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Latent Variable Modeling in
Congruence Research

Current Problems and Future Directions

Jeffrey R. Edwards
University of North Carolina

During the past decade, the use of polynomial regression has become increasingly prevalent

in congruence research. One drawback of polynomial regression is that it relies on the

assumption that variables are measured without error. This assumption is relaxed by struc-

tural equation modeling with latent variables. One application of structural equation model-

ing to congruence research is the latent congruence model (LCM). Although the LCM takes

measurement error into account and allows tests of measurement equivalence, it is framed

around the mean and algebraic difference of the components of congruence (e.g., the person

and organization), which creates various interpretational problems. This article discusses

problems with the LCM and shows how these problems are resolved by a linear structural

equation model that uses the components of congruence as predictors and outcomes. Exten-

sions of the linear model to quadratic equations used in polynomial regression analysis are

discussed.

Keywords: congruence; difference scores; polynomial regression; latent variables; struc-

tural equation modeling

The concept of congruence maintains a central position in organizational research. Con-

gruence refers to the fit, match, similarity, or agreement between two constructs, such

as the personal and organizational values (Chatman, 1989), employee needs and organiza-

tion rewards (Dawis, 1992), job demands and employee abilities (Edwards, 1996), and

organizational strategy and the environment (Venkatraman, 1989). Congruence has been

related to various causes and outcomes at the individual, group, and organizational levels

(Donaldson, 2001; Edwards, 1991; Kristof-Brown, Zimmerman, & Johnson, 2005; Spo-

kane, Meir, & Catalano, 2000).

The study of congruence has progressed through various methodological stages. Early

studies relied on difference scores and profile similarity indices (Edwards, 1991; Kristof,

1996), which are prone to numerous methodological problems (Cronbach, 1958; Edwards,

1994; Johns, 1981). Many of these problems are avoided by polynomial regression

(Edwards, 1994, 2002; Edwards & Parry, 1993), which has gained prominence during the

past decade. For instance, a recent meta-analysis of person–environment fit research

(Kristof-Brown et al., 2005) indicated that polynomial regression was used in about 20%

of studies published since the method was introduced. One limitation of polynomial

regression is that it rests on the assumption that variables are measured without error

(Berry, 1993). This assumption is relaxed by structural equation modeling with latent
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variables (Bollen, 1989; Kline, 2004; Loehlin, 2004), and work that integrates polynomial

regression with structural equation modeling is under way (Edwards & Kim, 2002).

One recent application of structural equation modeling to the study of congruence is the

latent congruence model (LCM) developed by Cheung (2007). The LCM treats the com-

ponents of congruence (e.g., the person and environment) as first-order factors with fixed

loadings on second-order factors intended to represent the congruence (i.e., algebraic dif-

ference) and level (i.e., mean) of the components. The LCM takes measurement error into

account by specifying the components of congruence as latent variables with multiple

indicators. Cheung (2007) also has demonstrated how the indicators of the components

can be tested for measurement equivalence, which is important for interpreting the com-

parison of the components in terms of congruence.

From a measurement perspective, the LCM is a step forward in congruence research,

given that measurement error can bias coefficient estimates in polynomial regression and

lead to erroneous conclusions. However, from a substantive perspective, the LCM is a step

backward for two reasons. First, the LCM is restricted to linear relationships and, therefore,

cannot address curvilinear relationships, which are central to congruence research. For

instance, person–organization fit research is based on the premise that outcomes such as

job satisfaction, organizational commitment, and performance decrease when the person

and organization differ from one another in either direction (Chatman, 1989; Kristof,

1996). This premise implies a curvilinear (i.e., inverted-U) relationship between congru-

ence and outcomes. More generally, any study that uses a squared difference, absolute

difference, Euclidean distance, or profile correlation to operationalize congruence impli-

citly rests on the assumption that the relationship between congruence and other variables

is curvilinear (Edwards, 1994). Because the LCM is strictly linear, it cannot test curvilinear

relationships or detect whether relationships predicted to be linear are, in fact, curvilinear.

Second, the LCM shifts attention from the components of congruence to the difference

and mean of the components. This shift reintroduces problems with difference scores that

polynomial regression was designed to solve. For instance, using the difference between

two components as a predictor conceals the relationship between each component and the

outcome (Edwards, 1994). This problem also occurs when the mean of the components is

used as a predictor (Lichtenberg, 1990), as in the LCM. Similar problems occur when the

difference and mean of the components are used as outcomes (Edwards, 1995). By obscur-

ing relationships involving the components of congruence, the LCM invites interpretations

that are misleading or incorrect. For instance, the difference and mean of two components

can relate to an outcome, suggesting support for congruence and level effects, when both

relationships represent nothing more than a relationship between one component and the

outcome. Furthermore, as shown later, results that satisfy the definitions of level and con-

gruence are antagonistic such that, if evidence for level is found, evidence for congruence

is necessarily ruled out and vice versa.

This article identifies problems with the LCM and explains how these problems are

avoided by using the components of congruence as predictors and outcomes. This

approach clarifies the relationships associated with the components and yields results that

can be used to test hypotheses that level and congruence represent. Results from this

approach can also be used to compute any information yielded by the LCM, which raises

further questions concerning the value of the LCM to congruence research. Although the
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LCM takes measurement error into account and can be used to evaluate measurement

equivalence, these features also characterize linear structural equation models that use

components as predictors and outcomes. The article concludes with future directions for

structural equation modeling in congruence research, highlighting recent work on quadra-

tic structural equation models (Edwards & Kim, 2002).

Defining Level and Congruence

The distinguishing feature of the LCM is its use of the algebraic difference and mean of

the components of congruence as predictors and outcomes of other variables. This feature

of the LCM involves the structural equations that relate the latent component variables to

other latent variables, not the measurement equations that relate the latent component

variables to their indicators. As such, this article focuses on the structural equations that

underlie the LCM. These equations are expressed with simple notation that clearly distin-

guishes level and congruence from the component variables and helps to convey the

problems that the LCM creates. Structural equations for the LCM using conventional LIS-

REL notation are provided by Cheung (2007), and LISREL syntax for the alternative lin-

ear structural equation model advocated in this article is given in Appendix A.

The mapping of level and congruence onto the component variables can be expressed

in equation form. Drawing from Equations 1 and 2 of Cheung (2007), the component vari-

ables can be expressed as functions of level and congruence as follows:

Y1 = L− :5C ð1Þ
Y2 = L+ :5C, ð2Þ

where Y1 and Y2 are component variables, L is level, and C is congruence. Solving for L

and C yields expressions that correspond to Equations 3 and 4 of Cheung (2007):

L= :5ðY1 + Y2Þ ð3Þ
C = Y2 − Y1: ð4Þ

Equations 3 and 4 show that L and C are the mean and algebraic difference, respectively,

of Y1 and Y2.

Several points concerning the definitions of L and C in Equations 3 and 4 should be

underscored. First, L and C are exact functions of Y1 and Y2, as indicated by the absence

of residuals in Equations 3 and 4. Therefore, any results generated by L and C can also be

obtained from Y1 and Y2, as demonstrated later in this article. Second, C is not defined as

the match between Y1 and Y2, such that C is maximized when Y1 and Y2 are equal.

Rather, C increases as Y2 increases toward Y1 and continues to increase as Y2 exceeds

Y1. Thus, when Y2 is less than Y1, an increase in C means that the match between Y1 and

Y2 is increasing, whereas when Y2 is greater than Y1, an increase in C means that the

match between Y1 and Y2 is decreasing. Hence, an increase in C does not necessarily

mean that two variables are closer to one another, which is how congruence is usually

conceptualized in research on fit, similarity, and agreement (Edwards, 1994). Rather,
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higher scores on C could mean that Y1 and Y2 are becoming closer together or further

apart, depending on the relative magnitudes of Y1 and Y2.

A third point is that, when L and C are used as predictors or outcomes, the definitions

of L and C imply specific patterns of relationships for Y1 and Y2. For instance, because L

assigns equal weights of .5 to Y1 and Y2, using L as a predictor implies that Y1 and Y2

have equal effects on the outcome (Lichtenberg, 1990). Analogously, because C is an

algebraic difference, it assigns equal but opposite weights of –1 and+1, respectively, to

Y1 and Y2. As such, using C as a predictor implies that Y1 and Y2 have equal but opposite

effects on the outcome (Edwards, 1994). Similarly, using L as an outcome implies that the

causes of L have equal effects on Y1 and Y2, and using C as an outcome implies that the

causes of C have equal but opposite effects on Y1 and Y2. The relationships for Y1 and Y2

implied by L and C follow from the definitions of L and C, and researchers attempting to

interpret results for L and C are likely to infer the patterns described above. For example,

if results show that L influences an outcome, it stands to reason that a researcher will inter-

pret this result not as an effect for either Y1 or Y2 alone but rather as an effect that

involves both Y1 and Y2, presumably with equal weights in light of how L is defined in

Equation 3. Unfortunately, the coefficient on L provides no information about whether the

effects of Y1 and Y2 are equal. Similar ambiguities arise when L is used as an outcome

and when C is used as a predictor or outcome. These ambiguities undermine the interpre-

tation of results for L and C and constitute what is perhaps the most serious drawback of

the LCM. The following discussion traces the sources of these ambiguities and shows

how they are avoided by replacing L and C with Y1 and Y2, supplemented by analyses

that address conceptual issues that might motivate the use of L and C.

Level and Congruence as Predictors

To demonstrate the problems that occur when L and C are used as predictors, consider

the following equation:

Z = a0 + a1L+ a2C + e, ð5Þ

where L and C are defined according to Equations 3 and 4, Z is the outcome, e is a resi-

dual, and a0, a1, and a2 are unstandardized coefficients. Throughout this article, coeffi-

cients for L and C are labeled ai, and coefficients for Y1 and Y2 are labeled bi. Although

this notation departs from the usual LISREL convention, it clearly differentiates models

involving L and C versus Y1 and Y2. Traditional LISREL notation is used in the syntax

provided in Appendix A.

