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ABSTRACT. Latent variable modelling has gradually become an integral part of mainstream

statistics and is currently used for a multitude of applications in different subject areas. Examples

of ‘traditional’ latent variable models include latent class models, item–response models, common

factor models, structural equation models, mixed or random effects models and covariate

measurement error models. Although latent variables have widely different interpretations in

different settings, the models have a very similar mathematical structure. This has been the impetus

for the formulation of general modelling frameworks which accommodate a wide range of

models. Recent developments include multilevel structural equation models with both continuous

and discrete latent variables, multiprocess models and nonlinear latent variable models.
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1. Introduction

Latent variables are random variables whose realized values are hidden. Their properties must

thus be inferred indirectly using a statistical model connecting the latent (unobserved) vari-

ables to observed variables. Somewhat unfortunately, latent variables are referred to by

different names in different parts of statistics, examples including ‘random effects’, ‘common

factors’, ‘latent classes’, ‘underlying variables’ and ‘frailties’.

Latent variable modelling has gradually become an integral part of mainstream statistics

and is currently used for a multitude of applications in different subject areas. Examples

include, to name a few, longitudinal analysis (e.g. Verbeke & Molenberghs, 2000), covariate

measurement error (e.g. Carroll et al., 2006), multivariate survival (e.g. Hougaard, 2000),

market segmentation (e.g. Wedel & Kamakura, 2000), psychometric measurement (e.g.

McDonald, 1999), meta-analysis (e.g. Sutton et al., 2000), capture–recapture (e.g. Coull &

Agresti, 1999), discrete choice (e.g. Train, 2003), biometrical genetics (e.g. Neale & Cardon,

1992) and spatial statistics (e.g. Rue & Held, 2005).

Twenty-five years ago, the Danish statistician Erling B. Andersen published an important

survey of latent variable modelling in the Scandinavian Journal of Statistics (Andersen, 1982).

Andersen called his paper ‘Latent Structure Analysis: A Survey’, an aptly chosen title as

his survey was confined to the type of models discussed by Lazarsfeld & Henry (1968) in

their seminal book ‘Latent Structure Analysis’. Specifically, Andersen focused on latent trait

models (where the latent variable is continuous, whereas observed variables are categorical)

popular in educational testing and latent class models (where both the latent variable and

the observed variables are categorical) stemming from sociology, but some space was also
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Fig. 1. Path diagram of simple latent variable model.

devoted to the rather esoteric latent profile models (where the latent variable is categorical,

whereas the observed variables are continuous). Lazarsfeld & Henry (1968) mentioned factor

models (where both latent and observed variables are continuous) only very briefly and, in

line with this, Andersen excluded these models from his survey. This is remarkable as factor

models are the most popular latent variable models in psychology.

The simple type of latent variable model considered by Andersen connects a single

latent variable �j for unit (e.g. person) j to observed variables yj
= (y1j , y2j , . . ., ynj)

′. A basic

construction principle of latent variable models (Arminger & Küsters, 1989) is the specifica-

tion of conditional independence of the observed variables given the latent variable (see also

McDonald, 1967; Lazarsfeld & Henry, 1968):

Pr(yj |�j)=

n
∏

i =1

Pr(yij |�j).

This particular form of conditional independence is often called ‘local independence’.

A very succinct representation of such a latent variable model is in terms of a path diagram

as shown for three observed variables in Fig. 1. Circles represent latent variables, rectangles

represent observed variables, arrows connecting circles and/or rectangles represent (linear or

nonlinear) regressions, and short arrows pointing at circles or rectangles represent (not

necessarily additive) residual variability.

A limitation of Andersen’s survey was that only simple latent variable models with a

single latent variable were considered. Nothing was said about multidimensional factor models

or the important synthesis of common factor models and structural equation

models pioneered by the fellow Scandinavian statistician Karl G. Jöreskog. Furthermore,

mixed or random effects models, and covariate measurement error models were omitted from

the survey. In the present survey, we fill these gaps and discuss some major subsequent devel-

opments in latent variable modelling.

The plan of the paper is as follows. We start by surveying more or less traditional latent

variable models. We then discuss how different kinds of latent variable models have gradually

converged by borrowing features from other models. Recognizing the similar mathematical

structure of latent variable models, unifying frameworks for latent variable modelling have

been developed and we describe one such framework. Finally, we survey some extensions of

latent variable modelling such as multilevel structural equation models with both continuous

and discrete latent variables, multiprocess models and nonlinear latent variable models.

2. Traditional latent variable models

The classification scheme of traditional latent variable models presented in Table 1 is useful

to keep in mind in the sequel. We discuss latent class, item–response and factor models in

the same section on measurement models because in all the three models the latent variables
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Table 1. Traditional latent variable models

Latent variable(s)

Observed variable(s) Continuous Categorical

Continuous Common factor model Latent profile model
Structural equation model
Linear mixed model
Covariate measurement error model

Categorical Latent trait model/IRT Latent class model

can be thought of as representing ‘true’ variables or constructs, and the observed variables

as indirect or fallible measures. In the subsequent sections, we discuss structural equation

models, linear mixed models and covariate measurement error models.

2.1. Measurement models

2.1.1. Latent class models

Consider j =1, . . ., N independent units. In latent class models, a latent categorical variable

is measured with error by a set of categorical variables yij , i =1, . . ., n. The categories of the

latent variable represent labels for C subpopulations or latent classes, c =1, . . ., C, with class

membership probabilities �c. To simplify the notation, we consider binary response variables

here.

In the exploratory latent class model, the conditional response probability for measure i,

given latent class membership c, is specified as:

Pr(yij =1 | c)=�i | c, (1)

where �i | c are free parameters. The responses yij and yi′ j are conditionally independent given

class membership.

As a function of the parameters �= (�1, �1 |1, . . ., �n|1, . . . , �C , �1|C , . . ., �n|C )′, the marginal

likelihood becomes:

lM(�)=

N
∏

j =1

Pr(yj ;�)=

N
∏

j =1

C
∑

c =1

�c

n
∏

i =1

Pr(yij | c)=

N
∏

j =1

C
∑

c =1

�c

n
∏

i =1

�
yij

i|c(1−�i|c)1−yij .

It is evident that the latent class model is a multivariate finite mixture model with C

components.

An important application of latent class models is in medical diagnosis where both latent

classes (disease versus no disease) and the sets of measurements (diagnostic test results) are

dichotomous (e.g. Rindskopf & Rindskopf, 1986).

A latent profile model for continuous responses has the same structure as an exploratory

latent class model, but with a different conditional response distribution, yij | c ∼N(�i|c, �2
i ).

Historical notes. The formalization of latent class models is due to Lazarsfeld (e.g.

Lazarsfeld, 1950; Lazarsfeld & Henry, 1968), although models used as early as the nineteenth

century (e.g. Peirce, 1884) can be viewed as special cases. Lazarsfeld also appears to have

introduced the terms ‘manifest’ and ‘latent’ variables for observed and unobserved variables,

respectively. A rigorous statistical treatment of latent class modelling was given by Goodman

(1974a,b) who specified the models as log-linear models and considered maximum-likelihood

estimation. The latent profile model was introduced by Green (1952), but the term was
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coined by Gibson (1959). An early reference to finite mixture models is Pearson (1894), even

though earlier writings by Quetelet and other nineteenth century statisticians mention such

approaches.

2.1.2. Item–response theory (IRT) models

Consider now the case where a latent continuous variable or ‘latent trait’ �j is measured with

error by a set of categorical variables usually called items. The canonical example is from edu-

cational testing where the items are exam questions, yij is ‘1’ if examinee j answered item i

correctly and ‘0’ otherwise, and �j represents the ability of the examinee.

One-parameter IRT model. In the simplest IRT model, the one-parameter logistic (1-PL)

model, the conditional response probability for item i, given ability �j , is specified as:

Pr(yij =1 |�j)=
exp(�j −bi)

1+ exp(�j −bi)
.

This model is called a ‘one-parameter model’ because there is one parameter, the ‘item diffi-

culty’ bi , for each item.

