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ABSTRACT
In this paper we present an algorithm for the separation of multi-
ple speakers from mixed single-channel recordings by latent vari-
able decomposition of the speech spectrogram. We model each
magnitude spectral vector in the short-time Fourier transform of a
speech signal as the outcome of a discrete random process that
generates frequency bin indices. The distribution of the process is
modelled a mixture of multinomial distributions, such that the
mixture weights of the component multinomials vary from analy-
sis window to analysis window. The component multinomials are
assumed to be speaker specific and are learnt from training signals
for each speaker. The distributions representing magnitude spec-
tral vectors for the mixed signal are decomposed into mixtures of
the multinomials for all component speakers. The frequency dis-
tribution, i.e. the spectrum for each speaker is reconstructed from
this decomposition. Experimental results show that the proposed
method is very effective at separating mixed signals.

1. INTRODUCTION
In this paper we present a new technique for separating the signals
for individual speakers from mixed single-channel recordings.

The problem of separating speakers from mixed monaural record-
ings has historically been approached from the angle of frequency
selection. To separate the signal for any speaker, the time-fre-
quency components of the mixed signal that are dominated by the
speaker are selected and signals are reconstructed from the result-
ing incomplete time-frequency representation. The actual selec-
tion of time-frequency components for any speaker may be based
on perceptual principles e.g. [1], or on statistical models, e.g. [2],
and may either be binary or probabilistic, e.g. [3].

In this paper we follow an alternate approach that attempts to con-
struct entire spectra for each of the speakers, rather than partial
spectral descriptions. Typically, in this approach, characteristic
spectro-temporal structures, or “bases”, are learnt for the individ-
ual speakers from training data. Mixed signals are decomposed
into linear combinations of these bases. Signals for individual
speakers are separated by recombining their bases with the appro-
priate weights. Jang et. al. [4] derive the bases for speakers
through independent component analysis (ICA) of their signals.
Smaragdis [5] derives them through non-negative matrix factor-
ization (NMF) of their magnitude spectra. Other authors have
derived bases through vector quantization, Gaussian mixture
models, etc.

The algorithm presented in this paper identifies typical spectral
structures for speakers through latent-variable decomposition of
their magnitude spectra. It is based on a somewhat unconven-
tional statistical model that assumes that the spectral vectors of
speech are the outcomes of a discrete random process that gener-
ates frequency bin indices. By this model, each analysis window
(which we refer to as a “frame”) of the speech signal represents

several draws from this process. The magnitude spectrum for the
frame represents a scaled histogram of the draws. The distribution
of the random process itself is modelled as a mixture multinomial
distribution. The mixture weights of the component multinomials
in the mixture are assumed to vary from frame to frame; however
the component multinomials themselves are assumed to be fixed
for any speaker. The component multinomials for each of the
speakers are learned from clean (unmixed) signals through an EM
algorithm.

The spectrum of a mixed signal is modelled as the histogram of
repeated draws from a two-level discrete random process, i.e. a
process with two latent variables. By this model, within each
draw the random process first draws a speaker from the mixture,
and then a specific multinomial distribution for the speaker, and
finally a frequency index from the multinomial. The component
multinomial distributions for each speaker are known a priori,
having been learnt from training data. The technique is therefore a
supervised one, since the actual identities of the speakers in the
mixed signal as well as a priori knowledge of the component
multinomial distributions is required. In order to separate the
spectrum for each speaker, maximum likelihood estimates of the
mixture weights of all component multinomials and the a priori
probabilities of the speakers are obtained for each frame. The sep-
arated spectrum for the speaker within the frame is finally
obtained as the expected value of the number of draws of each
frequency index from the mixture multinomial distribution for the
speaker. Experiments show that the proposed algorithm can result
in a significant degree of separation, as measured by the SNR of
signals separated from synthetic mixtures. SNR enhancements of
up to 6dB are obtained by the procedure.