A basic question concerning Equation 5 is how to interpret a1 and a2. This question

might be addressed by considering how L and C are defined in Equations 3 and 4. As

noted earlier, because L assigns the same weight of .5 to Y1 and Y2, a1 would seem to

represent equal effects of Y1 and Y2. Likewise, because C assigns equal but opposite

weights of−1 and+1 to Y1 and Y2, a2 appears to capture equal but opposite effects for

Y1 and Y2. These interpretations of a1 and a2 are reinforced by substituting Equations 3

and 4 into Equation 5 and expanding:
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Z = a0 + a1ð:5½Y1 + Y2�Þ+ a2ðY2 − Y1Þ+ e

= a0 + :5a1Y1 + :5a1Y2 + a2Y2 − a2Y1 + e: ð6Þ

In Equation 6, the terms .5a1Y1 and .5a1Y2 result from the expansion of L. Because Y1

and Y2 have the same coefficient, it appears that a1 implies equal effects of Y1 and Y2 on

Z. Similarly, the terms a2Y2 and−a2Y1 are produced by the expansion of C, and given

that these terms assign coefficients on Y1 and Y2 that have the same magnitude and oppo-

site signs, it follows that a2 implies equal but opposite effects of Y1 and Y2 on Z.

Although these interpretations of a1 and a2 might seem plausible, they are incorrect.

The correct interpretations of a1 and a2 are revealed by collecting like terms in Equation 6

to obtain:

Z = a0 + ð:5a1 − a2ÞY1 + ð:5a1 + a2ÞY2 + e: ð7Þ

Equation 7 shows that a1 and a2 are elements of compound coefficients on Y1 and Y2.

Neither a1 nor a2 alone captures the magnitude or sign of the effects of Y1 or Y2 and,

hence, whether these effects are consistent with the expansions of L or C in Equation 6.

For instance, if Y1 and Y2 have equal effects, as implied by L, then the compound coeffi-

cients on Y1 and Y2 in Equation 7 would be equal, such that .5a1 − a2 = :5a1 + a2.

Subtracting .5a1 from both sides of this equality and adding a2 to both sides yields

2a2 = 0; which simplifies to a2 = 0: Hence, the extent to which Y1 and Y2 have equal

effects on Z is not indicated by a1, the coefficient on L, but rather by a2, the coefficient on

C. If a2 equals 0, then the coefficients on Y1 and Y2 are equal. If a2 differs from 0, the

coefficients on Y1 and Y2 differ from one another by the value 2a2.1

Like a1, a2 does not itself indicate whether Y1 and Y2 have equal but opposite effects

on Z, as implied by C. Rather, this condition holds when the compound coefficients on Y1

and Y2 in Equation 7 are equal in magnitude and opposite in sign, such that .5a1 − a2 =
−ð:5a1 + a2Þ, or .5a1 − a2 =−:5a1 − a2. Adding a2 to both sides of this equality and sol-

ving for a1 yields a1 = 0: Thus, whether Y1 and Y2 have equal but opposite effects is indi-

cated not by a2, the coefficient on C, but rather by a1, the coefficient on L. If a1 = 0; then

the compound coefficients on Y1 and Y2 reduce to−a2 and a2, respectively, such that Y1

and Y2 have equal but opposite effects. If a1 differs from 0, the effects of Y1 and Y2 are

unequal in magnitude and can have the same or different signs.

The relative magnitudes of a1 and a2 also have important implications for interpret-

ing results from Equation 5. For instance, if a1 = 2a2, then the compound coefficient

on Y1 equals 0, and the compound coefficient on Y2 equals a1 (or equivalently, 2a2).

In this case, the coefficients on L and C in Equation 5 simply reflect an effect of Y2

on Z. Likewise, if a1 =−2a2, then the compound coefficient on Y2 equals 0, and the

compound coefficient on Y1 equals a1 (or equivalently,−2a2). In this case, the coeffi-

cients on L and C in Equation 5 are driven solely by the effect of Y1 on Z. From

a conceptual standpoint, it seems pointless to draw conclusions about level and

congruence when results merely represent the effect of one component variable (cf.

Cronbach, 1958)

Interpretational problems created when L and C are used as predictors are avoided by

the following equation, which uses Y1 and Y2 as predictors:

38 Organizational Research Methods

 at NORTH CAROLINA UNIVERSITY on February 24, 2009 http://orm.sagepub.comDownloaded from 

http://orm.sagepub.com


Z = b0 + b1Y1 + b2Y2 + e: ð8Þ

Equation 8 directly captures the joint effects of Y1 and Y2 on Z, thereby avoiding ambigu-

ities associated with L and C. Equation 8 can also be used to test hypotheses that represent

level and congruence effects. For instance, to assess whether Y1 and Y2 have equal

effects, as implied by the expansion of L in Equation 6, the equality b1 = b2 can be tested.

Likewise, to determine whether Y1 and Y2 have equal but opposite effects, as implied by

the expansion of C in Equation 6, the expression b1 =−b2 can be tested. More generally,

Equation 8 can be used to obtain any information yielded by L and C, given that L and C

are completely determined by Y1 and Y2. For instance, the coefficients on L and C can be

computed by substituting Equations 1 and 2 into Equation 8 and rearranging terms, which

produces:

Z = b0 + b1ðL− :5CÞ+ b2ðL+ :5CÞ+ e

= b0 + ðb1 + b2ÞL+ :5ðb2 − b1ÞC + e: ð9Þ

Expressing the coefficients on L and C in this manner reveals the relative contributions of

Y1 and Y2, as reflected by b1 and b2, thereby avoiding the ambiguities associated with a1

and a2. For instance, the compound coefficient (b1 + b2) that precedes L would indicate

whether an effect attributed to L was primarily or solely driven by either Y1 or Y2, based

on the magnitudes of b1 and b2. Similar information is yielded by the compound coeffi-

cient .5(b2 − b1) that precedes C.

To illustrate the problems created by using L and C as predictors, data were generated in

which Y1 and Y2 had various relationships with Z, and structural equation models were

estimated that used Y1 and Y2 or L and C as predictors, using LISREL 8.54 (Jöreskog &

Sörbom, 2003). For simplicity, Y1, Y2, and Z were specified as single indicators of their

corresponding latent variables with loadings fixed at unity and measurement error var-

iances fixed at zero. Using single indicators simplifies the measurement model but has no

effect on the specification of the structural equation model, which would be the same

regardless of whether single or multiple indicators are used. L and C were specified as

latent variables with paths to Y1 and Y2 fixed according to Equations 1 and 2 (Cheung,

2007). Scores for Y1 and Y2 were randomly drawn from a bivariate normal distribution in

which Y1 and Y2 had zero means, unit variances, and a correlation of .30. Nine population

structural equations were specified in which b1 varied in .20 increments from .00 to .80 and

then back to .00 and, concurrently, b2 increased in .20 increments from−.80 to .80.2 For

each equation, residuals were randomly drawn from a standard normal distribution and

weighted such that the R2 for each equation was approximately .30. A sample size of 250

was used for all analyses, similar to that in the empirical example used by Cheung (2007).

All data were generated using the BASIC model of SYSTAT 10 (Wilkinson, 2000).

Results from structural equations using L and C versus Y1 and Y2 as predictors are

reported in Table 1. Consider the results for L. For the first five cases, the coefficients on

L were positive and similar in size, suggesting uniformly strong support for a level effect.

However, as noted earlier, level implies that the coefficients on Y1 and Y2 are equal,

which cannot be determined from the coefficient on L. This condition can be assessed

using Y1 and Y2 as predictors and determining whether b1 = b2, as indicated by imposing
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this constraint on the model and testing the reduction in fit using the chi-square difference

test. Results showed that the difference between b1 and b2 was significant for all but

Case 3, Dw2ð1Þ= 0:38, p> :05. For Cases 1, 2, 4, and 5, the effect for L was driven pri-

marily or solely by either Y1 or Y2.

Turning to C, coefficients for the last five cases indicate negative effects of similar mag-

nitude for congruence. However, the coefficients on C conceal whether the coefficients on

Y1 and Y2 were equal in magnitude and opposite in sign. Again, this condition can be

assessed using Y1 and Y2 as predictors and testing the equality b1 =−b2. Imposing this

constraint on the model significantly reduced fit for all but Case 7, Dw2ð1Þ= 0:05,

p> :05). For Cases 5, 6, 8, and 9, the coefficient on C primarily or solely reflected the

influence of either Y1 or Y2.

Combining the results for L and C reveals a consistent pattern. For L, the condition that

Y1 and Y2 have equal coefficients is satisfied only when the coefficient on C is not signifi-

cant. This property holds because testing b1 = b2 is equivalent to testing b1 − b2 = 0,

which in turn implies a2 = 0 given that b1 − b2 =−2a2. This equality follows from Equa-

tions 7 and 8, which show that b1 = :5a1 − a2 and b2 = :5a1 + a2. Hence, b1 − b2 = :5a1

−a2 − ð:5a1 + a2Þ=−2a2. Likewise, for C, the condition that the coefficients on Y1 and Y2

are equal in magnitude but opposite in sign is satisfied only when the coefficient on L is not

significant. This pattern results from the fact that testing b1 =−b2 is equivalent to testing

b1 + b2 = 0, which implies a1 = 0 given that b1 + b2 = a1, as again indicated by the coeffi-

cients on Y1 and Y2 in Equations 7 and 8. Hence, support for level requires lack of support

for congruence and vice versa, meaning that level and congruence effects cannot coexist.

It might be tempting to dismiss the conditions for level and congruence that follow from

Equations 3 and 4, instead inferring support for level or congruence when either L or C

has a significant coefficient. However, doing so would invite the conclusion that Cases 1,

Table 1
Results For Level and Congruence Versus Component Variables as Predictors

L and C as Predictors Y1 and Y2 as Predictors

L C Y1 Y2

Case 1 0.89∗∗ 0.46∗∗ −0.02 0.91∗∗
Case 2 0.92∗∗ 0.23∗∗ 0.23∗ 0.69∗∗
Case 3 0.73∗∗ 0.04 0.33∗∗ 0.40∗∗
Case 4 0.72∗∗ −0.15∗ 0.52∗∗ 0.21∗∗
Case 5 0.74∗∗ −0.40∗∗ 0.77∗∗ −0.03

Case 6 0.46∗∗ −0.45∗∗ 0.68∗∗ −0.23∗∗
Case 7 0.02 −0.43∗∗ 0.44∗∗ −0.41∗∗
Case 8 −0.33∗∗ −0.41∗∗ 0.24∗∗ −0.58∗∗
Case 9 −0.83∗∗ −0.36∗∗ −0.05 −0.78∗∗

Note: N = 250. Table entries are unstandardized coefficients. Coefficients in columns labeled L and C are

estimates of a1 and a2, respectively. Coefficients in columns labeled Y1 and Y2 are estimates of b1 and b2,

respectively. For each case, estimates of a1 and a2 relate to estimates of b1 and b2 according to Equations 7

and 9 (within rounding error).
∗p< .05. ∗∗p< .01.
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5, and 9 in Table 1 indicate both level and congruence effects when, in each case, the out-

come is related to only one component variable. Little is gained by invoking interpre-

tations of level and congruence when only one component variable is related to the

outcome. This problem is avoided when L and C are replaced by Y1 and Y2, which clari-

fies their relationship with the outcome and permits tests of the conditions implied by the

definitions of level and congruence in Equations 3 and 4.

