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Abstract

Methods to handle ordered-categorical indicators in latent variable interactions have

been developed, yet they have not been widely applied. This article compares the per-

formance of two popular latent variable interaction modeling approaches in handling
ordered-categorical indicators: unconstrained product indicator (UPI) and latent mod-

erated structural equations (LMS). We conducted a simulation study across sample

sizes, indicators’ distributions and category conditions. We also studied four strategies
to create sets of product indicators for UPI. Results supported using a parceling strat-

egy to create product indicators in the UPI approach or using the LMS approach when

the categorical indicators are symmetrically distributed. We applied these models to
study the interaction effect between third- to fifth-grade students’ social skills improve-

ment and teacher–student closeness on their state English language arts test scores.
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Interaction (moderation) effects, when the effects of predictors on outcomes are

dependent on moderators, are commonly studied in educational and psychological

research. For instance, West, Aiken, Cham, and Liu (2013) found that more than

60% of the published articles in two abnormal and clinical psychology journals have

tested at least one interaction effect. Latent variable interaction modeling approaches

have been developed when the predictor or moderator are best represented by confir-

matory factor models. Among them, the unconstrained product indicator (UPI;

Marsh, Wen, & Hau, 2004) and latent moderated structural equations (LMS; Klein

& Moosbrugger, 2000; Schermelleh-Engel, Klein, & Moosbrugger, 1998) are popu-

lar most likely because of their availability in software packages. However, these

approaches assume that the indicators of the predictor and the moderator are multi-

variate normally distributed and are measured on continuous scales. In practice,

researchers often work with ordered-categorical variables measured on Likert-type

scales (e.g., strongly disagree, disagree, agree, strongly agree) or binary responses

(e.g., true/false) in psychological or educational measures. Although there are meth-

ods developed specifically to handle ordered-categorical variables in latent variable

interaction modeling (e.g., Lee, Song, & Cai, 2010; Rizopoulos & Moustaki, 2008;

Song & Lee, 2005), UPI and LMS still appear to be the most popular methods.

According to Google Scholar, the original articles of the UPI (Marsh et al., 2004)

and LMS (Klein & Moosbrugger, 2000) had 255 and 226 citations between January

1, 2017 and February 16, 2019, while the articles of methods that are developed to

handle ordered-categorical variables had less than 35 citations each since their

publication.

We conducted a literature review to further understand how applied researchers

used UPI and LMS. We used Google Scholar to search for research articles which

cited the original articles of the UPI (Marsh et al., 2004) and LMS (Klein &

Moosbrugger, 2000) between 2018 and February, 2019, and reviewed those that we

accessed the full versions of. Among these, 23 used UPI while 67 used LMS method.

Twenty-three out of 28 articles that used UPI (82.1%), and 49 out of 67 articles that

used LMS (73.1%) involved categorical variables. The majority of the articles did

not report distributional properties of the indicators. These results show that (1) UPI

and LMS are the most popular methods for estimating latent interaction effects, but

(2) distributional assumptions of them are frequently violated in applied research.

Thus, the primary goal of this study is to explore the extent to which the UPI and

LMS approaches can handle nonnormal and/or ordered-categorical indicators

through a simulation study, with a special focus on the role of different arrangements

of the interaction term in the UPI approach.

Without loss of generality, we consider the latent variable interaction model in

Equations (1) and (2) throughout the article:

h= g0 + g1j1 + g2j2 + g3 j1j2ð Þ+ z: ð1Þ
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Equation (1) is the structural model, in which the latent factors j1 and j2 interact

with each other on the manifested outcome variable h. z is the disturbance and is

assumed to have zero mean. g0 is the intercept, g1 and g2 are the first-order effects,

and g3 is the interaction effect. Equation (2) is the factor model of j1 and j2. We

consider the situation where j1 and j2 have different numbers of X indicators (3 for

j1 and 12 for j2). ts are the intercepts. ls are the factor loadings. ds are the unique

factors and are assumed to have zero means. In this model, we assume no cross-

loadings of the indicators and that the unique factors are uncorrelated with each

other.

Unconstrained Product Indicator

The UPI approach uses products of the X indicators to identify the interaction term

j1j2 as a factor model. Matching and parceling are two suggested strategies to create

the product indicators.

Matching. In the matching strategy, the indicators of j1 (X1 to X3) are multiplied with

those of j2 (X4 to X15) to form product indicators. In Equations (1) and (2), there are

a total of (3 3 12) = 36 possible product indicators and numerous possible combina-

tions to be used as a set. Among those possible combinations, the three-matched-pair

strategy is studied the most and is recommended based on the simulation results

(Cham, West, Ma, & Aiken, 2012; Coenders, Batista-Foguet, & Saris, 2008; Foldnes

& Hagtvet, 2014; Jackman, Leite, & Cochrane, 2011; Marsh et al., 2004; Wu, Wen,

Marsh, & Hau, 2013). In this strategy, we pair and multiply the three most reliable

indicators of j1 and j2 according to their reliabilities and include these three product

indicators in the factor model of j1j2.
1 The reliability of an indicator (e.g., X1) is

l2X13var j1ð Þ

l2X13var j1ð Þ+ var dX1ð Þ
: ð3Þ

var �ð Þ is the variance function. In Equation (2), if the three most reliable indicators of

j1 and j2 are (X1, X2, X3) and (X4, X5, X6) in the descending order, we will have the

product indicators X1X4, X2X5, and X3X6.

In addition to setting up the product indicators, a few extra model constraints are

needed in the model specification. First, all the X indicators of j1 and j2 shall be
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mean-centered (i.e., raw scores are subtracted from mean) before creating the prod-

uct indicators, in order to increase the model convergence rates and reduce model

specification complexity (Algina & Moulder, 2001; Marsh et al., 2004). After center-

ing, the factor model of j1, j2, and j1j2 is the following:

X1

X2

X3

X4

X5

.

.

.

X15

X1X4

X2X5

X3X6

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

=

lX1 0 0

lX2 0 0

lX3 0 0

0 lX4 0

0 lX5 0

.

.

.
.
.
.

.

.

.

0 lX15 0

0 0 lX1X4
0 0 lX2X5
0 0 lX3X6

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

j1
j2
j1j2

0

@

1

A +

dX1
dX2
dX3
dX4
dX5

.

.

.

dX15
dX1X4
dX2X5
dX3X6

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

: ð4Þ

All the intercepts of X indicators and product indicators are constrained to zero. The

product indicators do not cross-load on j1 and j2. When the X indicators can be

assumed to be normal, the unique factors of the product indicators are uncorrelated

among each other and with those of the X indicators. If not, an alternative specifica-

tion is to let the unique factors of the product indicators correlate with those of the X

indicators that form the product indicators. j1, j2, and j1j2 are freely correlated. The

means of j1 and j2 are set to zero while the mean of j1j2 is constrained to be equal

to the covariance between j1 and j2 (Bohrnstedt & Goldberger, 1969, equation 3).

