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Abstract

Suppose we have samples of a subset of a collection of random variables. No additional
information is provided about the number of latent variables, nor of the relationship between
the latent and observed variables. Is it possible to discover the number of hidden components,
and to learn a statistical model over the entire collection of variables? We address this question
in the setting in which the latent and observed variables are jointly Gaussian, with the condi-
tional statistics of the observed variables conditioned on the latent variables being specified by
a graphical model. As a first step we give natural conditions under which such latent-variable
Gaussian graphical models are identifiable given marginal statistics of only the observed vari-
ables. Essentially these conditions require that the conditional graphical model among the
observed variables is sparse, while the effect of the latent variables is “spread out” over most
of the observed variables. Next we propose a tractable convex program based on regularized
maximum-likelihood for model selection in this latent-variable setting; the regularizer uses both
the �1 norm and the nuclear norm. Our modeling framework can be viewed as a combination
of dimensionality reduction (to identify latent variables) and graphical modeling (to capture
remaining statistical structure not attributable to the latent variables), and it consistently es-
timates both the number of hidden components and the conditional graphical model structure
among the observed variables. These results are applicable in the high-dimensional setting in
which the number of latent/observed variables grows with the number of samples of the observed
variables. The geometric properties of the algebraic varieties of sparse matrices and of low-rank
matrices play an important role in our analysis.

Keywords: Gaussian graphical models; covariance selection; latent variables; regularization;
sparsity; low-rank; algebraic statistics; high-dimensional asymptotics

1 Introduction

Statistical model selection in the high-dimensional regime arises in a number of applications. In
many data analysis problems in geophysics, radiology, genetics, climate studies, and image pro-
cessing, the number of samples available is comparable to or even smaller than the number of
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variables. However, it is well-known that empirical statistics such as sample covariance matrices
are not well-behaved when both the number of samples and the number of variables are large and
comparable to each other (see [26]). Model selection in such a setting is therefore both challenging
and of great interest. In order for model selection to be well-posed given limited information, a key
assumption that is often made is that the underlying model to be estimated only has a few degrees
of freedom. Common assumptions are that the data are generated according to a graphical model,
or a stationary time-series model, or a simple factor model with a few latent variables. Sometimes
geometric assumptions are also made in which the data are viewed as samples drawn according to
a distribution supported on a low-dimensional manifold.

A model selection problem that has received considerable attention recently is the estimation
of covariance matrices in the high-dimensional setting. As the sample covariance matrix is poorly
behaved in such a regime [20, 26], some form of regularization of the sample covariance is adopted
based on assumptions about the true underlying covariance matrix. For example approaches based
on banding the sample covariance matrix [3] have been proposed for problems in which the vari-
ables have a natural ordering (e.g., times series), while “permutation-invariant” methods that use
thresholding are useful when there is no natural variable ordering [4, 15]. These approaches provide
consistency guarantees under various sparsity assumptions on the true covariance matrix. Other
techniques that have been studied include methods based on shrinkage [24, 39] and factor analysis
[16]. A number of papers have studied covariance estimation in the context of Gaussian graphical
model selection. In a Gaussian graphical model the inverse of the covariance matrix, also called
the concentration matrix, is assumed to be sparse, and the sparsity pattern reveals the conditional
independence relations satisfied by the variables. The model selection method usually studied in
such a setting is �1-regularized maximum-likelihood, with the �1 penalty applied to the entries of
the inverse covariance matrix to induce sparsity. The consistency properties of such an estimator
have been studied [22, 29, 32], and under suitable conditions [22, 29] this estimator is also “sparsis-
tent”, i.e., the estimated concentration matrix has the same sparsity pattern as the true model from
which the samples are generated. An alternative approach to �1-regularized maximum-likelihood
is to estimate the sparsity pattern of the concentration matrix by performing regression separately
on each variable [27]; while such a method consistently estimates the sparsity pattern, it does not
directly provide estimates of the covariance or concentration matrix.

In many applications throughout science and engineering, a challenge is that one may not have
access to observations of all the relevant phenomena, i.e., some of the relevant variables may be
hidden or unobserved. Such a scenario arises in data analysis tasks in psychology, computational
biology, and economics. In general latent variables pose a significant difficulty for model selection
because one may not know the number of relevant latent variables, nor the relationship between
these variables and the observed variables. Typical algorithmic methods that try to get around this
difficulty usually fix the number of latent variables as well as the structural relationship between
latent and observed variables (e.g., the graphical model structure between latent and observed
variables), and use the EM algorithm to fit parameters [11]. This approach suffers from the problem
that one optimizes non-convex functions, and thus one may get stuck in sub-optimal local minima.
An alternative method that has been suggested is based on a greedy, local, combinatorial heuristic
that assigns latent variables to groups of observed variables, based on some form of clustering of
the observed variables [14]; however, this approach has no consistency guarantees.

In this paper we study the problem of latent-variable graphical model selection in the setting
where all the variables, both observed and hidden, are jointly Gaussian. More concretely let the
covariance matrix of a finite collection of jointly Gaussian random variables XO ∪XH be denoted
by Σ(O H), where XO are the observed variables and XH are the unobserved, hidden variables. The
marginal statistics corresponding to the observed variables XO are given by the marginal covariance
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matrix ΣO, which is simply a submatrix of the full covariance matrix Σ(O H). However suppose that

we parameterize our model by the concentration matrix K(O H) = Σ−1
(O H), which as discussed above

reveals the connection to graphical models. In such a parametrization, the marginal concentration
matrix Σ−1

O corresponding to the observed variables XO is given by the Schur complement [19] with
respect to the block KH :

K̃O = Σ−1
O = KO −KO,HK

−1
H KH,O.

Thus if we only observe the variables XO, we only have access to ΣO (or K̃O). The two terms that
compose K̃O above have interesting properties. The matrix KO specifies the concentration matrix
of the conditional statistics of the observed variables given the latent variables. If these conditional
statistics are given by a sparse graphical model then KO is sparse. On the other hand the matrix
KO,HK

−1
H KH,O serves as a summary of the effect of marginalization over the hidden variables H.

This matrix has small rank if the number of latent, unobserved variables H is small relative to the
number of observed variables O (the rank is equal to |H|). Therefore the marginal concentration
matrix K̃O of the observed variables XO is generally not sparse due to the additional low-rank
term KO,HK

−1
H KH,O. Hence standard graphical model selection techniques applied directly to the

observed variables XO are not useful.
A modeling paradigm that infers the effect of the latent variables XH would be more suitable

in order to provide a simple explanation of the underlying statistical structure. Hence we decom-
pose K̃O into the sparse and low-rank components, which reveals the conditional graphical model
structure in the observed variables as well as the number of and effect due to the unobserved latent
variables. Such a method can be viewed as a blend of principal component analysis and graphical
modeling. In standard graphical modeling one would directly approximate a concentration matrix
by a sparse matrix in order to learn a sparse graphical model. On the other hand in principal com-
ponent analysis the goal is to explain the statistical structure underlying a set of observations using
a small number of latent variables (i.e., approximate a covariance matrix as a low-rank matrix). In
our framework based on decomposing a concentration matrix, we learn a graphical model among
the observed variables conditioned on a few (additional) latent variables. Notice that in our setting
these latent variables are not principal components, as the conditional statistics (conditioned on
these latent variables) are given by a graphical model. Therefore we refer to these latent variables
informally as hidden components.

Our first contribution in Section 3 is to address the fundamental question of identifiability of
such latent-variable graphical models given the marginal statistics of only the observed variables.
The critical point is that we need to tease apart the correlations induced due to marginalization over
the latent variables from the conditional graphical model structure among the observed variables.
As the identifiability problem is one of uniquely decomposing the sum of a sparse matrix and a
low-rank matrix into the individual components, we study the algebraic varieties of sparse matrices
and low-rank matrices. An important theme in this paper is the connection between the tangent
spaces to these algebraic varieties and the question of identifiability. Specifically let Ω(KO) denote
the tangent space at KO to the algebraic variety of sparse matrices, and let T (KO,HK

−1
H KH,O)

denote the tangent space at KO,HK
−1
H KH,O to the algebraic variety of low-rank matrices. Then

the statistical question of identifiability of KO and KO,HK
−1
H KH,O given K̃O is determined by the

geometric notion of transversality of the tangent spaces Ω(KO) and T (KO,HK
−1
H KH,O). The study

of the transversality of these tangent spaces leads us to natural conditions for identifiability. In
particular we show that latent-variable models in which (1) the sparse matrix KO has a small
number of nonzeros per row/column, and (2) the low-rank matrix KO,HK

−1
H KH,O has row/column

spaces that are not closely aligned with the coordinate axes, are identifiable. These two conditions
have natural statistical interpretations. The first condition ensures that there are no densely-
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connected subgraphs in the conditional graphical model structure among the observed variables
XO given the hidden components, i.e., that these conditional statistics are indeed specified by a
sparse graphical model. Such statistical relationships may otherwise be mistakenly attributed to
the effect of marginalization over some latent variable. The second condition ensures that the effect
of marginalization over the latent variables is “spread out” over many observed variables; thus, the
effect of marginalization over a latent variable is not confused with the conditional graphical model
structure among the observed variables. In fact the first condition is often assumed in some papers
on standard graphical model selection without latent variables (see for example [29]). We note here
that question of parameter identifiability was recently studied for models with discrete-valued latent
variables (i.e., mixture models, hidden Markov models) [1]. However, this work is not applicable
to our setting in which both the latent and observed variables are assumed to be jointly Gaussian.

As our next contribution we propose a regularized maximum-likelihood decomposition framework
to approximate a given sample covariance matrix by a model in which the concentration matrix
decomposes into a sparse matrix and a low-rank matrix. A number of papers over the last several
years have suggested that heuristics based on using the �1 norm are very effective for recovering
sparse models [6, 12, 13]. Indeed such heuristics have been effectively used, as described above,
for model selection when the goal is to estimate sparse concentration matrices. In her thesis [17]
Fazel suggested a convex heuristic based on the nuclear norm for rank-minimization problems in
order to recover low-rank matrices. This method generalized the previously studied trace heuris-
tic for recovering low-rank positive semidefinite matrices. Recently several conditions have been
given under which these heuristics provably recover low-rank matrices in various settings [7, 30].
Motivated by the success of these heuristics, we propose the following penalized likelihood method
given a sample covariance matrix ΣnO formed from n samples of the observed variables:

(Ŝn, L̂n) = argmin
S,L

− �(S − L; ΣnO) + λn (γ‖S‖1 + tr(L))

s.t. S − L � 0, L � 0.
(1.1)

Here � represents the Gaussian log-likelihood function and is given by �(K; Σ) = log det(K)−tr(KΣ)
for K � 0, where tr is the trace of a matrix and det is the determinant. The matrix Ŝn provides an
estimate ofKO, which represents the conditional concentration matrix of the observed variables; the
matrix L̂n provides an estimate of KO,HK

−1
H KH,O, which represents the effect of marginalization

over the latent variables. Notice that the regularization function is a combination of the �1 norm
applied to S and the nuclear norm applied to L (the nuclear norm reduces to the trace over the cone
of symmetric, positive-semidefinite matrices), with γ providing a tradeoff between the two terms.
This variational formulation is a convex optimization problem. In particular it is a regularized
max-det problem and can be solved in polynomial time using standard off-the-shelf solvers [36].

Our main result in Section 4 is a proof of the consistency of the estimator (1.1) in the high-
dimensional regime in which both the number of observed variables and the number of hidden
components are allowed to grow with the number of samples (of the observed variables). We
show that for a suitable choice of the regularization parameter λn, there exists a range of val-
ues of γ for which the estimates (Ŝn, L̂n) have the same sparsity (and sign) pattern and rank as
(KO,KO,H(KH)

−1KH,O) with high probability (see Theorem 4.1). The key technical requirement
is an identifiability condition for the two components of the marginal concentration matrix K̃O with
respect to the Fisher information (see Section 3.4). We make connections between our condition
and the irrepresentability conditions required for support/graphical-model recovery using �1 regu-
larization [29, 40]. Our results provide numerous scaling regimes under which consistency holds in
latent-variable graphical model selection. For example we show that under suitable identifiability
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conditions consistent model selection is possible even when the number of samples and the number
of latent variables are on the same order as the number of observed variables (see Section 4.3).

Related previous work The problem of decomposing the sum of a sparse matrix and a low-
rank matrix, with no additional noise, into the individual components was initially studied in
[9] by a superset of the authors of the present paper. Specifically this work proposed a convex
program using a combination of the �1 norm and the nuclear norm to recover the sparse and low-
rank components, and derived conditions under which the convex program exactly recovers these
components. In subsequent work Candès et al. [8] also studied this noise-free sparse-plus-low-
rank decomposition problem, and provided guarantees for exact recovery using the convex program
proposed in [9]. The problem setup considered in the present paper is quite different and is more
challenging because we are only given access to an inexact sample covariance matrix, and we are
interested in recovering components that preserve both the sparsity pattern and the rank of the
components in the true underlying model. In addition to proving such a consistency result for
the estimator (1.1), we also provide a statistical interpretation of our identifiability conditions and
describe natural classes of latent-variable Gaussian graphical models that satisfy these conditions.
As such our paper is closer in spirit to the many recent papers on covariance selection, but with
the important difference that some of the variables are not observed.

Outline Section 2 gives some background on graphical models as well as the algebraic varieties
of sparse and low-rank matrices. It also provides a formal statement of the problem. Section 3
discusses conditions under which latent-variable models are identifiable, and Section 4 states the
main results of this paper. We provide experimental demonstration of the effectiveness of our
estimator on synthetic and real data in Section 5. Section 6 concludes the paper with a brief
discussion. The appendices include additional details and proofs of all of our technical results.

2 Background and Problem Statement

We briefly discuss concepts from graphical modeling and give a formal statement of the latent-
variable model selection problem. We also describe various properties of the algebraic varieties of
sparse matrices and of low-rank matrices. The following matrix norms are employed throughout
this paper:

• ‖M‖2: denotes the spectral norm, which is the largest singular value of M .

• ‖M‖∞: denotes the largest entry in magnitude of M .

• ‖M‖F : denotes the Frobenius norm, which is the square-root of the sum of the squares of the
entries of M .

• ‖M‖∗: denotes the nuclear norm, which is the sum of the singular values of M . This reduces
to the trace for positive-semidefinite matrices.

• ‖M‖1: denotes the sum of the absolute values of the entries of M .

A number of matrix operator norms are also used. For example, let Z : Rp×p → R
p×p be a linear

operator acting on matrices. Then the induced operator norm ‖Z‖q→q is defined as:

‖Z‖q→q � max
N∈Rp×p, ‖N‖q≤1

‖Z(N)‖q. (2.1)
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Therefore, ‖Z‖F→F denotes the spectral norm of the matrix operator Z. The only vector norm
used is the Euclidean norm, which is denoted by ‖ · ‖.

2.1 Gaussian graphical models with latent variables

A graphical model [23] is a statistical model defined with respect to a graph (V, E) in which the
nodes index a collection of random variables {Xv}v∈V , and the edges represent the conditional
independence relations (Markov structure) among the variables. The absence of an edge between
nodes i, j ∈ V implies that the variables Xi,Xj are independent conditioned on all the other
variables. A Gaussian graphical model (also commonly referred to as a Gauss-Markov random
field) is one in which all the variables are jointly Gaussian [33]. In such models the sparsity
pattern of the inverse of the covariance matrix, or the concentration matrix, directly corresponds
to the graphical model structure. Specifically, consider a Gaussian graphical model in which the
covariance matrix is given by Σ � 0 and the concentration matrix is given by K = Σ−1. Then an
edge {i, j} ∈ E is present in the underlying graphical model if and only if Ki,j �= 0.

