannot remove all nondegenerate local minima
in all situations and still retain computational tractability, it is
possible to remove many of them, providing some measure of
approximation to (31). This is effectively what is accomplished
using Type II as will be subsequently argued. Specifically, we
will derive necessary conditions required for a nondegenerate
BFS to represent a local minimum to EE”I I (z) (assuming
A —0). We will then show that these conditions are often
not satisfied, implying that there are potentially many fewer
local minima. Thus, locally minimizing £, (z) comes closer
to (locally) minimizing (31) than traditional Type I methods,
which in turn, is closer to globally minimizing ||z||o.

Suppose that we have found a nondegenerate BFS z, and we
would like to assess whether or not it is a local minimum to the
Type II cost function with A — 0. For convenience, let  denote
the n nonzero elements of z., and ® the associated columns of ®
(therefore, y = &z and = <i>_1y). Intuitively, it would seem
likely that if we are not at a true local minimum, then there must
exist at least one additional column of ® not in i), e.g., some wu,
that is appropriately aligned with or in some respect similar to
y. Moreover, the significance of this potential alignment must
be assessed relative to ®. For example, it seems plausible (de-
sirable) that if u ~ ¥y and all columns of ® are not close to v,



WIPF et al.: LATENT VARIABLE BAYESIAN MODELS

T2
o

z1

6245

€2
o

I

Fig. 4. 2D example with a 2 x 3 dictionary ® (i.e., » = 2 and m = 3) and a basic feasible solution using the columns ® = [¢, @, ]. The shaded areas represent
the cone (and its reflection about the origin) described in the main text. In this simple case, ¢, and ¢, divide z-space into four quadrants. The shaded regions
include the quadrant containing ¥ and its reflection about zero. Left: In this case, # = ¢, penetrates the shaded region, and so we satisfy the conditions of Theorem
7, ensuring that this configuration does not represent a local minima of Type II. But it does represent a local minimum of any Type I method constrained to match
the global minimum of the ¢, norm. Right: Now wu is outside of the cone (and cannot be used to form a tighter cone about y), so this situation does represent a

minimizing basic feasible solution for Type II.

then possibly (hopefully) we are not at a local minimum and a
sparser solution can be descended upon by including .

A useful metric for comparison is realized when we decom-
pose u with respect to ®, which forms a basis in R™ under the
assumption that spark(®) = n + 1. For example, we may form
the decomposition u = tf'f;, where 9 is a vector of coefficients
analogous to . As will be shown later, the similarity required
between u and y (needed for establishing the existence of a local
minimum) may then be realized by comparing the respective co-
efficients £ and ». In more familiar terms, this is analogous to
suggesting that similar signals have similar Fourier expansions.
Loosely, we may expect that if @ is “close enough” to z, then u
is sufficiently close to y (relative to all other columns in é) such
that we are not at a local minimum. We formalize this idea via
the following result:

Theorem 7: Let ¥ satisfy spark(®) = n + 1 and let z,
represent a solution vector with [|z.][o = n entries such

that z = ®ly. Let U denote the set of m — n columns of
® not included in ® and V the set of coefficients given by

{’6 0= i)’lfu,,'u. S Z/{}. Then z, is not a local minimum of

29) if .
(29) o,
E - >
— ;T
i#]

0 (35)

for some v € V.

This theorem provides a useful picture of what is required for
local minima to exist and more importantly, why many (possibly
most) BFS are not local minima. Moreover, there are several
convenient ways in which we can interpret this result to accom-
modate a more intuitive perspective.

In general, if the sign patterns of ¥ and x tend to align, then
the left-hand side of (35) will likely be positive and we cannot
be at a local minimum. For illustration purposes, in the extreme
instance where the sign patterns match exactly, this will nec-
essarily be the case. This special situation can be understood
geometrically as follows. Consider the convex cone constructed
via the columns of the matrix ®S, where S = diag (sign(&)).
This cone is equivalent to the set vectors which can be formed as
positive linear combinations of the columns of oS , 1.e., the set

{z tz = &)S’w,w € R™,w > 0 ;. By definition, this cone will
necessarily contain the signal y. However, if this cone contains
any other basis vector u € U, then the sign pattern of the corre-
sponding ¥ will match & and we cannot be at a local minimum
via (35). By symmetry arguments, the same is true for any
in the convex cone formed by —®S. The simple 2D example
shown in Fig. 4 helps to illustrate this point.

Alternatively, we can cast this geometric perspective in terms
of relative cone sizes. For example, let C represent the convex
cone, and its reflection, formed by &.S. Then we are not at a local
minimum to £, (z) if there exists a second convex cone C’
formed from a subset of columns of ® such thaty € C' C C,
i.e., C’ is a tighter cone containing y. In Fig. 4 (left), we obtain
a tighter cone about y by replacing ¢, with u.

Of course we must emphasize that these geometric conditions
are much weaker than (35), e.g., if all u € U are not in C, we
still may not be at a local minimum. In fact, for a local minimum
to occur, all w must be reasonably far from this cone such that
Yizjie S0VoEV.

B. Conditions for Removing All Local Minima

This section describes conditions, based on the relative mag-
nitudes of the nonzero elements in g, such that all (nonglobal)
local minima of (29) are removed leaving a unique global so-
lution that equals zy. The core idea is that as these nonzero
magnitudes become highly scaled, there are increasingly fewer
local minima until eventually all are smoothed away. In contrast,
we argue in Section IV-C that when all the nonzero coefficients
have equal magnitudes, obtaining x is more difficult because of
more local minima. However, even in this worst-case scenario
we demonstrate empirically in Section V that Type II still out-
performs widely used Type I algorithms.

Theorem 8: Let x(;) denote the ith largest coefficient magni-
tude of = and assume spark(®) = n + 1. Then there exists a set
of n — 2 scaling constants v; € (0, 1] (i.e., strictly greater than
zero) such that, for any y = @z’ generated with ||z’||o < n and

(36)
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the problem (29) has a unique minimum x ) such that x ;1) =
1’. Moreover, £ will equal x, the unique maximally sparse
solution.