The rest of this paper is arranged as follows: In Section 2 we
briefly describe the basic latent-variable model for magnitude
spectra. In Section 3 we describe EM algorithms for learning mul-
tinomial component distributions for speakers and for separation
of mixed signals. In Section 4 we present some experimental
results. Finally in Section 5 we discuss our results, possible exten-
sions of the model and avenues for future work.

2. The Latent Variable Model
At the outset it is assumed that all speech signals are converted to
sequences of magnitude spectral vectors1 (simply referred to as
“spectral” vectors henceforth) through a short-time Fourier trans-
form. The term “frequency” in the subsequent discussion actually
refers to the frequencies represented in these spectral vectors. 

The latent variable model for the spectral vectors for the signal is
best illustrated through the urn-and-ball example of Figure 1a. A
stochastic “picker” has a number of urns. Every urn contains a
number of balls, each of which is marked with one of N frequency

1. It has empirically been determined that the algorithm is more effective
when performed with magnitude spectra rather than power spectra.



values. Each urn contains a different distribution of balls. The
picker randomly selects one of the urns, draws a ball from the urn,
notes the frequency on it and returns the ball to the urn. He repeats
the process several times, drawing a ball and noting the frequency
marked on it each time. He finally plots a histogram of the draws. 

The probability distribution of the balls from any urn in this
example is a multinomial distribution. The overall distribution of
the process is a mixture multinomial distribution. The histogram
represents the outcome of a set of draws from this distribution.

The urn-and-ball model above is equivalent to our latent variable
model for the spectrum of any frame of speech. The frequencies
marked on the balls represent the discrete frequencies in the N-
point FFT for the signal. The number of times a particular fre-
quency is drawn by the picker represents the value of the spec-
trum at that frequency. The mixture multinomial distribution for
the entire urn-and-ball process represents a statistical model for
the spectrum of the analysis window, while the histogram of the
draws represents the actual spectrum obtained.

The latent variable model assumes that the component multino-
mial distributions for any speaker remain constant across all anal-
ysis frames, while the mixture weights for the components vary
from frame to frame. In terms of the urn-and-ball simile, this
means that the set of urns remains the same for all frames; how-
ever the operator selects the urns according to a different distribu-
tion in every frame.

The latent variable model for the spectral vectors can be repre-
sented graphically as shown in Figure 1b. A latent variable  gov-
erns the generation of a frequency . The conditional probabilities
for  are assumed to be constant for any speaker; however the a
priori probability of the latent variable  varies from analysis
frame to analysis frame. Thus the overall mixture multinomial
distribution model for the spectrum of the tth frame is given by

(1)

where  represents the a priori probability of  in the tth
frame and  represents the multinomial distribution of 
given the latent variable .  takes the values of the discrete fre-
quencies of the FFT for the frame, while  takes on as many val-
ues as there are component multinomials in the distribution. The
subscript  in  indicates that these terms are specific to
the speaker. In urn-and-ball terms, this is equivalent to saying that
each speaker is represented by a separate set of urns.

The latent variable model for the spectrum of a mixed speech sig-

nal is shown in Figure 2. A fraction of the spectral content in each
frequency is derived from each speaker. Accordingly, the urn-and-
ball equivalent for the mixed signal with two speakers is as shown
in Figure 2a. At each draw a new entity, who we term a “caller”
randomly calls out one of two pickers who in turn draws a ball
from one of his urns. Each picker represents the process that gen-
erates the spectrum for one of the speakers and draws balls exclu-
sively from the urns for that speaker. The probability with which
the caller selects any of the pickers changes from frame to frame,
as does the probability with which the pickers select the urns. Fig-
ure 2b shows a graphical representation for the model. An initial
latent variable  representing a speaker selects a second latent
variable , which in turn determines the probability of the fre-
quency selected. The constraint here is that  takes on a different
set of values for each speaker. The overall distribution underlying
the spectral vector for the tth analysis frame is given by

(2)

where  is the a priori probability of the sth speaker and
 represents the set of values that  can take for that speaker.

