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ABSTRACT

We present an algorithm to dereverberate single- and multi-channel

audio recordings. The proposed algorithm models the magnitude

spectrograms of clean audio signals as histograms drawn from a

multinomial process. Spectrograms of reverberated signals are ob-

tained as histograms of draws from the PDF of the sum of two ran-

dom variables, one representing the spectrogram of clean speech

and the second the frequency decomposition of the room response.

The spectrogram of the clean signal is computed as a maximum-

likelihood estimate from the spectrogram of reverberant speech us-

ing an EM algorithm. Experimental evaluations show that the pro-

posed algorithm is able to greatly reduce the reverberation effects in

even highly reverberant signals captured in auditoria and other open

spaces.

Index Terms— acoustic signal analysis

1. INTRODUCTION

Reverberation affects the quality of audio signals in most recording

environments. Delayed and filtered copies of a signal from reflec-

tions off walls and other objects, interfere with the direct signal from

the audio source to the listener (which might be a recording device),

distorting it. While small amounts of reverberation are often toler-

able and even appreciated by human listeners, longer reverberations

(obtained from reflections that persist over extended periods of time)

can greatly reduce the perceptual quality of the signal. In auditoria

or other big recording spaces, it can often render the signal unintel-

ligible.

A variety of techniques have been proposed in the literature to

dereverberate signals. Most of them take advantage of the fact that

reverberation is primarily the effect of a linear filter – the room re-

sponse of the recording space – on the signal. This has led to the pro-

posal of several homomorphic techniques for dereverberation (e.g.

[1]), which take advantage of the fact that linear filters factor out as

additive terms in signal cepstra. The problem with these approaches

has been that the typical analysis window used to analyze the sig-

nals is usually less than 100ms long. Signal characteristics, particu-

larly for speech, change greatly over longer time periods and the use

of longer analysis windows is inappropriate. On the other hand for

most typical recording environments, the reverberation time, which

is characterized by their T60, the time taken for the reverberations

of an impulse to be attenuated by 60 decibels, usually exceeds the

length of this analysis window, and can sometimes extend into sev-

eral seconds. Homomorphic methods cannot account for the rever-

beration effects that exceed the length of the analysis window.

Variants of the above approach compute inverse filters to cancel

the effect of reverberation. These methods often make various as-

sumptions about the audio signal, such as harmonicity, independence

between samples etc. to arrive at the inverse filter (e.g. [2], [3]). Fre-

quently, these assumptions (e.g. harmonicity) are specific to a par-

ticular type of signal, e.g. speech. Still other methods employ other

models such as codebooks and switching linear dynamic systems [4]

to represent the signal for dereverberation. Once again, all of these

methods suffer from one or more of the following problems: analysis

windows that are shorter than the reverberation, assumptions about

the underlying signal, or reliance on detailed models of the clean

audio that are frequently not available. In [5], a non-negative matrix

factorization based method is presented that only makes assumptions

about the sparsity of the distribution of energy in spectral bands, and

is similar in concept to the approach presented in this paper.

In this paper we present a new approach to dereverberation of

speech signals. The technique employs the latent variable model pre-

sented in [6] to represent the process that generates the spectrogram

of any sound. Reverberation is approximated as a non-negative filter-

ing of individual spectral bands of the clean speech signal, and that

process too is modeled by a latent-variable generative model. Dere-

verberation is achieved by estimating the parameters of this model,

while imposing a minimum-entropy constraint on the process that

generates the clean spectrogram of the clean speech. Experimental

evaluations on real recordings in highly-reverberant and noisy envi-

ronments shows that the process is able to greatly reduce the rever-

beration in these signals and increase their intelligibility, albeit with

some minor artifacts.