Level and Congruence as Outcomes

Problems that occur when L and C are used as predictors are similar to those that arise

when L and C are treated as outcomes, as in the following equations:

L= a10 + a11X + eL ð10Þ
C = a20 + a21X + eC: ð11Þ

In Equations 10 and 11, L and C are defined as before, X is a predictor variable, and a10,

a11, a20, and a21 are unstandardized coefficients. Consider the interpretation of a11 and a21

in Equations 10 and 11. Given that L is defined as an equally weighted composite of Y1

and Y2, it is tempting to conclude that a11 represents equal effects of X on Y1 and Y2. Like-

wise, because C is defined as the algebraic difference between Y1 and Y2, it effectively

assigns opposite weights to Y1 and Y2, and a21 would appear to capture equal but opposite

effects of X on Y1 and Y2. These interpretations are seemingly reinforced by replacing L

and C with expressions that describe their definitions, as given by Equations 3 and 4:

:5ðY1 + Y2Þ= a10 + a11X + eL ð12Þ
Y2 − Y1 = a20 + a21X + eC: ð13Þ

In Equation 12, a11 captures the relationship between X and the composite .5(Y1 +Y2),

which assigns equal weights of .5 to Y1 and Y2. Similarly, in Equation 13, a21 captures

the relationship between X and the composite Y2 −Y1, which places equal but opposite

weights of−1 and +1 on Y1 and Y2, respectively.

Although these interpretations of a11 and a21 might appear reasonable, they are incor-

rect. The correct interpretations are revealed by solving Equations 12 and 13 for Y1 and

Y2. To solve for Y1, Equation 13 is multiplied by .5, subtracted from Equation 12, and

simplified to obtain:

Y1 = a10 − :5a20 + ða11 − :5a21ÞX + eL − :5eC: ð14Þ

To solve for Y2, Equation 13 is multiplied by .5, added to Equation 12, and simplified to

yield:

Y2 = a10 + :5a20 + ða11 + :5a21ÞX + eL + :5eC: ð15Þ

Equations 14 and 15 show that the effects of X on Y1 and Y2 are represented by the com-

pound coefficients (a11 − :5a21) and (a11 + :5a21), respectively. Hence, neither a11 nor a21
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itself captures the effects of X on both Y1 and Y2, which in turn means that neither a11 nor

a21 indicates whether these effects are consistent with the definitions of L and C in Equa-

tions 3 and 4. To illustrate, if the effects of X on Y1 and Y2 are equal, as implied by L,

then ða11 − :5a21Þ= ða11 + :5a21Þ, which simplifies to a21 = 0: Hence, whether the effects

of X on Y1 and Y2 are equal is captured not by the coefficient on X when L is the out-

come, but instead by the coefficient on X when C is the outcome. If a21 = 0, then the

effects of X on Y1 and Y2 indicated by a11 are equal, whereas when a21 differs from 0, the

effects of X on Y1 and Y2 differ by the value a21. Conversely, if the effects of X on Y1

and Y2 are equal in magnitude but opposite in sign, as implied by C, then

ða11 − :5a21Þ=−ða11 + :5a21Þ, or a11 − :5a21 =−a11 − :5a21. Adding a11 and .5a21 to both

sides of this expression yields 2a11 = 0, which simplifies to a11 = 0: Thus, whether X has

equal but opposite effects on Y1 and Y2 is represented by the coefficient on X not when C

is the outcome, but when L is the outcome. If a11 = 0, the coefficients linking X to Y1 and

Y2 are equal in magnitude and opposite in sign. If a11 differs from 0, the coefficients on X

differ in magnitude and can have the same or different signs.

The interpretation of results from either Equations 10 or 11 also depends on the relative

magnitudes of both a11 and a21. For example, if a21 = 2a11, then the compound coefficient

linking X to Y1 equals 0, and the compound coefficient linking X to Y2 equals a21 (or

equivalently, 2a11). In this case, coefficients from Equations 10 and 11 that appear to

represent effects of X on both L and C simply reflect an effect of X on Y2. Similarly, if

a21 =−2a11, the compound coefficient relating X to Y2 equals 0, and the compound coef-

ficient relating X to Y1 equals a21 (or equivalently,−2a11). In this case, coefficients from

Equations 10 and 11 would suggest that X is related to both L and C when, in fact, X is

simply related to Y1. Little is gained by drawing inferences about level and congruence

when X is merely related to one component variable.

The foregoing problems are avoided by using Y1 and Y2 as outcomes, as follows:

Y1 = b10 + b11X + e1 ð16Þ
Y2 = b20 + b21X + e2: ð17Þ

Together, Equations 16 and 17 give estimates of the joint relationships of X with both Y1

and Y2. Coefficients from these equations can also be used to test hypotheses stated in

terms of level and congruence. For example, to determine whether X has equal effects on

Y1 and Y2, as implied when L is used as an outcome, the equality b11 = b21 can be tested.

Similarly, to assess whether the effects of X on Y1 and Y2 are equal in magnitude but

opposite in sign, as implied when C is used as an outcome, the equality b11 =−b21 can be

tested. Other questions that might motivate the use of Equations 10 and 11 can be

answered using estimates from Equations 16 and 17, given that the coefficients from these

equations can be used to compute the coefficients that would be obtained from estimating

Equations 10 and 11. The required expressions are given by substituting Equations 1 and

2 into Equations 16 and 17, as follows:

L− :5C = b10 + b11X + e1 ð18Þ
L+ :5C = b20 + b21X + e2: ð19Þ
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Coefficients that would result from using L as an outcome are found by adding Equations

18 and 19 and multiplying both sides by .5, which yields:

L= :5ðb10 + b20Þ+ :5ðb11 + b21ÞX + :5ðe1 + e2Þ: ð20Þ

Comparing Equations 10 and 20 shows that a10 = :5(b10 + b20) and a11 = :5(b11 + b21).

Similarly, coefficients that would result from using C as an outcome are given by subtract-

ing Equation 18 from Equation 19 and collecting like terms, which produces:

C = b20 − b10 + ðb21 − b11ÞX + e2 − e1: ð21Þ

Comparing Equations 11 and 21 indicates that a20 = b20 − b10 and a21 = b21 − b11. Expres-

sing the coefficients linking X to L and C in this manner reveals the extent to which these

coefficients are determined by the effects of X on Y1 and Y2. These expressions also show

that a11 is the average of the effects of X on Y1 and Y2, and a21 is the difference between

these effects. Although the average and difference of these effects might be relevant to

certain research questions, focusing exclusively on these quantities is ill advised, because

doing so is tantamount to using L and C as outcomes and disregarding the relationships of

X with Y1 and Y2.

To demonstrate the problems that occur when L and C are used as outcomes, data were

generated in which X had various relationships with Y1 and Y2, and structural equation

models were estimated in which Y1 and Y2 or L and C were treated as outcomes. As

before, X, Y1, and Y2 were specified as single indicators of their associated latent vari-

ables with loadings fixed at unity and measurement error variances fixed at zero, and paths

relating L and C to Y1 and Y2 were fixed according to Equations 1 and 2. Scores for X

were randomly drawn from a standard normal distribution, and nine population structural

equations were specified for both Y1 and Y2. The coefficients relating X to Y1 varied in

.20 increments from .00 to .80 and back down to .00. Simultaneously, the coefficients

relating X to Y2 increased in .20 increments from –.80 to .80. Residuals for Y1 and Y2

were randomly drawn from a standard normal distribution and assigned weights to

produce R2 values of approximately .30 for each structural equation. As before, the sample

size was set at 250, data were generated using SYSTAT 10, and models were estimated

with LISREL 8.54.

Results from structural equation models using L and C versus Y1 and Y2 as outcomes

are provided in Table 2. For the first five cases, the coefficients relating X to L were posi-

tive and comparable in size, suggesting a level effect. However, as shown earlier, the coef-

ficient relating X to L does not itself indicate whether X has equal effects on Y1 and Y2,

such that b11 = b21. This equality can be assessed by specifying Y1 and Y2 as outcomes

and testing the reduction in fit produced by the constraint b11 = b21. Results indicated that

the difference between b11 and b21 was significant for all but Case 3, Dw2ð1Þ= 0:09,

p> :05. For Cases 1, 2, 4, and 5, the coefficients on Y1 and Y2 were significantly different,

such that the coefficient linking X to L was driven primarily or solely by the relationship

between X and either Y1 or Y2. Thus, the coefficients on L concealed substantial variability

in the coefficients relating X to Y1 and Y2, and for Cases 1 and 5, an apparent relationship

between X and L was actually a bivariate relationship between X and either Y1 or Y2.
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When C is used as the outcome, results for the last five cases produced coefficients on

X of similar magnitude, each suggesting a negative relationship with congruence. How-

ever, these coefficients do not reveal whether X has equal but opposite relationships with

Y1 and Y2. When Y1 and Y2 were used as outcomes, the coefficients on X were consistent

with the equality b11 =−b21 only for Case 7, where imposing this constraint did not sig-

nificantly reduce the fit of the model, Dw2ð1Þ= 0:84, p< :05. For Cases 5, 6, 8, and 9, the

coefficient linking X and C was driven primarily by the relationship between X and either

Y1 or Y2.