To identify the scales of j1, j2, and j1j2, we can fix the factor loadings of the most

reliable indicators of j1 and j2 (X1 and X4) and the corresponding product indicators

(X1X4) to 1 (Jöreskog & Yang, 1996, equation 6).

Normal-theory maximum likelihood (NML) estimation, along with its standard

error (SE) adjustment methods such as Satorra–Bentler (Satorra & Bentler, 1994) and

Yuan–Bentler adjustments (Yuan & Bentler, 2000) are often used to estimate the UPI

models. Theoretically, these estimators incorrectly assume that the product indicators

are normally distributed and are linearly related to the X indicators (Bohrnstedt &

Goldberger, 1969; Klein & Moosbrugger, 2000). On the other hand, simulation stud-

ies have supported using these estimators with the three-matched-pair strategy. The

three-matched-pair strategy generally produces unbiased g1, g2, and g3 estimates,

unbiased standard errors of g3, and correct Type I error rates of the z test of g3 across

sample size (� 500), distributions of X indicators (skewness � 2, kurtosis � 6), and

different numbers and reliabilities of X indicators (Cham et al., 2012; Coenders et al.,

2008; Foldnes & Hagtvet, 2014; Jackman et al., 2011; Marsh et al., 2004; Wu et al.,

2013).

Nevertheless, the three-matched-pair strategy is disadvantageous in ignoring the

remaining indicators of j2 in representing the interaction term, which results in lower

statistical power of the z test of g3 compared with other matching strategies that use
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more product indicators (Foldnes & Nagtvet, 2014; Marsh et al., 2004). These match-

ing strategies are not suggested because the model specification regarding the unique

factors is more complex. Parceling strategies is a promising alternative which uses

all X indicators in the factor model of j1j2 while reducing the model specification

complexity.

Parceling. A parcel is the aggregation (e.g., average) of two or more indicators from

the same construct and it often has no substantive meaning (Bandalos, 2008). In gen-

eral applications in SEM, parcels can be used to replace the original indicators in the

factor models. In UPI, one parceling strategy that is used to create the product indica-

tors has been studied (Jackman et al., 2011; Wu et al., 2013). When j1 and j2 have

unequal number of indicators, indicators from the construct that has more indicators

are aggregated into parcels. The number of parcels is equal to the number of indica-

tors of the construct that has fewer indicators. In Equation (2), we can compute three

parcels from the 12 indicators of j2 as there are three indicators of j1. We used the

factorial algorithm (Rogers & Schmitt, 2004) to form parcels in this paper. In the fac-

torial algorithm, the first parcel picks the indicators with the highest and lowest fac-

tor loadings. The second factor picks the indicators with second highest and second

lowest factor loadings. The process repeats until all indicators are assigned to one

and only one parcel. In our example, consider that the factor loadings of the 12 indi-

cators of j2 are in the descending order from X4 to X15 and all the X indicators are

mean-centered. The first parcel (P1) is equal to the average of (X4, X15, X7, X12), the

second parcel (P2) is equal to the average of (X5, X14, X8, X11), and the third parcel

(P3) is equal to the average of (X6, X13, X9, X10).
2 After the parcels are computed, P1

is matched with the most reliable indicator of j1 to create the first product indicator

X1P1, and so on.

The resulting factor model and model specification is the same as that in Equation

(4) except for two matters. First, we use the product indicators X1P1, X2P2, and X3P3

for the factor model of j1j2. Second, we need to use a different method to identify

the scales of j1, j2, and j1j2. We can fix the variances of j1 and j2 to 1, and fix the

variance of j1j2 to (1 + cov j1, j2ð Þ½ �2), where cov j1, j2ð Þ is the covariance between
j1 and j2 (Bohrnstedt & Goldberger, 1969, equation 5; Jackman et al., 2011). This

identification constraint assumes that j1 and j2 are bivariate normally distributed.

Wu et al. (2013) has evaluated the parceling strategy with NML estimation with

Satorra–Bentler and Yuan–Bentler standard error adjustments. The parceling strategy

generally produces unbiased g3 estimates, unbiased standard errors of g3, and correct

Type I error rates of the z test of g3 across sample size (� 500) and different num-

bers and reliabilities of X indicators. As expected, the z test of g3 has higher statisti-

cal power than the three-matched-pair strategy. However, when the indicators are

nonnormal, the parceling strategy produces biased g3 estimates because the identifi-

cation constraint of j1j2 assumes bivariate normality of j1 and j2 (Wu et al., 2013).

To overcome the violation of the normality assumption in the scaling constraints

in the parceling strategy while having the potential advantages of parceling, in this
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article we propose another strategy to create product indicators that combines match-

ing and parceling. In this new strategy, the most reliable indicators of j1 and j2 are

matched to form the first product indicator(s). The remaining indicators of j2 are then

parceled and multiplied with the remaining indicator(s) of j1. The scales of j1, j2,

and j1j2 are defined by fixing the factor loadings of the most reliable indicators and

the corresponding product indicator to 1, which does not assume bivariate normality

of j1 and j2. This strategy takes the advantage of the matching strategy in terms of

the scaling identification and also the parceling strategy in terms of high statistical

power to detect the interaction effect. We hypothesize that this strategy will produce

unbiased g3 estimates, and that the z test of g3 will have correct Type I error rates

and statistical power higher than that of the three-matched-pair strategy.

Latent Moderated Structural Equations

LMS (Klein & Moosbrugger, 2000; Schermelleh-Engel et al., 1998) is another popu-

lar latent interaction modeling approach. Unlike UPI, LMS estimates the interaction

effect directly using maximum likelihood estimation, without having to specify a fac-

tor model for j1j2, and the factor model follows the typical confirmatory factor

model such as that in Equation (2). LMS builds on the ideas that (1) the interaction

effect is a conditioned linear effect on another variable and (2) a weighted combina-

tion of conditional normal distributions can be used to approximate the multivariate

distributions of the observed indicators (Kelava et al., 2011). It uses Cholesky decom-

position to decompose j1 and j2 to identify the conditioning variables (Equation 5):

j=Az

j1

j2

� �

=
a11 0

a21 a22

� �

z1

z2

� �

: ð5Þ

The column vector of j1 and j2 (j) is decomposed into a lower triangular matrix A

and a column vector of z values, which are standard normally distributed and ortho-

gonal to each other. Further, LMS uses A and z by substituting them into Equation

(1). To do so, Equation (1) is re-expressed as Equation (6):

h = g0 +Gj + jTΩ j + z

h = g0 + g1 g2ð Þ
j1

j2

� �

+ j1 j2ð Þ
0 g3

0 0

� �

j1

j2

� �

+ z
: ð6Þ

G is a row vector of regression coefficients of the first-order effects except the inter-

cept. Ω is a square matrix containing the interaction effect in the upper diagonal.