This result is obviously restrictive in the sense that the dic-
tionary-dependent constants v; significantly confine the class of
signals y that we may represent. Moreover, we have not pro-
vided any convenient means of computing what the different
scaling constants might be. But Theorem 8 nonetheless solidi-
fies the notion that the Type II cost function is especially capable
of recovering coefficients of different scales (and it must still
find all nonzero elements no matter how small some of them
may be). Additionally, we have specified conditions whereby
we will find the unique =y even when the sparsity is as large
as ||zo|]| = n — 1, provided we use an appropriate, globally-
convergent algorithm such as iterative reweighted #; minimiza-
tion [36].

It is important to stress that this result specifies sufficient con-
ditions for removing all suboptimal local minima from the Type
II cost function, but these conditions are by no means necessary
for removing most/all influential local minima. In practice, lo-
cally minimizing (29) performs quite well even when the coef-
ficients are not highly scaled (see Section V). Moreover, we can
always initialize at the minimum ¢; -norm solution (best convex
approximation), and then progress from there. In fact, when op-
timized via an iterative reweighted /; minimization technique,
Theorem 8 can be leveraged to show that locally minimizing
(29) can never do worse than the minimum #; solution and that,
for any dictionary and sparsity profile, there will always be cases
where it does better (in particular, when highly scaled coeffi-
cients are present) [36]. This is true even for dictionaries with ar-
bitrarily bad coherence properties, e.g., gb,iTqu ~ 1 forall: # j,
where ¢, and ¢; are the ith and jth columns of @, respectively.
This topic will be pursued in greater detail in a future publi-
cation examining Type II methods in the context of structured
dictionaries.

In contrast, no possible Type I method satisfies a result com-
parable to Theorem 8.

Theorem 9: For any set of n — 2 nonzero scaling constants
there will always exist a dictionary ® and a set of ordered coef-
ficients z’, consistent with the stipulations of Theorem 8, such
that any possible Type I cost function, given ¢ and the signal
y = ®z’, will have multiple local minima and/or a global min-
imum that is not maximally sparse.

At this point, it may be unclear what probability distributions
are likely to produce coefficient magnitudes that satisfy the con-
ditions of Theorem 8. It turns out that the Jeffreys prior, given
by p(z) o 1/z, is appropriate for this task. This distribution
has the unique property that the probability mass assigned to
any given scaling is equal. More explicitly, for any s > 1

Prob (:17 € [si, si+1]) x log(s) VielZ. (37)
For example, the probability that z is between 1 and 10 equals
the probability that it lies between 10 and 100 or between 0.01
and 0.1. Because this is an improper density, we define an
approximate Jeffreys prior with range parameter a € (0,1).
Specifically, we say that z ~ J(a) if

p(x) !

= — f 1/a).
STog(a)r orx € [a,1/a]

(38)
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With this definition in mind, we present the following result.

Theorem 10: For a given ® that satisfies spark(®) = n + 1,
let y be generated by y = ®x’, where ||z’||o < n with nonzero
magnitudes drawn i.i.d. from J(a). Then as a approaches zero,
the probability that we obtain an z’ such that the conditions of
Theorem § are satisfied approaches unity.

While the proof is deferred to [34], on a conceptual level
this result can be understood by considering the distribution of
order statistics. For example, given n — 1 samples from a uni-
form distribution between zero and some 6, with probability ap-
proaching one, the distance between the kth and (k4 1)th-order
statistic can be made arbitrarily large as # moves towards in-
finity. Likewise, with the .J(a) distribution, the relative scaling
between order statistics can be increased without bound as a de-
creases towards zero, leading to the stated result.

In conclusion, we have shown that a simple, (approximate)
noninformative Jeffreys prior leads to sparse inverse problems
that are optimally solved via Type II with high probability. Inter-
estingly, it is this same Jeffreys prior that forms the generating
coefficient prior of Type I when f(v;) = 0, e.g., the prior ob-
tained by maximizing out 4y in (6). However, it is worth men-
tioning that other Jeffreys prior-based techniques, e.g., direct
minimization of —logp(z) o [], log|z;| subject to y = Dz,
do not provide any Type II-like guarantees. Although several
algorithms do exist that can perform such a minimization task
(e.g., [15] and [19]), they perform poorly with respect to (15) in
our experience because of convergence to bad local minimum
as shown in [34]. This is still true if the coefficients are highly
scaled. Section VI will analyze this issue in more detail.

C. Worst-Case Scenario

If the best-case scenario (no local minima) occurs when the
nonzero generating coefficients are all of very different scales, it
is reasonable to conjecture that the most difficult sparse inverse
problem may involve nonzero coefficients with equal magni-
tudes. If we define Z € R? to be the vector of d nonzero mag-
nitudes in some generating z, then this implies that 1, = Zo =
- - - Z4. This notion can be formalized somewhat by considering
the z distribution that is furthest from the Jeffreys prior. First,
we note that the Type II cost function is effectively independent
of the overall scaling of the generating coefficients, meaning ax
is functionally equivalent to Z provided « is nonzero. This in-
variance must be taken into account in our analysis. Therefore,
we assume the coefficients are rescaled such that ) . z; = 1.

Given this restriction, we can easily determine the distribution
of nonzero coefficient magnitudes that is most different from
the Jeffreys prior. Using the standard procedure for changing
the parameterization of a probability density, the joint density
of the constrained variables can be computed simply as

d
for Ziz =1,%; >0, Vi. (39)

i=1

1
d _
| J

From this expression, it is easily shown that z; = o = --- =
T4 achieves the global minimum. Consequently, equal coeffi-
cient magnitudes are the absolute least likely to occur from the
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Fig. 5. Plots of the Type II penalty (normalized) across the feasible region as parameterized by ov. A separable penalty given by g(x) o< Y. |#;|%-°t = ||z][o is
included for comparison. Left: Similar nonzero magnitudes (hard case). The Type II cost has 3 distinct local minima, but still many fewer than Type I. Right: Highly
scaled nonzero magnitudes (easy case). Type II now has only a single minima at & ; the Type I example still has 10 minima (not all are shown).

Jeffreys prior. Hence, we may argue that the distribution that as-
signs Z; = 1/d with probability one is, in some sense, furthest
from the constrained Jeffreys prior.