Taken together, the results for L and C as outcomes follow a pattern similar to that

when L and C are used as predictors. In particular, the condition implied by L in which X

has equal effects on Y1 and Y2 is satisfied only when the coefficient linking X to C is not

significant. This result is due to the fact that testing b11 = b21 is equivalent to testing

b11 − b21 = 0, which in turn is equivalent to testing a21 = 0 given that a21 = b21 − b11. Con-

versely, the condition associated with C in which X has equal but opposite effects on Y1

and Y2 is fulfilled only when the coefficient relating X to L is not significant. This out-

come occurs because testing b11 =−b21 is the same as testing b11 + b21 = 0, which, in

turn, is the same as testing a11 = 0 given that a11 = :5(b11 + b21). Thus, evidence for level

requires the lack of evidence for congruence and vice versa, meaning that a predictor can-

not have effects on both level and congruence.

Table 2
Results for Level and Congruence Versus Component Variables as Outcomes

L and C as Outcomes Y1 and Y2 as Outcomes

Case 1 L 0.40∗∗ Y1 0.04

C 0.72∗∗ Y2 0.76∗∗
Case 2 L 0.46∗∗ Y1 0.26∗∗

C 0.40∗∗ Y2 0.66∗∗
Case 3 L 0.42∗∗ Y1 0.41∗∗

C 0.02 Y2 0.43∗∗
Case 4 L 0.38∗∗ Y1 0.59∗∗

C −0.43∗∗ Y2 0.16∗∗
Case 5 L 0.45∗∗ Y1 0.87∗∗

C −0.84∗∗ Y2 0.03

Case 6 L 0.17∗∗ Y1 0.62∗∗
C −0.90∗∗ Y2 −0.28∗∗

Case 7 L −0.03 Y1 0.38∗∗
C −0.83∗∗ Y2 −0.45∗∗

Case 8 L −0.20∗∗ Y1 0.22∗∗
C −0.83∗∗ Y2 −0.61∗∗

Case 9 L −0.48∗∗ Y1 −0.06

C −0.85∗∗ Y2 −0.91∗∗

Note: N= 250. Table entries are unstandardized regression coefficients relating X to either L and C or Y1 and

Y2 as outcomes. Coefficients to the right of L and C are estimates of a11 and a21, respectively. Coefficients to

the right of Y1 and Y2 are estimates of b11 and b21, respectively. For each case, estimates of a11 and a21 relate

to estimates of b11 and b21 according to Equations 14, 15, 20, and 21 (within rounding error).
∗p< .05. ∗∗p< .01.
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Again, it might be argued that effects on level and congruence should be inferred solely

from a11 and a21, respectively, without requiring equal effects for level and opposite

effects for congruence. However, this approach would treat Cases 1, 5, and 9 in Table 2 as

examples of both level and congruence, even though X is related to only Y1 or Y2. Bivari-

ate relationships such as these hardly justify complex interpretation in terms of level and

congruence. By using Y1 and Y2 instead of L and C as outcomes, the relationships of X

with Y1 and Y2 are clarified, and conditions implied by using L and C as outcomes can be

directly tested.

Level and Congruence as Predictors and Outcomes

When L and C are used as both predictors and outcomes, their interpretational problems

are compounded. To distinguish between L and C as predictors versus outcomes, the nota-

tion used up to this point is modified. L and C as predictors are expressed as follows:

LX = :5ðX1 +X2Þ ð22Þ
CX =X2 −X1: ð23Þ

The subscript X designates L and C as predictors, and the component predictor variables

are X1 and X2. L and C as outcomes are written as follows:

LY = :5ðY1 + Y2Þ ð24Þ
CY = Y2 − Y1: ð25Þ

Here, the subscript Y indicates that L and C are outcomes. As before, the component out-

come variables are Y1 and Y2. Equations that combine LX, CX, LY, and CY as predictors

and outcomes can be written as follows:

LY = a10 + a11LX + a12CX + eL ð26Þ
CY = a20 + a21LX + a22CX + eC: ð27Þ

We now consider the interpretation of the coefficients in Equation 26 and 27. Based on

the definitions of LX in Equation 22, it would seem that the coefficients on LX represent

equal effects of X1 and X2 on both LY and CY. Likewise, given the definition of CX in

Equation 23, the coefficients on CX imply equal but opposite effects of X1 and X2 on LY

and CY. However, these interpretations are again incorrect, as seen by substituting Equa-

tions 22 and 23 into Equations 26 and 27 and simplifying to obtain:

LY = a10 + ð:5a11 − a12ÞX1 + ð:5a11 + a12ÞX2 + eL ð28Þ
CY = a20 + ð:5a21 − a22ÞX1 + ð:5a21 + a22ÞX2 + eC: ð29Þ

Like Equation 7, Equations 28 and 29 show that the coefficients on LX and CX are

elements of compound coefficients on X1 and X2. If X1 and X2 have equal effects on LY
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and CY, as implied by using LX as a predictor, then the coefficients on CX (i.e., a12 and

a22) must be zero. Under this condition, the coefficients on X1 and X2 reduce to .5a11 in

Equation 28 and .5a21 in Equation 29. Conversely, if X1 and X2 have equal but opposite

effects on LY and CY, as implied when CX is used as a predictor, then the coefficients on

LX (i.e., a11 and a21) must be zero. In this case, the coefficients on X1 and X2 are −a12

and a12 in Equation 28 and −a22 and a22 in Equation 29.

Although Equations 28 and 29 resolve ambiguities created when LX and CX are used as

predictors, the interpretation of these equations remains problematic due to the use of LY

and CY as outcomes. These problems are addressed by substituting Equations 24 and 25

into Equations 28 and 29 and solving for Y1 and Y2, which yields:

Y1 = a10 − :5a20 + ð:5a11 − a12 − :25a21 + :5a22ÞX1

+ ð:5a11 + a12 − :25a21 − :5a22ÞX2 + eL − :5eC ð30Þ
Y2 = a10 + :5a20 + ð:5a11 − a12 + :25a21 − :5a22ÞX1

+ ð:5a11 + a12 + :25a21 + :5a22ÞX2 + eL + :5eC: ð31Þ

Equations 30 and 31 express the coefficients from Equations 26 and 27 as elements of

compound coefficients linking X1 and X2 to Y1 and Y2. These expressions can be used to

identify patterns of coefficients from Equations 26 and 27 implied by using LX and CX as

predictors and LY and CY as outcomes. For instance, using LX implies that the compound

coefficients in Equation 30 are equal, or .5a11 − a12 − :25a21 + :5a22 = :5a11 + a12 − :25a21

–:5a22. This equality simplifies to 2a12 = a22. Using LX also implies that the compound

coefficients in Equation 31 are equal, such that .5a11 − a12 + :25a21 − :5a22 = :5a11 +
a12 + :25a21 + :5a22, which reduces to 2a12 =−a22. Hence, using LX as a predictor implies

that the equalities 2a12 = a22 and 2a12 =−a22 both hold. Treating these equalities as simul-

taneous equations and solving for a12 and a22 yields a12 = 0 and a22 = 0, meaning that the

coefficients on CX in Equations 26 and 27 are both zero. Analogously, using CX implies

that the compound coefficients on X1 and X2 are equal in magnitude but opposite in sign.

For Equation 30, this condition can be written as .5a11 − a12 − :25a21 + :5a22 =−:5a11

−a12 + :25a21 + :5a22, which reduces to a11 = :5a21. For Equation 31, the condition means

that .5a11 − a12 + :25a21 − :5a22 =−:5a11 − a12 − :25a21 − :5a22, or a11 =−:5a21. Combin-

ing these equalities and solving for a11 and a21 gives a11 = 0 and a21 = 0, such that the coef-

ficients on LX in Equations 26 and 27 are both zero.

Turning to LY and CY as outcomes, using LY implies that the coefficients on X1 are

equal across Equations 30 and 31. This equality can be written as .5a11 − a12 − :25a21 +
:5a22 = :5a11 − a12 + :25a21 − :5a22, which simplifies to .5a21 = a22. Using LY also implies

that the coefficients on X2 are equal, such that .5a11 + a12 − :25a21 − :5a22 = :5a11 + a12 +
:25a21 + :5a22, or .5a21 =−a22. When combined, the equalities .5a21 = a22 and .5a21 =
−a22 are satisfied when a21 = 0 and a22 = 0: Hence, using LY as an outcome implies that

the coefficients on LX and CX in the equation using CY as the outcome are both zero. Con-

versely, using CY implies that the coefficients on X1 in Equations 30 and 31 are equal in

magnitude but opposite in sign, such that .5a11 − a12 − :25a21 + :5a22 =−:5a11 + a12 −
:25a21 + :5a22, or a11 = 2a12. Using CY also implies that the coefficients on X2 are equal in

magnitude but opposite in sign, which translates into .5a11 + a12 − :25a21 − :5a22 =
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−:5a11 − a12 − :25a21 − :5a22, or a11 =−2a12. In conjunction, the equalities a11 = 2a12

and a11 =−2a12 indicate that a11 = 0 and a12 = 0: Thus, using CY as an outcome means

that the coefficients on LX and CX in the equation using LY as the outcome are both zero.

Integrating these conditions reveals patterns of coefficients implied when LX and CX

are combined with LY and CY. For example, combining the conditions for LX and LY

yields a12 = 0, a21 = 0, and a22 = 0, such that the only nonzero coefficient is a11, the coeffi-

cient on LX predicting LY. Similarly, combining the conditions for CX and LY gives

a11 = 0, a21 = 0, and a22 = 0, meaning the only nonzero coefficient is a12, the coefficient

on CX predicting LY. The conditions for LX and CY combine into a11 = 0, a12 = 0, and

a22 = 0, such that the only nonzero coefficient is a21, which relates LX to CY. Finally, the

conditions for CX and CY combine into a11 = 0, a12 = 0, and a21 = 0, leaving the only non-

zero coefficient a22, which links CX to CY. In each case, the coefficient linking the predic-

tor to the outcome is insensitive to whether the conditions implied by the predictor and

outcome are fulfilled. Rather, these conditions are reflected by the other three coefficients,

which differ from zero when the conditions for the predictor and outcome are violated.

Hence, evidence that supports any single relationship between a predictor and outcome

necessarily rules out the other three relationships.