If it is assumed that ability is a random variable with a normal distribution, �j ∼N(0, �),

integrating out the latent variable produces the marginal likelihood:

lM(b, �)=

N
∏

j =1

Pr(yj ; b, �)

=

N
∏

j =1

∫ ∞

−∞

n
∏

i =1

Pr(yij |�j)g(�j ;�) d�j

=

N
∏

j =1

∫ ∞

−∞

n
∏

i =1

exp(�j −bi)
yij

1+ exp(�j −bi)
g(�j ;�) d�j ,

where b is the vector of item difficulties and g(·;�) is the normal density with zero mean and

variance �.

Alternatively, the �j can be treated as unknown fixed parameters giving the so-called

Rasch model. An incidental parameter problem (Neyman & Scott, 1948) occurs if ‘incidental

parameters’ �j are estimated jointly with the ‘structural parameters’ b, producing inconsistent

estimators for b. Inference can instead be based on a conditional likelihood lC(b) constructed

by conditioning on the sufficient statistic for �j ; the sum score tj =
∑n

i =1 yij . The conditional

likelihood can be written as

lC(b) =

N
∏

j =1

Pr(yj ; b | tj) =

N
∏

j =1

∏n

i =1 exp(−biyij)
∑

dj ∈B(tj )

∏n

i =1 exp(−bidij)
,

where

B(tj)=

{

dj = (d1j , . . ., dnj) : dij =0 or 1,

n
∑

i =1

dij = tj

}

is the set of all distinct sequences dj of zeroes and ones with sum tj . Clusters with tj =0 or

tj =n do not contribute to the likelihood as their conditional probabilities become 1.

An appealing feature of one-parameter models is that items and examinees can be placed

on a common scale (according to the difficulty and ability parameters) so that the probability

of a correct response depends only on the amount �j − bi by which the examinee’s posi-

tion exceeds the item’s position. Differences in difficulty between items are the same for all
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Fig. 2. Item characteristic curves for 1-PL (left) and 2-PL (right).

examinees, and differences in abilities of two examinees are the same for all items, a property

called ‘specific objectivity’ by Rasch. For a given item, the probability of a correct response

increases monotonically with ability as shown in the left panel of Fig. 2. Additionally, we

see that for each ability, performance decreases with difficulty. The model is therefore said to

exhibit ‘double monotonicity’.

Two-parameter IRT model. Although the 1-PL model is simple and elegant, it is often deemed

to be unrealistic in practice. A more general model, incorporating the 1-PL model as a special

case, is the two-parameter logistic (2-PL) model specified as

Pr(yij =1 |�j)=
exp[ai(�j −bi)]

1+ exp[ai(�j −bi)]
.

The model is called a ‘two-parameter model’ because there are two parameters for each item,

a discrimination parameter ai and a difficulty parameter bi . The latent variable or ability is

usually assumed to have a normal distribution �j ∼N(0, 1). It should be noted that a condi-

tional likelihood can no longer be constructed as there is no sufficient statistic for �j and the

marginal likelihood is hence used.

Item characteristic curves for the 2-PL model are shown for different difficulties and

discrimination parameters in the right panel of Fig. 2. Note that the 2-PL model does not

share the double monotonicity property of the 1-PL model. An item can be easier than

another item for low abilities but more difficult than the other item for higher abilities due

to the item–examinee interaction ai�j .

An alternative, and very similar model, is the normal ogive

Pr(yij =1 |�j)=�(ai(�j −bi)),

where �(·) is the cumulative standard normal distribution function.

More complex IRT models include the three-parameter logistic model (Birnbaum, 1968)

which accommodates guessing, the partial credit (Masters, 1982), rating scale (Andrich, 1978)

and graded response (Samejima, 1969) models for ordinal responses and the nominal re-

sponse model (e.g. Rasch, 1961; Bock, 1972; Andersen, 1973).

Historical notes. The ‘latent trait’ terminology is due to Lazarsfeld (1954) whereas the term

‘item–response theory’ (IRT) was coined by Lord (1980). Lord was instrumental in develop-

ing statistical models for ability testing (e.g. Lord, 1952; Lord & Novick, 1968), mainly con-

sidering the now obsolete approach of joint maximum-likelihood estimation of abilities and

item parameters (ai and bi). Two approaches are used to circumvent the incidental parameter

problem. The Dane Georg Rasch (Rasch, 1960) suggested conditional maximum-likelihood
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estimation for the 1-PL model and Andersen (1970, 1972, 1973, 1980) provided a rigorous

statistical treatment of this approach. Bock & Lieberman (1970) introduced marginal

maximum-likelihood estimation and Gauss–Hermite quadrature in latent variable modelling,

focusing on the two-parameter normal ogive model introduced by Lawley (1943) and Lord

(1952).

2.1.3. Common factor models

A vector of continuous latent variables or ‘common factors’ � is indirectly observed via a

vector of continuous observed variables, x = (x1, x2, . . ., xq)′. Note that the unit indices are

usually suppressed in factor models.

The common factor model is usually written as

x =�x�+�. (2)

The matrix �x (q × n) is a so-called factor loading matrix and the element of �x pertaining

to item i and latent variable l is denoted �
(x)

il . The common factors have zero means E(�)=0

and covariance matrix �. � are vectors of unique factors (specific factors and/or measure-

ment errors) pertaining to the elements of x, for which it is assumed that E(�)=0. �	 is the

covariance matrix of �, typically specified as diagonal with positive elements �
(	)

kk . It is finally

assumed that cov(�, �)=0.

It should be noted that it would be preferable to include a vector � of parameters for the

expectations of x in the common factor model. This vector is usually omitted because, with

complete data, it can be profiled out of the likelihood by substituting the sample means.

x is in this case taken as mean centred.

The covariance structure of x, called the ‘factor structure’, becomes

�= cov(x)=�x��
′
x +�	. (3)

Assuming multivariate normality for � and �, and hence for x, produces a marginal likelihood

that can be expressed in closed form

lM(�x, �, �	)= |2��|−n/2 exp

⎛

⎝−
1

2

N
∑

j =1

x′
j�

−1
xj

⎞

⎠.

In the complete data case, the empirical covariance matrix S of x is the sufficient statistic for

the parameters structuring � and has a Wishart distribution. Maximum-likelihood estimates

can be obtained (e.g. Jöreskog, 1967) by minimizing the fitting function

FML = log |�|+ tr(S�
−1

)− log |S|−n,

with respect to the unknown free parameters. FML is non-negative and zero only if there is

a perfect fit �=S.

The common factors are often interpreted as ‘hypothetical constructs’ measured indirectly

by the observed variables x. Hypothetical constructs are legion in the social sciences, an

important example from psychology being the ‘big-five theory of personality’ (Costa &

McCrae, 1985) comprising the constructs ‘openness to experience’, ‘conscientiousness’, ‘extra-

version’, ‘agreeableness’ and ‘neuroticism’. Friedman’s (1957) notion of ‘permanent income’

is an example from economics.

It is important to distinguish between two approaches to common factor modelling:

exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). EFA is an

inductive approach for ‘discovering’ the number of common factors and estimating the model

parameters, imposing a minimal number of constraints for identification. The standard
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Fig. 3. Independent clusters factor model.

identifying constraints are that �= I, and that �	 and �
′
x�

−1
	 �x are both diagonal. Although

mathematically convenient, the one-size-fits-all parameter restrictions imposed in EFA,

particularly the specification of uncorrelated common factors, are often not meaningful from

a subject matter point of view.

In CFA, restrictions are imposed based on substantive theory or research design. An impor-

tant example is the ‘independent clusters model’ where �x has many elements set to zero

such that each variable measures one and only one factor. A path diagram of a two-factor

independent clusters model with three variables measuring each factor is given in Fig. 3.

Here the double-headed, curved error denotes a covariance between the two common

factors.

The scales of the common factors are fixed either by ‘factor standardization’ where

variances of the common factors are fixed to 1 (as in EFA) or by ‘anchoring’ where one

factor loading for each factor is fixed to 1 as in the figure. Elements of � may be correlated,

but special care must be exercised in this case to ensure that the model is identified.