Our focus in this paper is on Gaussian models in which some of the variables may not be
observed. Suppose O represents the set of nodes corresponding to observed variables XO, and
H the set of nodes corresponding to unobserved, hidden variables XH with O ∪ H = V and
O∩H = ∅. The joint covariance is denoted by Σ(O H), and joint concentration matrix by K(O H) =

Σ−1
(O H). The submatrix ΣO represents the marginal covariance of the observed variables XO, and

the corresponding marginal concentration matrix is given by the Schur complement with respect
to the block KH :

K̃O = Σ−1
O = KO −KO,HK

−1
H KH,O. (2.2)

The submatrix KO specifies the concentration matrix of the conditional statistics of the observed
variables conditioned on the hidden components. If these conditional statistics are given by a
sparse graphical model then KO is sparse. On the other hand the marginal concentration matrix
K̃O of the marginal distribution of XO is not sparse in general due to the extra correlations induced
from marginalization over the latent variables XH , i.e., due to the presence of the additional term
KO,HK

−1
H KH,O. Hence, standard graphical model selection techniques in which the goal is to

approximate a sample covariance by a sparse graphical model are not well-suited for problems in
which some of the variables are hidden. However, the matrix KO,HK

−1
H KH,O is a low-rank matrix

if the number of hidden variables is much smaller than the number of observed variables (i.e.,
|H| � |O|). Therefore, a more appropriate model selection method is to approximate the sample
covariance by a model in which the concentration matrix decomposes into the sum of a sparse
matrix and a low-rank matrix. The objective here is to learn a sparse graphical model among the
observed variables conditioned on some latent variables, as such a model explicitly accounts for the
extra correlations induced due to unobserved, hidden components.

2.2 Problem statement

In order to analyze latent-variable model selection methods, we need to define an appropriate no-
tion of model selection consistency for latent-variable graphical models. Notice that given the two
components KO and KO,HK

−1
H KH,O of the concentration matrix of the marginal distribution (2.2),

there are infinitely many configurations of the latent variables (i.e., matrices KH � 0,KO,H =
KT
H,O) that give rise to the same low-rank matrix KO,HK

−1
H KH,O. Specifically for any non-singular

matrix B ∈ R
|H|×|H|, one can apply the transformations KH → BKHB

T ,KO,H → KO,HB
T and

still preserve the low-rank matrix KO,HK
−1
H KH,O. In all of these models the marginal statis-

tics of the observed variables XO remain the same upon marginalization over the latent variables
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XH . The key invariant is the low-rank matrix KO,HK
−1
H KH,O, which summarizes the effect of

marginalization over the latent variables. These observations give rise to the following notion of
consistency:

Definition 2.1. A pair of (symmetric) matrices (S,L) with S,L ∈ R
|O|×|O| is an algebraically

consistent estimate of a latent-variable Gaussian graphical model given by the concentration matrix
K(O H) if the following conditions hold:

1. The sign-pattern of S is the same as that of KO:

sign(Si,j) = sign((KO)i,j), ∀i, j.

Here we assume that sign(0) = 0.

2. The rank of L is the same as the rank of KO,HK
−1
H KH,O:

rank(L) = rank(KO,HK
−1
H KH,O).

3. The concentration matrix S − L can be realized as the marginal concentration matrix of an
appropriate latent-variable model:

S − L � 0, L � 0.

The first condition ensures that S provides the correct structural estimate of the conditional
graphical model (given by KO) of the observed variables conditioned on the hidden components.
This property is the same as the “sparsistency” property studied in standard graphical model
selection [22, 29]. The second condition ensures that the number of hidden components is correctly
estimated. Finally, the third condition ensures that the pair of matrices (S,L) leads to a realizable
latent-variable model. In particular this condition implies that there exists a valid latent-variable
model on |O ∪ H| variables in which (a) the conditional graphical model structure among the
observed variables is given by S, (b) the number of latent variables |H| is equal to the rank of L,
and (c) the extra correlations induced due to marginalization over the latent variables is equal to L.
Any method for matrix factorization (see for example, [38]) can be used to factorize the low-rank
matrix L, depending on the properties that one desires in the factors (e.g., sparsity).

We also study parametric consistency in the usual sense, i.e., we show that one can produce
estimates (S,L) that converge in various norms to the matrices (KO,KO,HK

−1
H KH,O). Notice that

proving (S,L) is close to (KO,KO,HK
−1
H KH,O) in some norm does not in general imply that the

support/sign-pattern and rank of (S,L) are the same as those of (KO,KO,HK
−1
H KH,O). Therefore

parametric consistency is different from algebraic consistency, which requires that (S,L) have the
same support/sign-pattern and rank as (KO,KO,HK

−1
H KH,O).

Goal Let K∗
(O H) denote the concentration matrix of a Gaussian model. Suppose that we have

n samples {Xi
O}ni=1 of the observed variables XO. We would like to produce estimates (Ŝn, L̂n)

that, with high-probability, are both algebraically consistent and parametrically consistent (in some
norm).
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2.3 Likelihood function and Fisher information

Given n samples {Xi}ni=1 of a finite collection of jointly Gaussian zero-mean random variables with
concentration matrix K∗, we define the sample covariance as follows:

Σn � 1

n

n∑
i=1

XiX
T
i . (2.3)

It is then easily seen that the log-likelihood function is given by:

�(K; Σn) = log det(K)− tr(KΣn), (2.4)

where �(K; Σn) is a function of K. Notice that this function is strictly concave for K � 0. Now
consider the latent-variable modeling problem in which we wish to model a collection of random
variables XO (with sample covariance ΣnO) by adding some extra variables XH . With respect to
the parametrization (S,L) (with S representing the conditional statistics of XO given XH , and L
summarizing the effect of marginalization over the additional variables XH), the likelihood function
is given by:

�̄(S,L; ΣnO) = �(S − L; ΣnO).

The function �̄ is jointly concave with respect to the parameters (S,L) whenever S −L � 0, and it
is this function that we use in our variational formulation (1.1) to learn a latent-variable model.

In the analysis of a convex program involving the likelihood function, the Fisher information
plays an important role as it is the negative of the Hessian of the likelihood function and thus
controls the curvature. As the first term in the likelihood function is linear, we need only study
higher-order derivatives of the log-determinant function in order to compute the Hessian. Letting
I denote the Fisher information matrix, we have that [5]

I(K∗) � −∇2
K log det(K)|K=K∗ = (K∗)−1 ⊗ (K∗)−1,

for K∗ � 0. If K∗ is a p × p concentration matrix, then the Fisher information matrix I(K∗) has
dimensions p2×p2. Next consider the latent-variable situation with the variables indexed by O being
observed and the variables indexed by H being hidden. The concentration matrix K̃∗

O = (Σ∗
O)

−1

of the marginal distribution of the observed variables O is given by the Schur complement (2.2),
and the corresponding Fisher information matrix is given by

I(K̃∗
O) = (K̃∗

O)
−1 ⊗ (K̃∗

O)
−1 = Σ∗

O ⊗Σ∗
O.

Notice that this is precisely the |O|2 × |O|2 submatrix of the full Fisher information matrix
I(K∗

(O H)) = Σ∗
(O H) ⊗ Σ∗

(O H) with respect to all the parameters K∗
(O H) = (Σ∗

(O H))
−1 (corre-

sponding to the situation in which all the variables XO∪H are observed). The matrix I(K∗
(O H))

has dimensions |O ∪H|2 × |O ∪H|2, while I(K̃∗
O) is an |O|2 × |O|2 matrix. To summarize, we have

for all i, j, k, l ∈ O that:

I(K̃∗
O)(i,j),(k,l) = [Σ∗

(O H) ⊗ Σ∗
(O H)](i,j),(k,l) = I(K∗

(O H))(i,j),(k,l).

In Section 3.4 we impose various conditions on the Fisher information matrix I(K̃∗
O) under which

our regularized maximum-likelihood formulation provides consistent estimates with high probabil-
ity.
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2.4 Algebraic varieties of sparse and low-rank matrices

An algebraic variety is the solution set of a system of polynomial equations. The set of sparse
matrices and the set of low-rank matrices can be naturally viewed as algebraic varieties. Here we
describe these varieties, and discuss some of their properties. Of particular interest in this paper are
geometric properties of these varieties such as the tangent space and local curvature at a (smooth)
point.

Let S(k) denote the set of matrices with at most k nonzeros:

S(k) � {M ∈ R
p×p | |support(M)| ≤ k}. (2.5)

The set S(k) is an algebraic variety, and can in fact be viewed as a union of
(p2
k

)
subspaces

in R
p×p. This variety has dimension k, and it is smooth everywhere except at those matrices

that have support size strictly smaller than k. For any matrix M ∈ R
p×p, consider the variety

S(|support(M)|); M is a smooth point of this variety, and the tangent space at M is given by

Ω(M) = {N ∈ R
p×p | support(N) ⊆ support(M)}. (2.6)

In words the tangent space Ω(M) at a smooth point M is given by the set of all matrices that have
support contained within the support of M . We view Ω(M) as a subspace in R

p×p.
Next let L(r) denote the algebraic variety of matrices with rank at most r:

L(r) � {M ∈ R
p×p | rank(M) ≤ r}. (2.7)

It is easily seen that L(r) is an algebraic variety because it can be defined through the vanishing
of all (r + 1) × (r + 1) minors. This variety has dimension equal to r(2p − r), and it is smooth
everywhere except at those matrices that have rank strictly smaller than r. Consider a rank-r
matrix M with SVD given by M = UDV T , where U, V ∈ R

p×r and D ∈ R
r×r. The matrix M is a

smooth point of the variety L(rank(M)), and the tangent space at M with respect to this variety
is given by

T (M) = {UY T
1 + Y2V

T | Y1, Y2 ∈ R
p×r}. (2.8)

In words the tangent space T (M) at a smooth point M is the span of all matrices that have either
the same row-space as M or the same column-space as M . As with Ω(M) we view T (M) as a
subspace in R

p×p.
In Section 3 we explore the connection between geometric properties of these tangent spaces

and the identifiability problem in latent-variable graphical models.

2.5 Curvature of rank variety

The sparse matrix variety S(k) has the property that it has zero curvature at any smooth point.
Consequently the tangent space at a smooth point M is the same as the tangent space at any
point in a neighborhood of M . This property is implicitly used in the analysis of �1 regularized
methods for recovering sparse models. The situation is more complicated for the low-rank matrix
variety, because the curvature at any smooth point is nonzero. Therefore we need to study how the
tangent space changes from one point to a neighboring point by analyzing how this variety curves
locally. Indeed the amount of curvature at a point is directly related to the “angle” between the
tangent space at that point and the tangent space at a neighboring point. For any subspace T of
matrices, let PT denote the projection onto T . Given two subspaces T1, T2 of the same dimension,
we measure the “twisting” between these subspaces by considering the following quantity.

ρ(T1, T2) � ‖PT1 − PT2‖2→2 = max
‖N‖2≤1

‖[PT1 − PT2 ](N)‖2. (2.9)
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In Appendix A we briefly review relevant results from matrix perturbation theory; the key
tool used to derive these results is the resolvent of a matrix [21]. Based on these tools we prove
the following two results in Appendix B, which bound the twisting between the tangent spaces at
nearby points. The first result provides a bound on the quantity ρ between the tangent spaces at
a point and at its neighbor.

Proposition 2.1. Let M ∈ R
p×p be a rank-r matrix with smallest nonzero singular value equal to

σ, and let Δ be a perturbation to M such that ‖Δ‖2 ≤ σ
8 . Further, let M +Δ be a rank-r matrix.

Then we have that

ρ(T (M +Δ), T (M)) ≤ 2

σ
‖Δ‖2.

The next result bounds the error between a point and its neighbor in the normal direction.

Proposition 2.2. Let M ∈ R
p×p be a rank-r matrix with smallest nonzero singular value equal to

σ, and let Δ be a perturbation to M such that ‖Δ‖ ≤ σ
8 . Further, let M + Δ be a rank-r matrix.

Then we have that

‖PT (M)⊥(Δ)‖2 ≤ ‖Δ‖22
σ

.

These results suggest that the closer the smallest singular value is to zero, the more curved the
variety is locally. Therefore we control the twisting between tangent spaces at nearby points by
bounding the smallest nonzero singular value away from zero.

3 Identifiability

In the absence of additional conditions, the latent-variable model selection problem is ill-posed. In
this section we discuss a set of conditions on latent-variable models that ensure that these models
are identifiable given marginal statistics for a subset of the variables.

3.1 Structure between latent and observed variables

Suppose that the low-rank matrix that summarizes the effect of the hidden components is itself
sparse. This leads to identifiability issues in the sparse-plus-low-rank decomposition problem.
Statistically the additional correlations induced due to marginalization over the latent variables
could be mistaken for the conditional graphical model structure of the observed variables. In order
to avoid such identifiability problems the effect of the latent variables must be “diffuse” across
the observed variables. To address this point the following quantity was introduced in [9] for any
matrix M , defined with respect to the tangent space T (M):

ξ(T (M)) � max
N∈T (M), ‖N‖2≤1

‖N‖∞. (3.1)

Thus ξ(T (M)) being small implies that elements of the tangent space T (M) cannot have their
support concentrated in a few locations; as a resultM cannot be too sparse. This idea is formalized
in [9] by relating ξ(T (M)) to a notion of “incoherence” of the row/column spaces, where the
row/column spaces are said to be incoherent with respect to the standard basis if these spaces are
not aligned closely with any of the coordinate axes. Letting M = UDV T be the singular value
decomposition ofM , the incoherence of the row/column spaces ofM (initially proposed and studied
by Candès and Recht [7]) is defined as:

inc(M) � max{max
i

‖PU (ei)‖,max
i

‖PV (ei)‖}. (3.2)
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Here PV , PU denote projections1 onto the row/column spaces of M , and ei is the i’th standard
basis vector. Hence inc(M) measures the projection of the most “closely aligned” coordinate axis
with the row/column spaces. For any rank-r matrix M we have that√

r

p
≤ inc(M) ≤ 1, (3.3)

where the lower bound is achieved (for example) if the row/column spaces span any r columns of
a p × p orthonormal Hadamard matrix, while the upper bound is achieved if the row or column
space contains a standard basis vector. Typically a matrix M with incoherent row/column spaces
would have inc(M) � 1. The following result (proved in [9]) shows that the more incoherent the
row/column spaces of M , the smaller is ξ(M).

Proposition 3.1. For any M ∈ R
p×p, we have that

inc(M) ≤ ξ(T (M)) ≤ 2 inc(M),

where ξ(T (M)) and inc(M) are defined in (3.1) and (3.2).

Based on these concepts we roughly require that the low-rank matrix that summarizes the
effect of the latent variables be incoherent, thereby ensuring that the extra correlations due to
marginalization over the hidden components cannot be confused with the conditional graphical
model structure of the observed variables. Notice that the quantity inc is not just a measure
of the number of latent variables, but also of the overall effect of the correlations induced by
marginalization over these variables.

Curvature and change in ξ: As noted previously an important technical point is that the
algebraic variety of low-rank matrices is locally curved at any smooth point. Consequently the
quantity ξ changes as we move along the low-rank matrix variety smoothly. The quantity ρ(T1, T2)
introduced in (2.9) also allows us to bound the variation in ξ as follows.