The ambiguities associated with LX, CX, LY, and CY are avoided when X1 and X2 are

used as predictors of Y1 and Y2:

Y1 = b10 + b11X1 + b12X2 + e1 ð32Þ
Y2 = b20 + b21X1 + b22X2 + e2: ð33Þ

Coefficients from Equations 32 and 33 can be used to test hypotheses that might motivate

the use of LX, CX, LY, and CY. For example, using LX as a predictor implies that b11 = b12

and b21 = b22, and using LY as an outcome implies that b11 = b21 and b12 = b22. In combi-

nation, these conditions mean that all four coefficients on X1 and X2 are equal. Similarly,

using CX as a predictor implies that b11 =−b12 and b21 =−b22, and using CY as a predictor

implies that b11 =−b21 and b12 =−b22. Combining these conditions yields b11 =
−b12 =−b21 = b22. Other equalities can be derived to test coefficient patterns implied by

LX as a predictor of CY and CX as a predictor of LY. If desired, the coefficient in Equation

32 and 33 can also be used to compute the coefficients that would be produced by Equa-

tions 26 and 27. The required expressions are obtained by solving Equations 22, 23, 24,

and 25 for X1, X2, Y1, and Y2, substituting the resulting equalities into Equations 32 and

33 and rearranging terms, which yields the following (for details, see Appendix B):

LY = :5ðb10 + b20Þ+ :5ðb11 + b12 + b21 + b22ÞLX

+ :25ðb12 − b11 + b22 − b21ÞCX + :5ðe1 + e2Þ ð34Þ
CY = b20 − b10 + ðb21 − b11 + b22 − b12ÞLX

+ :5ðb11 − b12 − b21 + b22ÞCX + e2 − e1: ð35Þ

Equations 34 and 35 show that any information obtained from LX, CX, LY, and CY can be

derived from X1, X2, Y1, and Y2. However, the value of computing the coefficients on

LX, CX, LY, and CY is questionable in light of the ambiguities they create.
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Problems that result from using LX and CX as predictors and LY and CY as outcomes

are illustrated using artificial data in which X1 and X2 had various relationships with Y1

and Y2. Again, X1, X2, Y1, and Y2 were specified as single indicators of their respective

latent variables with loadings fixed to unity and measurement error variances fixed to zero.

Paths relating LX, CX, LY, and CY to X1, X2, Y1, and Y2 were fixed according to Equa-

tions 22 through 25. X1 and X2 were drawn from a bivariate normal distribution with zero

means, unit variances, and a correlation of .30. Nine population equations were generated

for both Y1 and Y2 in which b11, b12, b21, and b22 had values ranging from−.80 to .80 in

.40 increments. Combinations of these coefficients were chosen to include cases in which

the conditions for level or congruence as a predictor or outcome were satisfied as well as

cases in which support for level or congruence is partial or absent. Residuals were ran-

domly drawn from a standard normal distribution and weighted to produce R2 values aver-

aging .30 for both Y1 and Y2. For each equation, a sample size of 250 was again used.

Data were generated with SYSTAT 10, and models were estimated using LISREL 8.54.

Results are reported in Table 3, and as before, selected aspects of these results are dis-

cussed to demonstrate the issues at hand.

Table 3
Results for Level and Congruence Versus

Component Variables as Predictors and Outcomes

LX and CX as Predictors

and LY and CY as Outcomes

X1 and X2 as Predictors

and Y1 and Y2 as Outcomes

LX CX X1 X2

Case 1 LY 1.12∗∗ 0.22∗∗ Y1 0.84∗∗ 0.80∗∗
CY −1.04∗∗ 0.48∗∗ Y2 −0.16 0.76∗∗

Case 2 LY 0.86∗∗ 0.03 Y1 0.40∗∗ 0.51∗∗
CY −0.10 −0.06 Y2 0.41∗∗ 0.40∗∗

Case 3 LY 0.43∗∗ −0.22∗∗ Y1 0.01 0.08

CY 0.67∗∗ −0.52∗∗ Y2 0.86∗∗ −0.10

Case 4 LY 0.01 −0.43∗∗ Y1 0.48∗∗ −0.47∗∗
CY 0.01 0.09 Y2 0.40∗∗ −0.38∗∗

Case 5 LY −0.06 −0.39∗∗ Y1 0.77∗∗ 0.01

CY −1.69∗∗ −0.01 Y2 −0.07 −0.84∗∗
Case 6 LY −0.01 −0.05 Y1 0.40∗∗ 0.41∗∗

CY −1.64∗∗ −0.11 Y2 −0.31∗∗ −0.52∗∗
Case 7 LY −0.37∗∗ 0.11∗ Y1 0.08 −0.03

CY −0.85∗∗ 0.34∗∗ Y2 −0.68∗∗ −0.11

Case 8 LY −0.03 0.04 Y1 0.36∗∗ −0.44∗∗
CY 0.10 0.88∗∗ Y2 −0.47∗∗ 0.49∗∗

Case 9 LY 0.39∗∗ −0.19∗∗ Y1 0.78∗∗ −0.73∗∗
CY 0.69∗∗ 1.13∗∗ Y2 −0.01 0.74∗∗

Note: N= 250. Table entries are unstandardized coefficients. In the columns labeled LX and CX, the coeffi-

cients to the right of LY are a11 and a12, and the coefficients to the right of CY are a21 and a22, respectively. In

the columns labeled X1 and X2, the coefficients to the right of Y1 are b11 and b12, and the coefficients to the

right of Y2 are b21 and b22, respectively. For each case, estimates of a11, a12, a21, and a22 relate to estimates of

b11, b12, b21, and b22 according to Equations 30, 31, 34, and 35 (within rounding error).
∗p< .05. ∗∗p< .01.
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First, consider the relationship between LX and LY. For Cases 1, 2, and 3, the coefficients

linking LX to LY is positive and significant. However, as noted earlier, these coefficients do

not reveal whether X1 and X2 have equal effects on both Y1 and Y2, as implied by LX and

LY. This pattern was evident only for Case 2, for which the coefficients relating X1 and X2

to Y1 and Y2 were similar in magnitude. Constraining these coefficients to be equal did not

significantly reduce the fit of the model, Dw2ð3Þ= 1:32, p > .05, indicating that the condi-

tions implied by using LX to predict LY were tenable. In contrast, imposing these constraints

reduced model fit for Case 1, Dw2ð3Þ= 90.22, p< :05, and Case 3, Dw2ð3Þ= 68:40,

p< :057. Moreover, for Case 1, X1 was not significantly related to Y2, whereas for Case 3,

the only significant relationship was between X1 and Y2. The differences among these

results would go undetected by focusing on the relationship between LX and LY.

We now turn to the relationship between CX and LY. For Cases 3, 4, and 5, the coeffi-

cient relating CX to LY was negative and significant. Again, these coefficients are insensi-

tive to the conditions implied by CX and LY, whereby X1 and X2 have equal but opposite

effects on both Y1 and Y2, and the magnitudes of these effects are equal across Y1 and

Y2. This pattern was consistent with Case 4, as shown by the results for X1 and X2 as pre-

dictors of Y1 and Y2. Imposing this pattern of constraints did not significantly reduce the

fit of the model for Case 4, Dw2ð3Þ= 0:91, p > .05. However, these constraints were

rejected for Case 3, Dw2ð3Þ= 81:29, p< :05, and Case 5, Dw2ð3Þ= 116:60, p< :05.

Furthermore, the coefficients relating X1 and X2 to Y1 and Y2 were markedly different

across Cases 3, 4, and 5, as seen by inspecting Table 3.

Concerning the relationship between LX and CY, results for Cases 5, 6, and 7 each

yielded significant negative coefficients. However, only Case 6 evidenced the pattern

implied by LX and CY in which the coefficients on X1 and X2 were equal within each

equation for Y1 and Y2 but opposite in sign across the Y1 and Y2 equations. Constraining

the coefficients to follow this pattern did not significantly reduce model fit for Case 6,

Dw2ð3Þ= 2:63, p> :05, but worsened model fit for Case 5, Dw2ð3Þ= 68:66, p< :05, and

Case 7, Dw2ð3Þ= 39:92, p< :05. Again, the pattern of coefficients relating X1 and X2 to

Y1 and Y2 differed considerably across Cases 5, 6, and 7, differences that are obscured by

the similar results for the coefficient relating LX to CY.

Finally, the coefficient linking CX to CY was positive and significant for Cases 7, 8,

and 9. However, results for X1 and X2 as predictors of Y1 and Y2 revealed that only the

coefficients for Case 8 were consistent with the pattern implied by CX and CY, when X1

and X2 have equal but opposite relationships for both Y1 and Y2, and the relationships for

X1 and X2 are equal but opposite across Y1 and Y2. For Case 8, imposing this pattern of

coefficients on the model did not significantly reduce model fit, Dw2ð3Þ= 1:34, p> :05.

However, this pattern of constraints was rejected for Case 7, Dw2ð3Þ= 55:82, p< :05, and

Case 9, Dw2ð3Þ= 69:96, p< :05. Moreover, for Case 7, the only significant relationship

was between X1 and Y2, whereas for Case 9, the only nonsignificant relationship was

between X1 and Y2. These and other differences in the results for Cases 7, 8, and 9 are not

evident from the coefficient relating CX to CY.

Combining the results for LX, CX, LY, and CY highlights several key points. First, consis-

tent with the derivations that follow Equations 30 and 31, evidence that supports any one

relationship linking LX and CX to LY and CY simultaneously refutes the other three relation-

ships. Therefore, only one of the four possible relationships can exist for a given data set.
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Allowing for more than one relationship denies the definitions of LX, CX, LY, and CY in

Equations 22 through 25 and invites conclusions that are more complex than justified by the

data. For example, Cases 3 and 7 suggested that all four relationships between LX, CX, LY,

and CY were supported when, in fact, the only significant relationship was between X1 and

Y2. It hardly seems worthwhile to draw inferences about level and congruence predicting

level and congruence based on a single bivariate relationship. Cases 1 and 9 also yielded

four significant relationships between LX, CX, LY, and CY. However, for these cases, Y1

was related to both X1 and X2, whereas Y2 was only related to X2. For Case 1, the coeffi-

cients relating X1 and X2 to Y1 did not significantly differ, as implied by LX,Dw2ð3Þ=
0:06, p> :05, whereas for Case 9, the coefficients linking X1 and X2 to Y1 were opposite in

sign and not significantly different in magnitude, as implied by CX, Dw2ð3Þ= 0:20, p> :05.