Then, A and z are substituted into Equation (6):
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Equation (7) shows that h is linearly related to z2, but nonlinearly related to z1
(Keleva et al., 2011). Assuming the X indicators are multivariate normal, Klein and

Moosbrugger (2000) show that the joint distribution of the X indicators and outcome

h conditioned on z1 is multivariate normal. Equivalently, the joint distribution is a

mixture multivariate distribution across values of z1. Therefore, LMS estimates the

latent interaction model by finding the maximum likelihood solution of the mixture

distribution of the X indicators and h using expectation–maximization (EM) algo-

rithm (Dempster, Laird, & Rubin, 1977) with numerical integration (e.g., rectangular

[trapezoid], Gauss–Hermite quadrature, and Monte Carlo).

Simulation studies have found that LMS is superior to the UPI in terms of yield-

ing smaller bias of the interaction effect estimate and its standard error, and higher

statistical power of the z test of the interaction effect when the X indicators are nor-

mally distributed (Cham et al., 2012; Jackman et al., 2011; Klein & Moosbrugger,

2000; Wu et al., 2013). However, when the distributions of X indicators deviate from

normal, LMS produces biased interaction effect estimates (Cham et al., 2012; Wu et

al., 2013).

Current Study

This current study explores how the UPI and LMS approaches perform when the X

indicators are ordered-categorical. The literature in latent variables interactions has

only considered when X indicators are measured on continuous scales, while the lit-

erature in factor analysis has well studied the appropriateness of treating ordered-

categorical indicators as continuous. In factor analysis, NML can produce unbiased

parameter estimates (� 10% bias) but negatively biased standard error estimates

when the indicators have five or more categories and are moderately nonnormal

(2.90 � skewness � 1.38, 21.19 � kurtosis �21.92; Babakus, Ferguson, &

Jöreskog, 1987; B. Muthén & Kaplan, 1985; Rhemtulla, Brosseau-Liard, & Savalei,

2012). In addition, parcels are more continuous and are less nonnormal than the indi-

vidual indicators (Bandalos, 2008; Little, Rhemtulla, Gibson, & Schoemann, 2013).

Yang, Nay, and Hoyle (2010) found that parceling can reduce bias in parameter esti-

mation when having categorical indicators.

Given these findings, we hypothesize that UPI and LMS will produce unbiased

interaction effect estimates when the X indicators have five or more categories. LMS

will produce unbiased interaction effect estimates when the X indicators are about
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symmetric and UPI using parceling will be more robust to nonnormal X indicators.

We conducted a simulation study to test these hypotheses.

Simulation Study: Method

Population Model

The population model followed Equations (1) and (2). The predictors (j1 and j2)

were standardized with a medium effect size of correlation = .3 (Cohen, 1992), The

intercept g0 was arbitrarily set to .1. The first-order effects g1 and g2 were set to .3

and .1, respectively. Under the assumption that j1 and j2 are perfectly reliable, mea-

sured directly, and analyzed via multiple regression, the first-order effects are equiv-

alent to a population r2 = .3. We set two levels of the interaction effect g3 in terms

of r2 increase = 0 (no effect) and .07 (small to medium effect; Cohen, 1992). The

condition of r2 increase = .07 was larger than those studied in the literature (e.g., .01

in Jackman et al., 2011; .02 in Kelava et al., 2011; .04 in Marsh et al., 2004). The

disturbance variance was set according to the r2 increase of the interaction effect.

The factor loadings of the X indicators varied to represent realistic research settings.

The unique factor variances were set such that the internal consistency v of j1 and

j2 equals .7, which is regarded as a benchmark for scale development (McDonald,

1999; Nunnally, 1978). Table 1 summarizes the parameters.

Distributions of Indicators

We manipulated three conditions of the distributions of the indicators: symmetric,

moderately skewed and kurtotic, and severely skewed and kurtotic. Here we describe

the data generation procedures for the continuous indicators. In the symmetric condi-

tion, both j1 and j2 as well as the unique factors in the factor model were generated

randomly from normal distribution. In the moderately skewed and kurtotic condition,

j1 and j2 were generated randomly from x21 distribution while unique factors were

generated from x2 distribution of different degrees of freedoms for each indicator

(see Supplementary Material available online). In the severely skewed and kurtotic

condition, j1 and j2 were generated randomly from gamma distribution with shape

parameter = .34 and rate parameter = 3. Unique factors were generated from x2 dis-

tribution of different degrees of freedoms for each indicator (see online supplemen-

tary materials). Table 2 shows the univariate skewness and kurtosis of the indicators

by randomly generating one million observations for each condition.

Categories of Indicators

Under each distribution condition, the continuous indicators were standardized first,

and then were categorized into five- and three-categories according to the thresholds

used by Rhemtulla et al. (2012). In the symmetric condition, the thresholds were sym-

metrical around zero. The thresholds were set as (21.5, 2.5, .5, 1.5) for the five-
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category condition and (2.83, .83) for the three-category condition. In the moderately

and severely skewed and kurtotic conditions, the thresholds were set as (.05, .44, .84,

1.34) for the five-category condition and (.58, 1.13) for the three-category condition.

Table 2 shows the univariate skewness and kurtosis of the indicators by randomly

generating one million observations for each condition.

Sample Size

We manipulated four levels of sample sizes (N) = 200, 500, 1,000, and 5,000. N =

200 is the median sample size used in regression analysis with interaction effects

(Jaccard & Wan, 1995). N = 5,000 represents a large sample size at which the asymp-

totic properties of the estimators might be achieved.

Latent Variable Interaction Modeling Approaches

We studied the UPI and LMS approaches in the simulation. In UPI, we studied

four strategies to form the product indicators: three-matched-pair (matching), par-

celing, two-matched-pair and one parcel (2M + P), and one-matched-pair and two

parcels (M + 2P). In the 2M + P strategy, the two most reliable indicators of j1
and j2 were matched to create two product indicators and the least reliable indica-

tor of j1 was matched with the parcel of the remaining indicators of j2 to create

the third product indicator. In the M + 2P strategy, the most reliable indicators of

j1 and j2 were matched to create a product indicator, and the remaining indicators

of j1 were matched with two parcels of j2 to create two product indicators. As dis-

cussed, all the X indicators were mean-centered before creating product indicators.

In the matching, 2M + P, and M + 2P strategies, we identified the factors by fix-

ing the factor loadings of the most reliable indicators and the corresponding prod-

uct indicator to 1. In parceling strategy, factors were identified by fixing the

variances of j1 and j2 to 1 and fixing the variance of j1j2 to (1 + cov j1, j2ð Þ½ �2).
All the UPI models were estimated using NML estimation with robust standard

errors (ESTIMATOR = MLR) via Mplus 7.2 (L. K. Muthén & Muthén, 1998-

2014). In conditions where indicators were nonnormal, the unique factors of the

product indicators and those of the X indicators that form the product indicators

were allowed to correlate. Similarly, in these conditions, in models involving item

parcels, unique factors of the item parcels and those of the X indicators that form

them were also allowed to freely correlate. In the LMS models, factors were iden-

tified by fixing the latent intercepts and the factor loadings of the most reliable

indicators of j1 and j2 to 0 and 1, respectively. The LMS models were estimated

using the Gauss–Hermite quadrature integration algorithm with 16 integration

points per dimension via Mplus 7.2 (Klein & Mossbrugger, 2000). Robust stan-

dard errors were calculated (ESTIMATOR = MLR).
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Altogether, there were 72 simulation conditions (2 interaction effect sizes 3 3 dis-

tributions of indicators 3 3 categories of indicators 3 4 sample sizes). For each con-

dition, 1,100 datasets were generated using R (R Core Team, 2018). The gamma

distributed variables were generated using R package copula 0.999-14 (Kojadinovic

& Yan, 2010). All five latent interaction models were fit to the simulated data sets.