In a unidimensional factor model, the common factor may represent a true variable

measured with error, such as a person’s true blood pressure fallibly measured by several

measures. When measure-specific intercepts 

(x)
i are included, we obtain the ‘congeneric

measurement model’,

xi =

(x)
i +�

(x)
i �+	i .

The reliability �i , the fraction of true score variance to total variance, for a particular

measure xi becomes

�i
=

[

(�
(x)
i )2

]/[

(�
(x)
i )2+�

(	)
ii

]

.

The congeneric measurement model has several important nested special cases. The ‘essen-

tially tau-equivalent measurement model’ prescribes that the measures are on the same scale

(�
(x)
i

=�(x)),

the ‘tau-equivalent measurement model’ that the measures also have the same means

(�
(x)
i

=�(x), 

(x)
i

=
(x))

and the ‘parallel measurement model’ that the measurement error variances are also equal

for all measures

(�
(x)
i

=�(x), 

(x)
i

=
(x), �
(	)
ii

=�(	)).
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The parallel measurement model is also the model from classical (psychometric) test theory

(e.g. Gulliksen, 1950).

Historical notes. The invention of factor analysis is attributed to Spearman (1904) who

argued that intelligence was composed of a general factor, common to all subdomains such as

mathematics, music, etc., and specific factors for each of the subdomains. However, the term

factor analysis was introduced by Thurstone (1931), whose name, incidentally, is an anglici-

zation of the Swedish name Torsten. Thurstone (1935, 1947) and Thomson (1938) introduced

multidimensional EFA. Lawley (1939), Rao (1955), Anderson & Rubin (1956) and Lawley &

Maxwell (1971) presented factor analysis as a statistical method. Anderson & Rubin (1956)

and Bock & Bargmann (1966) anticipated CFA which was developed in a series of important

papers by Jöreskog (e.g. 1969, 1971b).

2.2. Structural equation models (SEM) with latent variables

In the full structural equation or LInear Structural RELations (LISREL) model, the follow-

ing relations are specified among continuous latent dependent variables �= (�1, �2, . . ., �m)′

and continuous latent explanatory variables �= (�1, �2, . . ., �n)′:

�=B�+��+ �. (4)

Here B is a matrix of structural parameters relating the latent dependent variables to each

other, � is a matrix of structural parameters relating latent dependent variables to latent

explanatory variables and � is a vector of disturbances. We define �= cov(�) and �= cov(�)

and assume that E(�)=0, E(�)=0 and cov(�, �)=0.

Confirmatory factor models are specified for � as in (2) and for � as

y =�y�+ǫ, (5)

where y are continuous measures, �y is the factor loading matrix and �ǫ is the covariance

matrix of ǫ. It is assumed that E(ǫ)=0, cov(ǫ, �)=0, cov(ǫ, �)=0, cov(�, �)=0, cov(ǫ, �)=0

and cov(ǫ, �)=0.

Substituting from the structural model in (5), and assuming that I −B is of full rank, we

obtain the reduced form for y,

y =�y(I −B)−1(��+ �)+ǫ, (6)

whereas the reduced form for x is simply the common factor model in (2).

We denote the vector of all measures by z = (x′, y′)′ and let �= cov(z). The covariance

structure of � becomes

�=

(

�x �
′
yx

�yx �y

)

, (7)

where the submatrices are structured as

�x =�x��
′
x +�	, (8)

�yx =�y(I −B)−1
���

′
x, (9)

�y =�y(I −B)−1(���
′
+�)[(I −B)−1]′�

′
y +�ǫ. (10)

Note that the common factor model (2) is a special case of the LISREL model.

An example of a LISREL model with two latent explanatory variables and two latent depen-

dent variables is shown in Fig. 4. Research questions often concern the decomposition of the

 Board of the Foundation of the Scandinavian Journal of Statistics 2007.



720 A. Skrondal and S. Rabe-Hesketh Scand J Statist 34

Fig. 4. Path diagram for structural equation model.

total effect of a latent variable on another latent variable. In the recursive structural equation

model (without feedback effects) given in the figure, the total effect of �2 on �2 becomes the

sum of a direct effect �22 and an indirect effect �12
21 (via the mediating latent variable �1).

An important special case of the LISREL model is the Multiple-Indicator–MultIple-Cause

(MIMIC) model where the latent variables are regressed on observed covariates x, whereas

there are no regressions among the latent variables,

�=�x + �. (11)

This model results if �x = I and �	 =0 in the measurement model for the explanatory

common factors in (2) so that x =�, and the restriction B= I is imposed in the structural

model (4).

The marginal likelihood of the LISREL model with multivariate normal �, �, ǫ and �, and

consequently multivariate normal z, can be expressed in closed form and a fitting function

constructed analogously to the one for common factor models.

Historical notes. Structural equation modelling without latent variables, often called ‘path

analysis’, was introduced by Wright (1918) and further developed as ‘simultaneous equation

modelling’ by the Cowles Commission econometricians during World War II (e.g. Haavelmo,

1944). Early treatments of the MIMIC model include, for instance Zellner (1970) and Hauser

& Goldberger (1971). The general LISREL framework was developed in a series of impor-

tant contributions by Jöreskog (e.g. 1973a,b, 1977). This framework is undoubtedly the most

popular, but Bentler & Weeks (1980) and McArdle & McDonald (1984), among others, have

proposed alternative frameworks that essentially cover the same range of models.

2.3. Linear mixed models

Units are often nested in clusters, examples including pupils nested in schools or repeated

measurements nested within individuals. In these situations, regression models can be

extended to handle between-cluster variability, both in the overall level of the response and

in the effects of covariates, that is not accounted for by observed covariates. Although the

random effects in these models are clearly latent, these models have usually not been recog-

nized as latent variable models.
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Let i =1, . . ., nj be the number of units nested in cluster j =1, . . ., N . A linear mixed model

can be written as

yj =Xj�+Zjbj + ej , (12)

where yj is an nj-dimensional vector of continuous responses yij for cluster j, Xj an nj × p

matrix of covariates with fixed effects �, Zj an nj ×q matrix of covariates with random effects

bj and ej a vector of residual errors.

The random effects and residuals are assumed to have multinormal distributions

bj ∼ N(0, G), ej ∼ N(0, Vj), both independent across clusters given the covariates and inde-

pendent of each other. It is furthermore usually assumed that Vj =�2
eInj

. The covariates are

assumed to be independent of the random effects and residuals.

The marginal expectation of the responses for cluster j, given the observed covariates but

not the random effects, is

�j
=E(yj |Xj , Zj)=Xj�,

and the marginal covariance matrix becomes

�j = cov(yj |Xj , Zj)=ZjGZ′
j +�2

eInj
.

As for common factor and structural equation models with continuous responses, the mar-

ginal likelihood can be expressed in closed form, giving

lM(�, G, �2
e)= |2��|−nj /2 exp

⎧

⎨

⎩

−
1

2

N
∑

j =1

(yj −�j)
′
�

−1
(yj −�j)

⎫

⎬

⎭

.

The most common linear mixed model is the random intercept model where there is only

one random effect, a random intercept bj ∼N(0, g),

yj =Xj�+1jbj + ej . (13)

This model induces a very simple dependence among responses within clusters, with constant

residual intra-class correlation g/(g +�2
e).

Removing the fixed part Xj� in (13) gives the measurement model from classical test theory.

This model is also known as a ‘variance components model’ or a ‘one-way random

effects model’. The latter term comes from analysis of variance where the clusters are viewed

as levels of a factor (not to be confused with factors in factor analysis) which is treated as

random.

Models with several clustering variables or factors can be specified where some factors

are treated as fixed and others as random. Such models are used in ‘generalizability theory’

(Cronbach et al., 1972) where the factors represent ‘facets’ (or aspects) of the measurement

situation such as raters, temperatures, etc.

The linear mixed model in (12) can be viewed as a two-level model. Higher level models

arise when the clusters j are themselves nested in superclusters k, etc., and when random

effects are included at the corresponding levels.