3. Single-Channel Speaker Separation
The speaker algorithm comprises a learning stage where the com-
ponent multinomial distributions for speakers are learnt, and an
operational stage where the learnt parameters are used to separate
speech. We describe these in the following subsections.

3.1. Learning the parameters for speakers
In the learning stage of the algorithm the latent-variable-condi-
tioned multinomial distributions  are learnt for each
speaker from a set of training recordings for the speaker. Let 
represent the value of the th frequency band in the tth training
spectral vector for the speaker. Since the spectra are assumed to be
histograms by the model, every spectral component must be an
integer. To account for this we assume that the observed spectrum
is in fact a scaled version of the histogram. Fortunately, the
unknown scaling factor does not affect the analysis since it fac-
tored equally into the numerator and denominator terms of all
equations.

The various components of the mixture multinomial distribution
of Equation 1 are initialized randomly and reestimated through
iterations of the following equations, which are derived through
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Figure 1.  (a) Urn-and-ball illustration of the latent variable model for the
magnitude spectrum of a speaker. An “picker” z selects one of several urns
at random and draws a ball f from the urn. He repeats this operation sev-
eral times in every frame. The histogram of the balls drawn represents the
spectrum for the frame. (b) Graphical model for the process - latent vari-
able z governs the probability of the observed variable f.
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Figure 2.  (a) Urn-and-ball illustration of the latent variable model for the
spectrum of a mixed signal. A “caller” s randomly calls one of two pick-
ers, who in turn randomly selects an urn and draws a ball from it. Pickers
can draw balls from their own urns only and may not draw balls from the
other picker’s urns. The histogram of the drawn balls represents the spec-
trum of the mixed signal. (b) A graphical model for the process - an first
latent variable s directs a second level latent variable z which in turn deter-
mines the probability of the observed variable f.
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the expectation maximization algorithm:

(3)

(4)

(5)

Only the  values are used in reconstruction and the rest of
the terms are discarded. Figure 3 shows a few examples of typical

 distributions learnt for a female and a male speaker.

3.2. Separating out speakers from mixed signals
The process of separating out the power spectra of speakers from
a mixed signal has two stages. In the first, the mixture multino-
mial distribution of each of the speakers is estimated in each anal-
ysis frame. This implies the estimation of all parameters of
Equation 2 except the  terms which are obtained from the
training data. The various  and  parameters for the
tth analysis frame are estimated by iterations of the following
equations, derived through the EM algorithm:

(6)

(7)

(8)

Once all terms have been estimated, the mixture multinomial dis-
tribution for the sth speaker in the tth analysis frame is obtained as

(9)

According to the model, the total number of draws of any fre-
quency is the sum of the draws from the distributions for the indi-
vidual speakers, i.e. 

(10)

where  is the number of draws of  from the sth speaker.
The expected value of , given the total count  is hence
given by

(11)

 is the estimated value of the th component of the spec-
trum of the sth speaker in the tth frame. The set of  values
for all values of f and t are composed into a complete sequence of
spectral vectors for the speaker. The phase of the short-time Fou-
rier transform of the mixed signal is combined with the recon-
structed magnitude spectrum and an inverse Fourier transform
performed to obtain the time-domain signal for the speaker.

4. Experimental Evaluation
Experiments were conducted to evaluate the speaker separation
performance of the proposed algorithm on synthetic mixtures of
signals from a male speaker and a female speaker. A set of 8 utter-
ances comprising approximately 30 seconds of speech was used
as training data for each speaker. All signals were normalized to 0
mean and unit variance to ensure uniformity of signal level. Sig-
nals were analyzed in 64 ms windows with 32ms overlap between
windows. The training data thus comprised approximately 1000
magnitude spectral vectors for each speaker. Spectral vectors were
modelled by a mixture of 100 multinomial distributions. Thus, a
set of 100 multinomial distributions were learnt from the training
data for each speaker.