Nevertheless, because of the complexity of the Type II
penalty, it is difficult to prove axiomatically that z ~ 1
is overall the most problematic distribution with respect to
sparse recovery. However geometric considerations from
[39] (omitted here for brevity) as well as illustrations from
Section IV-D below support this conclusion. Regardless, it will
be demonstrated in Section V that the worst-case performance
of Type Il is still better than common Type I approaches.

D. Illustration of Best- and Worse-Case Scenarios

Before proceeding to empirical results, it is insightful to ob-
serve directly the smoothing of local minima that leads to the
best- and worst-case scenarios detailed in Sections IV-B and
IV-C. To accomplish this, we repeat the exact same toy exper-
iment from Section III-B, where we plotted penalty functions
over a 1D feasible region parameterized by . Using ||zo]|lo = 9,
we recreate Fig. 1 (right) with two minor alterations. First, in
Fig. 5 (left), we take the square root of each nonzero coeffi-
cient magnitude, creating magnitudes with very similar scales
(a more difficult situation). Second, in Fig. 5 (right), we square
each nonzero magnitude, creating highly scaled coefficients (a
more favorable situation). The effect then becomes very clear.

V. EMPIRICAL RESULTS

The central purpose of this section is to present empirical ev-
idence that supports our theoretical analysis and illustrates the
improved performance afforded by Type II in solving (15) as
various problem parameters are varied. We will focus our atten-
tion on the insights provided by Sections III and IV, comparing
Type II (assuming f(-;) = 0and A = 0) with two standard Type
I approaches, basis pursuit (BP) [8] and orthogonal matching
pursuit (OMP) [32]. BP is the optimal convex approximation
to (15) obtained by minimizing ||z||; subject to the constraint
y = Px; this can be solved using standard linear programming.
In contrast, OMP is a greedy strategy for locally minimizing
(15) that iteratively selects the basis vector most aligned with
the current signal residual. At each step, a new approximant is
formed by projecting y onto the range of all the selected dic-
tionary columns. For the Type II implementation, we utilize an

iterative reweighted £ minimization technique based on convex
upper bounds [36], which is equivalent to the EM implementa-
tion of sparse Bayesian learning (SBL) from [31] using A — 0.

Given a fixed distribution for the nonzero elements of xg, we
will assess which algorithm is best (at least empirically) for most
dictionaries relative to a uniform measure on the unit sphere, a
metric relevant to compressive sensing.8 To this effect, a number
of Monte Carlo simulations were conducted, each consisting of
the following: First, a random, overcomplete n x m dictionary
 is created whose columns are each drawn uniformly from the
surface of the unit sphere in R™. Next, sparse coefficient vec-
tors & are randomly generated with d nonzero entries. Nonzero
magnitudes Z, are drawn i.i.d. from an experiment-dependent
distribution. Signals are then computed as y = Px(. Each al-
gorithm is presented with y and ® and attempts to estimate x.
In all cases, we ran 1000 independent trials and compared the
number of times each algorithm failed to recover xy. Under the
specified conditions for the generation of ¢ and y, all other fea-
sible solutions z almost surely have more nonzeros than d, so
our synthetically generated x will be maximally sparse in prac-
tice. Moreover, ¢ will almost surely satisfy spark(®) = n + 1.

With regard to particulars, there are essentially four variables
with which to experiment: (i) the distribution of Z¢; (ii) the spar-
sity level d; (iii) the signal dimension 7n; and (iv) the number
of dictionary columns m. In Fig. 6, we display results from an
array of testing conditions. In each row of the figure, elements
of Zy are drawn i.i.d. from a fixed distribution; the first row uses
unit nonzero coefficients, the second has elements drawn from
J(a = 0.001), and the third uses a unit Gaussian. In all cases,
the signs of the nonzero coefficients are irrelevant due to the
randomness inherent in the basis vectors.

The columns of Fig. 6 are organized as follows: The first
column is based on the values n = 50,d = 16, while m is
varied from n to 5n, testing the effects of an increasing level
of dictionary redundancy, mn/n. The second fixes n = 50 and
m = 100 while d is varied from 10 to 30, exploring the ability of
each algorithm to resolve an increasing number of nonzero coef-
ficients. Finally, the third column fixes m/n = 2 and d/n =~ 0.3
while 7, m, and d are all increased proportionally. This demon-
strates how performance scales with larger problem sizes.

8As will be explored in a future publication, however, the utility of Type I
methods is more fully realized with highly structured dictionaries.
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The first row of plots essentially represents the worst-case sce-
nario for Type II per our previous analysis, and yet performance
is still consistently better than both BP and OMP. In contrast,
the second row of plots approximates the best-case performance
for Type II, where we see that Type II is almost infallible. The
handful of failure events that do occur are because a is not suffi-
ciently small and therefore, .7 (a) was not sufficiently close to a
true Jeffreys prior to achieve 100% success (see center plot). Fi-
nally, the last row of plots, based on Gaussian distributed coeffi-
cient amplitudes, reflects a balance between these two extremes.
Nonetheless, Type II still holds a substantial advantage. In gen-
eral, we observe that Type Il is capable of handling more redun-
dant dictionaries (column one) and resolving a larger number of
nonzero coefficients (column two). Also, column three illustrates
that it is able to recover a number of nonzero coefficients that
grows linearly in the signal dimension.

By comparing row one, two and three, we observe that the per-
formance of BP is independent of the coefficient magnitude dis-
tribution. This occurs because equivalence between the minimum
£o-norm and minimum /¢ -norm solutions only depends on the
sign pattern and sparsity profile of zy [24]. This result suggests
apotential limitation of BP, namely, it does not allow exploitation
of the nonzero magnitudes (as Type Il does) to increase the proba-
bility that we successfully recover . Moreover, BP performance
is slightly below the worst-case Type II performance.

In contrast, like Type II, OMP results are highly dependent
on the magnitude distribution. Unfortunately though, when
the magnitude distribution is unity (top row), performance is
unsatisfactory. In our experience, this appears to be a common
problem with greedy methods designed to locally minimize
(15). With highly scaled coefficients, OMP does considerably

better than BP (middle row); however, the scale parameter a
can never be adjusted such that OMP always succeeds (this
can be proven using a simple toy counter-example [34]), and
performance is significantly inferior to Type II. Finally, an
additional weakness of OMP is that, unlike both Type II and
BP, performance can potentially degrade as the problem size
increases (upper right plot). Of course additional study is
necessary to fully compare the relative performance of these
methods on large-scale problems.