Historical notes. Variance components models can be traced back to the works of astrono-

mers such as Airy (1861) or even earlier. A milestone in the statistical literature was Fisher

(1918) who implicitly employed variance components models. Eisenhart (1947) coined the

term ‘mixed model’ for models with both random and fixed effects. Swamy (1970, 1971)

introduced the linear mixed model under the name ‘random coefficient model’. The work of

Harville (1976, 1977) and Laird & Ware (1982) was important in introducing linear mixed

models in statistics and biostatistics. Aitkin et al. (1981), Mason et al. (1984), Goldstein
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(1987) and Bryk & Raudenbush (1992) popularized the models under the names ‘multilevel’

or ‘hierarchical’ models in social science. Generalizability theory was introduced by Cronbach

et al. (1972).

2.4. Covariate measurement error models

It is often unrealistic to assume that the covariates in regression models are measured without

error. Thus, it is useful to consider the regression model

yj =x′
j�x + z′

j�z + ǫj , (14)

where yj is the continuous response for unit j, xj a vector of continuous covariates measured

with error having regression parameters �x, zj a vector of observed continuous covariates

measured without error having regression parameters �z and ǫj a residual.

The latent covariates xj are measured with error according to the ‘classical measurement

model’

wj =xj +uj , (15)

where wj is a continuous vector of fallible (but observed) measures and uj is a vector of

measurement errors. It is assumed that E(uj)=0, cov(xj , ǫj)=0, cov(zj , ǫj)=0, cov(xj , uj)=0

and cov(uj , ǫj)=0. It is also typically assumed that cov(uj) is diagonal, giving uncorrelated

measurement errors, but that the diagonal elements may differ, allowing for different

measurement error variances for the covariates.

Importantly, estimates of both �x and �z are generally inconsistent if estimation is based

on (14), with fallible regressors wj substituted for xj . In the case of a single covariate xj , the

ordinary least squares estimate 
̂x is attenuated, but can be corrected by simply dividing it

by the reliability of wj . More generally, the regression parameters of interest �x and �z can

be estimated by maximizing the likelihood implied by (14) and (15) if multivariate normality

is assumed for xj , uj and ǫij . This assumption is often relaxed by using instrumental variable

estimation or specifying alternative, possibly non-parametric, distributions.

The classical measurement error model (15) must be distinguished from the ‘Berkson

measurement error model’ where

xj =wj +uj , (16)

with measurement errors uj assumed to be independent of the true covariates wj . This model

makes sense if the variables wj are controlled variables, for instance, an experimenter may aim

to administer given doses of some drugs wj , but the actual doses xj differ due to

measurement error. In this case, consistent estimates for the regression parameters can simply

be obtained by estimating the model with fallible regressors.

Historical notes. The literature on covariate measurement error models, or ‘errors in vari-

ables models’ as they are often called in econometrics, can be traced back to Adcock (1877,

1878). Important contributions to the statistical literature include Durbin (1954) and Cochran

(1968). The Berkson measurement error model was introduced by Berkson (1950). Instru-

mental variable estimation is due to Reiersøl (1945) and the term ‘instrumental variables’

was coined by the fellow Norwegian Ragnar Frisch. Carroll et al. (2006) distinguish between

‘structural modelling’ where parametric models are used for the distribution of the true

covariates and ‘functional modelling’ where parametric models are specified for the response

but no assumptions made regarding the distribution of the unobserved covariates.
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3. Convergence of latent variable models

Some latent variable models have been extended by borrowing features of other models, lead-

ing to a convergence of models. For instance, starting from an item–response model and

borrowing the idea of multidimensional latent variables from factor analysis yields the same

model as starting from a factor model and modifying it for dichotomous responses.

In fact, the general structural equation or LISREL model discussed in section 2.2, can be

viewed as a convergence or synthesis of CFA from psychometrics and simultaneous equa-

tion models from econometrics. This was quite a radical accomplishment at a time when,

according to the econometrician Goldberger (1971, p. 83):

Economists and psychologists have been developing their statistical techniques quite

independently for many years. From time to time, a hardy soul strays across the fron-

tier but is not met with cheers when he returns home.

Unfortunately, this statement applies equally well today and also to researchers from the

biometric, econometric, psychometric and other statistical communities. For instance, bio-

statisticians typically attribute the invention of linear mixed models to Laird & Ware (1982),

although Laird and Ware themselves referred to the work of the mathematical statistician

Harville (1977). Interestingly, neither Harville nor Laird and Ware appeared to be aware of

equivalent models introduced by the econometrician Swamy (1970, 1971) in an Econome-

trica paper and a Springer book with the title ‘Statistical Inference in Random Coefficient

Regression Models’. Even more remarkably, such a lack of communication is also evident

within specific statistical communities. For instance, factor analysts and item–response theo-

rists rarely cite each other, although their work is closely related and often published in the

same journal, Psychometrika.

Probably due to this compartmentalization of statistics, model extensions that could have

been ‘borrowed’ from other model types are often reinvented instead. In this section, we

briefly review developments that we view as convergences, although the original authors did

not necessarily view them in this way.

3.1. Common factor models and item–response models

The relationship between a unidimensional factor model and a ‘normal ogive’ (probit link)

two-parameter item–response model was discussed by Lord & Novick (1968), but the

convergence of these models gained momentum when Christofferson (1975) and Muthén

(1978) extended common factor models to dichotomous responses.

They specified a traditional common factor model for an underlying (latent) continuous

response y∗. In the unidimensional case, the model is typically written as

y∗
ij
=
i +�i�j + ǫij , �j ∼N(0, �), ǫij ∼N(0, 1), cov(�j , ǫij)=0, �1 =1, (17)

where

yij =

{

1, if y∗
ij > 0,

0, otherwise.

This model is equivalent to a ‘normal ogive’ item response model as demonstrated by

Bartholomew (1987) and Takane & de Leeuw (1987). To see this, consider the probability

that yij equals 1, given the common factor,

Pr(yij =1 |�j)=Pr(y∗
ij > 0 |�j)=�(
i +�i�j)=�(ai(�j −bi)).

This is an item–response model where bi =−
i /�i , the factor loading �i corresponds to the

discrimination parameter ai and the common factor �j to the ‘ability’ �j .
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3.2. Structural equation models and item–response models

Muthén (1979) used the latent response formulation (17) to specify unidimensional MIMIC

models with dichotomous indicators and estimated the models by maximum likelihood.

Rather remarkably, equivalent models, albeit with a logit instead of a probit link, were only

slowly introduced in the IRT literature.

Andersen & Madsen (1977), Andersen (1980b) and Mislevy (1983) proposed multigroup

unidimensional item–response models where the ability mean (and variance) can differ

between groups. Mislevy (1987) and Zwinderman (1991) specified what we call MIMIC

models but without referring to Muthén’s (1979) ground-breaking work, or to structural

equation modelling.

Muthén (1983, 1984) specified a full LISREL-type structural equation model for dichoto-

mous, ordinal and censored responses. Arminger & Küsters (1988, 1989) extended the approach

further to include other response types such as counts and unordered categorical responses.

3.3. Structural equation models and linear mixed models

The similarity of linear mixed models and structural equation models with latent variables

became obvious when both kinds of models were used to specify equivalent linear growth

curve models.

Let the factor loading matrix � consist of a column of ones and a column of time-points

ti , i =1, . . ., n, which must be the same for all subjects. Substituting the MIMIC model (11)

in the confirmatory factor model (5), we obtain

yj =��xj +��j +ǫj =Xj�+Zjbj +ǫj ,

where ��xj corresponds to Xj�, both producing a vector of linear combinations of the

covariates xj , � can be equated to Zj because the elements are known constants, and �j

corresponds to bj in the linear mixed model (12).

Rao (1958) showed that growth models with subject-specific coefficients can be written as

factor models where the factor loadings are known functions of time. McArdle (1988) and

Meredith & Tisak (1990) extend this model by allowing the factor loadings to be estimated.