Lemma 3.2. Let T1, T2 be two matrix subspaces of the same dimension with the property that
ρ(T1, T2) < 1, where ρ is defined in (2.9). Then we have that

ξ(T2) ≤ 1

1− ρ(T1, T2)
[ξ(T1) + ρ(T1, T2)].

This lemma is proved in Appendix B.

3.2 Structure among observed variables

An identifiability problem also arises if the conditional graphical model among the observed vari-
ables contains a densely connected subgraph. These statistical relationships might be mistaken as
correlations induced by marginalization over latent variables. Therefore we need to ensure that
the conditional graphical model among the observed variables is sparse. We impose the condition
that this conditional graphical model must have small “degree”, i.e., no observed variable is directly
connected to too many other observed variables conditioned on the hidden components. Notice that
bounding the degree is a more refined condition than simply bounding the total number of nonzeros

1We denote projections onto vector subspaces (defined by a matrix) by P , and projections onto matrix subspaces
(defined by a general linear operator) by the calligraphic P .
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as the sparsity pattern also plays a role. In [9] the authors introduced the following quantity in
order to provide an appropriate measure of the sparsity pattern of a matrix:

μ(Ω(M)) � max
N∈Ω(M),‖M‖∞≤1

‖N‖2. (3.4)

The quantity μ(Ω(M)) being small for a matrix implies that the spectrum of any element of the
tangent space Ω(M) is not too “concentrated”, i.e., the singular values of the elements of the
tangent space are not too large. In [9] it is shown that a sparse matrix M with “bounded degree”
(a small number of nonzeros per row/column) has small μ(M).

Proposition 3.3. Let M ∈ R
p×p be any matrix with at most degmax(M) nonzero entries per

row/column, and with at least degmin(M) nonzero entries per row/column. With μ(Ω(M)) as
defined in (3.4), we have that

degmin(M) ≤ μ(Ω(M)) ≤ degmax(M).

3.3 Transversality of tangent spaces

Suppose that we have the sum of two vectors, each from two known subspaces. It is possible to
uniquely recover the individual vectors from the sum if and only if the subspaces have a transverse
intersection, i.e., they only intersect at the origin. This simple observation leads to an appealing
algebraic notion of identifiability. Consider the situation in which we have the sum of a sparse
matrix and a low-rank matrix. In addition to this sum, suppose that we are also given the tangent
spaces at these matrices with respect to the algebraic varieties of sparse and low-rank matrices
respectively. Then a necessary and sufficient condition for local identifiability is that these tangent
spaces have a transverse intersection. It turns out that these transversality conditions on the
tangent spaces are also sufficient for the regularized maximum-likelihood convex program (1.1) to
provide consistent estimates of the number of hidden components and the conditional graphical
model structure of the observed variables conditioned on the latent variables (without any side
information about the tangent spaces).

In order to quantify the level of transversality between the tangent spaces Ω and T we study
the minimum gain with respect to some norm of the addition operator restricted to the cartesian
product Y = Ω× T . More concretely let A : Rp×p×R

p×p → R
p×p represent the addition operator,

i.e., the operator that adds two matrices. Then given any matrix norm ‖ · ‖q on R
p×p × R

p×p, the
minimum gain of A restricted to Y is defined as follows:

ε(Ω, T, ‖ · ‖q) � min
(S,L)∈Ω×T, ‖(S,L)‖q=1

‖PYA†APY(S,L)‖q,

where PY denotes the projection onto the space Y, and A† denotes the adjoint of the addition
operator (with respect to the standard Euclidean inner-product). The tangent spaces Ω and T
have a transverse intersection if and only if ε(Ω, T, ‖ · ‖q) > 0. The “level” of transversality is
measured by the magnitude of ε(Ω, T, ‖ · ‖q). Note that if the norm ‖ · ‖q used is the Frobenius
norm, then ε(Ω, T, ‖ · ‖F ) is the square of the minimum singular value of the addition operator A
restricted to Ω× T .

A natural norm with which to measure transversality is the dual norm of the regularization
function in (1.1), as the subdifferential of the regularization function is specified in terms of its
dual. The reasons for this will become clearer as we proceed through this paper. Recall that the
regularization function used in the variational formulation (1.1) is given by:

fγ(S,L) = γ‖S‖1 + ‖L‖∗,
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where the nuclear norm ‖ · ‖∗ reduces to the trace function over the cone of positive-semidefinite
matrices. This function is a norm for all γ > 0. The dual norm of fγ is given by

gγ(S,L) = max

{‖S‖∞
γ

, ‖L‖2
}
.

The following simple lemma records a useful property of the gγ norm that is used several times
throughout this paper.

Lemma 3.4. Let Ω and T be tangent spaces at any points with respect to the algebraic varieties of
sparse and low-rank matrices. Then for any matrix M , we have that ‖PΩ(M)‖∞ ≤ ‖M‖∞ and that
‖PT (M)‖2 ≤ 2‖M‖2. Further we also have that ‖PΩ⊥(M)‖∞ ≤ ‖M‖∞ and that ‖PT⊥(M)‖2 ≤
‖M‖2. Thus for any matrices M,N and for Y = Ω × T , one can check that gγ(PY (M,N)) ≤
2gγ(M,N) and that gγ(PY⊥(M,N)) ≤ gγ(M,N).

Next we define the quantity χ(Ω, T, γ) as follows in order to study the transversality of the
spaces Ω and T with respect to the gγ norm:

χ(Ω, T, γ) � max

{
ξ(T )

γ
, 2μ(Ω)γ

}
(3.5)

Here μ and ξ are defined in (3.4) and (3.1). We then have the following result (proved in Ap-
pendix C):

Lemma 3.5. Let S ∈ Ω, L ∈ T be matrices such that ‖S‖∞ = γ and let ‖L‖2 = 1. Then we
have that gγ(PYA†APY(S,L)) ∈ [1− χ(Ω, T, γ), 1 +χ(Ω, T, γ)], where Y = Ω× T and χ(Ω, T, γ) is
defined in (3.5). In particular we have that 1− χ(Ω, T, γ) ≤ ε(Ω, T, gγ).

The quantity χ(Ω, T, γ) being small implies that the addition operator is essentially isometric
when restricted to Y = Ω × T . Stated differently the magnitude of χ(Ω, T, γ) is a measure of the
level of transversality of the spaces Ω and T . If μ(Ω)ξ(T ) < 1

2 then γ ∈ (ξ(T ), 1
2μ(Ω) ) ensures that

χ(Ω, T, γ) < 1, which in turn implies that the tangent spaces Ω and T have a transverse intersection.
Observation: Thus we have that the smaller the quantities μ(Ω) and ξ(T ), the more transverse

the intersection of the spaces Ω and T .

3.4 Conditions on Fisher information

The main focus of Section 4 is to analyze the regularized maximum-likelihood convex program
(1.1) by studying its optimality conditions. The log-likelihood function is well-approximated in a
neighborhood by a quadratic form given by the Fisher information (which measures the curvature,
as discussed in Section 2.3). Let I∗ = I(K̃∗

O) denote the Fisher information evaluated at the true
marginal concentration matrix K̃∗

O = K∗
O −K∗

O,H(K
∗
H)

−1K∗
H,O, where K

∗
(O H) represents the con-

centration matrix of the full model (see equation (2.2)). The appropriate measure of transversality
between the tangent spaces2 Ω = Ω(K∗

O) and T = T (K∗
O,H(K

∗
H)

−1K∗
H,O) is then in a space in

which the inner-product is given by I∗. Specifically, we need to analyze the minimum gain of the
operator PYA†I∗APY restricted to the space Y = Ω× T . Therefore we impose several conditions
on the Fisher information I∗. We define quantities that control the gains of I∗ restricted to Ω and
T separately; these ensure that elements of Ω and elements of T are individually identifiable under
the map I∗. In addition we define quantities that, in conjunction with bounds on μ(Ω) and ξ(T ),
allow us to control the gain of I∗ restricted to the direct-sum Ω⊕ T .

2We implicitly assume that these tangent spaces are subspaces of the space of symmetric matrices.
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I∗ restricted to Ω: The minimum gain of the operator PΩI∗PΩ restricted to Ω is given by

αΩ � min
M∈Ω,‖M‖∞=1

‖PΩI∗PΩ(M)‖∞.

The maximum effect of elements in Ω in the orthogonal direction Ω⊥ is given by

δΩ � max
M∈Ω,‖M‖∞=1

‖PΩ⊥I∗PΩ(M)‖∞.

The operator I∗ is injective on Ω if αΩ > 0. The ratio δΩ
αΩ

≤ 1−ν implies the irrepresentability con-
dition imposed in [29], which gives a sufficient condition for consistent recovery of graphical model
structure using �1-regularized maximum-likelihood. Notice that this condition is a generalization
of the usual Lasso irrepresentability conditions [40], which are typically imposed on the covariance
matrix. Finally we also consider the following quantity, which controls the behavior of I∗ restricted
to Ω in the spectral norm:

βΩ � max
M∈Ω,‖M‖2=1

‖I∗(M)‖2.

I∗ restricted to T : Analogous to the case of Ω one could control the gains of the operators
PT⊥I∗PT and PT I∗PT . However as discussed previously one complication is that the tangent
spaces at nearby smooth points on the rank variety are in general different, and the amount of
twisting between these spaces is governed by the local curvature. Therefore we control the gains of
the operators PT ′⊥I∗PT ′ and PT ′I∗PT ′ for all tangent spaces T ′ that are “close to” the nominal T
(at the true underlying low-rank matrix), measured by ρ(T, T ′) (2.9) being small. The minimum
gain of the operator PT ′I∗PT ′ restricted to T ′ (close to T ) is given by

αT � min
ρ(T ′,T )≤ ξ(T )

2

min
M∈T ′,‖M‖2=1

‖PT ′I∗PT ′(M)‖2.

Similarly the maximum effect of elements in T ′ in the orthogonal direction T ′⊥ (for T ′ close to T )
is given by

δT � max
ρ(T ′,T )≤ ξ(T )

2

max
M∈T ′,‖M‖2=1

‖PT ′⊥I∗PT ′(M)‖2.

Implicit in the definition of αT and δT is the fact that the outer minimum and maximum are only
taken over spaces T ′ that are tangent spaces to the rank-variety. The operator I∗ is injective on all
tangent spaces T ′ such that ρ(T ′, T ) ≤ ξ(T )

2 if αT > 0. An irrepresentability condition (analogous
to those developed for the sparse case) for tangent spaces near T to the rank variety would be that
δT
αT

≤ 1− ν. Finally we also control the behavior of I∗ restricted to T ′ close to T in the �∞ norm:

βT � max
ρ(T ′,T )≤ ξ(T )

2

max
M∈T ′,‖M‖∞=1

‖I∗(M)‖∞.

The two sets of quantities (αΩ, δΩ) and (αT , δT ) essentially control how I∗ behaves when re-
stricted to the spaces Ω and T separately (in the natural norms). The quantities βΩ and βT are
useful in order to control the gains of the operator I∗ restricted to the direct sum Ω ⊕ T . Notice
that although the magnitudes of elements in Ω are measured most naturally in the �∞ norm, the
quantity βΩ is specified with respect to the spectral norm. Similarly elements of the tangent spaces
T ′ to the rank variety are most naturally measured in the spectral norm, but βT provides control in
the �∞ norm. These quantities, combined with μ(Ω) and ξ(T ) (defined in (3.4) and (3.1)), provide

14



the “coupling” necessary to control the behavior of I∗ restricted to elements in the direct sum
Ω⊕ T . In order to keep track of fewer quantities, we summarize the six quantities as follows:

α � min(αΩ, αT )

δ � max(δΩ, δT )

β � max(βΩ, βT ).

Main assumption There exists a ν ∈ (0, 12 ] such that:

δ

α
≤ 1− 2ν.

This assumption is to be viewed as a generalization of the irrepresentability conditions imposed
on the covariance matrix [40] or the Fisher information matrix [29] in order to provide consistency
guarantees for sparse model selection using the �1 norm. With this assumption we have the following
proposition, proved in Appendix C, about the gains of the operator I∗ restricted to Ω ⊕ T . This
proposition plays a fundamental role in the analysis of the performance of the regularized maximum-
likelihood procedure (1.1).

Proposition 3.6. Let Ω and T be the tangent spaces defined in this section, and let I∗ be the
Fisher information evaluated at the true marginal concentration matrix. Further let α, β, ν be as
defined above. Suppose that

μ(Ω)ξ(T ) ≤ 1

6

(
να

β(2− ν)

)2

,

and that γ is in the following range:

γ ∈
[
3β(2 − ν)ξ(T )

να
,

να

2β(2 − ν)μ(Ω)

]
.

Then we have the following two conclusions for Y = Ω× T ′ with ρ(T ′, T ) ≤ ξ(T )
2 :

1. The minimum gain of I∗ restricted to Ω⊕ T ′ is bounded below:

min
(S,L)∈Y , ‖S‖∞=γ, ‖L‖2=1

gγ(PYA†I∗APY(S,L)) ≥ α

2
.

Specifically this implies that for all (S,L) ∈ Y
gγ(PYA†I∗APY(S,L)) ≥ α

2
gγ(S,L).

2. The effect of elements in Y = Ω×T ′ on the orthogonal complement Y⊥ = Ω⊥×T ′⊥ is bounded
above: ∥∥∥∥PY⊥A†I∗APY

(
PYA†I∗APY

)−1
∥∥∥∥
gγ→gγ

≤ 1− ν.

Specifically this implies that for all (S,L) ∈ Y
gγ(PY⊥A†I∗APY(S,L)) ≤ (1− ν)gγ(PYA†I∗APY(S,L)).

The last quantity we consider is the spectral norm of the marginal covariance matrix Σ∗
O =

(K̃∗
O)

−1:
ψ � ‖Σ∗

O‖2 = ‖(K̃∗
O)

−1‖2. (3.6)

A bound on ψ is useful in the probabilistic component of our analysis, in order to derive convergence
rates of the sample covariance matrix to the true covariance matrix. We also observe that

‖I∗‖2→2 = ‖(K̃∗
O)

−1 ⊗ (K̃∗
O)

−1‖2→2 = ψ2.

15



4 Regularized Maximum-Likelihood Convex Program and Con-

sistency

4.1 Setup

Let K∗
(O H) denote the full concentration matrix of a collection of zero-mean jointly-Gaussian

observed and latent variables, let p = |O| denote the number of observed variables, and let h =
|H| denote the number of latent variables. We are given n samples {Xi

O}ni=1 of the observed
variables XO. We consider the high-dimensional setting in which (p, h, n) are all allowed to grow
simultaneously. The quantities α, β, ν, ψ defined in the previous section are accounted for in our
analysis, although we suppress the dependence on these quantities in the statement of our main
result. We explicitly keep track of the quantities μ(Ω(K∗

O)) and ξ(T (K
∗
O,H(K

∗
H)

−1K∗
H,O)) as these

control the complexity of the latent-variable model given by K∗
(O H). In particular μ controls

the sparsity of the conditional graphical model among the observed variables, while ξ controls the
incoherence or “diffusivity” of the extra correlations induced due to marginalization over the hidden
variables. Based on the tradeoff between these two quantities, we obtain a number of classes of
latent-variable graphical models (and corresponding scalings of (p, h, n)) that can be consistently
recovered using the regularized maximum-likelihood convex program (1.1) (see Section 4.3 for
details). Specifically we show that consistent model selection is possible even when the number
of samples and the number of latent variables are on the same order as the number of observed
variables. We present our main result next demonstrating the consistency of the estimator (1.1),
and then discuss classes of latent-variable graphical models and various scaling regimes in which
our estimator is consistent.