Mixed signals were obtained by digitally adding test signals for
both speakers. The length of the mixed signal was set to the
shorter of the two signals. The component signals were all nor-
malized to 0 mean and unit variance prior to addition, resulting in
mixed signals with 0dB SNR for each speaker. A total of 20 such
mixed recordings were obtained in this manner. The mixed signals
were separated using the method outlined in Section 3.2.

Figure 4 shows an example of spectrograms of separated signals
obtained for the speakers. The spectrograms of the original sig-
nals, the mixed signal and both separated signals are all shown. It
can be seen from the figure that considerable separation has been
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Figure 3.  The three histograms to the left show typical component multi-
nomial distributions obtained for a female speaker. The histograms to the
right show typical multinomials for a male speaker.
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achieved for both speakers. We measured the improvement in
SNR for the two speakers. It is difficult to establish a clear defini-
tion of the SNR for this problem: since the power in any fre-
quency component of the reconstructed signal is often lower than
the power in the corresponding original unmixed signal for one of
the two speakers, direct subtraction of the former from the latter to
determine noise power can result in negative estimates for noise.
We therefore incorporate the phase of the Fourier spectrum of the
mixed signal into both the original unmixed signal and the recon-
structed signal to normalize their phases and estimate the SNR as:

(12)

where  is the phase of the th frequency band of the fou-
rier spectrum of the tth analysis frame of the mixed signal.
Although Equation 12 avoids the problem of negative noise esti-
mates, it is still not perfect and while it is safe to use it to judge the
relative level of corruption in two signals, it is not a perfect mea-
sure of the absolute degree of corruption in a single signal.

Using the description of SNR given above, the separation method
presented in this paper was observed to result in an average SNR
improvement of 5.30 dB over the mixed signal for the female
speaker and of 5.36dB for the male speaker, averaged over 20
mixed recordings. Figure 5 shows a plot of the SNR improve-
ments for all 20 recordings. Examples of separated signals can be
obtained at http://www.cs.cmu.edu/~bhiksha/audio/

5. Observations and Conclusions
The proposed speaker separation algorithm is observed to be able
to extract separated signals with significantly reduced levels of
the competing speaker. Of particular interest are that the algorithm
requires very small amounts of training data and is also computa-
tionally significantly less expensive than most other separation

algorithms that produce similar results. In our experiments the
results obtained with our algorithm were perceptually superior to
those obtained with MaxVQ [2], although the latter was trained on
30 times as much training data per speaker, and took significantly
longer to run (SNR comparisons are difficult to make, however,
since MaxVQ only derives partial spectral representations).

Algebraically, the proposed algorithm is very similar to the NMF-
based speaker separation method of Smaragdis [5]. The mathe-
matical details, however, differ significantly - a closer simile may
be in fact be made to the PLSA algorithm proposed by Hoffman
[6]. More importantly, the proposed approach naturally enables
clean solutions to various extensions of the basic separation prob-
lem. For instance, a priori guesses about the relative levels of the
two speakers can be incorporated through a priori probabilities
for . Other work not presented in this paper shows that short-
time linear filtering effects are easily incorporated by including an
alternative conditioning link from the speaker to the frequencies
in Figure 2b. Temporal dependence between adjacent frames may
be incorporated through Markovian priors on . All of these
extensions are easily solved through the EM or belief propagation
algorithms. In addition, the formulation also enables the enforce-
ment of sparseness constraints through various well-known meth-
ods such as minimum-entropy training or through model-order-
estimation criteria such as MDL or BIC. We expect to address
several of these issues in future papers.
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Figure 4.  Example of the output of the separation algorithm. Both speak-
ers uttered the same sequence of words in this example. (a) Original
unmixed signal for the male speaker, (b) Signal separated for the male
speaker from the mixed signal, (c) The mixed signal, (d) Original unmixed
signal for the female speaker, (e) Separated signal for the female speaker.
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