Hence, results for Cases 1 and 9 indicate a simple bivariate relationship between X2 and Y2,

along with support for level and congruence, respectively, for X1 and X2 predicting Y1.

These patterns are obscured by results based on LX, CX, LY, and CY.

Reanalysis of Data From Cheung (2007)

The data used in the preceding examples demonstrate problems that occur when level

and congruence are used as predictors, outcomes, or both. These problems can also be illu-

strated using data analyzed by Cheung (2007), as shown below. The Cheung (2007) data

produce a limited pattern of relationships, which makes it less effective than the artificial

data used earlier to illustrate the problems under consideration here. Nonetheless, the fol-

lowing reanalyses show that the problems demonstrated up to this point are not limited to

the particular data generated for illustration.

The Cheung (2007) data contained responses from 220 managers and their supervisors

on 24 items. These items were assigned to eight factors, with 3 items per factor. The

eight factors represented perceptions of managers and supervisors on four aspects of the

manager’s behavior, including leadership, communication, planning and organizing, and

customer service. The model examined by Cheung contained eight first-order factors

representing manager and supervisor perceptions of leadership, communication, planning

and organizing, and customer service, along with eight second-order factors representing

level and congruence for the same four dimensions. The loadings of the first-order factors

on the second-order factors were fixed according to Equations 1 and 2, such that the level

and congruence factors represented the mean and difference, respectively, of their corre-

sponding first-order factors. Cheung (2007) analyzed two versions of this model, one that

treated level and congruence on leadership, communication, planning and organizing as

predictors of level and congruence on customer service, and a second model that specified

manager and supervisor perceptions of leadership, communication, planning and organiz-

ing as predictors of manager and supervisor perceptions of customer service.

The following reanalysis retained the eight first-order factors used by Cheung (2007) but

dropped the eight second-order factors. The resulting model treated manager and supervi-

sor perceptions of leadership, communication, and planning and organizing as correlated

exogenous variables and manager and supervisor perceptions of customer service as endo-

genous variables with correlated residuals. All paths relating the six exogenous variables to

50 Organizational Research Methods

 at NORTH CAROLINA UNIVERSITY on February 24, 2009 http://orm.sagepub.comDownloaded from 

http://orm.sagepub.com


the two endogenous variables were freely estimated. These paths were also used to com-

pute paths that would result from analyzing level and congruence rather than manager and

supervisor perceptions, based on Equations 34 and 35. These computations were conducted

using the additional parameters function of LISREL, which also yields standard errors of

the computed values. Hence, the model used to reanalyze the Cheung (2007) data yields

the same information as that produced by the model examined by Cheung but is simpler, in

that it does not require the specification of second-order level and congruence factors.

LISREL syntax for the model analyzed here is given in Appendix A.

Results from the model used for reanalysis are reported in Table 4. The top panel con-

tains coefficients directly estimated by the model, and the bottom panel gives coefficients

computed by the additional parameters function. Several aspects of these results are worth

noting. First, as expected, the results in Table 4 match those reported by Cheung (2007),

confirming that results produced by the LCM can be obtained without second-order fac-

tors representing level and congruence. Second, as indicated by the top panel, only three

coefficients relating manager and supervisor perceptions were significant, each of which

involved a relationship between perceptions reported by the same person. Third, none of

the coefficient patterns in the upper panel indicate support for level or congruence as pre-

dictors of level or congruence. The closest instance involved planning and organizing, for

which the pattern of coefficients was consistent with level predicting level. In line with

this pattern, the bottom panel shows that the only significant coefficient for planning and

organizing involved level predicting level, as expected when the four coefficients in the

upper panel do not differ from one another. However, the upper panel also indicates that

the four coefficients for planning and organizing did not differ from zero, which invali-

dates the apparent evidence for level in the bottom panel. Finally, for communication, the

bottom panel suggests support for level predicting level and congruence predicting con-

gruence, even though both relationships cannot coexist. This apparent contradiction is

resolved by the results in the upper panel, which show that the results for level and

congruence represent nothing more than relationships between perceptions reported by

the same person.

Tests of the patterns of coefficients for level and congruence predicting level and con-

gruence are reported in Table 5. These tests were conducted by imposing constraints on

the coefficients in the upper panel of Table 4 and testing the deterioration in model fit

using the chi-square difference test. These constraints were tested separately for leader-

ship, communication, and planning and organizing. For level predicting level, the four

coefficients for each dimension in the upper panel of Table 4 were constrained to be equal.

For congruence predicting level, the four coefficients were constrained to be opposite

across the columns and equal across the rows. For level predicting congruence, the four

coefficients were constrained to be equal across the columns and opposite across the rows.

Finally, for congruence predicting congruence, the four coefficients were constrained to

be opposite across the columns and opposite across the rows. These patterns are illustrated

by Cases 2, 4, 6, and 8, respectively, in the columns of Table 3 reporting results for X1

and X2 as predictors of Y1 and Y2.

Table 5 shows that, for leadership, the constraints for congruence predicting level were

not rejected. This result is consistent with the pattern of coefficients for leadership in the

upper panel of Table 4, for which the coefficients on manager perceptions of leadership
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were both positive and the coefficients on supervisor perceptions of leadership were both

negative. However, only one of the four coefficients was significant, meaning that the

coefficients for leadership should not be interpreted in terms of congruence predicting

level but instead as a single relationship between manager perceptions of leadership and

Table 4
Coefficient Estimates for Cheung (2007) Data

Manager and Supervisor Perceptions as Predictors and Outcomes

Leadership Communication Planning & Organizing

Customer service Manager Supervisor Manager Supervisor Manager Supervisor

Manager 0.40∗ −0.23 0.43∗ 0.12 0.10 0.14

Supervisor 0.04 −0.27 −0.12 1.18∗∗ 0.22 0.15

Level and Congruence as Predictors and Outcomes

Leadership Communication Planning & Organizing

Customer service Level Congruence Level Congruence Level Congruence

Level −0.03 −0.24 0.81∗∗ 0.25 0.31∗ −0.01

Congruence −0.39 0.16 0.52 0.81∗∗ 0.14 −0.06

Note: N= 220. Table entries are unstandardized coefficients. Coefficients in the upper panel were estimated

from a structural equation model that specified manager and supervisor perceptions of leadership, communica-

tion, and planning and organizing as latent exogenous variables and manager and supervisor perceptions of

customer service as latent endogenous variables. Coefficients in the lower panel were computed and tested

using the additional parameters feature of LISREL.

Table 5
Chi-Square Difference Tests for Cheung (2007) Data

Coefficient Pattern Leadership Communication Planning & Organizing

Level predicting level 8.69∗ 19.42∗∗ 0.71

Congruence predicting level 4.21 25.25∗∗ 7.48

Level predicting congruence 8.75∗ 46.43∗∗ 6.96

Congruence predicting congruence 9.03∗ 140.58∗∗ 6.92

Note: N= 220. Table entries are chi-square difference tests for constraints associated with each coefficient

pattern listed in the left column. Each test involved three constraints and therefore had 3 degrees of freedom.

For level predicting level, the four coefficients for each dimension in the upper panel of Table 4 were con-

strained to be equal. For congruence predicting level, the four coefficients were constrained to be opposite

across the columns and equal across the rows. For level predicting congruence, the four coefficients were con-

strained to be equal across the columns and opposite across the rows. Finally, for congruence predicting con-

gruence, the four coefficients were constrained to be opposite across the columns and opposite across the

rows. These patterns are illustrated by Cases 2, 4, 6, and 8, respectively, in the columns of Table 3 reporting

results for X1 and X2 as predictors of Y1 and Y2.
∗p< .05. ∗∗p< .01.

52 Organizational Research Methods

 at NORTH CAROLINA UNIVERSITY on February 24, 2009 http://orm.sagepub.comDownloaded from 

http://orm.sagepub.com


customer service. For communication, all four patterns of coefficients were rejected.

Finally, for planning and organizing, none of the patterns was rejected, which is sympto-

matic of the fact that none of the four coefficients for planning and organizing differed

significantly from zero.

The scarcity of significant relationships in Table 4 was striking given that, from a sub-

stantive perspective, perceptions of leadership, communication, planning and organizing,

and customer service from the same source should be related. These relationships were

further examined by conducting a confirmatory factor analysis of the eight manager and

supervisor factors. Results revealed that the correlations among the four manager factors

were high, averaging .88 and ranging from .84 to .92. The correlations among the four

supervisor factors were also high, averaging .80 and ranging from .72 to .89. Hence, the

absence of significant relationships in Table 4 was due to high correlations among the lea-

dership, communication, planning and organizing factors used as predictors, which intro-

duced multicollinearity into the structural equations of the model. Moreover, each of the

eight factors failed to achieve discriminant validity with least one other factor, as evi-

denced by correlations that included 1.0 in their 95% confidence intervals. The lack of dis-

criminant validity among these factors undermines the utility of the Cheung (2007) data

for illustrating the LCM and partly explains the anomalous results reported here and by

Cheung.

Future Directions for Latent Variable Modeling in Congruence Research

The preceding analyses show that the LCM conceals information needed to test level

and congruence hypotheses and yields results that invite erroneous conclusions. Nonethe-

less, the LCM has two important strengths in that it takes measurement error into account

and permits tests of measurement equivalence for the component variables. Of course,

these strengths are not unique to the LCM, because they derive from the use of structural

equation modeling with latent variables, not the use of level and congruence as second-

order factors. These factors were dropped from the model used to reanalyze the Cheung

(2007) data, yet this model controlled for measurement error and included the measure-

ment invariance constraints embedded in the LCM. Hence, moving to structural equation

modeling with latent variables is an important and logical step for congruence research,

but this step does not require the LCM.

Other approaches to incorporating structural equation modeling into congruence

research are available. The linear model used here to reanalyze the Cheung (2007) data

can be applied to linear congruence relationships, as when satisfaction increases as

rewards approach needs and continues to increase as rewards exceed needs. However, the

linear model cannot verify that the hypothesized relationship is actually linear rather than

curvilinear, a conceptually plausible alternative in many domains of congruence research

(Edwards, Caplan, & Harrison, 1998; Locke, 1976; Rice, McFarlin, Hunt, & Near, 1985).