One common approach to minimizing the effects of reverbera-

tion on audio signals is to capture them simultaneously with multiple

microphones. A variety of array-processing techniques may then be

applied to minimize the effect of the reverberation (e.g. [7]). How-

ever, these methods commonly require careful placement of micro-

phones (such that the room response observed by the microphones

is not significantly different) and localization of the sound source,

a notoriously difficult problem in reverberant conditions. The ap-

proach we present in this paper extends easily to the dereverbera-

tion of multi-channel audio, which can deal with multi-channel sig-

nals from arbitrarily placed microphones with very different room

responses without requiring localization.

The rest of the paper is arranged as follows: in Section 2 we

describe the basic signal model we employ to characterize the rever-

berant signal. In Section 3. we outline the proposed algorithm for

monaural recordings. In Section 4. we describe the multi-channel

extension of the algorithm. In Section 5 we describe our experiments

and finally in Section 6 we present our conclusions.



2. MODELLING REVERBERATION

Let x[l] be a clean audio signal produced by some source. The sound

is produced in a reverberant room. Let h[l] be the room impulse re-

sponse (RIR) from the sound source to the microphone recording the

sound. h[l] represents the reverberation in the room. The reverberant

signal y[l] that is actually recorded is given by

y[l] = x[l] ⊗ h[l] =

L∑

p=0

h[p]x[l − p] (1)

where ⊗ represents the convolution operation and L is the length of

the RIR and relates to the T60 of the room. The source signal x[l]
can be expressed by its Gabor representation

x[l] =
∑

m

N−1∑

k=0

X(m, k)ws(l − mB)W
k(l−mB)
N (2)

where W k
N = exp(−j2πk/N), X(m, k) represents the kth fre-

quency component of the mth spectral vector in the short-time

Fourier transform (STFT) of x[l]. N represents the length of the

analysis window used to derive the STFT, and B is the number of

samples by which adjacent analysis frames shift. X(m, k) is given

by

X(m, k) =
∑

l

x[l]wa(l − mB)W
−k(l−mB)
N (3)

wa[l] and ws[l] are the biorthogonal analysis and synthesis windows

for the STFT respectively.

The STFT of the reverberated signal, y[l] can be approximated

by the convolution

Y (n, k) ≈

LH∑

l=0

X(n − l, k)H(l, k) = X(n, k) ⊗n H(n, k) (4)

where LH = ⌊(L + N − 1)/B⌋ and H(l, k) =

W
k(N−1)
N

∑2N−2
n=0 h[mB + n − N + 1]wh[N − n − 1]W−kn

N is

the STFT of the RIR, h[l]. wh[l] is the convolution of wa[l] and

ws[l]. ⊗n represents a convolution operation along n.

3. STATISTICAL MODEL FOR REVERBERANT

SPECTROGRAMS

We employ a model proposed in [6] to represent the spectrograms.

According to this model, the magnitude spectrogram of any sound

is actually a histogram of draws from a bivariate distribution over

time and frequency indices. Although this is an artificial construct

and does not represent any physical generating process, it has been

demonstrated to be highly effective for various problems such as sig-

nal separation, component discovery and learning of overcomplete

codebooks of bases [8]. The magnitude spectrogram |S(n, k)| of

the clean audio signal is assumed to be a histogram drawn from a

bivariate distribution PS(n, k) over the discrete random variables n
and k. Similarly |H(n, k)| is assumed to be a histogram drawn from

the distribution PH(n|k). |Y (n, k)| is assumed to have been gener-

ated by a process that first draws a the tuple (n1, k) from PS(n, k),

then draws n2 from PH(n|k), and finally produces (n, k) where

n = n1 + n2. The generating process is illustrated in Figure 1.

Using this model, we can now write

|Y (n, k)| = CPS(n, k) ⊗n PH(n|k) + R(n, k) (5)

Fig. 1. Generative model for the histogram representing the magni-

tude spectrogram of reverberant speech.