In summary, while the relative proficiency between OMP and
BP is contingent on experimental particulars, Type II is uni-
formly superior in the cases we have tested (including examples
not shown, e.g., results with other dictionary types).

VI. CONCLUSION

In this paper we have examined sparsity-promoting cost func-
tions that emerge from a simple latent variable Bayesian model,
emphasizing the distinction between Type I (MAP estimation)
and Type II (empirical Bayes) approaches, demonstrating that
the former is actually a special limiting case of the latter and that
both can be equivalently expressed in either coefficient or la-
tent variable space. This process allowed us to directly compare
underlying cost functions and argue that there are many poten-
tial advantages of at least one flavor of Type II. While Bayesian
considerations formed the starting point for these analyses, we
should stress that the central underlying ideas regarding why
Type 11 is so effective can be understood independently. More
concretely, we do not actually believe that the unknown coef-
ficients & are distributed as p(rp)(x) o exp [—1/2g(11)(z)]
(exemplified by explicit statistical dependencies between ele-
ments) and that the validity of this assumption is the primary
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reason for the success of Type II. Rather, we would argue that
the Bayesian hierarchy upon which Type II is based represents
a convenient fiction that happens to give rise to a useful class
of sparsity-inducing cost functions. A similar point is raised in
[3] regarding the performance of ¢; solutions. Here success fol-
lows from desirable properties of the underlying convex cost
function, not from the presumed Laplacian distribution of the
unknown coefficients.

This perspective then allows us to consider alternative cost
functions and manipulations of the implicit Type II sparsity
penalty that may lose meaning in the context of the original
Bayesian hierarchy but show promise on sparse estimation
tasks. For example, we have shown that the nonseparable Type
IT penalty g(;r)(x) is dependent on both the dictionary ¢ and
the noise variance A. While meaningless from a Bayesian per-
spective, when we analyze the situation abstractly as a general
form of Type I penalized regression, it becomes apparent that it
could be beneficial to substitute alternative choices for A or ®
in g(r7y (). In other words, if the only goal is to efficiently es-
timate global solutions to canonical sparse recovery problems,
then it is not clear that the optimal selections are consistent with
the original Bayesian model. Moreover, as we demonstrate in
[36], other nonseparable penalty functions inspired by Type II
but deviating from the Bayesian hierarchical derivation can be
very effective as well.

All of this serves to motivate a wider class of cost functions
for sparse estimation tasks and, in particular, allows us to exploit
the fact that the distribution of nonzero coefficient magnitudes
can drastically affect the difficulty of computing perfect sparse
signal reconstructions. The popular minimum /3 -norm solution
(Type 1) is completely blind to this distribution, and therefore
exhibits performance below the worst-case regime possible via
Type II. Note that neither method is given a priori knowledge
of this distribution; rather, it is that Type II automatically op-
erates more successfully when the distribution happens to be
favorable. In general, we would argue that new sparse inverse
algorithms should take these and related issues into account.

In [3] it is suggested that the distribution of nonzero co-
efficients is not really that important in a variety of practical
situations such as image reconstruction. In its simplest form,
the argument goes as follows. In some transform domain
(e.g., wavelets) the coefficient distribution of many common
images can be estimated and fit to a generalized Gaussian
p(z) o< exp [—1/2||z|[P], where the learned value of p tends
to be significantly less than p = 1. However, when it comes to
actually estimating « using a sparse recovery algorithm based
on this learned value of p, i.e., solving a problem akin to (24)
with p < 1 (Type I), performance is no better than when using
p = 1. The authors conclude then that, given the validity of the
assumption that x is sparse, the coefficient distribution of the
nonzero elements is relatively inconsequential.

There are multiple reasons why this conclusion may not ex-
tend to general sparse inverse problems. For example, it is not
clear that solving the Type I problem (24) is optimal since,
with p < 1, any tractable minimization procedure will often
be producing a local solution when @ is overcomplete and per-
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formance may be no better than the standard, convex #;.9 It is
possible that an alternative procedure, potentially based on the
ideas behind Type II, could do substantially better. Of course
it is well-known in the Bayesian statistical literature that MAP
estimation (Type I), even given the exact, generative prior, will
often produce unsatisfactory results on inverse problems.

In any event, our results herein certainly suggest that the ef-
fect of coefficient distributions on performance can be important
on general problems but to a degree that is highly algorithm-de-
pendent. Two important questions are relevant in this regard:

1) Does the distribution of nonzero coefficients affect the per-

formance of a given algorithm?

2) Assuming the true distribution of the nonzeros (or a close
approximation) is known, what is the optimal sparse re-
covery algorithm?

The results of this paper speak directly to 1) as discussed above.
Regarding 2), it is presently difficult to provide a concrete an-
swer, although certainly we know that MAP can be suboptimal
as already stated (this is an area of future research). To conclude
this point then, the coefficient distribution may indeed matter in
many practical situations, but only if exploited by an appropriate
algorithm. Such an algorithm may or may not actually require
knowledge of this distribution to succeed.

APPENDIX

This appendix contains the proofs of all results presented in
this paper.
Proof of Theorem 1: From (4), (6), and (18) we have that

9(zi) = — 2log |max N (z;;0,7v;:)0(7;)
~i 20

2

€xrs
= min —* + log ~; ,
min +log i + f(%)

excluding terms independent of +; and x;. Plugging this result
into (20) we have

(40)

Lip () = |ly — =3
+ /\zi: [%1;% P + log i + f(%)}

1 _
= min 1lly - @al; + 5z

+ Z [log i + f(7i)]

1 2, Tl
Sx”!l—‘l’“’”z"'z r $+Zi:f(1)(%‘)

2L75 (. 2). (41)

9Note that the true distribution of all coefficients will not be a generalized
Gaussian anyway once the zero-valued coefficients are taken into account. A
more accurate description of this distribution would be a delta-function at zero
and a (weighted) generalized-Gaussian distribution everywhere else. However,
such a prior further exacerbates the problem of local minima. Of course if ® is
orthogonal, as is the case for standard image de-noising problems, local minima
are generally not an issue.