4.2 Main results

Given n samples {Xi
O}ni=1 of the observed variables XO, the sample covariance is defined as:

ΣnO =
1

n

n∑
i=1

Xi
O(X

i
O)

T .

As discussed in Section 2.2 the goal is to produce an estimate given by a pair of matrices (S,L)
of the latent-variable model represented by K∗

(O H). We study the consistency properties of the
following regularized maximum-likelihood convex program:

(Ŝn, L̂n) = argmin
S,L

tr[(S − L) ΣnO]− log det(S − L) + λn[γ‖S‖1 + tr(L)]

s.t. S − L � 0, L � 0.
(4.1)

Here λn is a regularization parameter, and γ is a tradeoff parameter between the rank and sparsity
terms. Notice from Proposition 3.6 that the choice of γ depends on the values of μ(Ω(K∗

O)) and
ξ(T (K∗

O,H(K
∗
H)

−1K∗
H,O)); essentially these quantities correspond to the degree of the conditional

graphical model structure of the observed variables and the incoherence of the low-rank matrix
summarizing the effect of the latent variables (see Section 3). While these quantities may not
be known a priori, we discuss a method to choose γ numerically in our experimental results (see
Section 5). The following theorem shows that the estimates (Ŝn, L̂n) provided by the convex
program (4.1) are consistent for a suitable choice of λn. In addition to the appropriate identifiability
conditions (as specified by Proposition 3.6), we also impose lower bounds on the minimum nonzero
entry of the sparse conditional graphical model matrix K∗

O and on the minimum nonzero singular
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value of the low-rank matrix K∗
O,H(K

∗
H)

−1K∗
H,O summarizing the effect of the hidden variables.

We suppress the dependence3 on α, β, ν, ψ as we assume that these quantities remain bounded
and do not scale with the other parameters. We emphasize the dependence on μ(Ω(K∗

O)) and
ξ(T (K∗

O,H(K
∗
H)

−1K∗
H,O)) because these control the complexity of the underlying latent-variable

graphical model as discussed above.

Theorem 4.1. Let K∗
(O H) denote the concentration matrix of a Gaussian model. We have n sam-

ples {Xi
O}ni=1 of the p observed variables denoted by O. Let Ω = Ω(K∗

O) and T = T (K∗
O,H(K

∗
H)

−1K∗
H,O)

denote the tangent spaces at K∗
O and at K∗

O,H(K
∗
H)

−1K∗
H,O with respect to the sparse and low-rank

matrix varieties respectively.
Assumptions: Suppose that the following conditions hold:

1. The quantities μ(Ω) and ξ(T ) satisfy the assumption of Proposition 3.6 for identifiability, and
γ is chosen in the range specified by Proposition 3.6.

2. The number of samples n available is such that

n � p

ξ(T )4
.

3. The regularization parameter λn is chosen as

λn � 1

ξ(T )

√
p

n
.

4. The minimum nonzero singular value σ of K∗
O,H(K

∗
H)

−1K∗
H,O is bounded as

σ � 1

ξ(T )3

√
p

n
.

5. The minimum magnitude nonzero entry θ of K∗
O is bounded as

θ � 1

ξ(T )μ(Ω)

√
p

n
.

Conclusions: Then with probability greater than 1− 2 exp{−p} we have:

1. Algebraic consistency: The estimate (Ŝn, L̂n) given by the convex program (4.1) is algebraically
consistent, i.e., the support and sign pattern of Ŝn is the same as that of K∗

O, and the rank

of L̂n is the same as that of K∗
O,H(K

∗
H)

−1K∗
H,O.

2. Parametric consistency: The estimate (Ŝn, L̂n) given by the convex program (4.1) is paramet-
rically consistent:

gγ(Ŝn −K∗
O, L̂n −K∗

O,H(K
∗
H)

−1K∗
H,O) �

1

ξ(T )

√
p

n
.

3We use the notation a � b if there exists a function r(α, β, ν, ψ) such that a ≥ r(α, β, ν, ψ)b. Similarly we use the
notation a � b if there exists a function r(α, β, ν, ψ) such that a = r(α, β, ν, ψ)b.
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The proof of this theorem is given in Appendix D. The theorem essentially states that if the
minimum nonzero singular value of the low-rank piece K∗

O,H(K
∗
H)

−1K∗
H,O and minimum nonzero

entry of the sparse piece K∗
O are bounded away from zero, then the convex program (4.1) provides

estimates that are both algebraically consistent and parametrically consistent (in the �∞ and spec-
tral norms). In Section 4.4 we also show that these results easily lead to parametric consistency
rates for the corresponding estimate (Ŝn − L̂n)

−1 of the marginal covariance Σ∗
O of the observed

variables.
Notice that the condition on the minimum singular value of K∗

O,H(K
∗
H)

−1K∗
H,O is more stringent

than on the minimum nonzero entry ofK∗
O. One role played by these conditions is to ensure that the

estimates (Ŝn, L̂n) do not have smaller support size/rank than (K∗
O,K

∗
O,H(K

∗
H)

−1K∗
H,O). However

the minimum singular value bound plays the additional role of bounding the curvature of the low-
rank matrix variety around the pointK∗

O,H(K
∗
H)

−1K∗
H,O, which is the reason for this condition being

more stringent. Notice also that the number of hidden variables h does not explicitly appear in the
bounds in Theorem 4.1, which only depend on p, μ(Ω(K∗

O)), ξ(T (K
∗
O,H(K

∗
H)

−1K∗
H,O)). However

the dependence on h is implicit in the dependence on ξ(T (K∗
O,H(K

∗
H)

−1K∗
H,O)), and we discuss this

point in greater detail in the following section.
Finally we note that algebraic and parametric consistency hold under the assumptions of The-

orem 4.1 for a range of values of γ:

γ ∈
[
3β(2 − ν)ξ(T )

να
,

να

2β(2 − ν)μ(Ω)

]
.

In particular the assumptions on the sample complexity, the minimum nonzero singular value of
K∗
O,H(K

∗
H)

−1K∗
H,O, and the minimum magnitude nonzero entry of K∗

O are governed by the lower
end of this range for γ. These assumptions can be weakened if we only require consistency for a
smaller range of values of γ. The following corollary conveys this point with a specific example:

Corollary 4.2. Consider the same setup and notation as in Theorem 4.1. Suppose that the quan-
tities μ(Ω) and ξ(T ) satisfy the assumption of Proposition 3.6 for identifiability. Suppose that we
make the following assumptions:

1. Let γ be chosen to be equal to να
2β(2−ν)μ(Ω) (the upper end of the range specified in Proposi-

tion 3.6), i.e., γ � 1
μ(Ω) .

2. n � μ(Ω)4 p.

3. λn � μ(Ω)
√

p
n .

4. σ � μ(Ω)2

ξ(T )

√
p
n .

5. θ �
√

p
n .

Then with probability greater than 1− 2 exp{−p} we have estimates (Ŝn, L̂n) that are algebraically
consistent, and parametrically consistent with the error bounded as

gγ(Ŝn −K∗
O, L̂n −K∗

O,H(K
∗
H)

−1K∗
H,O) � μ(Ω)

√
p

n
.
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The proof of this corollary4 is analogous to that of Theorem 4.1. We emphasize that in practice
it is often beneficial to have consistent estimates for a range of values of γ (as in Theorem 4.1).
Specifically the stability of the sparsity pattern and rank of the estimates (Ŝn, L̂n) for a range of
tradeoff parameters is useful in order to choose a suitable value of γ, as prior information about
the quantities μ(Ω(K∗

O)) and ξ(T (K
∗
O,H(K

∗
H)

−1K∗
H,O)) is not typically available (see Section 5).

4.3 Scaling regimes

Next we consider classes of latent-variable models that satisfy the conditions of Theorem 4.1.
Recall that n denotes the number of samples, p denotes the number of observed variables, and
h denotes the number of latent variables. Recall the assumption that the quantities α, β, ν, ψ
defined in Section 3.4 remain bounded, and do not scale with the other parameters such as
(p, h, n) or ξ(T (K∗

O,H(K
∗
H)

−1K∗
H,O)) or μ(Ω(K∗

O)). In particular we focus on the tradeoff be-

tween ξ(T (K∗
O,H(K

∗
H)

−1K∗
H,O)) and μ(Ω(K∗

O)) (the quantities that control the complexity of a
latent-variable graphical model), and the resulting scaling regimes for consistent estimation. Let
d = deg(K∗

O) denote the degree of the conditional graphical model among the observed variables,
and let i = inc(K∗

O,H(K
∗
H)

−1K∗
H,O) denote the incoherence of the correlations induced due to

marginalization over the latent variables (we suppress the dependence on n). These quantities are
defined in Section 3, and we have from Propositions 3.1 and 3.3 that

μ(Ω(K∗
O)) ≤ d, ξ(T (K∗

O,H(K
∗
H)

−1K∗
H,O)) ≤ 2i.

Since α, β, ν, ψ are assumed to be bounded, we also have from Proposition 3.6 that the product of
μ and ξ must be bounded by a constant. Thus, we study latent-variable models in which

d i = O(1).

As we describe next, there are non-trivial classes of latent-variable graphical models in which this
condition holds.

Bounded degree and incoherence: The first class of latent-variable models that we consider
are those in which the conditional graphical model among the observed variables (given by K∗

O)
has constant degree d. Recall from equation (3.3) that the incoherence i of the effect of the latent

variables (given byK∗
O,H(K

∗
H)

−1K∗
H,O) can be as small as

√
h
p . Consequently latent-variable models

in which
d = O(1), h ∼ p,

can be estimated consistently from n ∼ p samples as long as the low-rank matrixK∗
O,H(K

∗
H)

−1K∗
H,O

is almost maximally incoherent, i.e., i ∼
√

h
p so the effect of marginalization over the latent variables

is diffuse across almost all the observed variables. Thus consistent latent-variable model selection
is possible even when the number of samples and the number of latent variables are on the same
order as the number of observed variables.

Polylogarithmic degree The next class of models that we study are those in which the degree
d of the conditional graphical model of the observed variables grows poly-logarithmically with p.

4By making stronger assumptions on the Fisher information matrix I∗, one can further remove the factor of ξ(T )
in the lower bound for σ. Specifically the lower bound σ � μ(Ω)3

√
p
n

suffices for consistent estimation if αT , βT
bound the minimum/maximum gains of I∗ for all matrices (rather than just those near T ), and δT bounds the
I∗-inner-product for all pairs of orthogonal matrices (rather than just those near T and T⊥).
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Consequently, the incoherence i of the matrix K∗
O,H(K

∗
H)

−1K∗
H,O must decay as the inverse of poly-

log(p). Using the fact that maximally incoherent low-rank matrices K∗
O,H(K

∗
H)

−1K∗
H,O can have

incoherence as small as
√

h
p , latent-variable models in which

d ∼ log(p)q, h ∼ p

log(p)2q
,

can be consistently estimated as long as n ∼ p poly-log(p).

4.4 Rates for covariance matrix estimation

The main result Theorem 4.1 gives conditions under which we can consistently estimate the sparse
and low-rank parts that compose the marginal concentration matrix K̃∗

O. Here we prove a corollary

that gives rates for covariance matrix estimation, i.e., the quality of the estimate (Ŝn− L̂n)
−1 with

respect to the “true” marginal covariance matrix Σ∗
O.

Corollary 4.3. Under the same conditions as in Theorem 4.1, we have with probability greater
than 1− 2 exp{−p} that

gγ(A†[(Ŝn − L̂n)
−1 − Σ∗

O]) �
1

ξ(T )

√
p

n
.

Specifically this implies that ‖(Ŝn − L̂n)
−1 − Σ∗

O‖2 � 1
ξ(T )

√
p
n .

Proof : The proof of this lemma follows directly from duality. Based on the analysis in Ap-
pendix D (in particular using the optimality conditions of the modified convex program (D.8)), we
have that

gγ(A†[(Ŝn − L̂n)
−1 −ΣnO]) ≤ λn.

We also have from the bound on the number of samples n that with probability greater than
1− 2 exp{−p} (see Appendix D.7)

gγ(A†[Σ∗
O − ΣnO]) � λn

Based on the choice of λn in Theorem 4.1, we then have the desired bound. �

4.5 Proof strategy for Theorem 4.1

Standard results from convex analysis [31] state that (Ŝn, L̂n) is a minimum of the convex program
(4.1) if the zero matrix belongs to the subdifferential of the objective function evaluated at (Ŝn, L̂n)
(in addition to (Ŝn, L̂n) satisfying the constraints). The subdifferential of the �1 norm at a matrix
M is given by

N ∈ ∂‖M‖1 ⇔ PΩ(M)(N) = sign(M), ‖PΩ(M)⊥(N)‖∞ ≤ 1.

For a symmetric positive semidefinite matrix M with SVD M = UDUT , the subdifferential of the
trace function restricted to the cone of positive semidefinite matrices (i.e., the nuclear norm over
this set) is given by:

N ∈ ∂[tr(M) + IM�0] ⇔ PT (M)(N) = UUT , PT (M)⊥(N) � I,

where IM�0 denotes the characteristic function of the set of positive semidefinite matrices (i.e.,
the convex function that evaluates to 0 over this set and ∞ outside). The key point is that
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elements of the subdifferential decompose with respect to the tangent spaces Ω(M) and T (M).
This decomposition property plays a critical role in our analysis. In particular it states that the
optimality conditions consist of two parts, one part corresponding to the tangent spaces Ω and T
and another corresponding to the normal spaces Ω⊥ and T⊥.

Consider the optimization problem (4.1) with the additional (non-convex) constraints that the
variable S belongs to the algebraic variety of sparse matrices and that the variables L belongs to
the algebraic variety of low-rank matrices. While this new optimization problem is non-convex,
it has a very interesting property. At a globally optimal solution (and indeed at any locally opti-
mal solution) (S̃, L̃) such that S̃ and L̃ are smooth points of the algebraic varieties of sparse and
low-rank matrices, the first-order optimality conditions state that the Lagrange multipliers corre-
sponding to the additional variety constraints must lie in the normal spaces Ω(S̃)⊥ and T (L̃)⊥.
This fundamental observation, combined with the decomposition property of the subdifferentials
of the �1 and nuclear norms, suggests the following high-level proof strategy:

1. Let (S̃, L̃) be the globally optimal solution of the optimization problem (4.1) with the addi-
tional constraints that (S,L) belong to the algebraic varieties of sparse/low-rank matrices;
specifically constrain S to lie in S(|support(K∗

O)|) and constrain L to lie in L(rank(K∗
O,H(K

∗
H)

−1K∗
H,O)).

Show first that (S̃, L̃) are smooth points of these varieties.

2. The first part of the subgradient optimality conditions of the original convex program (4.1)
corresponding to components on the tangent spaces Ω(S̃) and T (L̃) is satisfied. This conclu-
sion can be reached because the additional Lagrange multipliers due to the variety constraints
lie in the normal spaces Ω(S̃)⊥ and T (L̃)⊥.

3. Finally show that the second part of the subgradient optimality conditions of (4.1) (without
any variety constraints) corresponding to components in the normal spaces Ω(S̃)⊥ and T (L̃)⊥

is also satisfied by (S̃, L̃).