Results

The performances of the models in estimating the latent interaction effect (g3) were

summarized by six different dependent measures: model convergence rate, relative

bias of parameter estimates, relative bias of estimated standard errors, Type I error

rate, statistical power, and coverage rate. A full report of the results can be found in

the Supplementary Material (available online).

Model Convergence Rate

Model convergence rate is the percentage of properly converged models across all

replications for each condition. A model is considered as properly converged when

there were no Mplus error messages and no negative variance estimates. Table S1 in

the online supplementary materials shows the model converge rates. Across all condi-

tions, the average model converge rate was 96.7% for the UPI models. As expected,

when the sample sizes decreased and the indicators were more skewed and kurtotic

and had fewer categories, model convergence rates decreased (lowest = 71% with

2M + P with three-category, severely skewed, and kurtotic indicators when N =

200). Matching, parceling, 2M + P, and M + 2P had similar average model con-

verge rates ( . 95%). LMS had . 99% convergence in all conditions and was super-

ior than UPI in small (N = 200) sample sizes. The following analyses were conducted

on properly converged replications.

Relative Bias of Interaction Effect Estimates

Relative bias of the parameter estimates is defined as

û� u

u
3100%; ð8Þ

where u represents the population parameter, û represents the average of parameter

estimates û across the properly converged replications. Based on Hoogland and

Boomsma (1998), relative bias of parameter estimates is considered acceptable if its

absolute value is less than 5%. Relative biases of the interaction effect estimates are

presented in Table 3. When the indicators were continuous, under symmetric condi-

tion, parceling strategy in UPI and LMS approach produced unbiased interaction

estimates across all sample size conditions. The 2M + P, and M + 2P strategies pro-

duced unbiased interaction estimates when N� 500. On the other hand, matching
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Table 3. Relative Bias (%) of Interaction Effect Estimate.

Indicators’
categories

Indicators’
distribution N

Latent variable interaction modeling method

Matching Parceling 2M + P M + 2P LMS

Continuous Symmetric 200 16.5 0.1 10.1 15.4 21.7
500 5.3 1.1 3.8 3.0 20.3

1,000 2.2 1.3 1.8 2.5 0.7
5,000 0.2 20.2 0.2 0.1 20.2

Moderately
skewed and
kurtotic

200 9.8 63.6 4.2 3.3 41.4
500 2.7 78.2 1.1 1.2 45.5

1,000 2.1 82.3 0.7 0.1 47.8
5,000 0.8 87.5 0.4 0.2 49.0

Severely skewed
and kurtotic

200 18.0 26.3 0.0 6.3 28.3
500 7.0 30.4 4.3 7.2 33.9

1,000 4.8 31.9 2.4 3.3 35.3
5,000 0.4 31.7 0.1 0.0 37.1

5 Categories Symmetric 200 15.9 1.3 13.9 16.0 20.5
500 7.4 0.9 5.6 5.6 0.9

1,000 3.6 1.5 3.8 4.8 2.2
5,000 1.2 20.5 1.4 1.5 1.1

Moderately
skewed and
kurtotic

200 7.5 68.7 11.1 19.2 59.4
500 3.2 76.7 17.5 23.6 69.4

1,000 3.1 78.4 17.7 22.8 72.9
5,000 0.7 78.9 16.5 22.6 75.2

Severely skewed
and kurtotic

200 215.4 15.1 211.6 25.9 29.1
500 218.4 16.0 212.7 28.6 37.1

1,000 219.5 16.6 215.0 211.7 39.2
5,000 221.4 15.5 216.2 213.7 41.2

3 Categories Symmetric 200 17.1 20.2 15.5 19.6 21.0
500 11.6 1.8 8.6 8.5 1.4

1,000 4.7 0.4 5.1 6.6 2.5
5,000 1.7 24.7 1.9 2.0 1.4

Moderately
skewed and
kurtotic

200 23.8 58.5 23.2 1.5 55.8
500 27.5 69.2 2.9 9.7 67.2

1,000 210.1 69.9 3.1 8.2 70.5
5,000 212.8 71.0 1.9 7.7 73.2

Severely skewed
and kurtotic

200 219.0 2.9 224.5 224.4 24.4
500 224.2 4.7 223.3 218.1 34.3

1,000 226.1 8.1 223.5 219.7 37.9
5,000 230.9 6.8 226.4 223.8 40.0

Note. Boldfaced numbers indicate relative bias greater than the suggested value ( . 5% in value) by

Hoogland and Boomsma (1998).
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required N� 1,000 to produce unbiased interaction estimates. Under skewed and kur-

totic indicator conditions, however, parceling and LMS greatly overestimated inter-

action effects across all sample sizes (relative bias . 30% for parceling, . 28% for

LMS). Under the moderately skewed and kurtotic condition, 2M + P, and M + 2P

strategies produced unbiased interaction estimates across all sample sizes, while

matching overestimated the effects when N = 200. Under severely skewed and kurto-

tic condition, 2M + P produced unbiased estimates across all sample sizes while

matching and M + 2P produced unbiased interaction estimates when N� 1,000.

When the indicators had five categories, under symmetric condition, parceling

and LMS produced unbiased interaction estimates across all sample sizes. Matching,

2M + P, and M + 2P strategies produced unbiased interaction estimates when

N� 1,000. These three strategies overestimated the interaction effects when N�
500. Under moderately skewed and kurtotic condition, only the matching strategy

produced unbiased interaction estimates when N� 500. Parceling and LMS greatly

overestimated the interaction effects across all sample sizes (relative bias . 68% for

parceling, . 59% for LMS). 2M + P, and M + 2P strategies overestimated the

effects (. 11% and . 19%, respectively). Under severely skewed and kurtotic con-

dition, none of the models produced unbiased interaction effect estimates. Models

involving matched indicators (i.e., matching, 2M + P, M + 2P) tended to underesti-

mate, while UPI parceling and LMS methods tended to overestimate the interaction

effects.

When the indicators had three categories, under the symmetric condition, UPI par-

celing strategy and LMS produced unbiased interaction estimates across all sample

sizes. Matching produced unbiased estimates when N� 1,000 while 2M + P and M

+ 2P strategies only produced unbiased estimates when N = 5,000. Under moder-

ately skewed and kurtotic condition, 2M + P produced unbiased estimates across all

sample size conditions, while matching and M + 2P produced unbiased estimates

only when N = 200. Parceling ( . 58%), and LMS ( . 55%) overestimated the inter-

action effects across all sample sizes. Under the severely skewed and kurtotic condi-

tion, only the parceling strategy produced unbiased estimates with N� 500, while

matching, 2M + P, and M + 2P strategies greatly underestimated (\218%); and

LMS greatly overestimated ( . 24%) the interaction effects across all sample sizes.