Moreover, linear models are insufficient when congruence is conceptualized as the fit,

similarity, match, or agreement between two constructs (Chatman, 1989; Dawis, 1992;

Edwards, 1994; Judge & Ferris, 1992; Kristof, 1996; Muchinsky & Monahan, 1987). For
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example, person-organization fit is defined as the match between person and organization

attributes (e.g., values) and is hypothesized to produce various positive outcomes, such as

job satisfaction and organizational commitment (Kristof-Brown et al., 2005). The notion

that fit generates positive outcomes implies a curvilinear (i.e., inverted-U) relationship,

such that outcomes are maximized when the person and organization are equal and

decrease as the person and organization differ in either direction.

Curvilinear relationships that characterize much congruence research require analytical

approaches that go beyond linear structural equation models. One approach is to translate

the quadratic regression equation typically used in polynomial regression (Edwards &

Parry, 1993) into a quadratic structural equation with latent variables (Edwards & Kim,

2002). This approach requires extending methods for testing interactions in structural

equation modeling (Cortina, Chen, & Dunlap, 2001; Jöreskog, 1998; Li et al., 1998) to

include curve components for the two variables involved in the interaction (Cohen, 1978;

Cortina, 1993; MacCallum & Mar, 1995). Like the LCM, quadratic structural equation

modeling takes measurement error into account and allows tests of measurement equiva-

lence. However, unlike the LCM, quadratic structural equation modeling accommodates

curvilinear relationships. Furthermore, results from quadratic structural equations can be

used to conduct response surface analyses (Edwards, 2002; Edwards & Parry, 1993),

yielding rigorous and comprehensive tests of congruence hypotheses in terms of latent

variables.

Quadratic structural equations treat congruence as a predictor. When congruence is an

outcome, multivariate regression procedures outlined by Edwards (1995) can be applied

to multiple-group structural equation models in which groups are defined based on

whether scores on one latent component variable are greater than or less than the other.

Latent variable scores can be obtained using procedures described by Jöreskog (2000),

such that the classification of cases into subgroups takes into account measurement error

in the component variables. Models for each subgroup are linear, such that their specifica-

tion and estimation are straightforward, and conditions for assessing congruence described

by Edwards (1995) can be directly applied.

Level and Congruence as Constructs

The procedures recommended in this article enable the study of congruence with latent

variable structural equation modeling without creating variables that signify level or con-

gruence. This notion might create objections among researchers who view congruence as

distinct from its components (Cheung, 2007; Tisak & Smith, 1994). Although congruence

is distinct from either component taken separately, it is not distinct from the two compo-

nents considered jointly. This fact is evident in Equation 4, which shows that congruence

is defined as the difference between the component variables. As such, any meaning

ascribed to congruence cannot go beyond the two component variables that define congru-

ence. This point also applies to level, which is defined as the mean of the component vari-

ables, as indicated by Equation 3. Defined in this manner, congruence and level are

redundant with their component variables, and any attempt to distinguish congruence and
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level from their components is futile. For instance, a basic prerequisite for establishing the

unique existence of a construct is discriminant validity, such that the construct does not

overlap with other similar constructs (Campbell & Fiske, 1959). Because level and con-

gruence are defined in terms of their components, the multiple correlations relating the

components to level and congruence are 1.00, and the matrix of correlations among level,

congruence, and the two component variables is singular, such that four distinct factors

cannot be extracted.

Rather than conceptualizing congruence and level as constructs, they should be viewed

as statements about the relative standing of the component variables to one another. For

instance, if congruence is conceptualized as the fit, match, or similarity between two com-

ponent variables (Edwards, 1994), then congruence is indicated when the component vari-

ables are equal. Saying that the component variables are equal does not invoke some new

construct, no more than saying that a single variable equals some low or high score creates

constructs we would call ‘‘low’’ or ‘‘high.’’ Likewise, hypotheses concerning the effects of

congruence can be viewed as statements about the joint effects of the component variables.

For instance, predicting that congruence leads to positive outcomes is tantamount to pre-

dicting that outcomes are maximized when the component variables are equal. Predicting a

congruence effect does not invoke a ‘‘congruence’’ construct any more than predicting an

interaction calls forth an ‘‘interaction’’ construct. Similar arguments apply to level, which

can be conceptualized in terms of the component variables taken jointly.

Some researchers operationalize congruence not by subtracting component variables, as

in Equation 4, but instead by asking respondents to directly report the difference or simi-

larity between the component variables (e.g., Cable & DeRue, 2002). When congruence is

measured in this manner, it is arguably distinct from the component measures taken

jointly, given that comparative judgments are susceptible to influences other than the ele-

ments being compared (Chambers & Windschitl, 2004; Mussweiler, 2003; Tversky,

1977). The mapping of component variables onto judgments of their difference and con-

gruence is worth studying in its own right (Edwards, Cable, Williamson, Lambert, &

Shipp, 2006), but this research is meaningful only when congruence is operationalized not

by subtracting component variables, as in Equation 4, but by measuring perceived differ-

ences and congruence directly.

Conclusion

Congruence research has been marked by various methodological developments, such

as the movement from difference scores and profile similarity indices to polynomial

regression, and an important next step is to translate polynomial regression into structural

equation models with latent variables (Edwards & Kim, 2002). The LCM proposed by

Cheung (2007) capitalizes on the advantages of structural equation modeling but takes a

step backward by focusing analyses on the mean and difference between components vari-

ables. This article highlights the problems associated with the LCM and shows how the

questions that the LCM is intended to address can be answered using structural equation

models with latent component variables. Additional work is needed to move beyond linear
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models to incorporate quadratic equations into structural equation models (Edwards &

Kim, 2002), which are required for testing theories in congruence research.

Appendix A
LISREL Syntax for Reanalysis of Cheung (2007) Data

The following LISREL syntax revises the syntax reported by Cheung (2007) by dropping the
second-order level and congruence factors and adding 12 additional parameters to compute the
coefficients that would be produced by the level and congruence factors. Below the syntax are lines
of code that impose constraints implied by level and congruence predicting level and congruence.
Each set of constraints can be tested by inserting the relevant lines of code above the OU line.

Leadership and Teams: Modification of Cheung (2007) syntax

DA NI=24 NO=220

LA

SlfL1 SlfL2 SlfL3 SlfC1 SlfC2 SlfC3

SlfPO1 SlfPO2 SlfPO3 SlfCS1 SlfCS2 SlfCS3

SupL1 SupL2 SupL3 SupC1 SupC2 SupC3

SupPO1 SupPO2 SupPO3 SupCS1 SupCS2 SupCS3

CM=CSB.CM RE

ME=CSB.ME RE

SELECT

SlfCS1 SlfCS2 SlfCS3 SupCS1 SupCS2 SupCS3

SlfL1 SlfL2 SlfL3 SupL1 SupL2 SupL3

SlfC1 SlfC2 SlfC3 SupC1 SupC2 SupC3

SlfPO1 SlfPO2 SlfPO3 SupPO1 SupPO2 SupPO3/

MO NY=6 NE=2 LY=FI TY=FI TE=FR NX=18 NK=6 LX=FI TX=FI TD=FI TD= FR C

PS=SY,FR PS= SY,FR AL=FR KA=FR GA=FR AP=12

! Measurement model for leadership

VA 1 LX(1,1) LX(4,2)

FR LX(2,1) LX(3,1) LX(5,2) LX(6,2)

FR TX 2 TX 3 TX 5 TX 6

EQ LX(2,1) LX(5,2) /∗ Syntax for metric equivalence

EQ LX(3,1) LX(6,2) /∗ Syntax for metric equivalence

EQ TX 2 TX 5 /∗ Syntax for scalar equivalence

EQ TX 3 TX 6 /∗ Syntax for scalar equivalence

! Measurement model for communication

VA 1 LX(7,3) LX(10,4)

FR LX(8,3) LX(9,3) LX(11,4) LX(12,4)

FR TX 8 TX 9 TX 11 TX 12

EQ LX(8,3) LX(11,4) /∗ Syntax for metric equivalence

EQ LX(9,3) LX(12,4) /∗ Syntax for metric equivalence

EQ TX 8 TX 11 /∗ Syntax for scalar equivalence

!EQ TX 9 TX 12 /∗ Item with nonequivalent intercepts

! Measurement model for planning and organizing

VA 1 LX(13,5) LX(16,6)

FR LX(14,5) LX(15,5) LX(17,6) LX(18,6)

FR TX 14 TX 15 TX 17 TX 18

56 Organizational Research Methods

 at NORTH CAROLINA UNIVERSITY on February 24, 2009 http://orm.sagepub.comDownloaded from 

http://orm.sagepub.com


EQ LX(14,5) LX(17,6) /∗ Syntax for metric equivalence

EQ LX(15,5) LX(18,6) /∗ Syntax for metric equivalence

!EQ TX 14 TX 17 /∗ Item with nonequivalent intercepts

EQ TX 15 TX 18 /∗ Syntax for scalar equivalence

! Measurement model for customer service

VA 1 LY(1,1) LY(4,2)

FR LY(2,1) LY(3,1) LY(5,2) LY(6,2)

FR TY 2 TY 3 TY 5 TY 6

EQ LY(2,1) LY(5,2) /∗ Syntax for metric equivalence

EQ LY(3,1) LY(6,2) /∗ Syntax for metric equivalence

EQ TY 2 TY 5 /∗ Syntax for scalar equivalence

EQ TY 3 TY 6 /∗ Syntax for scalar equivalence

LK

SlfLdr SupLdr SlfCom SupCom SlfPO SupPO

LE

SlfCust SupCus

! Coefficients for level predicting level

CO PA(1)=.5∗GA(1,1)+.5∗GA(1,2)+.5∗GA(2,1)+.5∗GA(2,2)

CO PA(2)=.5∗GA(1,3)+.5∗GA(1,4)+.5∗GA(2,3)+.5∗GA(2,4)

CO PA(3)=.5∗GA(1,5)+.5∗GA(1,6)+.5∗GA(2,5)+.5∗GA(2,6)

! Coefficients for congruence predicting level

CO PA(4)=− .25∗GA(1,1)+.25∗GA(1,2)− .25∗GA(2,1)+.25∗GA(2,2)

CO PA(5)=− .25∗GA(1,3)+.25∗GA(1,4)− .25∗GA(2,3)+.25∗GA(2,4)

CO PA(6)=− .25∗GA(1,5)+.25∗GA(1,6)− .25∗GA(2,5)+.25∗GA(2,6)