Combining these steps together we show that (S̃, L̃) satisfy the optimality conditions of the
original convex program (4.1). Consequently (S̃, L̃) is also the optimum of the convex program
(4.1). As this estimate is also the solution to the problem with the variety constraints, the algebraic
consistency of (S̃, L̃) can be directly concluded. We emphasize here that the variety-constrained
optimization problem is used solely as an analysis tool in order to prove consistency of the estimates
provided by the convex program (4.1). These steps describe our broad strategy, and we refer the
reader to Appendix D for details. The key technical complication is that the tangent spaces at
L̃ and K∗

O,H(K
∗
H)

−1K∗
H,O are in general different. We bound the twisting between these tangent

spaces by using the fact that the minimum nonzero singular value of K∗
O,H(K

∗
H)

−1K∗
H,O is bounded

away from zero (as assumed in Theorem 4.1 and using Proposition 2.1).

5 Simulation Results

In this section we give experimental demonstration of the consistency of our estimator (4.1) on
synthetic examples, and its effectiveness in modeling real-world stock return data. Our choices of

λn and γ are guided by Theorem 4.1. Specifically, we choose λn to be proportional to
√

p
n . For γ

we observe that the support/sign-pattern and the rank of the solution (Ŝn, L̂n) are the same for a
range of values of γ. Therefore one could solve the convex program (4.1) for several values of γ, and
choose a solution in a suitable range in which the sign-pattern and rank of the solution are stable.
In practical problems with real-world data these parameters may be chosen via cross-validation.
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Figure 1: Synthetic data: Plot showing probability of consistent estimation of the number of latent
variables, and the conditional graphical model structure of the observed variables. the three models
studied are (a) 36-node conditional graphical model given by a cycle with h = 2 latent variables, (b)
36-node conditional graphical model given by a cycle with h = 3 latent variables, and (c) 36-node
conditional graphical model given by a 6 × 6 grid with h = 1 latent variable. For each plotted
point, the probability of consistent estimation is obtained over 50 random trials.

For small problem instances we solve the convex program (4.1) using a combination of YALMIP [25]
and SDPT3 [34], which are standard off-the-shelf packages for solving convex programs. For larger
problem instances we use the special purpose solver LogdetPPA [36] developed for log-determinant
semidefinite programs.

5.1 Synthetic data

In the first set of experiments we consider a setting in which we have access to samples of the
observed variables of a latent-variable graphical model. We consider several latent-variable Gaussian
graphical models. The first model consists of p = 36 observed variables and h = 2 hidden variables.
The conditional graphical model structure of the observed variables is a cycle with the edge partial
correlation coefficients equal to 0.25; thus, this conditional model is specified by a sparse graphical
model with degree 2. The second model is the same as the first one, but with h = 3 latent variables.
The third model consists of h = 1 latent variable, and the conditional graphical model structure
of the observed variables is given by a 6 × 6 nearest-neighbor grid (i.e., p = 36 and degree 4)
with the partial correlation coefficients of the edges equal to 0.15. In all three of these models
each latent variable is connected to a random subset of 80% of the observed variables (and the
partial correlation coefficients corresponding to these edges are also random). Therefore the effect
of the latent variables is “spread out” over most of the observed variables, i.e., the low-rank matrix
summarizing the effect of the latent variables is incoherent.

For each model we generate n samples of the observed variables, and use the resulting sample
covariance matrix ΣnO as input to our convex program (4.1). Figure 1 shows the probability of
recovery of the support/sign-pattern of the conditional graphical model structure in the observed
variables and the number of latent variables (i.e., probability of obtaining algebraically consistent
estimates) as a function of n. This probability is evaluated over 50 experiments for each value of
n.
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Figure 2: Stock returns: The figure on the left shows the sparsity pattern (black denotes an
edge, and white denotes no edge) of the concentration matrix of the conditional graphical model
(135 edges) of the stock returns, conditioned on 5 latent variables, in a latent-variable graphical
model (total number of parameters equals 639). This model is learned using (4.1), and the KL
divergence with respect to a Gaussian distribution specified by the sample covariance is 17.7. The
figure on the right shows the concentration matrix of the graphical model (646 edges) of the stock
returns, learned using standard sparse graphical model selection based on solving an �1-regularized
maximum-likelihood program (total number of parameters equals 730). The KL divergence between
this distribution and a Gaussian distribution specified by the sample covariance is 44.4.

In all of these cases standard graphical model selection applied directly to the observed variables
is not useful as the marginal concentration matrix of the observed variables is not well-approximated
by a sparse matrix. These experiments agree with our theoretical results that the convex program
(4.1) is an algebraically consistent estimator of a latent-variable model given (sufficiently many)
samples of only the observed variables.

5.2 Stock return data

In the next experiment we model the statistical structure of monthly stock returns of 84 companies
in the S&P 100 index from 1990 to 2007; we disregard 16 companies that were listed after 1990.
The number of samples n is equal to 216. We compute the sample covariance based on these returns
and use this as input to (4.1).

The model learned using (4.1) for suitable values of λn, γ consists of h = 5 latent variables,
and the conditional graphical model structure of the stock returns conditioned on these hidden
components consists of 135 edges. Therefore the number of parameters in the model is 84 + 135 +
(5 × 84) = 639. The resulting KL divergence between the distribution specified by this model
and a Gaussian distribution specified by the sample covariance is 17.7. Figure 2 (left) shows the
conditional graphical model structure. The strongest edges in this conditional graphical model, as
measured by partial correlation, are between Baker Hughes - Schlumberger, A.T.&T. - Verizon,
Merrill Lynch - Morgan Stanley, Halliburton - Baker Hughes, Intel - Texas Instruments, Apple -
Dell, and Microsoft - Dell. It is of interest to note that in the Standard Industrial Classification5

system for grouping these companies, several of these pairs are in different classes. As mentioned
in Section 2.2 our method estimates a low-rank matrix that summarizes the effect of the latent
variables; in order to factorize this low-rank matrix, for example into sparse factors, one could use
methods such as those described in [38].

5See the United States Securities and Exchange Commission website at
http://www.sec.gov/info/edgar/siccodes.htm
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We compare these results to those obtained using a sparse graphical model learned using �1-
regularized maximum-likelihood (see for example [29]), without introducing any latent variables.
Figure 2 (right) shows this graphical model structure. The number of edges in this model is 646
(the total number of parameters is equal to 646 + 84 = 730), and the resulting KL divergence
between this distribution and a Gaussian distribution specified by the sample covariance is 44.4.
Indeed to obtain a comparable KL divergence to that of the latent-variable model described above,
one would require a graphical model with over 3000 edges.

These results suggest that a latent-variable graphical model is better suited than a standard
sparse graphical model for modeling the statistical structure among stock returns. This is likely
due to the presence of global, long-range correlations in stock return data that are better modeled
via latent variables.

6 Discussion

We have studied the problem of modeling the statistical structure of a collection of random vari-
ables as a sparse graphical model conditioned on a few additional hidden components. As a first
contribution we described conditions under which such latent-variable graphical models are iden-
tifiable given samples of only the observed variables. We also proposed a convex program based
on regularized maximum-likelihood for latent-variable graphical model selection; the regularization
function is a combination of the �1 norm and the nuclear norm. Given samples of the observed
variables of a latent-variable Gaussian model we proved that this convex program provides con-
sistent estimates of the number of hidden components as well as the conditional graphical model
structure among the observed variables conditioned on the hidden components. Our analysis holds
in the high-dimensional regime in which the number of observed/latent variables are allowed to
grow with the number of samples of the observed variables. In particular we discuss certain scaling
regimes in which consistent model selection is possible even when the number of samples and the
number of latent variables are on the same order as the number of observed variables. These theo-
retical predictions are verified via a set of experiments on synthetic data. We also demonstrate the
effectiveness of our approach in modeling real-world stock return data.

Several research questions arise that are worthy of further investigation. While the convex
program (4.1) can be solved in polynomial time using off-the-shelf solvers, it is preferable to develop
more efficient special-purpose solvers that can scale to massive datasets by taking advantage of
the structure of the formulation (4.1). Finally it would be of interest to develop a similar convex
optimization formulation with consistency guarantees for latent-variable models with non-Gaussian
variables, e.g., for categorical data.
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A Matrix Perturbation Bounds

Given a low-rank matrix we consider what happens to the invariant subspaces when the matrix
is perturbed by a small amount. We assume without loss of generality that the matrix under
consideration is square and symmetric, and our methods can be extended to the general non-
symmetric non-square case. We refer the interested reader to [2, 21] for more details, as the results
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presented here are only a brief summary of what is relevant for this paper. In particular the
arguments presented here are along the lines of those presented in [2]. The appendices in [2] also
provide a more refined analysis of second-order perturbation errors.

The resolvent of a matrix M is given by (M − ζI)−1 [21], and it is well-defined for all ζ ∈ C

that do not coincide with an eigenvalue of M . If M has no eigenvalue with magnitude equal to η,
then we have by the Cauchy residue formula that the projector onto the invariant subspace of a
matrix M corresponding to all singular values smaller than η is given by

PM,η =
−1

2πi

∮
Cη
(M − ζI)−1dζ, (A.1)

where Cη denotes the positively-oriented circle of radius η centered at the origin. Similarly, we have
that the weighted projection onto the invariant subspace corresponding to the smallest singular
values is given by

PwM,η =MPM,η =
−1

2πi

∮
Cη
ζ (M − ζI)−1dζ, (A.2)

Suppose that M is a low-rank matrix with smallest nonzero singular value σ, and let Δ be a
perturbation of M such that ‖Δ‖2 ≤ κ < σ

2 . We have the following identity for any |ζ| = κ, which
will be used repeatedly:

[(M +Δ)− ζI]−1 − [M − ζI]−1 = −[M − ζI]−1Δ[(M +Δ)− ζI]−1. (A.3)

We then have that

PM+Δ,κ − PM,κ =
−1

2πi

∮
Cκ
[(M +Δ)− ζI]−1 − [M − ζI]−1dζ

=
1

2πi

∮
Cκ
[M − ζI]−1Δ[(M +Δ)− ζI]−1dζ. (A.4)

Similarly, we have the following for PwM,κ:

PwM+Δ,κ − PwM,κ =
−1

2πi

∮
Cκ
ζ

{
[(M +Δ)− ζI]−1 − [M − ζI]−1

}
dζ

=
1

2πi

∮
Cκ
ζ

{
[M − ζI]−1Δ[(M +Δ)− ζI]−1

}
dζ

=
1

2πi

∮
Cκ
ζ [M − ζI]−1Δ[M − ζI]−1dζ

− 1

2πi

∮
Cκ
ζ [M − ζI]−1Δ[M − ζI]−1Δ[(M +Δ)− ζI]−1dζ.

(A.5)

Given these expressions, we have the following two results.

Proposition A.1. Let M ∈ R
p×p be a rank-r matrix with smallest nonzero singular value equal to

σ, and let Δ be a perturbation to M such that ‖Δ‖2 ≤ κ
2 with κ < σ

2 . Then we have that

‖PM+Δ,κ − PM,κ‖2 ≤ κ

(σ − κ)(σ − 3κ
2 )

‖Δ‖2.
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Proof : This result follows directly from the expression (A.4), and the sub-multiplicative property
of the spectral norm:

‖PM+Δ,κ − PM,κ‖2 ≤ 1

2π
2π κ

1

σ − κ
‖Δ‖2 1

σ − 3κ
2

=
κ

(σ − κ)(σ − 3κ
2 )

‖Δ‖2.

Here, we used the fact that ‖[M − ζI]−1‖2 ≤ 1
σ−κ and ‖[(M +Δ)− ζI]−1‖2 ≤ 1

σ− 3κ
2

for |ζ| = κ. �
Next, we develop a similar bound for PwM,κ. Let U(M) denote the invariant subspace of M corre-
sponding to the nonzero singular values, and let PU(M) denote the projector onto this subspace.

Proposition A.2. Let M ∈ R
p×p be a rank-r matrix with smallest nonzero singular value equal to

σ, and let Δ be a perturbation to M such that ‖Δ‖2 ≤ κ
2 with κ < σ

2 . Then we have that

‖PwM+Δ,κ − PwM,κ − (I − PU(M))Δ(I − PU(M))‖2 ≤ κ2

(σ − κ)2(σ − 3κ
2 )

‖Δ‖22.

Proof : One can check that

1

2πi

∮
Cκ
ζ [M − ζI]−1Δ[M − ζI]−1dζ = (I − PU(M))Δ(I − PU(M)).

Next we use the expression (A.5), and the sub-multiplicative property of the spectral norm:

‖PwM+Δ,κ − PwM,κ − (I − PU(M))Δ(I − PU(M))‖2
≤ 1

2π
2π κ κ

1

σ − κ
‖Δ‖2 1

σ − κ
‖Δ‖2 1

σ − 3κ
2

=
κ2

(σ − κ)2(σ − 3κ
2 )

‖Δ‖22.

As with the previous proof, we used the fact that ‖[M − ζI]−1‖2 ≤ 1
σ−κ and ‖[(M +Δ)− ζI]−1‖2 ≤

1
σ− 3κ

2

for |ζ| = κ. �
We will use these expressions to derive bounds on the “twisting” between the tangent spaces at

M and at M +Δ with respect to the rank variety.

B Curvature of Rank Variety

For a symmetric rank-r matrix M , the projection onto the tangent space T (M) (restricted to the
variety of symmetric matrices with rank less than or equal to r) can be written in terms of the
projection PU(M) onto the row space U(M). For any matrix N

PT (M)(N) = PU(M)N +NPU(M) − PU(M)NPU(M).

One can then check that the projection onto the normal space T (M)⊥

PT (M)⊥(N) = [I − PT (M)](N) = (I − PU(M)) N (I − PU(M)).

Proof of Proposition 2.1: For any matrix N , we have that

[PT (M+Δ) − PT (M)](N) =

[PU(M+Δ) − PU(M)] N [I − PU(M)] + [I − PU(M+Δ)] N [PU(M+Δ) − PU(M)].
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Further, we note that for κ < σ
2

PU(M+Δ) − PU(M) = [I − PU(M)]− [I − PU(M+Δ)]

= PM,κ − PM+Δ,κ,

where PM,κ is defined in the previous section. Thus, we have the following sequence of inequalities
for κ = σ

4 :

ρ(T (M +Δ), T (M)) = max
‖N‖2≤1

‖[PU(M+Δ) − PU(M)] N [I − PU(M)]

+ [I − PU(M+Δ)] N [PU(M+Δ) − PU(M)]‖2
≤ max

‖N‖2≤1
‖[PU(M+Δ) − PU(M)] N [I − PU(M)]‖2

+ max
‖N‖2≤1

‖[I − PU(M+Δ)] N [PU(M+Δ) − PU(M)]‖2
≤ 2 ‖PM+Δ,σ

4
− PM,σ

4
‖2

≤ 2

σ
‖Δ‖2,

where we obtain the last inequality from Proposition A.1. �
Proof of Proposition 2.2: Since both M and M + Δ are rank-r matrices, we have that

Pw
M+Δ,κ = Pw

M,κ = 0 for κ = σ
4 . Consequently,

‖PT (M)⊥(Δ)‖2 = ‖(I − PU(M)) Δ (I − PU(M))‖2
≤ ‖Δ‖22

σ
,

where we obtain the last inequality from Proposition A.2 with κ = σ
4 . �

Proof of Lemma 3.2: Since ρ(T1, T2) < 1 one can check that the largest principal angle
between T1 and T2 is strictly less than π

2 . Consequently, the mapping PT2 : T1 → T2 restricted
to T1 is bijective (as it is injective, and the spaces T1, T2 have the same dimension). Consider the
maximum and minimum gain of the operator PT2 restricted to T1; for any M ∈ T1, ‖M‖2 = 1:

‖PT2(M)‖2 = ‖M + [PT2 − PT1 ](M)‖2
∈ [1− ρ(T1, T2), 1 + ρ(T1, T2)].