6250

Note that we allow y; = 0 when z; = 0; for z; # 0, v; — 0
leads to infinity, so this value can never represent a minimizing
solution. So L‘?I’f (7, %) is a strict upper bound on L) (z) with
L (z) = miny>o E?Qm (7, x). With v fixed, the unique value
of z that minimizes £E’I")‘ (v, z) is given by p, from (9), and from
basic linear algebra manipulations we get

: 1 2 Tpr—1 Ty —1
min + [ly — @z, + 2T Tz =y, Ny (42)

Using this expression with (41) gives

Lly() & min L5 (v,2) =y S,y + 3 fin(vi). @3)

=1

Therefore, if Y minimizes (43), then by construction, it fol-
lows that

:II(I) = F(I)‘I)T (/\I+ ‘I)F(I)(PT)ily (44)
will minimize (20). Likewise, if some () minimizes (20), then
(44) must naturally hold for some V) that minimizes (43) (oth-
erwise this z () cannot be a global solution).

Additionally, the correspondence between global solutions to
(20) and (43) extends to locally minimizing solutions as well
in the following sense: it can be shown that {7, } is a local
minimum of the auxiliary function E?I’I (4, z) iff =, is a local
minimum of (20) and 4, is a local minimum of (43). This corre-
spondence occurs because, given a fixed x (or 7y), optimization
over «y (or z) is actually convex (under the appropriate change of
variables for the -y optimization) with a unique solution. So the
local minima profile is preserved when we move from z-space
to -y-space. [ |

Proof of Corollary 1: This is possible because we can al-
ways select a particular f and A and then reparameterize things
such that the log |X,| term in (17) vanishes. Plugging A :=
a”'Xand f(-) := alog[a(-)] + af [a(-)] into (17), we have

_1x -1
Llp() =y" [a AL+ eT@T] Ty
+log|a™'AI + @I |
+ Z (aloglay] + af [avi))
=y’ [5\1 + a‘bF‘PT] - Y
1 -
+ —log |)\I + oz@F(I)T|
et
+ Z (log[ays] + f [ei])

and so as o becomes large

L) —y" [M + @ (al) 7] Ty
+>_ (logloy] + flovl) - 45)

This is equivalent to (21) using A := X and f := f with the
exception of the scaling factor of « on «y. However, this factor is
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irrelevant in that the coefficient estimate obtained via (22) will
be identical to that obtained from (11). [ |

Proof of Theorem 2: Using (17) and (42), we can create a

strict upper bounding auxiliary function on L‘(VI 1 () given by

. 1 x?
Clinra) = Slly = Sall; + 3 =5 +log[y [+ 3 f()

(46)
where 5(71 p(7) = ming LE’}”}) (7, ) for all 4 > 0. When we
minimize over 7y, we get

(1r)() 2 };121% L?}?) (1.2) = lly — ®zll5 + Agun(z) (47)

with
2
A . Ty
gun(@) Smind E+log|Ty + 3 fln). @8

Therefore analogous to the proof of Theorem 1, if ;) is a min-
imum of (47), then there must exist some 7y that minimizes
EE’I 1) (7) such that

-1
1‘([[) = F(II)(I)T ()\I + (DF(II)(DT) v. (49)

Likewise, if 777y minimizes EE’I I)('y), then ;) computed via
(49) will minimize (47).

While g(;ry(z) is not generally available in closed form,
if flexp(:)] is convex then the optimization problem from
(48) will have a single basin of attraction (meaning that all
minima are connected in the rare case that multiple exist),
and even convex with the reparameterization of y given by
B; 2 log~i,B 2 [B1,....Bm|". It can then be shown that the
minimization problem

gun(z) = n}énZe’mx? + log |2, | + Z f (%) (50

is convex in B, meaning that no unconnected local minima can
exist (although it still need not be convex in -y). This implies that
there will be a correspondence between local minima of (47) and
local minima of (17), analogous to the duality situation for Type
I discussed in the previous section (the global minimum will of
course correspond for a wide range of f). |

Proof of Theorem 3: log| - | is concave in the space of
positive semi-definite matrices [20]. Moreover, X, is an affine
function of 4 and is positive semidefinite for any v > 0. This
implies that log |, | is a concave, nondecreasing function of +,
SO we can express it as

_ - T, _ L*
log [Z,| =minzy —h (2) (51

where h*(z) is the concave conjugate [2] of log |%, | given by

* A :
h*(z) = gg% 2Ty —log |Xy]. (52)
Therefore, we can express g(;7)(z) as
g(n(z) = min ' Tz 4 20y — h*(2). (53)

v.2>0
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Optimizing over - for fixed x and 2, we get

AP = 272 Vi (54)

Substituting this expression into (53) gives

m 2
. Z; -1/2 *
80 (@) = min [Z <—21/2 — e Ile) —h (Z)]

i=1 i | z|
h*(z).

m

= min 2z
2>0
=1

|:171| — (55)

This latter expression represents g(r7)(%) as a minimum over
upper-bounding hyperplanes in |z| (meaning each value of z
defines a unique hyperplane with respect to |z|). From basic
convex analysis, any function expressable in this form is nec-
essary concave, and since z'/2 > 0, nondecreasing as well [2].

Finally, the local minima result follows directly from [28,
Theorem 1], which is derived for general Type I methods but
can be applied to any penalty function such as g(ry(x) thatis a
concave and nondecreasing function of each |z;]|. u

Proof of Theorem 4: In [34], we show an equivalent result
using manipulations of E( 128 () in y-space. Here we present a
much simpler, high-level proof directly in z-space.