Relative Bias of Estimated Standard Errors of Interaction Effect

Relative bias of the estimated standard error is defined as

SE û
� �

� SD û
� �

SD û
� � 3100%: ð9Þ

SE û
� �

is the estimated standard error of the parameter estimate û, and SD û
� �

is the

standard deviation of û. Hoogland and Boomsma (1998) suggested that the accepta-

ble relative bias of the estimated standard error is smaller than 10%. Table 4 shows
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the relative biases of the estimated standard errors of interaction effects. LMS, and

2M + P produced unbiased estimates with symmetric indicators, across all sample

size and indicator type (i.e., continuous, five-category, three-category) conditions,

while matching and M + 2P required N� 500. With moderately skewed and kurtotic

continuous indicators, only LMS produced unbiased estimates across all sample size

conditions while parceling, 2M + P, and M + 2P required N = 5,000 for unbiased

estimates. With continuous and severely skewed and kurtotic indicators, all models

except 2M + P required N = 5,000 for unbiased estimations while 2M + P per-

formed well with N� 500. With categorical and skewed indicators, UPI models pro-

duced unbiased estimates in different sample size conditions while LMS

underestimated the standard errors (\-23%)across all sample size conditions.

Among the UPI models, matching tended to produce unbiased standard error esti-

mates more frequently; however, it tended to overestimate the standard errors with N

= 200 in these conditions (see Table 4).

Type I Error Rate of Interaction Effect

Type I error rate of the interaction effect is defined as the percentage of properly

converged replications that wrongly reject the null hypothesis of no interaction effect

(H0: g3 = 0) when it is true in the population (setting a = .05). The acceptable level

of Type I error rate is within the 95% confidence interval of a binomial variable =

[:0561:963
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

:053 1� :05ð Þ=k
p

], where k is the number of replications (Cham et al.,

2012). Here, the interval is .037 to .063. Figure 1 shows Type I error rates of the

interaction effects across conditions, with the gray color bands indicating the accep-

table range (see Table S2 in the online supplementary materials for a full report).

When the indicators were continuous, UPI parceling produced acceptable Type I

error rates across all sample size and indicatory type conditions. Other UPI models

had acceptable Type I error rates in most conditions, while LMS had acceptable

Type I error rates in the symmetric condition and greatly inflated type I error rates

(between .13 and 1.00) in the skewed and kurtotic conditions. Matching, 2M + P,

and M + 2P had low Type I error rates under symmetric and N� 500 conditions.

When the indicators had five categories, under the symmetric condition, UPI

matching, 2M + P, and M + 2P had low Type I error rates with N� 500, and LMS

had low Type I error rates with N = 200, and high Type I error rates with N = 5,000.

Under moderately skewed and kurtotic condition, parceling, 2M + P, and M + 2P

produced acceptable Type I error rates except when N = 5,000, matching tended to

have low, and LMS had very high ( . .24) Type I error rates. Under severely skewed

and kurtotic condition, all models had inflated Type I error rate when N = 5,000,

while the rates were acceptable or low when N� 1,000 for UPI models. In this con-

dition, LMS showed greatly inflated type I error rates (between .18 and .99).

When the indicators had three categories, parceling produced acceptable Type I

error rates in all conditions except with severely skewed and kurtotic indicators when

N� 1,000. Matching tended to produce low Type I error rates except with N = 5,000
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Table 4. Relative Bias (%) of Estimated Standard Error of Interaction Effect.

Indicators’
categories

Indicators’
distribution N

Latent variable interaction modeling method

Matching Parceling 2M + P M + 2P LMS

Continuous Symmetric 200 16.7 6.7 26.8 217.9 25.0
500 22.0 20.7 0.3 23.4 22.8

1,000 0.5 0.1 2.9 21.7 21.3
5,000 23.2 0.2 2.2 0.8 0.1

Moderately
skewed and
kurtotic

200 25.1 215.4 216.2 229.2 27.2
500 219.1 221.6 225.7 221.1 25.6

1,000 210.5 219.2 214.6 215.7 20.4
5,000 211.0 28.2 25.4 26.1 21.3

Severely skewed
and kurtotic

200 94.6 14.1 35.1 20.8 215.1
500 21.7 14.4 27.6 218.3 25.3

1,000 212.2 213.7 28.7 215.3 29.4
5,000 25.6 26.4 24.8 21.1 219.5

5 Categories Symmetric 200 5.5 10.7 29.7 26.9 26.6
500 21.3 20.1 20.9 20.1 22.9

1,000 2.7 1.2 6.0 21.9 0.9
5,000 21.3 0.3 3.8 –0.5 0.4

Moderately
skewed and
kurtotic

200 11.8 29.8 24.8 21.4 225.8
500 210.2 210.8 216.5 219.0 223.0

1,000 21.7 27.1 28.9 210.2 228.6
5,000 23.0 2.4 22.0 22.0 229.9

Severely
skewedand
kurtotic

200 48.6 10.6 26.4 80.1 224.0
500 26.0 212.3 213.4 –20.8 –25.7

1,000 20.8 212.6 211.5 212.6 229.7
5,000 0.4 21.4 21.0 23.3 231.3

3 Categories Symmetric 200 28.7 14.0 9.1 16.4 28.0
500 21.2 25.7 23.3 1.7 25.3

1,000 23.3 214.0 3.9 1.1 1.3
5,000 22.8 268.5 2.1 2.2 20.7

Moderately
skewed and
kurtotic

200 46.9 23.2 0.5 10.0 228.3
500 29.9 214.5 216.6 220.2 226.9

1,000 25.2 29.1 212.4 216.8 227.9
5,000 23.0 20.4 22.3 23.4 226.8

Severely skewed
and kurtotic

200 94.3 39.8 19.4 148.4 234.9
500 8.6 21.1 9.7 8.9 227.3

1,000 24.3 210.5 210.5 211.8 229.3
5,000 20.8 21.7 1.0 22.0 231.1

Note. Boldfaced numbers indicate relative bias greater than the suggested value ( . 10% in value) by

Hoogland and Boomsma (1998).
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where it produced acceptable (symmetric), or high (moderately and severely sym-

metric and kurtotic) Type I error rates. 2M + P and M + 2P produced low rates with

N� 500 and acceptable rates with N� 1,000 with symmetric and moderately skewed

and kurtotic indicators; and low rates with N = 200, and high rates with N = 5,000

with severely skewed and kurtotic indicators. LMS produced acceptable or slightly

low rates with symmetrical indicators, while it produced highly elevated (between

.13 and 1.00) rates with moderately and severely skewed and kurtotic indicators.