C is a scaling constant and R(n, k) captures the natural variations

from the mean that occur in any drawing process. ⊗n represents a

convolution operation along n. In practice, we can relate the terms in

the above equation to those in Equation 4 as PS(n, k) ∝ |S(n, k)|
and PH(n|k) ∝ |H(n, k)|. R(n, k) represents the correction term

to be factored in to account for the fact that the magnitude of the

sum of complex numbers is not equal to the sum of their magnitudes.

Alternately, we can write

|Y (n, k)| ∼ PS(n, k) ⊗n PH(n|k) (6)

4. SINGLE CHANNEL ALGORITHM FOR

DEREVERBERATION

Based on Equation 6 we cast the problem of dereverberating the

audio signal as follows: given only the STFT Y (n, k) of the re-

verberant speech we must estimate PS(n, k) and PH(n|k). The

magnitude of the STFT of the underlying clean speech is given by

|S(n, k)| = CPS(n, k). The scaling factor C ensures that the sum

of spectral magnitudes in the reverberated signal is the same as that

in the dereverberated one. The clean audio signal is obtained from

|S(n, k)| by “stealing” the phase of Y (n, k) to obtain a complex

STFT, which may be inverted to obtain a time-domain signal.

It is clear from Equation 6 that the problem is under speci-

fied. To compensate for this, we must provide some kind of a pri-

ori model for PS(n, k). Our prior is based on the observation that

the magnitude spectra of most sounds is very sparse – at any time

there are only a few frequency components with high energy. Al-

ternately viewed, the entropy of PS(n, k) is low. Hence, we spec-

ify that the a priori probability distribution of PS(n, k) is given

by P (PS) ∝ exp(−αH(PS)), where H(PS) is the entropy of

PS(n, k), and α is a weighting term. This prior imputes higher a pri-

ori probability to distributions (PS(n, k)) that have lower entropy.

We can now derive the update rules for the estimation of

PS(n, k) and PH(n|k) using the Expectation Maximization (EM)

algorithm. The update rule for PH(n|k) is given by

P (m|n, k) =
PS(m, k)PH(n − m|k)∑

m′ PS(m′, k)PH(n − m′|k)
(7)

PH(n|k) = C1

∑

m

|Y (n + m, k)|P (n|m, k) (8)

C1 is a normalizing constant that ensures that PH(n|k) sums to 1.0.



To obtain the update for PS(n, k) we have

q(n, k) =
∑

m

|Y (m, k)|P (n|m, k) (9)

q(n, k)

PS(n, k)
+ α + α log PS(n, k) + ρ = 0 (10)

PS(n, k) =
−q(n, k)/α

W(−q(n, k)e1+ρ/α/α)
(11)

ρ is a lagrange multiplier. W(θ) is Lambert’s W function. PS(n, k)
is obtained through fixed point iterations of Equations 10 and 11.

Typically 2-3 iterations are sufficient.

To initialize the algorithm we initially set PS(n, k) ∝ |Y (n, k)|
and PH(n|k) = 1/n, 0 ≤ n < N , where N is the assumed length

of the STFT of the RIR. Typically we set N to be equal to half of the

T60, which in turn can be estimated using algorithms such as [9].

5. MULTICHANNEL EXTENSION

Multichannel recordings have multiple recordings of the form

yj [l] = x[l] ⊗ h[l] =

L∑

p=0

hj [p]x[l − p] (12)

where yj [l] is the signal captured by the jth microphone and hj [l]
is the room response observed by the jth microphone. The STFT of

yj [l] is given by

Yj(n, k) ≈ X(n, k) ⊗n Hj(n, k) (13)

where Yj(n, k) is the STFT of yj [l] and Hj(k, n) is the STFT of

hj [l]. Note that Equations 12 and 13 assume that the RIRs observed

in the different channels are entirely different; only the underlying

(and unobserved) clean audio is identical for all channels.

The corresponding statistical model is

|Yj(n, k)| ∼ PS(n, k) ⊗n P j
H(n|k) (14)

P j
H(n|k) is the bivariate multinomial which models |Hj(n, k)|.