The set of global minimizers of (29) is a subset of the local
minimizers, which from Theorem 3 occur at basic feasible so-
lutions (BFS) involving at most n nonzero elements. Therefore
when searching for global minima and their associated proper-
ties, we need only consider these solutions. At any BFS with
d 2 |z|o = n, g(rr)(x) > Cy, where C is a ®- and y-depen-
dent (but z-independent) constant given by

2
c, & min min§ 2 4 log |[#T'®7| |,
T:Y=2Z || T|o=n \ Y20 Vi

< min min
LY=L, ||Z|o=n \ ¥>0

— +log %, (56)
Yi
where the latter inequality holds for any J, including the limit
A — 0. This constant C; will always exist and be finite given
the assumption that spark(®) = n + 1. To see this, note that
(56) involves a minimization over two terms with respect to +.
The first term (convex, nonincreasing) encourages each -y; to be
large, the second (concave, nondecreasing) encourages each -y;
to be small. Whenever a given z; = 0, the first term can be
ignored and the associated ~; is driven to exactly zero by the
second term regardless of other v;,j # 4. In contrast, for any
z; # 0, the minimizing -y; can never be zero or the first term
will be driven to infinity. This a manifestation of the fact that
argmin.>q [1 +logz] > 0. Consequently, for any given z,
the associated minimizing y will necessarily have a matching
sparsity profile, meaning the indices of zero-valued x; will align
with zero-valued elements in . Moreover there is no issue with
dividing by zero in the first term and X, will always be full rank
in the second term (the latter because of the spark assumption
and the fact that d = n). Therefore C; will always be finite for
essentially the same reason that min.>q [1 + log 2] is finite.
In contrast, at any = with d < n the situation is very different.
Let S denote the support set of , meaning the index set {7 :
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x; # 0}, and let s;(«) indicate the ith nonzero eigenvalue of
®I'®”'. The spark assumption, coupled with the analysis above,
guarantees that there will be d such nonzero eigenvalues at any
minimizing y = -y* such that

d
log |y =) log[si(v*) +

=1

Al + (n —d)log A. (57)

We can now rewrite g(rr)() as

Z—+Zlog +A]+

i€S

8 () (n—d)log \. (58)

From this expression it follows that whenever d < n we have

gun(z) < Cr + (n—d)log A (59)
for any A < Ao, where () is also a ®- and y-dependent (but
z-independent) constant given by

2 1z lo
= + Z log[s: () + Ao]

(60)

So in summary then, we know that any global minimum must
occur at a BFS such that either g(rpy(z) > C1pif d = n or
g (z) < Cr+(n—d)log Nif d < n. While the relative sizes
of C7 and (5 are unknown, they are both fixed, finite constants
and so as A — 0, as stipulated by (29), the global minimum must
occur when d < n. In fact, using a similar process it can also
be shown that g(r7y(z) > C3 + (n — d) log A as well for come
constant C3, which then enforces that the global minimum can
only occur when d is smallest. Therefore minimizing g;r)(x)
in these conditions is tantamount to minimizing d, and so any
global solution to (29) will be a global solution to (15). |

min
Y=>0

= max
. TY=oT.|Tlo<n

Proof of Theorem 5: We begin by assuming that g(z;) is a
concave, nondecreasing function of |z;|.10 With some additional
effort, can be shown that the theorem holds in the general case
as well, consistent with intuition. We will also assume, without
loss of generality, that g(0) = 0 and g(1) = 1 (we can always
rescale and add a constant such that this is the case). A simple 3D
example then serves to show that conditions (i) and (ii) cannot
be satisfied simultaneously.

Assume we have a 3 x 5 dictionary ¢ where the first two
columns are given by ¢; o [l 0]l and ¢ x [-1«0]T,
with @ > 0 arbitrarily small (we use a proportionality here
to avoid the irrelevant, cumbersome factor required for /o
column normalization). Now assume a coefficient vector
M 2 [11000]7, giving y = ®zM = [02a:0]”, and
that the remaining three basis vectors ¢, @,, ¢, are radially
symmetric about the signal y, with an equal, arbitrarily small
angular distance from y.!! Then a second feasible solution
() 2 [00eee]” exists with €, a function of an arbitrarily
small o, also arbitrarily small.

10Any penalty arising from (6) will be concave, nondecreasing function of
x2, but not necessarily of |z;|.

By radially symmetric about y, we mean they are all unique, equidistant
from y, and equidistant from one another; loosely they can be visualized as
forming a tight equilateral triangle around y.
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Under these circumstances, 2D equals x, the unique global
solution to (15). To satisfy condition (i), it is therefore necessary

that
S () = 2000 < 3o (o) = 3000

or equivalently, that g(¢) > 2/3, Ve > 0. We now show that any
g that satisfies this restriction cannot have fewer local minimum
than when solving (29). So if we satisfy condition (i), we cannot
simultaneously satisfy condition (ii).

A basic feasible solution z* is a local minimizer of (30) if for
every vector » € null(®), there is a § > 0 such that

d(e) £ " glaf +evi) = Y glaf) >0, Ve € (0,8]. (62)

% %

(61)

Based on the concavity of g with respect to |x;|, we know that
local minima are always achieved at basic feasible solutions
with at least m — n elements equal to zero. Consequently, we
can express d(g) as

d(e) = lg(evi) = g(O)] + Y lg(a; +evi) — g(a])]
€2 iEZ
= Zg ev;) + Z x; +ev;) — g(a))] (63)
1EZ ¢ Z

where Z is the set of all indeces associated with zero-valued
elements in £*. As a direct consequence of the assumption
spark(®) = n + 1, any v € null(®) must have a nonzero
element corresponding to a zero element in z*, meaning at
least one v;,7 € Z must be nonzero. Therefore, the first term
in (63) cannot be smaller than 2/3 or we violate condition (i)
as discussed above. Moreover, because g is concave on [0, o),
it must be continuous on (0,00). Consequently, the second
term in (63) can be made arbitrarily small in magnitude for any
¢ € (0,6] when ¢ is sufficiently small, implying that d(e) will
always be positive. Thus z* must be a local minimizer of (30).

In conclusion then, any g which satisfies condition (i) will
have a local minimum at every basic feasible solution. More-
over, from Theorem 3, the number of distinct basic feasible so-
lutions forms an upper bound to the number of distinct local
minima to (29). Of course with the exception of very contrived
situations, the number of Type II local minima will be consid-
erably less as discussed in Sections III and I'V. ]

Proof of Theorem 6: By virture of Theorem 2, the uni-
modality of (26) is revealed by examining the dual cost func-
tion (17) in «y-space, which conveniently decouples because of
the orthogonality assumption. This produces the element-wise
cost

2 log(A + ;) +

£ (%) e D
where a; £ ¢iTy and ¢; is the ¢th column of ®. This expres-
sion is readily shown to be unimodal in each «;, implying uni-
modality over 7.