Therefore, we can rewrite ξ(T2) as follows:

ξ(T2) = max
N∈T2,‖N‖2≤1

‖N‖∞
= max

N∈T2,‖N‖2≤1
‖PT2(N)‖∞

≤ max
N∈T1,‖N‖2≤ 1

1−ρ(T1,T2)

‖PT2(N)‖∞

≤ max
N∈T1,‖N‖2≤ 1

1−ρ(T1,T2)

[‖N‖∞ + ‖[PT1 − PT2 ](N)‖∞]

≤ 1

1 − ρ(T1, T2)

[
ξ(T1) + max

N∈T1,‖N‖2≤1
‖[PT1 − PT2 ](N)‖∞

]

≤ 1

1 − ρ(T1, T2)

[
ξ(T1) + max

‖N‖2≤1
‖[PT1 − PT2 ](N)‖2

]

≤ 1

1 − ρ(T1, T2)
[ξ(T1) + ρ(T1, T2)] .

This concludes the proof of the lemma. �
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C Transversality and Identifiability

Proof of Lemma 3.5: We have that A†A(S,L) = (S + L,S + L); therefore, PYA†APY(S,L) =
(S + PΩ(L),PT (S) + L). We need to bound ‖S + PΩ(L)‖∞ and ‖PT (S) + L‖2. First, we have

‖S + PΩ(L)‖∞ ∈ [‖S‖∞ − ‖PΩ(L)‖∞, ‖S‖∞ + ‖PΩ(L)‖∞]

⊆ [‖S‖∞ − ‖L‖∞, ‖S‖∞ + ‖L‖∞]

⊆ [γ − ξ(T ), γ + ξ(T )].

Similarly, one can check that

‖PT (S) + L‖2 ∈ [−‖PT (S)‖2 + ‖L‖2, ‖PT (S)‖2 + ‖L‖2]
⊆ [1− 2‖S‖2, 1 + 2‖S‖2]
⊆ [1− 2γμ(Ω), 1 + 2γμ(Ω)].

Thus, we can conclude that

gγ(PYA†APY(S,L)) ∈ [1− χ(Ω, T, γ), 1 + χ(Ω, T, γ)].

where χ(Ω, T, γ) is defined in (3.5). �
Proof of Proposition 3.6: Before proving the two parts of this proposition we make a simple

observation about ξ(T ′) using the condition that ρ(T, T ′) ≤ ξ(T )
2 by applying Lemma 3.2:

ξ(T ′) ≤ ξ(T ) + ρ(T, T ′)
1− ρ(T, T ′)

≤
3ξ(T )

2

1− ξ(T )
2

≤ 3ξ(T ).

Here we used the property that ξ(T ) ≤ 1 in obtaining the final inequality. Consequently, noting

that γ ∈ [3β(2−ν)ξ(T )να , να
2β(2−ν)μ(Ω) ] implies that

χ(Ω, T ′, γ) = max

{
ξ(T ′)
γ

, 2μ(Ω)γ

}
≤ να

β(2− ν)
. (C.1)

Part 1: The proof of this step proceeds in a similar manner to that of Lemma 3.5. First we
have for S ∈ Ω, L ∈ T ′ with ‖S‖∞ = γ, ‖L‖2 = 1:

‖PΩI∗(S + L)‖∞ ≥ ‖PΩI∗S‖∞ − ‖PΩI∗L‖∞
≥ αγ − ‖I∗L‖∞
≥ αγ − βξ(T ′).

Next under the same conditions on S,L,

‖PT ′I∗(S + L)‖2 ≥ ‖PT ′I∗L‖2 − ‖PT ′I∗S‖2
≥ α− 2‖I∗S‖2
≥ α− 2βμ(Ω)γ.
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Combining these last two bounds with (C.1), we conclude that

min
(S,L)∈Y , ‖S‖∞=γ, ‖L‖2=1

gγ(PYA†I∗APY(S,L)) ≥ α− βmax

{
ξ(T ′)
γ

, 2μ(Ω)γ

}

≥ α− να

2− ν

=
2α(1− ν)

2− ν

≥ α

2
,

where the final inequality follows from the assumption that ν ∈ (0, 12 ].
Part 2: Note that for S ∈ Ω, L ∈ T ′ with ‖S‖∞ ≤ γ, ‖L‖2 ≤ 1

‖PΩ⊥I∗(S + L)‖∞ ≤ ‖PΩ⊥I∗S‖∞ + ‖PΩ⊥I∗L‖∞
≤ δγ + βξ(T ′).

Similarly

‖PT ′⊥I∗(S + L)‖2 ≤ ‖PT ′⊥I∗S‖2 + ‖PT ′⊥I∗L‖2
≤ βγμ(Ω) + δ.

Combining these last two bounds with the bounds from the first part, we have that

∥∥∥∥PY⊥A†I∗APY
(
PYA†I∗APY

)−1
∥∥∥∥
gγ→gγ

≤
δ + βmax

{
ξ(T ′)
γ , 2μ(Ω)γ

}
α− βmax

{
ξ(T ′)
γ , 2μ(Ω)γ

}
≤ δ + να

2−ν
α− να

2−ν

≤ (1− 2ν)α+ να
2−ν

α− να
2−ν

= 1− ν.

This concludes the proof of the proposition. �

D Proof of main result

Here we prove Theorem 4.1. Throughout this section we denote m = max{1, 1γ }. Further Ω =

Ω(K∗
O) and T = T (K∗

O,H(K
∗
H)

−1K∗
H,O) denote the tangent spaces at the “true” sparse matrix

S∗ = K∗
O and low-rank matrix L∗ = K∗

O,H(K
∗
H)

−1K∗
H,O. We assume that

γ ∈
[
3β(2 − ν)ξ(T )

να
,

να

2β(2 − ν)μ(Ω)

]
(D.1)

We also let En = ΣnO − Σ∗
O denote the difference between the true marginal covariance and the

sample covariance. Finally we let D = max{1, να
3β(2−ν)} throughout this section. For γ in the above

range we note that

m ≤ D

ξ(T )
. (D.2)
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Standard facts that we use throughout this section are that ξ(T ) ≤ 1 and that ‖M‖∞ ≤ ‖M‖2 for
any matrix M .

We study the following convex program:

(S̄n, L̄n) = argmin
S,L

tr[(S − L) ΣnO]− log det(S − L) + λn[γ‖S‖1 + ‖L‖∗]
s.t. S − L � 0.

(D.3)

Comparing (D.3) with the convex program (4.1), the main difference is that we do not constraint
the variable L to be positive semidefinite in (D.3) (recall that the nuclear norm of a positive
semidefinite matrix is equal to its trace). However we show that the unique optimum (S̄n, L̄n) of
(D.3) under the hypotheses of Theorem 4.1 is such that L̄n � 0 (with high probability). Therefore
we conclude that (S̄n, L̄n) is also the unique optimum of (4.1). The subdifferential with respect to
the nuclear norm at a matrix M with (reduced) SVD given by M = UDV T is as follows:

N ∈ ∂‖M‖∗ ⇔ PT (M)(N) = UV T , ‖PT (M)⊥(N)‖2 ≤ 1.

The proof of this theorem consists of a number of steps, each of which is analyzed in separate
sections below. We explicitly keep track of the constants α, β, ν, ψ. The key ideas are as follows:

1. We show that if we solve the convex program (D.3) subject to the additional constraints that
S ∈ Ω and L ∈ T ′ for some T ′ “close to” T (measured by ρ(T ′, T )), then the error between
the optimal solution (S̄n, L̄n) and the underlying matrices (S∗, L∗) is small. This result is
discussed in Appendix D.2.

2. We analyze the optimization problem (D.3) with the additional constraint that the variables
S and L belong to the algebraic varieties of sparse and low-rank matrices respectively, and
that the corresponding tangent spaces are close to the tangent spaces at (S∗, L∗). We show
that under suitable conditions on the minimum nonzero singular value of the true low-rank
matrix L∗ and on the minimum magnitude nonzero entry of the true sparse matrix S∗, the
optimum of this modified program is achieved at a smooth point of the underlying varieties. In
particular the bound on the minimum nonzero singular value of L∗ helps bound the curvature
of the low-rank matrix variety locally around L∗ (we use the results described in Appendix B).
These results are described in Appendix D.3.

3. The next step is to show that the variety constraint can be linearized and changed to a
tangent-space constraint (see Appendix D.4), thus giving us a convex program. Under suitable
conditions this tangent-space constrained program also has an optimum that has the same
support/rank as the true (S∗, L∗). Based on the previous step these tangent spaces in the
constraints are close to the tangent spaces at the true (S∗, L∗). Therefore we use the first
step to conclude that the resulting error in the estimate is small.

4. Finally we show that under the identifiability conditions of Section 3 these tangent-space
constraints are inactive at the optimum (see Appendix D.7). Therefore we conclude with the
statement that the optimum of the convex program (D.3) without any variety constraints is
achieved at a pair of matrices that have the same support/rank as the true (S∗, L∗) (with
high probability). Further the low-rank component of the solution is positive semidefinite,
thus allowing us to conclude that the original convex program (4.1) also provides estimates
that are consistent.
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D.1 Bounded curvature of matrix inverse

Consider the Taylor series of the inverse of a matrix:

(M +Δ)−1 =M−1 −M−1ΔM−1 +RM−1(Δ),

where

RM−1(Δ) =M−1

[ ∞∑
k=2

(−ΔM−1)k

]
.

This infinite sum converges for Δ sufficiently small. The following proposition provides a bound
on the second-order term specialized to our setting:

Proposition D.1. Suppose that γ is in the range given by (D.1). Let gγ(ΔS ,ΔL) ≤ 1
2C1

for
C1 = ψ(1 + α

6β ), and for any (ΔS ,ΔL) with ΔS ∈ Ω. Then we have that

gγ(A†RΣ∗
O
(A(ΔS ,ΔL))) ≤ 2DψC2

1gγ(ΔS ,ΔL)
2

ξ(T )
.

Proof : We have that

‖A(ΔS ,ΔL)‖2 ≤ ‖ΔS‖2 + ‖ΔL‖2
≤ γμ(Ω)

‖ΔS‖∞
γ

+ ‖ΔL‖2
≤ (1 + γμ(Ω))gγ(ΔS,ΔL)

≤ (1 +
α

6β
)gγ(ΔS ,ΔL)

≤ 1

2ψ
,

where the second-to-last inequality follows from the range for γ (D.1) and that ν ∈ (0, 12 ], and the
final inequality follows from the bound on gγ(ΔS ,ΔL). Therefore,

‖RΣ∗
O
(A(ΔS ,ΔL))‖2 ≤ ψ

∞∑
k=2

(‖ΔS +ΔL‖2ψ)k

≤ ψ3‖ΔS +ΔL‖22
1

1− ‖ΔS +ΔL‖2ψ
≤ 2ψ3(1 +

α

6β
)2gγ(ΔS ,ΔL)

2

= 2ψC2
1gγ(ΔS ,ΔL)

2.

Here we apply the last two inequalities from above. Since the ‖ · ‖∞-norm is bounded above by the
spectral norm ‖ · ‖2, we have the desired result. �

D.2 Bounded errors

Next we analyze the following convex program subject to certain additional tangent-space con-
straints:

(ŜΩ, L̂T ′) = argmin
S,L

tr[(S − L) ΣnO]− log det(S − L) + λn[γ‖S‖1 + ‖L‖∗]
s.t. S − L � 0, S ∈ Ω, L ∈ T ′,

(D.4)
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for some subspace T ′. We show that if T ′ is any tangent space to the low-rank matrix variety such
that ρ(T, T ′) ≤ ξ(T )

2 , then we can bound the error (ΔS ,ΔL) = (ŜΩ − S∗, L∗ − L̂T ′). Let CT ′ =
PT ′⊥(L∗) denote the normal component of the true low-rank matrix at T ′, and recall that En =
ΣnO − Σ∗

O denotes the difference between the true marginal covariance and the sample covariance.
The proof of the following result uses Brouwer’s fixed-point theorem [28], and is inspired by the
proof of a similar result in [29] for standard sparse graphical model recovery without latent variables.

Proposition D.2. Let the error (ΔS,ΔL) in the solution of the convex program (D.4) (with T ′

such that ρ(T ′, T ) ≤ ξ(T )
2 ) be as defined above. Further let C1 = ψ(1 + α

6β ), and define

r = max

{
8

α

[
gγ(A†En) + gγ(A†I∗CT ′) + λn

]
, ‖CT ′‖2

}
.

If we have that

r ≤ min

{
1

4C1
,
αξ(T )

64DψC2
1

}
,

for γ in the range given by (D.1), then

gγ(ΔS ,ΔL) ≤ 2r.

Proof : Based on Proposition 3.6 we note that the convex program (D.4) is strictly convex
(because the negative log-likelihood term has a strictly positive-definite Hessian due to the con-
straints involving transverse tangent spaces), and therefore the optimum is unique. Applying the
optimality conditions of the convex program (D.4) at the optimum (ŜΩ, L̂T ′), we have that there
exist Lagrange multipliers QΩ⊥ ∈ Ω⊥, QT ′⊥ ∈ T ′⊥ such that

ΣnO − (ŜΩ − L̂T ′)−1 +QΩ⊥ ∈ −λnγ∂‖ŜΩ‖1, ΣnO − (ŜΩ − L̂T ′)−1 +QT ′⊥ ∈ λn∂‖L̂T ′‖∗.
Restricting these conditions to the space Y = Ω× T ′, one can check that

PΩ[Σ
n
O − (ŜΩ − L̂T ′)−1] = ZΩ, PT ′ [ΣnO − (ŜΩ − L̂T ′)−1] = ZT ′ ,

where ZΩ ∈ Ω, ZT ′ ∈ T ′ and ‖ZΩ‖∞ = λnγ, ‖ZT ′‖2 ≤ 2λn (we use here the fact that projecting onto
a tangent space T ′ increases the spectral norm by at most a factor of two). Denoting Z = [ZΩ, ZT ′ ],
we conclude that

PYA†[ΣnO − (ŜΩ − L̂T ′)−1] = Z, (D.5)

with gγ(Z) ≤ 2λn. Since the optimum (ŜΩ, L̂T ′) is unique, one can check using Lagrangian duality
theory [31] that (ŜΩ, L̂T ′) is the unique solution of the equation (D.5). Rewriting ΣnO−(ŜΩ−L̂T ′)−1

in terms of the errors (ΔS ,ΔL), we have using the Taylor series of the matrix inverse that

ΣnO − (ŜΩ − L̂T ′)−1 = ΣnO − [A(ΔS ,ΔL) + (Σ∗
O)

−1]−1

= En −RΣ∗
O
(A(ΔS ,ΔL)) + I∗A(ΔS,ΔL)

= En −RΣ∗
O
(A(ΔS ,ΔL)) + I∗APY(ΔS ,ΔL) + I∗CT ′ . (D.6)

Since T ′ is a tangent space such that ρ(T ′, T ) ≤ ξ(T )
2 , we have from Proposition 3.6 that the

operator B =
(PYA†I∗APY

)−1
from Y to Y is bijective and is well-defined. Now consider the

following matrix-valued function from (δS , δL) ∈ Y to Y:

F (δS , δL) = (δS , δL)− B
{
PYA†[En −RΣ∗

O
(A(δS , δL + CT ′)) + I∗APY(δS , δL) + I∗CT ′ ]− Z

}
.
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A point (δS , δL) ∈ Y is a fixed-point of F if and only if PYA†[En − RΣ∗
O
(A(δS , δL + CT ′)) +

I∗APY(δS , δL) + I∗CT ′ ] = Z. Applying equations (D.5) and (D.6) above, we then see that the
only fixed-point of F by construction is the “true” error PY(ΔS ,ΔL) restricted to Y. The reason
for this is that, as discussed above, (ŜΩ, L̂T ′) is the unique optimum of (D.4) and therefore is
the unique solution of (D.5). Next we show that this unique fixed-point of F lies in the ball
Br = {(δS , δL) | gγ(δS , δL) ≤ r, (δS , δL) ∈ Y}.