The limitation that the time-points ti must be the same for all subjects in the structural

equation model formulation has recently been largely overcome by allowing for ‘definition

variables’ which define the factor loadings (e.g. Mehta & Neale, 2005).

3.4. Other convergences

If multivariate normality is assumed for x, the classical covariate measurement error model

in (14) and (15) is a LISREL model with �y =1 and �ǫ
=0 in the common factor model for

the response factors, and �x = I in the model for the explanatory common factors.

Dayton & MacReady (1988) and Formann (1992) have combined traditional latent class

models with a multinomial logit regression model for class membership, given observed

covariates or so-called ‘concomitant variables’. While this extension is analogous to a MIMIC

model, the structural model is nonlinear, and there is no simple reduced form. Hagenaars

(1993, 2002) and Vermunt (1997) extended the models further to allow latent class member-

ship to depend on other discrete latent variables, coming close to a general structural equation

model with categorical latent variables.

Linear mixed models have been extended to handle non-continuous responses (e.g.

Heckman & Willis, 1976), giving so-called generalized linear mixed models (Gilmour et al.,

1985; Breslow & Clayton, 1993). One-parameter item–response models are just logistic ran-

dom intercept models with a random intercept for subjects, separate fixed intercepts for each
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item, but no covariates. Fischer (1973) extended this model to include item covariates with

fixed effects, and Rijmen et al. (2002) also include item covariates with random coefficients.

De Boeck & Wilson (2004) consider a wide range of item–response models viewed from a

mixed model perspective.

The connection between the Rasch model and log-linear models, which includes many

latent class models as special cases, was demonstrated by Tjur (1982). Subsequently, de Leeuw

& Verhelst (1986), Follmann (1988) and Lindsay et al. (1991) discussed semi-parametric

maximum-likelihood estimation of the one-parameter logistic item–response model by treat-

ing the latent variable or ability distribution as discrete. The model with a discrete ability

distribution can be viewed as a latent class model where all individuals within the same

latent class have the same ability, and the latent classes are ordered along the ability dimen-

sion. Magidson & Vermunt (2001) discuss latent class factor models with several independent

binary latent variables. The response model is that of a multidimensional common factor or

item–response model.

‘Mixture regression models’ (e.g. Quandt, 1972) or ‘latent class growth models’ (e.g. Nagin &

Land, 1993) are linear or generalized linear mixed models with categorical random effects. In

a longitudinal setting, such models can be used to discover different ‘latent trajectory classes’.

4. Modern frameworks for latent variable modelling

The move towards unifying latent variable models began with McDonald (1967) and

Lazarsfeld & Henry (1968) who noted the common construction principle of conditional

independence for the traditional measurement models discussed in section 2. A milestone in

the development of frameworks for latent variable modelling was the advent of the general

structural equation or LISREL model (e.g. Jöreskog, 1973) discussed in section 2.2, which

can be viewed as a synthesis of CFA from psychometrics and simultaneous equation models

from econometrics.

The LISREL model was subsequently generalized to handle other types of responses in

addition to continuous responses. Probit measurement models for dichotomous, ordinal and

censored responses were included in a series of important papers by Muthén (1983, 1984), and

Arminger & Küsters (1988, 1989) extended the approach further to include other response

types such as counts and unordered categorical responses. However, two important limi-

tations of the LISREL framework and its generalizations are that all latent variables are

continuous (and cannot be discrete) and that hierarchical or multilevel data can be handled

only in the balanced case where each cluster includes the same number of units with the same

covariate values.

Recognizing the mathematical similarity of a wide range of latent variable models, Muthén

(2002), Rabe-Hesketh et al. (2004), Skrondal & Rabe-Hesketh (2004), among others, have

developed very general frameworks for latent variable modelling which accommodate and

extend the models mentioned in section 2. In this survey, we will focus on ‘Generalized

Linear Latent and Mixed Models’ or GLLAMMs (Rabe-Hesketh et al., 2004; Skrondal &

Rabe-Hesketh, 2004) for two reasons. First, it is the framework with which we are most fami-

liar. Secondly, and perhaps more importantly, because the GLLAMM model can be written

down explicitly in its full generality just like the unifying LISREL model.

GLLAMMs consist of two building blocks: a response model and a structural model.

4.1. Response model

It has been recognized by Bartholomew (1980), Mellenbergh (1994) and others that,

conditional on the latent variables, the response model of many latent variable models is
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a generalized linear model (McCullagh & Nelder, 1989). As for such models, the response

model of GLLAMMs has three components: a link, a distribution and a linear predictor.

4.1.1. Links and conditional distributions

Let � be the vector of all latent variables in the model and let x and z denote vectors of

covariates. The conditional expectation of the response y, given x, z and �, is ‘linked’ to the

linear predictor � (see section 4.1.2) via a link function g(·),

g(E[y |x, z, �])= �. (18)

The specification is completed by choosing a conditional distribution for the response vari-

able, given the latent variables and observed covariates.

Common combinations of links and distributions include: (i) the identity link and normal

distribution for continuous responses; (ii) the logit, probit or complementary log–log link and

Bernoulli distribution for dichotomous responses; (iii) the cumulative version of these links

and multinomial distribution for ordinal responses (e.g. McCullagh, 1980); and (iv) the log

link and Poisson distribution for counts.

For some response types, such as discrete or continuous time survival data, we can use the

conventional links and distributions of generalized linear models in slightly non-

conventional ways (e.g. Allison, 1982; Clayton, 1988). For polytomous responses or discrete

choices and rankings, a multinomial logit link is used (Skrondal & Rabe-Hesketh, 2003)

which is an extension of a generalized linear model. Very flexible links can be specified with a

composite link function (e.g. Thompson & Baker, 1981; Rabe-Hesketh & Skrondal, 2007).

Different links and conditional distributions can, furthermore, be specified for different

responses. We will see applications of such mixed response models in section 5.3.

4.1.2. Linear predictor

We first consider a simplified version of the linear predictor and show in section 4.1.3 how

this can be used to specify some of the models discussed in section 2. The linear predictor

for item or unit i within cluster j can be written as

�ij =x′
ij�+

M
∑

m=1

�mjz
′
mij	m. (19)

The elements of xij are covariates with ‘fixed’ effects �. The mth latent variable �mj is multi-

plied by a linear combination z′
mij	m of covariates zmij where 	m are parameters (usually factor

loadings – but see section 5.3).

For multilevel settings where clusters are nested in superclusters, etc., the linear predictor

contains latent variables varying at the different levels l =2, . . ., L. To simplify notation, we

will not use subscripts for the units of observation at the various levels. For a model with

Ml latent variables at level l, the linear predictor has the form

�=x′�+

L
∑

l =2

Ml
∑

m=1

�(l)
m z(l)′

m 	(l)
m . (20)

4.1.3. Some traditional latent variable models as special cases

Latent class models. The exploratory latent class model can be specified using (19) with

x′
ij�=0, M =n latent variables �mj , scalar dummy covariates
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zmij =

{

1, if i =m,

0, otherwise,

and scalar �m =1:

�ij =

n
∑

m=1

�mjzmij = s′
i�j

=�ij ,

where si is a selection vector containing a 1 in position i and 0 elsewhere. The latent vari-

ables are discrete with locations �mj
= emc (m=1, . . ., n; c =1, . . ., C) and masses �c. Using a

logit link gives the model in (1) with logit(�i|c)= eic.

Item–response or common factor models. For unidimensional models M =1, we drop the m

subscript for �mj and 	m in (19) and the linear predictor for item i and unit j becomes

�ij = s′
i�+�js

′
i	=
i +�j�i , �1 =1,

where �i is the ith element of 	. Combined with an identity link and normal conditional

distribution, this is a common factor model. Heteroscedastic unique factor standard devia-

tions are specified as

ln(
√

�ii)= s′
i
,

so that �ii = exp(2�i). Combined with a logit link and a Bernoulli conditional distribution,

we get a 2-PL item-response model.