The second property follows by taking the gradient of (32)
with respect to x; and noting that it is positive and decreasing

for all z; € (0,00). We also note that any penalty g(z) that is
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a nondecreasing and strictly concave function of ||, will both
promote sparsity [28] and provide a tighter approximation to
||Z||o than ||z||; in the following sense: There will always exist
some positive constant R < oo such that, for any sphere S,. in
R™ centered at zero with radius » > R, we have that

min / lzllo — (ag(z) + b)| dz
ab z€S,

>

< min/ Z|lo — (al|z||s + b)| dz. (65)
ab Jres

T

In other words, the approximation error will always be smaller,
assuming we adjust the slope and offset appropriately using a
and b, as long as we average over a large enough region. This
follows directly from the definition of strict concavity (and the
implicit assumption that g(0) is finite).

The third property can be shown by contradiction. Assume
that g(;7)(z) is a nondecreasing and strictly concave function
of |z|, but is fixed and independent of A as in Type I methods.
We will show that multiple minima are always possible for
some choice of A, ®, and y. Given the orthogonality assump-
tion, [,'Z}) (z) decouples and we can consider each coordinate
separately with the reduced cost function

L‘?})( z) =1

For simplicity, we will assume that g is differentiable, but the
more general case follows with a little additional effort. We will
also assume, without loss of generality that a; > 0,V:. Now
consider

x; — 2x;a; + Ag(x;). (66)

Ed) (z;) = # =2z; — 2a; + \g'(z;) 67)

with ¢’ (z;) £ dg(x;)/dx;. If ﬁ?})l(l’i) is positive as z; — 0T,
then there will necessarily be one local minimum at z; = 0. A
second local minimum will also occur if [,?I’)/(Ii) < 0 for some
x; > 0. This is because E(I)'(zL) must be greater than zero for
some z; sufficiently large due to the concavity of g(z;) with
respect to |z;|, and so a negative gradient for smaller values of
x; implies a local minimum must exist in the middle somewhere.
Therefore we only need show that both minima are possible
simultaneously.

To have a minimum at z; = 0, it is sufficient based on the
positive gradient requirement that a; = Ag’(0)/2 — e, where
J(0) = lim,, — o+ ¢/(z;), and € > 0 is a small constant such
that a; is positive. A second minimum will occur if

Ly (i) = 20, = 2[Ag'(0)/2 — e] + g (1) <O (68)
for some z; > 0. We can always satisfy this inequality for
some A sufficiently large since ¢’(0) > ¢'(x;) by definition
of strict concavity. Consequently, two local minima are always
possible for each ¢, giving 2™ total local minima as an upper
bound, which is trivially achieved when the £y norm is used
(forth property). ]

Proof of Theorem 7: If z, is a nondegenerate locally min-
imizing solution to (29), then there is an associated vy,, with
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matching sparsity profile, that locally minimizes EE’I 1 () with
A = 0. For this to be true, the following necessary condition
must hold for all u € U:

85?] I) ('Y)

>0
0Vu

7=7.
where 7, denotes the latent variable corresponding to the basis
vector u. In other words, we cannot reduce EE’I n () along a
positive gradient because this would push ~,, below zero; a neg-
ative gradient would imply that ~,, can be increased to further
reduce LE’I 1 (), meaning a local mini.ma is.impqssible. Using
the matrix inversion lemma, a determinant identity, and some
algebraic manipulations, we arrive at the expression

(69)

aLZH)(’Y) _ uT Bu B yT Bu 2 (70)
0vu 1+ v:uTBu 1+ ~v:uT Bu

*

where B 2 (®T'®7)~! and T is the diagonal matrix of latent
variables associated with ®. Since we have assumed that we are
at a local minimum, it is straightforward to show!2 that T =
diag(#)? leading to the expression

B = & Tdiag(z) 20~ 1. (71)

Substituting this expression into (70) and evaluating at the point
v = 0, the above gradient reduces to

OL 1r)(7)
(I1) P
o, =9" (diag(z~'z"")

7=7.

-z 'z )% (72)

where 7' £ [#71,...,%, 7. This implies that we will be at
a local minimum only if

S U< VeV (73)
et T
i#]

which leads directly to the stated theorem. [ |

Proof of Theorem 8: Every local minimum of (29) is
achieved at a basic feasible solution (BFS) (see Theorem 3).
Interestingly, the converse is not true; that is, not every BFS
need correspond with a minimum of (29) as shown via Theorem
7. In fact, for a suitable selection of scaling constants v;, we
will show that this reduced set of minima naturally leads to a
proof of Theorem 8. In the most general setting, the constants
v; would all be as large as possible, leading to the largest set of
allowable coefficients. However, for the proof it is sufficient to
assume that v; = vy = --- = v,,_s = ¢, where € is a constant
in the interval (0, 1].

We begin with an arbitrary coefficient vector =’ such that
1"(i+1) < ex’@.) and ||='|lo = d € {1,...,n — 1}. For conve-
nience, we will also assume that z(;) = |27|. In other words, the
first element of " has the largest magnitude, the second element
has the second largest magnitude, and so on. To avoid any loss of
generality, we incorporate an m X m permutation matrix P into
our generative model, giving us the signal y = ®Pz’ = 'z,

1ZAt any local minimum, £/, () must be minimized with respect to T,
assuming all other elements of -y are equal to zero. Given the stipulated condi-
tions, this is a simple matter since the cost function conveniently decouples into
n separate functions, giving optimal values ¥; = #2.
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Because ® 2 &P is nothing more than ® with reordered
columns, it will necessarily satisfy the spark constraint for all
P given that ® does.

We now examine the properties of an arbitrary BFS with
nonzero coefficients defined as Z (so the length of Z is less than
or equal to n by definition of a BFS), and associated dictionary
columns ® ordered as in ', i.e., y= ®Z. There exist two pos-
sibilities for a candidate BFS:

* Case I: The columns of @’ associated with the nonzero d <

n nonzero coefficients of z’ are contained in ®. By virtue
of the spark assumption, no other basis vectors will be
present, so we may conclude that ® = [@], ¢5, ..., )] =
o’
» Case II: At least one of the columns associated with the d

nonzero coefficients is missing from ®.