! Coefficients for level predicting congruence

CO PA(7)=−1∗GA(1,1)−GA(1,2)+GA(2,1)+GA(2,2)

CO PA(8)=−1∗GA(1,3)−GA(1,4)+GA(2,3)+GA(2,4)

CO PA(9)=−1∗GA(1,5)−GA(1,6)+GA(2,5)+GA(2,6)

! Coefficients for congruence predicting congruence

CO PA(10)=.5∗GA(1,1)− .5∗GA(1,2)− .5∗GA(2,1)+.5∗GA(2,2)

CO PA(11)=.5∗GA(1,3)− .5∗GA(1,4)− .5∗GA(2,3)+.5∗GA(2,4)

CO PA(12)=.5∗GA(1,5)− .5∗GA(1,6)− .5∗GA(2,5)+.5∗GA(2,6)

OU AD=OFF ND=4

! Constraints for level predicting level

! Leadership

CO GA(1,2)=GA(1,1)

CO GA(2,1)=GA(1,1)

CO GA(2,2)=GA(1,1)

! Constraints for level predicting level

! Communication

CO GA(1,4)=GA(1,3)

CO GA(2,3)=GA(1,3)

CO GA(2,4)=GA(1,3)

! Constraints for level predicting level

! Planning and organizing

CO GA(1,6)=GA(1,5)

CO GA(2,5)=GA(1,5)

CO GA(2,6)=GA(1,5)
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! Constraints for congruence predicting level

! Leadership

CO GA(1,2)=−1∗GA(1,1)

CO GA(2,1)=GA(1,1)

CO GA(2,2)=−1∗GA(1,1)

! Constraints for congruence predicting level

! Communication

CO GA(1,4)=−1∗GA(1,3)

CO GA(2,3)=GA(1,3)

CO GA(2,4)=−1∗GA(1,3)

! Constraints for congruence predicting level

! Planning and organizing

CO GA(1,6)=−1∗GA(1,5)

CO GA(2,5)=GA(1,5)

CO GA(2,6)=−1∗GA(1,5)

! Constraints for level predicting congruence

! Leadership

CO GA(1,2)=GA(1,1)

CO GA(2,1)=−1∗GA(1,1)

CO GA(2,2)=−1∗GA(1,1)

! Constraints for level predicting congruence

! Communication

CO GA(1,4)=GA(1,3)

CO GA(2,3)=−1∗GA(1,3)

CO GA(2,4)=−1∗GA(1,3)

! Constraints for level predicting congruence

! Planning and organizing

CO GA(1,6)=GA(1,5)

CO GA(2,5)=−1∗GA(1,5)

CO GA(2,6)=−1∗GA(1,5)

! Constraints for congruence predicting congruence

! Leadership

CO GA(1,2)=−1∗GA(1,1)

CO GA(2,1)=−1∗GA(1,1)

CO GA(2,2)=GA(1,1)

! Constraints for congruence predicting congruence

! Communication

CO GA(1,4)=−1∗GA(1,3)

CO GA(2,3)=−1∗GA(1,3)

CO GA(2,4)=GA(1,3)

! Constraints for congruence predicting congruence

! Planning and organizing

CO GA(1,6)=−1∗GA(1,5)

CO GA(2,5)=−1∗GA(1,5)

CO GA(2,6)=GA(1,5)
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Appendix B
Solving for Coefficients Relating LX and CX to LY

and CY in Terms of b11, b12, b21, and b22

To write the coefficients relating LX and CX to LY and CY in terms of b11, b12, b21, and b22, we
begin by solving Equations 22, 23, 24, and 25 for X1, X2, Y1, and Y2. First, we solve Equations 22
and 23 for X1 and X2, which yields:

X1 = LX − :5CX ðA1Þ
X2 = LX + :5CX: ðA2Þ

Next, we solve Equations 24 and 25 for Y1 and Y2, which produce:

Y1 = LY − :5CY ðA3Þ
Y2 = LY + :5CY: ðA4Þ

We then substitute these expressions into Equations 32 and 33,

LY − :5CY = b10 + b11ðLX − :5CXÞ+ b12ðLX + :5CXÞ+ e1 ðA5Þ
LY + :5CY = b20 + b21ðLX − :5CXÞ+ b22ðLX + :5CXÞ+ e2: ðA6Þ

Adding Equations A5 and A6 and simplifying gives the equation for LY:

LY − :5CY + LY + :5CY = b10 + b11ðLX − :5CXÞ+ b12ðLX + :5CXÞ+ e1

+ b20 + b21ðLX − :5CXÞ+ b22ðLX + :5CXÞ+ e2

2LY = b10 + b20 + b11LX − :5b11CX + b12LX + :5b12CX

+ b21LX − :5b21CX + b22LX + :5b22CX + e1 + e2

2LY = b10 + b20 + ðb11 + b12 + b21 + b22ÞLX

+ :5ðb12 − b11 + b22 − b21ÞCX + e1 + e2

LY = :5ðb10 + b20Þ+ :5ðb11 + b12 + b21 + b22ÞLX

+ :25ðb12 − b11 + b22 − b21ÞCX + :5ðe1 + e2Þ: ðA7Þ

Subtracting Equation A5 from Equation A6 and simplifying gives the equation for CY:

LY + :5CY − LY + :5CY = b20 − b10 + b21ðLX − :5CXÞ− b11ðLX − :5CXÞ
+ b22ðLX + :5CXÞ− b12ðLX + :5CXÞ+ e2 − e1

CY = b20 − b10 + b21LX − :5b21CX − b11LX + :5b11CX

+ b22LX + :5b22CX − b12LX − :5b12CX + e2 − e1

CY = b20 − b10 + ðb21 − b11 + b22 − b12ÞLX

+ :5ðb11 − b12 − b21 + b22ÞCX + e2 − e1 ðA8Þ
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Notes

1. The erroneous interpretation yielded by Equation 6 can also be seen by noting that, in general, regres-

sion coefficients, such as a1, indicate the effect of the associated predictor holding all other predictors

constant. However, this interpretation does not apply to Equation 6, in that a change in the term associated

with a1 also entails a change in the term associated with a2, given that Y1 and Y2 appear in both terms. Thus,

the conclusion that a1 implies equal effects of Y1 and Y2 is correct only when a2 = 0. This perspective applies

to the erroneous interpretations yielded by other equations that use L and C as predictors. I am indebted to an

anonymous reviewer for articulating this perspective.

2. In total, the five levels of b1 and nine levels of b2 used here could yield 45 possible combinations. How-

ever, the nine combinations selected for illustration are sufficient to demonstrate the problems that result from

using L and C as predictors. Examples presented later in this article also use subsets of the possible combina-

tions of parameters chosen for illustration, thereby demonstrating problems with L and C while keeping the

illustrations manageable in size.
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Jöreskog, K. G., & Sörbom, D. (2003). LISREL 8.54. Chicago: Scientific Software International, Inc.

Judge, T. A., & Ferris, G. R. (1992). The elusive criterion of fit in human resource staffing decisions. Human

Resource Planning, 15(4), 47-67.

Kline, R. B. (2004). Principles and practice of structural equation modeling (2nd ed.). New York: Guilford.

Kristof, A. L. (1996). Person–organization fit: An integrative review of its conceptualization, measurement,

and implications. Personnel Psychology, 49, 1-49.

Kristof-Brown, A. L., Zimmerman, R. D., & Johnson, E. C. (2005). Consequences of individual’s fit at work:

A meta-analysis of person–job, person–organization, person–group, and person–supervisor fit. Personnel

Psychology, 58, 281-342.

Li, F., Harmer, P., Duncan, T. E., Duncan, S. C., Acock, A., & Boles, S. (1998). Approaches to testing interac-

tion effects using structural equation modeling methodology. Multivariate Behavioral Research, 33, 1-39.

Lichtenberg, F. R. (1990). Aggregation of variables in least-squares regression. The American Statistician, 44,

169-171.

Locke, E. A. (1976). The nature and causes of job satisfaction. In M. Dunnette (Ed.), Handbook of industrial

and organizational psychology (pp. 1297-1350). Chicago: Rand McNally.

Loehlin, J. C. (2004). Latent variable models: An introduction to factor, path, and structural analysis

(4th ed.). Hillsdale, NJ: Lawrence Erlbaum.

MacCallum, R. C., & Mar, C. M. (1995). Distinguishing between moderator and quadratic effects in multiple

regression. Psychological Bulletin, 118, 405-421.

Muchinsky, P. M., & Monahan, C. J. (1987). What is person–environment congruence? Supplementary versus

complementary models of fit. Journal of Vocational Behavior, 31, 268-277.

Mussweiler, T. (2003). Comparison processes in social judgment: Mechanisms and consequences. Psychologi-

cal Review, 110, 472-489.

Rice, R. W., McFarlin, D. B., Hunt, R. G., & Near, J. P. (1985). Organizational work and the perceived quality

of life: Toward a conceptual model. Academy of Management Review, 10, 296-310.

Spokane, A. R., Meir, E. I., & Catalano, M. (2000). Person–environment congruence and Holland’s theory: A

review and reconsideration. Journal of Vocational Behavior, 57, 137-187.

Tisak, J., & Smith, C. S. (1994). Defending and extending difference score methods. Journal of Management,

20, 675-682.

Edwards / Latent Variable Modeling in Congruence Research 61

 at NORTH CAROLINA UNIVERSITY on February 24, 2009 http://orm.sagepub.comDownloaded from 

http://orm.sagepub.com


Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327-352.

Venkatraman, N. (1989). The concept of fit in strategy research: Toward verbal and statistical correspondence.

Academy of Management Review, 14, 423-444.

Wilkinson, L. (2000). SYSTAT 10. Chicago: SPSS, Inc.

Jeffrey R. Edwards is the Belk Distinguished Professor of Organizational Behavior and Strategy. He is past

editor of Organizational Behavior and Human Decision Processes, past chair of the Research Methods Divi-

sion of the Academy of Management, and a fellow of the Academy of Management, the American Psycholo-

gical Association, and the Society for Industrial and Organizational Psychology.

62 Organizational Research Methods

 at NORTH CAROLINA UNIVERSITY on February 24, 2009 http://orm.sagepub.comDownloaded from 

http://orm.sagepub.com