The multidimensional version of these models is produced by including M > 1 latent

variables in the linear predictor. Let am be a vector containing the indices i of the items that

measure the mth common factor. For instance, for the independent clusters two-factor model

in Fig. 3, we specify a1 = (1, 2, 3)′ and a2 = (4, 5, 6)′. Also let si [am] denote the corresponding

elements of the selection vector si . Then the linear predictor can be written as

�ij = s′
i�+

M
∑

m=1

�mjsi [am]′	m, �m1 =1,

where �m1 is the first element of 	m.

Mixed effects models. A mixed model with M random effects can be specified using scalar

zmij with �m =1:

�ij =x′
ij�+

M
∑

m=1

�mjzmij =x′
ij�+ z′

ij�j ,

where zij = (z1ij , . . ., zMij)
′. This is linear mixed model if an identity link is combined with a

normal conditional distribution and a generalized linear mixed model if other links and/or

distributions are chosen.

4.2. Structural model for the latent variables

4.2.1. Continuous latent variables

The structural model for continuous latent variables � = (�(2) ′, · · · , �(L) ′)′ has the form

�=B�+�w + �, (21)

where B is an M × M regression parameter matrix (M =
∑

l Ml ), w is a vector of observed

covariates, � is a regression parameter matrix and � is a vector of latent disturbances.
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The structural model (21) resembles the structural part of the LISREL model in (4). A

notational difference is that all latent variables are now denoted �, with relations among all

latent variables governed by the parameter matrix B and regressions of the latent variables on

observed covariates governed by �, a formulation previously used by Muthén (1984). Impor-

tantly, model (21) is a multilevel structural model where latent variables can vary at different

hierarchical levels, thus including the conventional single-level structural model of Muthén

as a special case.

Latent variables cannot be regressed on latent or observed variables varying at a lower level

because such specifications do not make sense. Furthermore, the model is currently confined

to recursive relations, not permitting feedback effects among the latent variables. The two

restrictions together imply that the matrix B is strictly upper triangular if the elements of �(l)

are permuted appropriately, with elements of �= (�(2) ′, · · · , �(L) ′)′ arranged in increasing order

of l. Each element of � varies at the same level as the corresponding element of �.

Latent disturbances at the same level may be dependent, whereas latent disturbances at

different levels are independent. We specify a multivariate normal distribution with zero mean

and covariance matrix �l for the latent disturbances at level l.

Substituting the structural model into the response model, we obtain a reduced form model

(which is nonlinear in the parameters). The reason for explicitly specifying a structural model

is that for many models we are interested in the structural parameters and not in the

reduced form parameters. For instance, in the LISREL model, �y, B and � have substantive

interpretations, over and above the reduced form parameter matrix �y(I −B)−1
� in (6). For

models without a B or � matrix, such as linear mixed models or one-parameter item–response

MIMIC models, the model can be written directly in reduced form.

4.2.2. Categorical latent variables

For discrete latent variables, the structural model is the model for the (prior) probabilities that

the units belong to the different latent classes. For a unit j, let the probability of belonging to

class c be denoted as �jc =Pr(�j
= ec). This probability may depend on covariates wj through

a multinomial logit model

�jc =
exp(w′

j�
c)

∑

d exp(w′
j�

d )
, (22)

where �c are regression parameters with �1 =0 imposed for identification.

5. Some model extensions

Having demonstrated the convergence of different kinds of traditional latent variable models

and described a framework that unifies them, we now turn to latent variable models which

are more complex than those discussed in section 2.

Many of the recent developments in latent variable modelling involve extending the models

in at least one of the following ways: (i) allowing latent variables to vary at different hier-

archical levels; (ii) combining continuous and discrete latent variables in the same model;

(iii) accommodating multiple processes and mixed responses; and (iv) specifying nonlinear

latent variable models.

5.1. Multilevel latent variable models

5.1.1. Multilevel structural equation models

In multilevel data, the units are nested in clusters, leading to within-cluster dependence. The

traditional approach to extending structural equation models to the multilevel setting is to
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formulate separate within-cluster and between-cluster models (e.g. Longford & Muthén, 1992;

Poon & Lee, 1992). Let yik be the vector of continuous responses for unit i in cluster k. Then

the within-cluster model is

yik ∼N(�k , �W (ϑW )), (23)

where �k is the mean vector for cluster k and the within-cluster covariance structure �W (ϑW )

is structured by a within-cluster structural equation model with parameters ϑW . The between-

cluster model for the cluster means is

�k ∼N(�, �B(ϑB)), (24)

where � is the population mean vector and �B(ϑB) is the between-cluster covariance structure

structured by a between-cluster structural equation model with parameters ϑB.

An advantage of this set-up is that it allows software for conventional structural equation

models to be ‘tricked’ into estimating the model. In particular, Muthén (1989) suggests an

approach which corresponds to maximum likelihood for balanced data where all clusters have

the same size n. This approach as well as an ad hoc solution for the unbalanced case are

described in detail in Muthén (1994). Goldstein (2003) describes another ad hoc approach,

using multivariate multilevel modelling to estimate �W and �B consistently by either maxi-

mum likelihood or restricted maximum likelihood. Structural equation models can then be

fitted separately to each estimated matrix.

Unfortunately, the standard implementation of the within- and between-model approaches

is limited in several ways. First, it is confined to continuous responses. Multilevel factor

models for dichotomous and ordinal measures, or equivalently, multilevel item–response

models, have been used by, for instance Ansari & Jedidi (2000), Rabe-Hesketh et al. (2004),

Goldstein & Browne (2005) and Steele & Goldstein (2006). Raudenbush & Sampson (1999)

and Maier (2001) estimate a multilevel 1-PL model which is equivalent to an ordinary

multilevel logistic regression model. A second limitation of the standard within- and between-

model is that it does not permit cross-level paths from latent or observed variables at a higher

level to latent or observed variables at a lower level, although such effects will often be of

primary interest. Thirdly, it does not allow for indicators varying at different levels. Fox &

Glas (2001) and Rabe-Hesketh et al. (2004) overcome these limitations. For instance, the

GLLAMM framework described in section 4 includes cross-level effects among latent vari-

ables via the B matrix in the structural model and can handle indicators and latent variables

varying at an arbitrary number of levels in the response model.

Fig. 5. Path diagram of multilevel structural equation model.
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As an illustration of a model requiring these features, Fig. 5 shows a multilevel struc-

tural equation model considered by Rabe-Hesketh et al. (2007c). Student-specific variables are

enclosed by the inner frame labelled ‘student j’, whereas variables outside this frame only vary

over schools k. The ability of student j in school k is denoted �
(2)

1jk and is measured by ordinal

items. It is regressed on observed student-level covariates wjk with regression parameter vec-

tor � (the vector version of �). Student-level ability is also regressed on a school-level latent

variable ‘teacher excellence’, measured by school-level ordinal items, with cross-level regres-

sion parameter b12. The random intercept �
(3)

2k represents the effects of unobserved school-level

covariates on student ability.

5.1.2. Multilevel latent class models

Vermunt (2003) extends the traditional latent class model by generalizing (22) to the multi-

level setting.

The item-level model is a conditional response model for item i, unit j, cluster k, given

class membership c. For dichotomous responses, the model can be written as

Pr(yijk =1 |�(2)

jk
= ec)=

exp(ec)

1+ exp(ec)
. (25)

The unit-level model is a multinomial logit model for class membership,

Pr(�
(2)

jk
= ec)=

exp(�c
jk)

∑

b exp(�b
jk)

,

where the linear predictor �c
jk of the structural model includes a cluster-level random intercept

�
(3)

k ,

�c
jk

= v′
jk�

c
+ �c�

(3)

k .

Here, vjk are unit- and cluster-specific covariates with fixed class-specific coefficients �c and

�c are class-specific scaling constants. (An alternative specification uses mutually correlated

class-specific random intercepts for each class but one.) A normal distribution is specified for

the cluster-level random intercept.

Vermunt (2008) discusses an alternative model where the cluster-level random intercept is

discrete.

5.2. Models with discrete and continuous latent variables

In section 5.2.1, we discuss latent variable models having a standard form but including both

continuous and discrete latent variables. By contrast, the models surveyed in section 5.2.2 are

finite mixtures of traditional latent variable models with parameters depending on class mem-

bership.