In order to prove this step, we resort to Brouwer’s fixed point theorem [28]. In particular we
show that the function F maps the ball Br onto itself. Since F is a continuous function and Br is
a compact set, we can conclude the proof of this proposition. Simplifying the function F , we have
that

F (δS , δL) = B
{
PYA†[−En +RΣ∗

O
(A(δS , δL + CT ′))− I∗CT ′ ] + Z

}
.

Consequently, we have from Proposition 3.6 that

gγ(F (δS , δL)) ≤ 2

α
gγ

(
PYA†[En −RΣ∗

O
(A(δS , δL + CT ′)) + I∗CT ′ ]− Z

)
≤ 4

α

{
gγ(A†[En −RΣ∗

O
(A(δS , δL + CT ′)) + I∗CT ′ ]) + λn

}
≤ r

2
+

4

α
gγ(A†RΣ∗

O
(A(δS , δL + CT ′))),

where in the second inequality we use the fact that gγ(PY(·, ·)) ≤ 2gγ(·, ·) and that gγ(Z) ≤ 2λn,
and in the final inequality we use the assumption on r.

We now bound the term gγ(A†RΣ∗
O
(A(δS , δL))) using Proposition D.1 as gγ(ΔS ,ΔL) ≤ 1

2C1
:

4

α
gγ(A†RΣ∗

O
(A(δS , δL + CT ′))) ≤ 8DψC2

1 (gγ(δS , δL) + ‖CT ′‖2)2
ξ(T )α

≤ 32DψC2
1 r

2

ξ(T )α

≤ 32DψC2
1 r

ξ(T )α

αξ(T )

64DψC2
1

≤ r

2
,

where we have used the fact that r ≤ αξ(T )
64DψC2

1
. Hence gγ(PY(ΔS ,ΔL)) ≤ r by Brouwer’s fixed-point

theorem. Finally we observe that

gγ(ΔS ,ΔL) ≤ gγ(PY(ΔS ,ΔL)) + ‖CT ′‖2
≤ 2r.

�

D.3 Solving a variety-constrained problem

In order to prove that the solution (S̄n, L̄n) of (D.3) has the same sparsity pattern/rank as (S∗, L∗),
we will study an optimization problem that explicitly enforces these constraints. Specifically, we
consider the following non-convex constraint set:

M = {(S,L) | S ∈ Ω(S∗), rank(L) ≤ rank(L∗),

‖PT⊥(L− L∗)‖2 ≤ ξ(T )λn
Dψ2

, gγ(A†I∗A(S − S∗, L∗ − L)) ≤ 11λn}
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Recall that S∗ = K∗
O and L∗ = K∗

O,H(K
∗
H)

−1K∗
H,O. The first constraint ensures that the tangent

space at S is the same as the tangent space at S∗; therefore the support of S is contained in the
support of S∗. The second and third constraints ensure that L lives in the appropriate low-rank
variety, but has a tangent space “close” to the tangent space T . The final constraint roughly bounds
the sum of the errors (S −S∗) + (L∗ −L); note that this does not necessarily bound the individual
errors. Notice that the only non-convex constraint is that rank(L) ≤ rank(L∗). We then have the
following nonlinear program:

(ŜM, L̂M) = argmin
S,L

tr[(S − L) ΣnO]− log det(S − L) + λn[γ‖S‖1 + ‖L‖∗]
s.t. S − L � 0, (S,L) ∈ M.

(D.7)

Under suitable conditions this nonlinear program is shown to have a unique solution. Each of the
constraints in M is useful for proving the consistency of the solution of the convex program (D.3).
We show that under suitable conditions the constraints in M are actually inactive at the optimal
(ŜM, L̂M), thus allowing us to conclude that the solution of (D.3) is also equal to (ŜM, L̂M);
hence the solution of (D.3) shares the consistency properties of (ŜM, L̂M). A number of interesting
properties can be derived simply by studying the constraint set M.

Proposition D.3. Consider any (S,L) ∈ M, and let ΔS = S − S∗,ΔL = L∗ − L. For γ in the
range specified by (D.1) and letting C2 =

48
α + 1

ψ2 , we have that gγ(ΔS ,ΔL) ≤ C2λn.

Proof : We have by the triangle inequality that

gγ(A†I∗A(PΩ(ΔS),PT (ΔL))) ≤ 11λn + gγ(A†I∗A(PΩ⊥(ΔS),PT⊥(ΔL)))

≤ 11λn +mψ2‖PT⊥(ΔL)‖2
≤ 12λn,

as m ≤ D
ξ(T ) . Therefore, we have that gγ(PYA†I∗APY(ΔS ,ΔL)) ≤ 24λn, where Y = Ω × T .

Consequently, we can apply Proposition 3.6 to conclude that

gγ(PY(ΔS ,ΔL)) ≤ 48λn
α

.

Finally, we use the triangle inequality again to conclude that

gγ(ΔS ,ΔL) ≤ gγ(PY (ΔS,ΔL)) + gγ(PY⊥(ΔS,ΔL))

≤ 48λn
α

+m‖PT⊥(ΔL)‖2
≤ C2λn.

�
This simple result immediately leads to a number of useful corollaries. For example we have

that under a suitable bound on the minimum nonzero singular value of L∗ = K∗
O,H(K

∗
H)

−1K∗
H,O,

the constraint in M along the normal direction T⊥ is locally inactive. Next we list several useful
consequences of Proposition D.3.

Corollary D.4. Consider any (S,L) ∈ M, and let ΔS = S−S∗,ΔL = L∗−L. Suppose γ is in the

range specified by (D.1), and let C3 =
(
6(2−ν)
ν + 1

)
C2
2ψ

2D and C4 = C2+
3αC2

2 (2−ν)
16(3−ν) (where C2 is as

defined in Proposition D.3). Let the minimum nonzero singular value σ of L∗ = K∗
O,H(K

∗
H)

−1K∗
H,O

be such that σ ≥ C5λn
ξ(T )2

for C5 = max{C3, C4}, and suppose that the smallest magnitude nonzero

entry of S∗ is greater than C6λn
μ(Ω) for C6 =

C2να
β(2−ν) . Setting T ′ = T (L) and CT ′ = PT ′⊥(L∗), we then

have that:
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1. L has rank equal to rank(L∗), i.e., L is a smooth point of the variety of matrices with rank
less than or equal to rank(L∗). In particular L has the same inertia as L∗.

2. ‖PT⊥(ΔL)‖2 ≤ ξ(T )λn
19Dψ2 .

3. ρ(T, T ′) ≤ ξ(T )
4 .

4. gγ(A†I∗CT ′) ≤ λnν
6(2−ν) .

5. ‖CT ′‖2 ≤ 16(3−ν)λn
3α(2−ν) .

6. sign(S) = sign(S∗).

Proof : We note the following facts before proving each step. First C2 ≥ 1
ψ2 ≥ 1

mψ2 ≥ ξ(T )
Dψ2 .

Second ξ(T ) ≤ 1. Third we have from Proposition D.3 that ‖ΔL‖2 ≤ C2λn. Finally 6(2−ν)
ν ≥ 18

for ν ∈ (0, 12 ]. We prove each step separately.
For the first step, we note that

σ ≥ C3λn
ξ(T )2

≥ 19C2
2ψ

2Dλn
ξ(T )2

≥ 19C2λn
ξ(T )

≥ 8C2λn ≥ 8‖ΔL‖2.

Hence L is a smooth point with rank equal to rank(L∗), and specifically has the same inertia as
L∗.

For the second step, we use the fact that σ ≥ 8‖ΔL‖2 to apply Proposition 2.2:

‖PT⊥(ΔL)‖ ≤ ‖ΔL‖22
σ

≤ C2
2ξ(T )

2λ2n
C3λn

≤ ξ(T )λn
19Dψ2

.

For the third step we apply Proposition 2.1 (by using the conclusion from above that σ ≥
8‖ΔL‖2) so that

ρ(T, T ′) ≤ 2‖ΔL‖2
σ

≤ 2C2ξ(T )
2

C3
≤ 2ξ(T )2

19C2Dψ2
≤ ξ(T )

4
.

For the fourth step let σ′ denote the minimum singular value of L. Consequently,

σ′ ≥ C3λn
ξ(T )2

− C2λn ≥ C2λn

[
19C2Dψ

2

ξ(T )2
− 1

]
≥ 8‖ΔL‖2.

Using the same reasoning as in the proof of the second step, we have that

‖CT ′‖2 ≤ ‖ΔL‖22
σ′

≤ C2
2λ

2
n

( C3
ξ(T )2 − C2)λn

=
C2
2ξ(T )

2λn

C2
2Dψ

2(6(2−ν)ν ) + C2
2Dψ

2 − C2ξ(T )2

≤ C2
2ξ(T )

2λn

C2
2Dψ

2(6(2−ν)ν )
≤ νξ(T )λn

6(2− ν)Dψ2
.

Hence

gγ(A†I∗CT ′) ≤ mψ2‖CT ′‖2 ≤ λnν

6(2 − ν)
.

For the fifth step the bound on σ′ implies that

σ′ ≥ C4λn
ξ(T )2

− C2λn ≥ 3C2
2α(2 − ν)

16(3 − ν)
λn
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Since σ′ ≥ 8‖ΔL‖2, we have from Proposition 2.2 and some algebra that

‖CT ′‖2 ≤ C2
2λ

2
n

σ′
≤ 16(3 − ν)λn

3α(2 − ν)
.

For the final step since ‖ΔS‖∞ ≤ γC2λn, the assumed lower bound on the minimum magnitude
nonzero entry of S∗ guarantees that sign(S) = sign(S∗). �

Notice that this corollary applies to any (S,L) ∈ M, and is hence applicable to any solution
(ŜM, L̂M) of theM-constrained program (D.7). For now we choose an arbitrary solution (ŜM, L̂M)
and proceed. In the next steps we show that (ŜM, L̂M) is the unique solution to the convex program
(D.3), thus showing that (ŜM, L̂M) is also the unique solution to (D.7).

D.4 From variety constraint to tangent-space constraint

Given the solution (ŜM, L̂M), we show that the solution to the convex program (D.4) with the
tangent space constraint L ∈ TM � T (L̂M) is the same as (ŜM, L̂M) under suitable conditions:

(ŜΩ, L̂TM) = argmin
S,L

tr[(S − L) ΣnO]− log det(S − L) + λn[γ‖S‖1 + ‖L‖∗]
s.t. S − L � 0, S ∈ Ω, L ∈ TM.

(D.8)

Assuming the bound of Corollary D.4 on the minimum singular value of L∗ the uniqueness of the
solution (ŜΩ, L̂TM) is assured. This is because we have from Proposition 3.6 and from Corollary D.4
that I∗ is injective on Ω⊕ TM. Therefore the Hessian of the convex objective function of (D.8) is
strictly positive-definite at (ŜΩ, L̂TM).

We let CM = PT⊥
M
(L∗). Recall that En = ΣnO − Σ∗

O denotes the difference between the sample
covariance matrix and the marginal covariance matrix of the observed variables.

Proposition D.5. Let γ be in the range specified by (D.1). Suppose that the minimum nonzero
singular value σ of L∗ = K∗

O,H(K
∗
H)

−1K∗
H,O is such that σ ≥ C5λn

ξ(T )2
(C5 is defined in Corollary D.4).

Suppose also that the minimum magnitude nonzero entry of S∗ is greater than or equal to C6λn
μ(Ω) (C6

is defined in Corollary D.4). Let gγ(A†En) ≤ λnν
6(2−ν) . Further suppose that

λn ≤ 3α(2 − ν)

16(3 − ν)
min

{
1

4C1
,
αξ(T )

64DψC2
1

}
.

Then we have that
(ŜΩ, L̂TM) = (ŜM, L̂M).

Proof : Note first that the condition on the minimum singular value of L∗ in Corollary D.4 is
satisfied. Therefore we proceed with the following two steps:

1. First we can change the non-convex constraint rank(L) ≤ rank(L∗) to the linear constraint
L ∈ T (L̂M). This is because the lower bound assumed for σ implies that L̂M is a smooth
point of the algebraic variety of matrices with rank less than or equal to rank(L∗) (from
Corollary D.4). Due to the convexity of all the other constraints and the objective, the
optimum of this “linearized” convex program will still be (ŜM, L̂M).

2. Next we can again apply Corollary D.4 (based on the bound on σ) to conclude that the

constraint ‖PT⊥(L− L∗)‖2 ≤ ξ(T )λn
Dψ2 is locally inactive at the point (ŜM, L̂M).
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Consequently, we have that (ŜM, L̂M) can be written as the solution of a convex program:

(ŜM, L̂M) = argmin
S,L

tr[(S − L) ΣnO]− log det(S − L) + λn[γ‖S‖1 + ‖L‖∗]
s.t. S − L � 0, S ∈ Ω, L ∈ TM,

gγ(A†I∗A(S − S∗, L∗ − L)) ≤ 11λn.

(D.9)

We now need to argue that the constraint gγ(A†I∗A(S − S∗, L∗ − L)) ≤ 11λn is also inactive
in the convex program (D.9). We proceed by showing that the solution (ŜΩ, L̂TM) of the convex
program (D.8) has the property that gγ(A†I∗A(ŜΩ − S∗, L∗ − L̂TM)) < 11λn, which concludes
the proof of this proposition. We have from Corollary D.4 that gγ(A†I∗CTM) ≤ λnν

6(2−ν) . Since

gγ(A†En) ≤ λnν
6(2−ν) by assumption, one can verify that

8

α

[
λn + gγ(A†En) + gγ(A†I∗CTM)

]
≤ 8λn

α

[
1 +

ν

3(2 − ν)

]

=
16(3 − ν)λn
3α(2 − ν)

≤ min

{
1

4C1
,
αξ(T )

64DψC2
1

}
.

The last line follows from the assumption on λn. We also note that ‖CTM‖2 ≤ 16(3−ν)λn
3α(2−ν) from

Corollary D.4, which implies that ‖CTM‖2 ≤ min
{

1
4C1

, αξ(T )
64DψC2

1

}
. Letting (ΔS ,ΔL) = (SΩ −

S∗, L∗− L̂TM), we can conclude from Proposition D.2 that gγ(ΔL,ΔS) ≤ 32(3−ν)λn
3α(2−ν) . Next we apply

Proposition D.1 (as gγ(ΔL,ΔS) ≤ 1
2C1

) to conclude that

gγ(A†RΣ∗
O
(ΔS +ΔL)) ≤ 2DψC2

1gγ(ΔS ,ΔL)
2

ξ(T )

≤ 2DψC2
1

ξ(T )

32(3 − ν)λn
3α(2 − ν)

αξ(T )

32DψC2
1

≤ 2(3 − ν)λn
3(2 − ν)

. (D.10)

From the optimality conditions of (D.8) one can also check that for Y = Ω× TM,

gγ(PYA†I∗APY(ΔS ,ΔL)) ≤ 2λn + gγ(PYA†RΣ∗
O
(ΔS +ΔL))

+gγ(PYA†I∗CTM) + gγ(PYA†En)
≤ 2[λn + gγ(A†RΣ∗

O
(ΔS +ΔL))

+gγ(A†En) + gγ(A†I∗CTM)]

≤ 4

[
2(3− ν)λn
3(2− ν)

]
.