Statistical Power of Interaction Effect

Statistical power of the interaction effect is defined as the percentage of properly

converged replications that correctly reject the null hypothesis of no interaction

effect when it is false in the population (setting a = .05). Figure 2 shows the statisti-

cal power results across conditions (see Table S3 in the online supplementary materi-

als for a full report). Overall, LMS approach had the highest average statistical

power (.97), followed by UPI parceling (.82), 2M + P (.80), M + 2P (.79), and

matching (.75) strategies in descending order. As expected, when the indicators had

fewer categories and sample size decreased, statistical power decreased. With contin-

uous and five-category, symmetric and moderately skewed and kurtotic indicators,

all models except UPI matching had 90% or greater power with N� 500. With con-

tinuous and five-categorical, severely skewed, and kurtotic indicators, N� 1,000 was

needed for acceptable power levels in UPI models. With three-category symmetric

and moderately skewed and kurtotic indicators N� 1,000 was needed for adequate

power levels for UPI models while N = 5,000 was needed when the indicators were

severely skewed and kurtotic.

Coverage Rate of Interaction Effect

Coverage rate of the interaction effect is defined as the percentage of replications

that the 95% Wald confidence interval of the interaction effect estimates includes the

population value. Coverage rate incorporates the information of both the bias of the

parameter estimates and that of the estimated standard errors. Coverage rate of 90%

and above is considered acceptable (Cham et al., 2012). Table 5 presents the cover-

age rates across conditions. When the indicators were symmetrically distributed,

all models had acceptable coverage rates across all sample size and indicators’ cate-

gory conditions. With continuous and skewed and kurtotic indicators, only M + 2P

produced acceptable coverage rates across all sample size conditions while 2M + P

required N� 500, and matching required N� 1,000. UPI parceling and LMS pro-

duced poor coverage rates in these conditions. With five-category and skewed and

kurtotic indicators, UPI matching, and 2M + P, and LMS models consistently pro-

duced low coverage rates while UPI parceling and M + 2P produced acceptable cov-

erage rates in some sample size conditions. With three-category and skewed and

kurtotic conditions, UPI matching, 2M + P, and M + P produced very high
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Table 5. Coverage Rate (%) of Interaction Effect.

Indicators’
categories

Indicators’
distribution N

Latent variable interaction modeling method

Matching Parceling 2M + P M + 2P LMS

Continuous Symmetric 200 94.8 95.5 96.6 97.4 96.5
500 96.2 94.4 97.6 97.2 96.6

1,000 96.2 94.0 98.2 98.3 97.7
5,000 95.5 95.0 98.7 98.3 97.7

Moderately
skewed and
kurtotic

200 87.7 87.8 89.8 91.8 88.1
500 89.9 73.4 90.0 91.4 60.8

1,000 90.7 47.9 91.3 93.8 20.0
5,000 94.5 0.4 96.0 96.4 0.0

Severely skewed
and kurtotic

200 84.3 92.2 88.2 90.7 88.3
500 89.6 92.6 92.4 92.6 76.6

1,000 90.4 87.0 92.4 93.2 54.2
5,000 95.0 52.3 95.2 97.6 0.8

5 Categories Symmetric 200 95.9 96.2 97.6 98.6 97.6
500 97.5 94.8 98.8 99.3 98.2

1,000 97.8 95.5 99.3 99.4 98.9
5,000 97.6 95.5 99.3 99.3 99.1

Moderately
skewed and
kurtotic

200 77.4 90.6 81.9 89.1 56.6
500 79.8 83.2 83.6 90.2 15.8

1,000 80.6 65.8 84.5 91.1 1.4
5,000 79.3 1.1 68.3 68.3 0.0

Severely skewed
and kurtotic

200 67.0 90.4 70.0 79.2 64.9
500 63.0 93.7 70.3 79.6 45.0

1,000 58.2 93.3 67.6 77.8 24.3
5,000 21.6 89.0 52.5 68.1 0.1

3 Categories Symmetric 200 100.0 95.6 100.0 100.0 100.0
500 100.0 94.6 100.0 100.0 100.0

1,000 100.0 95.4 100.0 100.0 100.0
5,000 100.0 93.4 100.0 100.0 100.0

Moderately
skewed and
kurtotic

200 99.0 92.0 99.9 99.9 98.8
500 99.9 88.3 99.9 100.0 98.2

1,000 100.0 78.0 100.0 100.0 97.4
5,000 100.0 9.6 100.0 100.0 8.0

Severely skewed
and kurtotic

200 98.4 89.7 99.5 99.6 99.5
500 99.1 92.3 100.0 99.4 99.6

1,000 99.0 93.4 99.7 99.6 99.5
5,000 96.2 95.4 99.6 99.8 82.2

Note. Boldfaced numbers indicate coverage rate lower than the suggested value (\90% in value) by

Cham et al. (2012).
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( . 99%) coverage rates, while UPI parceling and LMS models produced very low

(\10%) coverage rates with moderately skewed and kurtotic indicators with N =

5,000, and lower than acceptable rates in other sample size conditions.

Lower-Order Effects

We also studied the lower-order effects g0, g1, andg2 in terms of the relative bias of

the parameter estimates, standard error estimates, and coverage rates. The full report

of these results is provided in the online supplementary material. In summary, all four

UPI models produced unbiased g1 estimates across all conditions, and unbiased g0

and g2 estimates across all conditions except with severely skewed and kurtotic cate-

gorical indicators. LMS produced negatively biased g0, and g1 estimates when the

indicators were skewed and kurtotic and produced mixed results with g2. All four

UPI models produced acceptable or slightly high relative bias of the standard errors

of the lower-order effects with N� 500, while LMS produced unbiased estimates in

N = 200 condition as well. Across all conditions, coverage rates of the lower order

effects were better with the UPI models, however, skewed and kurtotic categorical

indicators caused lower coverage rates. LMS suffered from skewness and kurtosis

more, resulting in coverage rates as low as .2 (g0 estimates with moderately skewed

and kurtotic five-category items).

Summary and Discussion

The simulation study results partly supported our hypotheses. Drawing on previous

findings suggesting it is appropriate to treat ordered-categorical indicators with five

or more categories as continuous indicators in confirmatory factor analysis, we

hypothesized that the UPI method with NML estimation with robust standard errors

would perform well with five-category indicators and fail with three-category indica-

tors. Our simulation study results only partly supported this hypothesis.

With continuous indicators, UPI matching approach produced unbiased estimates

of interaction effect with correct Type I error rates with N� 1,000 while it underesti-

mated standard errors when the indicators were nonsymmetrically distributed. With

five-category indicators, it made unbiased interaction effect and standard error esti-

mates with acceptable Type I error and power rates only when indicators were sym-

metric or moderately skewed and kurtotic with N� 1,000. When the indicators were

severely skewed and kurtotic, it underestimated the interaction effect. With three-

category indicators, it produced unbiased interaction and standard error estimates,

acceptable Type I error, power, and coverage rates only when the indicators were

symmetrically distributed and the sample sizes were large (N� 1,000).