5.2.1. Continuous and discrete latent variables within otherwise traditional models

Discrete and continuous latent variables in response model. In a model for rankings, Böcken-

holt (2001) includes a discrete alternative-specific random intercept as well as continuous

common factors and random coefficients. Similarly, McCulloch et al. (2002) specify a ‘latent

class mixed model’ with both discrete and continuous random coefficients for joint model-

ling of continuous longitudinal responses and survival. The latent classes are interpreted as

subpopulations differing both in their mean trajectories of (log) prostate-specific antigen and

in their time to onset of prostate cancer. Variability among men within the same latent class
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is accommodated by the (continuous) random effects. Both Böckenholt (2001) and McCul-

loch et al. (2002) treat the discrete and continuous latent variables as independent of each

other.

Discrete latent variables in response model and continuous latent variables in structural model.

One of the models proposed by Vermunt (2003) which was described in section 5.1 includes a

continuous cluster-level random intercept in the structural model for a discrete latent

variable.

Continuous latent variables in response model and discrete latent variables in structural model.

The response model could contain only continuous latent variables, whereas discrete latent

variables appear in the structural model. A simple structural model would have the form

�jc
= ec + �j , �j ∼N(0, �), (26)

whereas more complex structural models could have class-specific residual covariance

matrices �c. These structural models are just finite mixtures of normal distributions. Such

a model was used by Verbeke & Lesaffre (1996), Allenby et al. (1998) and Lenk & DeSarbo

(2000) for random coefficient models, by Magder & Zeger (1996), Carroll et al. (1999) and

Richardson et al. (2002) for covariate measurement error models, and Uebersax (1993) and

Uebersax & Grove (1993) for measurement models with dichotomous and ordinal responses.

5.2.2. Mixtures of traditional latent variable models

Mixture structural equation models with continuous responses. In these models, any parame-

ter of a conventional structural equation model with continuous responses can depend on dis-

crete latent variables. Both the response model and the structural model can therefore differ

between latent classes, giving a multiple-group structural equation model of the kind pro-

posed by Jöreskog (1971a), with the crucial difference that group membership is unknown.

Yung (1997) and Fokoué & Titterington (2003), among others, consider the special case

of finite mixture factor models. Yung’s model can be written as

yjc =�c +�c�jc +ǫjc, (27)

where �jc are continuous common factors with class-specific variances �c = cov(�jc) and the

unique factors have class-specific covariance matrices �c = cov(ǫjc). Fokoué and Titterington

assume that �c = � and �c = I. In the context of diagnostic test agreement, Qu et al. (1996)

specify a unidimensional probit version of this model. They interpret the model as a latent

class model with a ‘random effect’ (the common factor) to relax conditional independence.

Blåfield (1980), Jedidi et al. (1997), Dolan & van der Maas (1998), Arminger et al. (1999),

McLachlan & Peel (2000), Wedel & Kamakura (2000), Muthén (2002) and others specify

‘finite mixture structural equation models’ by including a structural model

�jc
=Bc�jc +�cwjc + �jc, �c ≡ cov(�jc)

for the factors in (27).

Mixture IRT. Rost (1990) specifies a ‘mixed Rasch model’ with class-specific difficulty para-

meters. By using conditional maximum-likelihood estimation for the item parameters of each

class in the M step of an EM algorithm (which treats class membership as missing), he avoids

making assumptions regarding the ability distribution in each class. By contrast, Mislevy &
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Verhelst (1990) and Mislevy & Wilson (1996) specify normal ability distributions, the latter

paper with class-specific means and variances.

Growth mixture models. Muthén et al. (2002) consider linear mixed models where all param-

eters are class specific. The models can be thought of as a special case of mixture structural

equation models. Alternatively, they can be viewed as extensions of mixture regression mod-

els to allow for variability of the coefficients within latent classes instead of assuming that all

individuals in the same class have the same coefficients.

5.3. Multiprocess and mixed response models

In multiprocess models, several distinct processes, such as survival and repeated measures, are

modelled simultaneously to allow for dependence among them. Such models usually involve

responses of mixed types, a challenge that has been addressed by, for instance Muthén (1984),

Arminger & Küsters (1988, 1989), Moustaki (1996), Sammel et al. (1997), Bartholomew &

Knott (1999), Rabe-Hesketh et al. (2004) and Skrondal & Rabe-Hesketh (2004). In the next

sections, we discuss some common types of multiprocess models.

5.3.1. Covariate measurement error models

We first consider the problem of estimating a regression model for the relationship between

an outcome yj and covariates xj and �j ,

g(E(yj |xj , �j))=x′
j�+�j�y, (28)

where the latent covariate �j has been fallibly measured as vij at possibly multiple occasions

i.

A model for this problem can be constructed by combining three submodels (e.g. Clayton,

1992): (i) an outcome model (called ‘disease model’ in epidemiology) such as that shown

above, (ii) a measurement model,

g(E(vij |�j))=�j�i , (29)

and (iii) an exposure model,

�j
= �′ xj + �j , �j ∼N(0, �). (30)

Here, we have used the same covariate vector xj as in the outcome model, but some elements

of � and � may be zero. As usual, the measurements vij are conditionally independent of one

another given �j . An important assumption, known as non-differential measurement error,

is that vij are also conditionally independent of the outcome yj , given the latent covariate.

Note that the above covariate measurement error model represents a generalization of the

conventional covariate measurement error model described in section 2.4 to include a struc-

tural model for exposure and a generalization of the conventional MIMIC model described

in section 2.2 to mixed responses.

The basic structure of the model is perhaps best conveyed in a path diagram as shown in

the upper left panel of Fig. 6, where there are two measurements v1j and v2j of the latent

covariate �j .

5.3.2. Models for partially missing covariates

In some cases, we have a validation sample with complete data as shown in the upper right

panel of Fig. 6 where �j is observed (denoted by placing �j in a rectangle instead of a circle).
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Fig. 6. Fallibly measured and/or partially missing covariates.

The validation sample is usually small because measuring �j directly is either expensive, intru-

sive or invasive. In this case, we can exploit the information in the larger sample for which

only the fallible measures are available by considering a joint model with equality restrictions

imposed on the parameters across samples. Note that replicate measures are not required in

either sample in this case.

A similar idea can be used for partially observed covariates; see the two lower panels of

Fig. 6. Here, we combine information from a sample with an observed covariate �j (right

panel) with a sample where the covariate is missing (left panel).

If the latent variable is categorical, the model is a latent class model. Such a model can be

used for analysing data from randomized studies with non-compliance, where some individu-

als are not receiving the treatments they are randomized to receive. One way of handling the

problem is to study the effectiveness of the treatment by comparing groups as randomized

regardless of compliance (intention-to-treat). However, one is often interested in investigating

efficacy, the effect of the treatment among those taking the treatment. To compare like with

like it seems judicious to compare those taking the treatment in the active treatment group

with those in control group who would have taken the treatment (latent compliance) given

the opportunity, known as the complier average causal effect (CACE).

Complier average causal effects can be investigated by a latent class model with ‘training

data’ available for the treatment group (e.g. Muthén, 2002; Skrondal & Rabe-Hesketh, 2004).

Such a model, where �j is dichotomous, is presented in the lower part of Fig. 6 where the

left panel represents the model for the control group (where compliance �j is latent) and the

right panel the model for the treatment group (where compliance �j is observed). We could

of course have different covariates affecting compliance and the outcome.

5.3.3. Endogenous covariate models

In contrast to randomized studies, a major problem in estimating treatment or exposure

effects from observational studies is that a covariate or ‘treatment’ may be endogenous, in the
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Fig. 7. Path diagram for endogenous treatment model.

sense that it is confounded with unobserved covariates affecting the outcome. For instance,

subjects with a poor prognosis (unobserved heterogeneity) may self-select into the treatment

perceived to be best. It is hardly surprising that conventional modelling in this case can

produce severely biased estimates of the treatment effect. Hence, models attempting to correct

for selection bias by jointly modelling the outcome and treatment processes, often called

endogenous treatment models, have been suggested in econometrics (e.g. Heckman, 1978).