Here we used (D.10) in the last inequality, and also that gγ(A†I∗CTM) ≤ λnν
6(2−ν) (as noted above

from Corollary D.4) and that gγ(A†En) ≤ λnν
6(2−ν) . Therefore,

gγ(PYA†I∗APY(ΔS ,ΔL)) ≤ 16λn
3

, (D.11)
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because ν ∈ (0, 12 ]. Based on Proposition 3.6 (the second part), we also have that

gγ(PY⊥A†I∗APY(ΔS ,ΔL)) ≤ (1− ν)
16λn
3

≤ 16λn
3

. (D.12)

Summarizing steps (D.11) and (D.12),

gγ(A†I∗A(ΔS ,ΔL)) ≤ gγ(PYA†I∗APY(ΔS ,ΔL))

+gγ(PY⊥A†I∗APY(ΔS ,ΔL)) + gγ(A†I∗CTM)

≤ 16λn
3

+
16λn
3

+
λnν

6(2 − ν)

≤ 32λn
3

+
λn
18

< 11λn.

This concludes the proof of the proposition. �
This proposition has the following important consequence.

Corollary D.6. Under the assumptions of Proposition D.5 we have that rank(L̂TM) = rank(L∗)
and that T (L̂TM) = TM. Moreover, L̂TM actually has the same inertia as L∗. We also have that
sign(ŜΩ) = sign(S∗).

D.5 Removing the tangent-space constraints

The following lemma provides a simple set of sufficient conditions under which the optimal solution
(ŜΩ, L̂TM) of (D.8) satisfies the optimality conditions of the convex program (D.3) (without the
tangent space constraints).

Lemma D.7. Let (ŜΩ, L̂TM) be the solution to the tangent-space constrained convex program (D.8).
Suppose that the assumptions of Proposition D.5 hold. If in addition we have that

gγ(A†RΣ∗
O
(A(ΔS ,ΔL))) ≤ λnν

6(2 − ν)
,

then (ŜΩ, L̂TM) is also the unique optimum of the convex program (D.3).

Proof : Recall from Corollary D.6 that the tangent space at L̂TM is equal to TM. Applying the
optimality conditions of the convex program (D.8) at the optimum (ŜΩ, L̂TM), we have that there
exist Lagrange multipliers QΩ⊥ ∈ Ω⊥, QT⊥

M
∈ T⊥

M such that

ΣnO − (ŜΩ − L̂TM)−1 +QΩ⊥ ∈ −λnγ∂‖ŜΩ‖1, ΣnO − (ŜΩ − L̂TM)−1 +QT⊥
M

∈ λn∂‖L̂TM‖∗.
Restricting these conditions to the space Y = Ω× TM, one can check that

PΩ[Σ
n
O − (ŜΩ − L̂TM)−1] = −λnγsign(S∗), PTM [ΣnO − (ŜΩ − L̂TM)−1] = λnUV

T ,

where L̂TM = UDV T is a reduced SVD of L̂TM . Denoting Z = [−λnγsign(S∗), λnUV T ], we
conclude that

PYA†[ΣnO − (ŜΩ − L̂TM)−1] = Z, (D.13)

with gγ(Z) = λn. It is clear that the optimality condition of the convex program (D.3) (without
the tangent-space constraints) on Y is satisfied. All we need to show is that

gγ(PY⊥A†[ΣnO − (ŜΩ − L̂TM)−1]) < λn. (D.14)
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Rewriting ΣnO − (ŜΩ − L̂TM)−1 in terms of the error (ΔS ,ΔL) = (ŜΩ − S∗, L∗ − L̂TM), we have
that

ΣnO − (ŜΩ − L̂TM)−1 = En −RΣ∗
O
(A(ΔS ,ΔL)) + I∗A(ΔS ,ΔL).

Restating the condition (D.13) on Y, we have that

PYA†I∗APY(ΔS ,ΔL) = Z + PYA†[−En +RΣ∗
O
(A(ΔS ,ΔL))− I∗CTM ]. (D.15)

(Recall that CTM = PT⊥
M
(L∗).) A sufficient condition to show (D.14) and complete the proof of

this lemma is that

gγ(PY⊥A†I∗APY(ΔS ,ΔL)) < λn − gγ(PY⊥A†[−En +RΣ∗
O
(A(ΔS,ΔL))− I∗CTM ]).

We prove this inequality next. Recall from Corollary D.4 that gγ(A†I∗CTM) ≤ λnν
6(2−ν) . Therefore,

from equation (D.15) we can conclude that

gγ(PYA†I∗APY(ΔS ,ΔL)) ≤ λn + 2(gγ(A†[−En +RΣ∗
O
(A(ΔS ,ΔL))− I∗CTM ]))

≤ λn + 2

[
3λnν

6(2− ν)

]

=
2λn
2− ν

.

Here we used the bounds assumed on gγ(A†En) and on gγ(A†RΣ∗
O
(A(ΔS,ΔL))).

Applying the second part of Proposition 3.6, we have that

gγ(PY⊥A†I∗APY(ΔS ,ΔL)) ≤ 2λn(1− ν)

2− ν

= λn − νλn
2− ν

< λn − νλn
2(2− ν)

≤ λn − gγ(A†[−En +RΣ∗
O
(A(ΔS,ΔL))− I∗CTM ])

≤ λn − gγ(PY⊥A†[−En +RΣ∗
O
(A(ΔS ,ΔL))− I∗CTM ]).

Here the second-to-last inequality follows from the bounds on gγ(A†En), gγ(A†RΣ∗
O
(A(ΔS,ΔL))),

and gγ(A†I∗CTM), and the last inequality follows from Lemma 3.4. This concludes the proof of the
lemma. �

D.6 Probabilistic analysis

All the analysis described so far in this section has been completely deterministic in nature. Here
we present the probabilistic component of our proof. Specifically, we study the rate at which the
sample covariance matrix converges to the true covariance matrix. The following result from [10]
plays a key role in our analysis:

Theorem D.8. Given natural numbers n, p with p ≤ n, let Γ be a p×n matrix with i.i.d. Gaussian
entries that have zero-mean and variance 1

n . Then the largest and smallest singular values s1(Γ)
and sp(Γ) of Γ are such that

max
{
Pr

[
s1(Γ) ≥ 1 +

√
p
n + t

]
,Pr

[
sp(Γ) ≤ 1−

√
p
n − t

]}
≤ exp

{
−nt2

2

}
,

for any t > 0.
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Using this result the next lemma provides a probabilistic bound between the sample covariance
ΣnO formed using n samples and the true covariance Σ∗

O in spectral norm. This result is well-
known, and we mainly discuss it here for completeness and also to show explicitly the dependence
on ψ = ‖Σ∗

O‖2 defined in (3.6).

Lemma D.9. Let ψ = ‖Σ∗
O‖2. Given any δ > 0 with δ ≤ 8ψ, let the number of samples n be such

that n ≥ 64pψ2

δ2
. Then we have that

Pr [‖ΣnO − Σ∗
O‖2 ≥ δ] ≤ 2 exp

{
− nδ2

128ψ2

}
.

Proof : Since the spectral norm is unitarily invariant, we can assume that Σ∗
O is diagonal without

loss of generality. Let Σ̄n = (Σ∗
O)

−1
2ΣnO(Σ

∗
O)

−1
2 , and let s1(Σ̄

n), sp(Σ̄
n) denote the largest/smallest

singular values of Σ̄n. Note that Σ̄n can be viewed as the sample covariance matrix formed from n
independent samples drawn from a model with identity covariance, i.e., Σ̄n = ΓΓT where Γ denotes
a p×n matrix with i.i.d. Gaussian entries that have zero-mean and variance 1

n . We then have that

Pr [‖ΣnO − Σ∗
O‖2 ≥ δ] ≤ Pr

[
‖Σ̄n − I‖2 ≥ δ

ψ

]
≤ Pr

[
s1(Σ̄

n) ≥ 1 + δ
ψ

]
+Pr

[
sp(Σ̄

n) ≤ 1− δ
ψ

]
= Pr

[
s1(Γ)

2 ≥ 1 + δ
ψ

]
+ Pr

[
sp(Γ)

2 ≤ 1− δ
ψ

]
≤ Pr

[
s1(Γ) ≥ 1 + δ

4ψ

]
+ Pr

[
sp(Γ) ≤ 1− δ

4ψ

]
≤ Pr

[
s1(Γ) ≥ 1 +

√
p
n + δ

8ψ

]
+ Pr

[
sp(Γ) ≤ 1−

√
p
n − δ

8ψ

]
≤ 2 exp

{
− nδ2

128ψ2

}
.

Here we used the fact that n ≥ 64pψ2

δ2 in the fourth inequality, and we applied Theorem D.8 to

obtain the final inequality by setting t = δ
8ψ . �

The following corollary describes relates the number of samples required for an error bound to
hold with probability 1− 2 exp{−p}.
Corollary D.10. Let ΣnO be the sample covariance formed from n samples of the observed variables.

Set δn =

√
128pψ2

n . If n ≥ 2p, then we have with probability greater than 1− 2 exp{−p} that

Pr [‖ΣnO − Σ∗
O‖2 ≤ δn] ≥ 1− 2 exp{−p}.

Proof : We note that n ≥ 2p implies that δn ≤ 8ψ, and apply Lemma D.9. �

D.7 Putting it all together

In this section we tie together the results obtained thus far to conclude the proof of Theorem 4.1. We
only need to show that the sufficient conditions of Lemma D.7 are satisfied. It follows directly from
Corollary D.6 that the low-rank part L̂TM is positive semidefinite, which implies that (ŜΩ, L̂TM)
is also the solution to the original regularized maximum-likelihood convex program (4.1) with the
positive-semidefinite constraint. As usual set (ΔS ,ΔL) = (ŜΩ − S∗, L∗ − L̂TM), and set En =
ΣnO −Σ∗

O.
Assumptions: We specify here the constants that were suppressed in the statement of Theo-

rem 4.1:
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1. Let C7 =
αν

32(3−ν)D min
{

1
4C1

, αν
256D(3−ν)ψC2

1

}
, and let the number of samples n be such that

n ≥ p

ξ(T )4
max

{
128ψ2

C2
7

, 2

}
.

Note that n � p
ξ(T )4

.

2. Set δn =

√
128pψ2

n , and then set λn as follows:

λn =
6Dδn(2− ν)

ξ(T )ν
.

Note that λn � 1
ξ(T )

√
p
n .

3. Let the minimum nonzero singular value σ of L∗ be such that

σ ≥ C5λn
ξ(T )2

,

where C5 is defined in Corollary D.4. Note that σ � 1
ξ(T )3

√
p
n .

4. Let the minimum magnitude nonzero entry θ of S∗ be such that

θ ≥ C6λn
μ(Ω)

,

where C6 is defined in Corollary D.4. Note that θ � 1
ξ(T )μ(Ω)

√
p
n .

Proof of Theorem 4.1: We condition on the event that ‖En‖2 ≤ δn, which holds with
probability greater than 1 − 2 exp{−p} from Corollary D.10 as n ≥ 2p by assumption. We note
that based on the bound on n, we also have that

δn ≤ ξ(T )2
[

αν

32(3 − ν)D
min

{
1

4C1
,

αν

256D(3 − ν)ψC2
1

}]
.

In particular, these bounds imply that

δn ≤ αξ(T )ν

32(3 − ν)D
min

{
1

4C1
,
αξ(T )

64DψC2
1

}
(D.16)

and that

δn ≤ α2ξ(T )2ν2

8192ψC2
1 (3− ν)2D2

. (D.17)

Both these weaker bounds are used later.
Based on the assumptions above, the requirements of Lemma D.7 on the minimum nonzero

singular value of L∗ and the minimum magnitude nonzero entry of S∗ are satisfied. We only need to
verify the bounds on λn and gγ(A†En) from Proposition D.5, and the bound on gγ(A†RA(ΔS,ΔL))
from Lemma D.7.
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First we verify the bound on λn. Based on the setting of λn above and the bound on δn from
(D.16), we have that

λn =
6D(2− ν)δn

ξ(T )ν

≤ 3α(2 − ν)

16(3− ν)
min

{
1

4C1
,
αξ(T )

64DψC2
1

}
.

Next we combine the facts that λn = 6Dδn(2−ν)
ξ(T )ν , and that ‖En‖2 ≤ δn to conclude that

gγ(A†En) ≤ Dδn
ξ(T )

=
λnν

6(2 − ν)
.

Finally we provide a bound on the remainder by applying Propositions D.2 and D.1, which
would satisfy the last remaining condition of Lemma D.7. In order to apply Proposition D.2, we
note that

8

α

[
gγ(A†En) + gγ(A†I∗CTM) + λn

]
≤ 8

α

[
ν

3(2− ν)
+ 1

]
λn

=
16(3 − ν)λn
3α(2 − ν)

=
32(3 − ν)D

αξ(T )ν
δn (D.18)

≤ min

{
1

4C1
,
αξ(T )

64DψC2
1

}
.

In the first inequality we used the fact that gγ(A†En) ≤ λnν
6(2−ν) (from above) and that gγ(A†I∗CTM)

is similarly bounded (from Corollary D.4 due to the bound on σ). In the second equality we used the

relation λn = 6Dδn(2−ν)
ξ(T )ν . In the final inequality we used the bound on δn from (D.16). This satisfies

one of the requirements of Proposition D.2. The other condition on ‖CTM‖2 is also similarly satisfied

due to the bound on σ from Corollary D.4. Specifically, we have that ‖CTM‖2 ≤ 16(3−ν)λn
3α(2−ν) from

Corollary D.4, and use the same sequence of inequalities as above to satisfy the second requirement
of Proposition D.2. Thus we conclude from Proposition D.2 and from (D.18) that

gγ(ΔS ,ΔL) ≤ 64(3 − ν)D

αξ(T )ν
δn. (D.19)

This bound implies that gγ(ΔS ,ΔL) � 1
ξ(T )

√
p
n , which proves the parametric consistency part of

the theorem.
Since the bound (D.19) also satisfies the condition of Proposition D.1 (from the inequality
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following (D.18) above we see that gγ(ΔS ,ΔL) ≤ 1
2C1

), we have that

gγ(A†R(ΔS +ΔL)) ≤ 2DψC2
1

ξ(T )
gγ(ΔS ,ΔL)

2

≤ 2DψC2
1

ξ(T )

(
64(3 − ν)D

αξ(T )ν

)2

δ2n

=

[
8192ψC2

1 (3− ν)2D2

α2ξ(T )2ν2
δn

]
Dδn
ξ(T )

≤ Dδn
ξ(T )

=
λnν

6(2 − ν)
.

In the final inequality we used the bound (D.17) on δn, and in the final equality we used the relation

λn = 6Dδn(2−ν)
ξ(T )ν . This concludes the algebraic consistency part of the theorem. �
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