Equation 14 states that |Yj(n, k)| is the histogram of observations

obtained by drawing (n1, k) from PS(n, k), n2 from P j
H(n|k) and

forming the final observation as (n, k) = (n1 + n2, k).

Given Yj(n, k) for all channels, we must now estimate

PS(n, k). The update rules for this estimation can be derived as

before using EM, and are given by

Pj(m|n, k) =
PS(m, k)P j

H(n − m|k)
∑

m′ PS(m′, k)P j
H(n − m′|k)

(15)

P j
H(n|k) = C1

∑

m

|Yj(n + m, k)|Pj(n|m, k) (16)

C1 is a normalizing constant as before. The updates for PS(n, k)
now become

q(n, k) =
∑

j

∑

m

|Yj(m, k)|Pj(n|m, k) (17)

q(n, k)

PS(n, k)
+ α + α log PS(n, k) + ρ = 0 (18)

PS(n, k) =
−q(n, k)/α

W(−q(n, k)e1+ρ/α/α)
(19)

Note that this is identical to the update rules for monaural signals,

with the difference that q is now obtained by averaging over all chan-

nels. Note that the fact that the same PS(n, k) is assumed for all

channels reduces the degree of underspecification of Equation 14;

nevertheless the overall model remains underspecified and the en-

tropic prior must still be employed. As before, the dereverberated

spectrogram is obtained as S(n, k) = CPS(n, k). C is now set to

equalize the total of all magnitude spectral values of S(n, k) and one

of the channels: Yj(n, k).

6. RESULTS

A number of different experiments were run to evaluate the proposed

algorithm.

Monaural Dereverberation: In the first experiment clean speech

signals were reverberated with an artificially generated room re-

sponse with times (T60) between 0 and 2 seconds. The room re-

sponse was obtained with the image method for a room of dimen-

sions 3m x 4m x 5m. The synthesized signals were all monaural.

The signals were then dereverberated using the proposed

method. The signals were analyzed with an STFT that employed

windows that were 64ms wide. Adjacent windows overlapped by

48ms. In all cases, the reverberation time was assumed to be known

(as mentioned earlier, this is not a bad assumption; reverb times

can be estimated using techniques such as those in [9]). The width

of H(k, m), the time-spectral representation of the room impulse

response, was assumed to be half the known RIR length. In or-

der to ensure that all frequencies contribute equally to the overall

estimation, the STFT of the signals were first “balanced” by nor-

malizing every time-frequency element as follows: |Ŷ (n, k))| =
|Y (n, k)|/ 1

N

∑
m |Y (m, k)|.

Table 1 shows the estimated SNR improvements obtained from

dereverberation. The SNR was computed by comparing the dere-

verberated signal to the original clean signal, and characterizing all

differences as noise. In order to compute the SNR the two signals

first had to be aligned, since the room reverberation and subsequent

deconvolution introduces a shift. The reconstructed signal also had

to be scaled to have the same RMS value as the original clean signal.

T60 0 0.2 0.5 1.0 2.0

SNR(dB) -2.4 3.2 3.3 2.8 1.6

Table 1. SNR improvements as a function of reverb time.

We note that the improvement in SNR is superior to those ob-

tained with technique previously reported by Kameoka et. al. in

[5]. The improvement in SNR is observed to reduce with increasing

reverb time. SNR measurements, however, are highly suspect here.

The RIR introduces an attenuation that must be normalized out by

scaling the signal after dereverberation. Different scaling factors can

result in different SNR estimates. The perceived improvement in

signal quality was typically much greater than that indicated by the

SNRs in Table 1. At reverb times over 0.5 second, it was found

advantageous to dereverberate the data repeatedly assuming an RIR

time of 0.5 seconds each time until the desired RIR was obtained,

instead of only once with the true RIR. For instance, at a T60 time

of 2.0 seconds, repeated application of the algorithm with a dereverb

time of 0.5 seconds resulted in an additional improvement of over

2.0 dB.