Given this distinction, we would like to determine when a can-

didate BFS, particularly a Case II BFS of which there are many,

is a local minimum.

To accomplish this, we let € {1,...,d} denote the index
of the largest coefficient magnitude for which the respective dic-
tionary column, ¢/, is not in ®. Therefore, we may assume that
the first 7 — 1 columns of ® equal [¢), ¢5, ..., d._;]. The re-
maining columns of ® are arbitrary (provided of course that ¢/,
is not included). This allows us to express any Case II BFS as

r—1 d
E=0"'y=0710"7' =) sier + 071 uigi (74
k=1 k=r

where ey, is a zero vector with a one in the kth element and we
have assumed that every Case II BFS utilizes exactly n columns
of ® (i.e., ® is n X n and therefore invertible via the spark re-
quirement). This assumption is not restrictive provided we allow
for zero-padding of BFS with less than n nonzero coefficients
(this implies that some elements of Z will be equal to zero if we
have to add dummy columns to ®).

Without loss of generality, we will assume that 2. = 1 (the
overall scaling is irrelevant). We also define o = d1¢., giving
us

d
> v

k=r+1

r—1
z=0"1y= Zx%ek +o+ 071 (75)
k=1

By virtue of the stipulated e-dependent coefficient scaling, we
know that

d d
ot Z @) = Z O, (ek_r) =0, (¢)

k=r+1 k=r+1

(76)

Here we adopt the notation f(z) = O(h(e)) to indicate that
|f(z)| < C|h(e)| for some constant C' independent of x or .
O,.(h(€)) then refers to an n-dimensional vector with all ele-
ments of order O(h(¢€)). Combining (75) and (76), we can ex-
press the sth element of Z as

zi=zlli <r]+ 0,4+ 0(e). (77)

Provided e is chosen suitably small, we can ensure that all Z;
are necessarily nonzero (so in fact no zero-padding is ever nec-
essary). When 4 > r, this occurs because all elements of ¥ must
be strictly nonzero or we violate the spark assumption. For the
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i < r case, a sufficiently small € means that the 2} term (which
is of order O (1 / e’"_i) by virtue of (36)) will dominate, leading
to a nonzero Z;. This allows us to apply Theorem 7, from which
we can conclude that a candidate BFS with n nonzero coeffi-
cients will not represent a local minimum if

(78)

Substituting (77) into this criterion, we obtain

2 (wi-,I[z' <] +v +O(e)> 21 < r]iaj +0(e)

i£]
-0+ > (575w) (57om) @

(E ISPy
Since d < n, then r < n by definition and so there will always
be at least one set of indices % and j that satisfy the above sum-
mation constraints (since both ¢ and 7 run from 1 to n). This
then implies that

(80)

=~ Z 1>0

i#gih,j2r

since each v; is a nonzero constant independent of €. So (78)
holds and we are not at a local minimum.

In summary, we have shown that, provided e is small enough,
an arbitrary Case II BFS cannot be a local minimum to (29).
The exact value of this e will depend on the particular BFS and
permutation matrix P. However, if we choose the smallest ¢
across all possibilities, it follows that no Case II BFS can be a
local minimum. The unique minimum that remains is the Case
I BFS which will satisfy d = ||zo]|o, so £’ = zo. ]

Proof of Theorem 9: We assume g(x;) is a nondecreasing,
concave function of |z;|; with other allowable choices it can be
shown that the global minimum will not generally equal x. For
the special case where g(z;) = |zi|, Vi, the cost function is
convex; however, regardless of nonzero coefficient scalings, any
global minimum need not be maximally sparse under the stated
conditions. This directly follows from [24, Theorem 6], from
which we can infer that the success of the minimum #;-norm
solution only depends on the sparsity profile and sign pattern of
To; it is independent of the nonzero magnitudes. Since the min-
imum /1 -norm solution cannot always recover x given only the
spark and sparsity level assumptions of the theorem, the restric-
tion on the magnitudes will not help, and so the unique global
minimum will not always equal x.

Now assume that g(z;) is a strictly concave function
of |z;|; the more general case (concave and nonlinear
but not necessarily strictly concave) easily follows. If
lime — o [g(e) — g(0)] /e = oo, then based on the proof
of Theorem 5, there will exist a local minimum at every
basic feasible solution; this result is independent of nonzero
coefficient magnitudes. The more ambiguous case is when
lim. — ¢ [g(€) — g(0)] /e = C' < oo. In this situation, a simple
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2D counter example suffices to show that local minima are still
always possible. Let

1 1 1 1
g = 0 (I) = |: Vv 1a+a2 v 1+a0‘2
0 0 V14+a2 - V14+a2
1
y =Pz = [0} (81)

where o > 0 is a small constant and the /1 + a2 factor is
included only for normalization purposes. Here o and ® sat-
isfy the conditions of Theorem 8. Now consider the alternative
kel

solution ' = . For « sufficiently small,

this solution will always be a local minimum for any strictly

concave Type I method. To see this, consider the following.

The dictionary ¢ has a 1D null-space spanned by the vector
- 51T

v 2|1 _7”2“'2 _7”2“'2} since dv = 0, and so any fea-

sible solution can be expressed as =’ + ev for some constant e;
to move towards x requires ¢ > 0. By taking the gradient of
> g(x;) with respect to € evaluated at € — 0%, we can deter-
mine if £’ is a local minimum; namely, a local minima occurs if
this gradient is positive when the limit is approached from the
right. With ¢/ (z;) £ dg(x;)/da;, the relevant limit is

d
lim Z g(zh + ev;)

e— 0+ de -

/ 3
lim 7e g(e) +2g vitod

e — 0t de 2

(1—¢)
V14 a2

= lim {g'(e) = V1+a2d (L—e€)
e — 0t 2
V14 a?
=9 or —V1I+a2 | —5— (82)

2

By definition of strict concavity, this expression will be posi-
tive for some « sufficiently small, implying that z’ is a local
minimum. |
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