UPI parceling approach produced unbiased estimates of the interaction effect with

good coverage, and Type I error rates for all indicator type conditions (i.e., continu-

ous, five-category, three-category) and across all sample sizes when the indicators

were symmetrical. However, it required N� 500 for adequate power and needed
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N� 500 for unbiased standard error estimates with five-category indicators and pro-

duced biased SE estimates with three-category indicators. When the indicators were

nonsymmetrical, UPI parceling models resulted in highly overestimated interaction

effects, and low coverage rates with increased sample size (as low as 0.4%) in all

conditions except with three-category severely skewed and kurtotic indicators.

LMS approach performed similar to the UPI parceling approach in that it produced

unbiased interaction estimates with all indicator types as long as they were symmetri-

cally distributed, but highly overestimated the interaction effects even with moderate

levels of skewness and kurtosis. LMS also tended to underestimate the standard error

of the interaction estimates, had extremely elevated Type I error rates and low cover-

age rates in these conditions.

We also considered a new strategy that involves both matching and parceling stra-

tegies to create product indicators (2M + P and M + 2P strategies) in the hope of

retaining the advantages of both matching and parceling. However, the results did

not fully meet our expectations. UPI 2M + P, and M + 2P strategies performed well

under the symmetry condition with larger sample sizes (N� 500 in continuous,

N� 1,000 in five-category, N = 5,000 in three-category indicators). When the indica-

tors were moderately skewed and kurtotic and continuous, 2M + P, and M + 2P

produced unbiased interaction effect estimates, correct Type I error rates, and high

coverage rates in most conditions, and satisfactory power rates with N� 500.

However, they tended to underestimate the standard errors. 2M + P showed similar

patterns of results with three-category indicators as well, while M + 2P performed

poorly in these conditions. When the indicators were five-category, 2M + P and M

+ 2P overestimated the interaction effects with low coverage rates. When the indica-

tors were severely skewed and kurtotic, 2M + P and M + 2P produced unbiased

interaction estimates only with continuous indicators (M + 2P required N� 1,000),

with nominal or slightly inflated Type I errors and high power with N� 1,000.

Based on the simulation study results, we provide some guidelines for researchers

in using these models when estimating latent variable interactions. Table 6 is a sum-

mary table that presents the models that produced unbiased interaction effect esti-

mates in the indicator symmetry, number of categories of indicators, and sample size

conditions. The models showed varying levels of performance based on other evalua-

tion criteria depending on the study condition, as indicated by coded superscripts.

This table can be used by applied researchers as a reference to choose a suitable

model to use in their unique research scenario. Our main recommendations are:

1. When the indicators are symmetric, choose the LMS approach, or UPI par-

celing strategy or other UPI strategies listed in the corresponding cells in

Table 6. Models listed without superscripts (which indicates suboptimal per-

formance in other evaluation criteria when present) should be of higher pre-

ference order. This recommendation applies to ordered-categorical indicators

as well.
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2. Do NOT use UPI parceling or LMS when the indicators are skewed or

kurtotic.

3. Use UPI 2M + P for continuous skewed and kurtotic indicators with caution.

It can produce suboptimal standard error estimates, Type I error rates, power,

or coverage rates, depending on particular research conditions. UPI matching

and M + 2P models can also produce unbiased estimates with continuous

skewed and kurtotic indicators especially with large (N� 1,000) sample

sizes, but 2M + P behaves more consistently. Or, try other methods that can

handle nonsymmetrical indicators (see the General Discussion section for

recommendations).

Table 6. Methods Producing Unbiased Interaction Effect Estimates.

Indicators’
categories

Indicators’
distribution

N

200 500 1,000 5,000

Symmetric Continuous Parceling6 Parceling Matching Matching
LMS6 2M + P4 Parceling Parceling

M + 2P4 2M + P 2M + P
LMS M + 2P M + 2P

LMS LMS
5 Categories Parceling2, 6 Parceling Matching Matching

LMS4, 6 LMS Parceling Parceling
2M + P 2M + P
M + 2P M + 2P
LMS LMS5

3 Categories Parceling2, 6 Parceling6 Matching4 Matching
LMS4, 6 LMS Parceling1 Parceling1

LMS 2M + P
M + 2P
LMS

Moderately
skewed

and kurtotic

Continuous 2M + P1, 3, 6 Matching1, 3 Matching1 Matching1

M + 2P1, 6 2M + P1, 5 2M+ P1 2M+ P

M + 2P1, 5 M+ 2P1 M + 2P
5 Categories Matching1, 3, 4, 6 Matching3, 4 Matching3

3 Categories Matching2, 4, 6 2M + P1, 4, 6 2M + P1 2M + P

2M + P4, 6

M + 2P4, 6

Severely
skewed

and kurtotic

Continuous 2M + P2, 3, 6 2M + P6 Matching1 Matching
2M + P 2M + P
M + 2P1 M + 2P

5 Categories
3 Categories Parceling2, 3, 6 Parceling6

Note. Superscript 1 = underestimated standard errors (relative bias\210%); 2 = overestimated

standard errors (relative bias . 10%); 3 = low coverage rate (\.9); 4 = low Type I error rate (\.037); 5

= inflated Type I error rate ( . .063); 6 = low statistical power (\.9).
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4. Do not use any of the studied UPI models or LMS approach for categorical

skewed and kurtotic indicators. Although some of the models seemed to work

relatively well in some simulation conditions, the patterns of results are not

consistent to make a clear recommendation. Instead, try generalized methods

that are developed to handle ordered-categorical and nonnormal indicators

(see the General Discussion section for recommendations).

5. Have N� 500 to avoid low statistical power when estimating latent variable

interactions using UPI or LMS approach.

Substantive Example

We applied the UPI approach (matching, parceling, 2M + P, and M + 2P) and the

LMS approach in a substantive example of latent variable interaction with ordered-

categorical indicators. Data are from a randomized controlled efficacy trial of the

Cultivating Awareness and Resilience in Education program, a mindfulness-based

teacher professional development program which has been shown to reduce teacher

psychological distress, improve teacher adaptive emotion regulation and mindful-

ness, and improve the quality of classroom interactions (Jennings et al., 2017). In our

example, we tested whether there is an interaction effect between third- and fifth-

grade students’ social skills and student–teacher closeness on students’ proficiency

rating on the New York State English Language Arts (ELA) test. It was expected that

higher teacher–student closeness may confer a protective influence for children with

low social skill regarding their academic achievement. Students’ social skills were

measured by the teacher-reported Social Skills Improvement System Rating Scale

(SSIS; Gresham & Elliott, 2008). Teachers responded to 10 items for which they

rated the frequency with which a student exhibited various social skill–related beha-

viors over the past 2 months on a four-point scale (never, seldom, often, and almost

always). Student–teacher closeness was measured by using the teacher-reported

Closeness subscale of the Student–Teacher Relationship Scale–Short Form (Pianta,

2001). Teachers responded to seven items for which they rated the degree of close-

ness they experienced with a specific student on a 5-point scale (1 = definitely does

not apply to 5 = definitely applies). Both measures had satisfactory internal consis-

tencies (SSIS: McDonald’s v = .95; Closeness: McDonald’s v = .88). The outcome

variable, ELA proficiency ratings, were provided by the New York State Department

of Education. ELA proficiency ratings range between 1.0 and 4.5. To simplify the

analysis for demonstration purpose, only the students with complete observations on

all variables were used, resulting in 1,851 students. The data have a three-level clus-

tered structure of students nested within teachers (median intraclass correlations

across variables = .18, range = .11 to .40), and teachers within schools (median intra-

class correlations across variables = .04, range = .02 to .11). To account for this clus-

tered data structure, we used the TYPE=COMPLEX with the CLUSTER and

STRATIFICATION options in Mplus to adjust the standard errors of the parameter

estimates (e.g., Guo et al., 2016).
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The skewness and kurtosis of the indicators of SSIS and closeness were similar in

magnitude to the moderately skewed and kurtotic conditions of the simulation study