More realistic results are obtained by evaluating the data on real

reverberant recordings. In a second experiment, we dereverberated

two real recordings of highly reverberant speech. The first was a



recording of an arabic preacher delivering his discourse in an open

space. The recording was captured by a microphone mounted at a

distance of several meters. Figure 2 show the spectrogram of the sig-

nal before and after dereverberation. For this experiment, since the

reverb time was not known, a reverberation time of 6 seconds was as-

sumed. The second was a recording of a famous Indian play, “Adrak

ke Panje”, which holds the Guinness record for the longest running

play (having run significantly longer than “The Mousetrap”). The

only available recordings for this play, however, were captured in

a highly reverberant auditorium. Figure 3 show the spectrogram of

a sample of this recording, and the dereverberated signal obtained.

Once again, a reverb time of 6 seconds was employed. In both ex-

amples we observe that the dereverberation algorithm significantly

reduces the smearing of the spectrogram that is caused by rever-

beration. Perceptually, we also observe musical noise, introduced

by the enforcement of sparsity which floors some time-frequency

components. Samples of the dereverberated audio may be heard at

http://www.cs.cmu.edu/b̃hiksha/audio/dereverb
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Fig. 2. Left: Spectrogram of two seconds of highly reverberated

speech from our arabic example. Right: Dereverberated version of

the same sample.
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Fig. 3. Left: Spectrogram of reverberant auditorium sample. Right:

Dereverberated version of the same signal.

Multi-channel audio: The multichannel version of the algorithm

was evaluated using synthetic multi-channel data. 11-channel

recordings were obtained by simulating a linear microphone array

with 5cm spacing, in a 12m x 5m x 4m room. The array is cen-

tered 2m from the far wall of the room, and the speaker is 8m from

the array and slightly off center (2.6m and 2.4m from the two walls,

respectively). The image method was used to generate the room re-

sponse.

A T60 time of 2.0 seconds was assumed for the room. Table 2

shows the SNR improvement obtained by dereverberation. In our

experiments below we chose one of the microphones in the center

as the primary microphone (for the 1-channel case), and expanded

symmetrically outward to increase the size of the array.

N. channels 1 2 4 8

SNR(dB) 1.6 1.8 2.4 2.2

Table 2. SNR improvements as a function of the number of micro-

phones.

We note that the improvement in SNR from the dereverberation

increases as the number of channels increases. In particular, the SNR

improvement with 8 microphones was comparable to that obtained

with a delay and sum beamformer on the same data. However, unlike

delay and sum, our algorithm does not require the microphones to be

arranged as a calibrated array, and the room responses observed by

the various microphones can be considerably different.

As stated earlier, the SNR measurements in the above ta-

bles are highly imperfect. The true quality of the results pro-

duced by the algorithm is best judged from the audio samples at

http://www.cs.cmu.edu/b̃hiksha/audio/dereverb

7. DISCUSSION

The dereverberation algorithm is observed to very effective at elim-

inating the smearing that occurs in the spectrogram of a signal as a

result of reverberation. Perceptually, too, the dereverberated signals

sound significantly more crisp than the reverberant signals. Informal

tests show that they are in fact also more intelligible, particularly for

the highly reverberated audio such as that in our arabic and audito-

rium samples. The quality of the signal still leaves something to be

desired though – the dereverberated signals have significant musical

noise. We are currently developing algorithms that compose Wiener

filters from smoothed versions of the dereverberated spectrograms to

eliminate this problem. Also, the imposition of sparsity on the spec-

trograms of the dereverberated signal make them inappropriate for

speech recognition. We believe that the Wiener filter framework will

result in more natural spectrograms that can result in significant im-

provements in recognition accuracy for reverberated speech. We are

also working towards developing alternatives to the entropic prior to

obtain more natural sounding speech.
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