(SSIS: median skewness = 2.47, range = 2.62 to 2.02; median kurtosis = 2.47,

range = 2.85 to 2.17. Closeness: median skewness = 2.64, range = 21.38 to 2.52;

median kurtosis = 2.24, range = 2.48 to 2.52). Based on the simulation results, the

matching strategy would provide the interaction effect estimate with the least bias

and acceptable Type I error rate. All four strategies in the UPI approach followed the

procedures described previously and were estimated using NML estimation with

robust standard errors (ESTIMATOR = MLR) via Mplus 7.2. For the LMS model,

the default Gauss–Hermite integration algorithm with 16 integration points per

dimension was used, and robust standard errors were calculated (ESTIMATOR =

MLR). Table 7 shows the unstandardized parameter estimates, estimated standard

errors, and the significance levels of the coefficients in the interaction model (g0, g1,

g2, g3). For the interaction effect estimate, the ascending order of its value produced

by the five models was matching\ 2M + P\ LMS\M + 2P\ parceling. The

results of the UPI models were consistent with the simulation results that the ascend-

ing order of the biases of the interaction effect estimates was also matching\2M +

P\M + 2P\ parceling for the moderately skewed and kurtotic five-category indi-

cators, while LMS behaved unexpectedly. All models produced similar lower-order

effect estimates, which was also consistent with the simulation results.

Based on the results of the suggested matching strategy, Figure 3 visualizes the

interaction effect. On average, students’ social skills improvement was positively

related to their English language arts test scores. When the students’ felt closer to

their teachers, the relationship remained positive but decreased slightly. However, it

should be noted that this interaction effect was only marginally significant (unstan-

dardized coefficient = 2.07, z = 21.94, p = .052) with a trivial R2 increase (= .004).

General Discussion

In this article, we studied the performance of the unconstrained product indicator

approach in estimating latent variable interaction effects when the indicators of the

Table 7. Unstandardized Results of Substantive Example.

Method Intercept (g0) SSIS (g1) Closeness (g2) Interaction (g3)

Est. SE Est. SE Est. SE Est. SE

Matching 2.333 .026*** .291 .031*** 2.077 .038* 2.067 .035y

Parceling 2.329 .026*** .204 .022*** 2.052 .028y .030 .021
2M + P 2.327 .027*** .293 .032*** 2.075 .039y 2.031 .033
M + 2P 2.325 .026*** .293 .032*** 2.075 .039y 2.025 .031
LMS 2.327 .027*** .294 .032*** 2.077 .039* 2.030 .033

Note. SE = Standard error. SSIS stands for Social Skills Improvement System Rating Scale.
yp\ .10. *p\ .05. **p\ .01. ***p\ .001.
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predicting (exogenous) factors are ordered-categorical, in comparison with the LMS

approach (Klein & Moosbrugger, 2000). We have studied four strategies to creating

sets of product indicators for the latent interaction terms across various sample sizes,

distributions, and categories of predictors. Based on the results, we have provided

some guidelines for researchers encountering different research situations and then

applied them in a substantive example. In this section, we further discuss some other

related issues that were not investigated in this article.

The first issue is other estimators for categorical indicators. In UPI, one may con-

sider other estimations that are tailored for ordered-categorical indicators, such as the

limited-information unweighted least squares and diagonally weighted least squares

estimations. These estimations assume that each ordered-categorical indicator is cate-

gorized by an underlying normally distributed continuous variable with different

threshold parameters. However, these estimators might not be appropriate for han-

dling the product indicators. For instance, when two five-category indicators are

matched, the resulting product indicator will have 25 categories. This may introduce

data sparseness and might result in imprecision in parameter estimation.

The second issue is when the indicators have missing values. Cham, Reshetnyak,

Rosenfeld, and Breitbart (2017) found that UPI with NML produce unbiased para-

meter estimates only when the continuous indicators are missing completely at

Figure 3. Interaction between Grade 3 and 5 students’ social skills improvement and

teacher–student closeness on students’ English language arts test scores.
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random and LMS produce unbiased parameter estimates when the continuous indica-

tors are missing at random. Reshetnyak and Cham (2016) suggested imputing the

missing values of the indicators by regression tree modeling for UPI when the con-

tinuous indicators are missing at random. Future research is needed to find out meth-

ods to handle incompletely observed ordered-categorical indicators in latent variable

interactions.

The third issue concerns the data generation procedures in the simulation study.

We used x2 and gamma distributions to randomly generate j1, j2, and unique factors

in the moderately and severely skewed and kurtotic conditions. Foldnes and Olsson

(2016) found that, when using different methods to generate variables with the same

levels of skewness and kurtosis in a simulation study, the dependent measures of the

study would change. This is one potential reason for different results and conclusions

for the five- and three-category indicators in the simulation study. Also, our simula-

tion study did not consider negatively skewed and platykurtic indicators. Future

research may further consider other distribution conditions.

To conclude, among the models that were included in this study, when the indica-

tors are symmetrically distributed, UPI with parceling strategy or LMS approach are

recommended with indicators with three or more ordered response categories.

When continuous indicators are skewed and kurtotic, UPI models involving

matching (matching, 2P + M, M + 2P) may be used with cautions. When the

categorical indicators are skewed and kurtotic, models studied in this article are

not recommended. Instead, researchers should opt for methods that have been spe-

cifically developed to handle ordered-categorical indicators, such as Rizopoulos

and Moustaki (2008) which can be applied using the ltm package (Rizopoulos,

2006) in R (R Core Team, 2018), or use the categorical extension of the LMS

approach, which can be implemented in MPlus (Version 6 or newer versions; L.

K. Muthén & Muthén, 1998-2014). Future research shall continue to study the

applicability of other latent variable interaction methods for nonnormal and

ordered-categorical indicators.
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Notes

1. When j1 or j2 have only two indicators, it is suggested to pair the indicators of j1 and j2
according to their reliabilities and includes the two product indicators in the factor model

of j1j2.

2. Unweighted averaging of the indicators assumes that the indicators are measured on the

same scale. Little et al. (2013, footnote 2) suggest converting the indicators to a compara-

ble scale when the indicators have different scales.
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