The outcome model for yj is specified as

g(E(yj |xj , �j))=�Tj +x′
j�1 +��j ,

where Tj is a dummy for treatment with corresponding parameter � and xj a vector of

covariates with parameter vector �1. �j ∼N(0, �) is a latent variable representing unobserved

heterogeneity that is shared between the outcome and treatment processes and � is a factor

loading. An appropriate link and distribution are specified according to the type of response yj .

The treatment model for Tj is specified as

g(E(Tj |xj , wj , �j))=x′
j�2 + z′

j�3 + �j ,

where �2 is the regression parameter vector for the covariates xj that are also included in

the outcome model and �3 is the regression parameter vector for covariates zj which are

not included in the outcome model. For the treatment model, a probit link and a Bernoulli

distribution are typically specified.

Different types of parameter constraints are necessary for identification depending on the

type of response yi . For a dichotomous or continuous response yi , we set �=1. For a

continuous response, we also use a scaled probit link for the treatment model with scale set

equal to the residual standard deviation of yi (see Skrondal & Rabe-Hesketh, 2004, p. 108).

A path diagram of a model with an endogenous covariate is shown in Fig. 7. Note that the

endogenous treatment model reduces to the famous Heckman selection model (e.g. Heckman,

1979) if �=0 and the variable Tj plays the role of sample inclusion indicator.

5.3.4. Models for non-ignorable dropout

Intermittent missingness and dropout are fundamental problems with longitudinal data. If

responses are missing for some units, these units can still contribute to parameter estimation

as long as there is at least one observed response, leading to consistent parameter estimates

if the data are missing at random (MAR) (e.g. Rubin, 1976; Little & Rubin, 2002) and the

model is correctly specified. If the responses are not missing at random (NMAR), ignoring

the missing data mechanism will, in general, lead to inconsistent parameter estimates. How-

ever, valid statistical inference can be achieved if a correctly specified joint model for the

missingness and substantive processes is used.
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Little (1993, 1995) distinguishes between two broad classes of joint models, ‘selection

models’ and ‘pattern mixture models’. In pattern mixture models, the distribution of the

longitudinal responses is specified conditional on the missingness pattern, whereas missing-

ness depends on covariates only. Here, we concentrate on selection models where dropout

may depend either on the missing responses, called ‘non-ignorable outcome-based dropout’,

or on random effects in the longitudinal model, called ‘non-ignorable random coefficient-

based dropout’ by Little (1995).

As emphasized by Hogan & Laird (1997), the same models can be used when survival

(a kind of dropout) is of primary interest and the longitudinal data represent time-varying

covariates.

Outcome-based dropout. In econometrics, Hausman & Wise (1979) proposed a model for

dropout or ‘attrition’ that was later reinvented in the statistical literature by Diggle & Ken-

ward (1994). Here, the dropout at each time-point (given that it has not yet occurred) is

modelled using a logistic (or probit) regression model with previous responses and the con-

temporaneous response as covariates. If dropout occurs, the contemporaneous response is

not observed but represented by a latent variable y∗
ij . The marginal likelihood is the joint

likelihood of the response and dropout status after integrating out the latent variable.

A simple version of the model for the response of interest yij at time i for unit j can be

written as

yij =x′
ij�+�j + ǫij ,

where �j is a unit-specific random intercept. The dropout variable, dij =1 if unit j drops out

at time i and 0 otherwise, can be modelled as

logit{Pr(dij =1 |yj)}=�1yij +�2yi−1, j ,

where yij is replaced by a latent variable y∗
ij when it is unobserved. Figure 8 shows path

diagrams for a unit with complete data across three time-points and a unit dropping out

at time 2. In the latter case, the response at time 2 is represented by a latent variable y∗
2.

Fig. 8. Path diagram of Hausman–Wise–Diggle–Kenward dropout model.
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This approach can be viewed literally as correcting for missing data that are NMAR.

However, as the estimation of �1 relies heavily on the distributional assumption for yij , it might

be advisable to instead interpret the results as a sensitivity analysis of the MAR assumption.

Random coefficient-based dropout. Wu & Carroll (1988) consider a linear growth model for

the longitudinal data with a subject-specific random intercept b0j and slope of time b1j . The term

�0b0j +�1b1j is included in the dropout model, where �0 and �1 are unknown parameters that

could be viewed as factor loadings. This type of model has also been referred to as a ‘shared

parameter model’ by Follmann & Wu (1995).

Another specification is to treat the subject-specific mean b0j +b1jtij in the linear mixed

model as a covariate in the dropout model, interpreting the subject-specific mean as the

‘latent process’ or true response with measurement error removed (e.g. Faucett & Thomas,

1996; Xu & Zeger, 2001).

Ten Have et al. (2000) specify a two-level unidimensional common factor model for a multi-

variate dichotomous response with a subject-specific random intercept which is also included

in the dropout model.

5.4. Nonlinear latent variable models

In this section, we consider models that are nonlinear in the latent variables and possibly in

the parameters.

5.4.1. Nonlinear mixed models

Nonlinear mixed models are used either because theory prescribes a particular functional form,

as, for instance in compartment models for drug absorption, distribution and elimination (see

below) or because the relationship between the response and explanatory variable(s) cannot

be well approximated by a polynomial, due to asymptotes, inflection points or other features.

The models usually have the form

yij = f (tij , �j)+ ǫij , ǫij ∼N(0, �2)

�j
=Xj�+Zjbj , bj ∼N(0, G),

(31)

where f (·) is some nonlinear function, tij is a covariate vector, Xj and Zj are covariate

matrices, � are fixed effects and bj are random effects.

Davidian & Giltinan (2003) discuss the following one-compartment model for the blood

concentration of an anti-asthmatic agent tij time units after the administration of the drug,

yij =
Dkj

Vj(kj −Cj /Vj)
{exp(−kjtij)− exp(−Citij /Vj)}+ ǫij ,

where kj is the fractional rate of absorption from the gut into the bloodstream, Vj is roughly

the volume required to account for all drug in the body and Cj is the clearance rate, repre-

senting the volume of blood from which the drug is eliminated per time unit. The model for

the vector of subject-specific random parameters �j
= (ln kj , ln Vj , ln Cj)

′ has the form of (31)

with Zj = I3. We refer to Davidian & Giltinan (2003) for a useful recent overview of nonlinear

mixed effects models.

5.4.2. Nonlinear factor models

Nonlinear factor models for continuous responses (e.g. Bartlett, 1953; McDonald, 1967;

Yalcin & Amemiya, 2001) have been proposed to relax the standard linearity specification.

The vector of responses xj is modelled as
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xj =�x
j +�j , 
j ≡g(�j),

where g(�j) is a known deterministic vector function and normality is often assumed for �j

and �j . Special cases include polynomial factor models where 
j = (�j , �
2
j , . . ., �

p
j )′, and models

with (first-order) interactions where


j = (�1j , �2j , . . ., �qj , �1j�2j , �1j�3j , . . ., �q−1, j�qj)
′
.

For example, Etezadi-Amoli & McDonald (1983) consider a two-factor model for aphasic

dysfunction where the first factor is interpreted as a general factor and the second as a

verbal–non-verbal bipolar factor. The responses are a cubic function of the first factor, a

linear function of the second factor and the interaction between the two factors.

A novel idea would be to extend multilevel structural equation models to include prod-

ucts of latent variables varying at different levels. For instance, consider a latent variable �
(2)

jk

for unit j in cluster k and a latent variable �
(3)

k for cluster k. A product term such as �
(3)

k �
(2)

jk

could then represent either (i) a cross-level interaction of latent covariates �
(3)

k and �
(2)

jk ; (ii)

a random coefficient �
(3)

k of a latent covariate �
(2)

jk ; or (iii) a latent variable �
(2)

jk with random,

cluster-specific, standard deviation �
(3)

k .

5.4.3. Nonlinear structural equation models

Structural models that are nonlinear in the latent variables have also been proposed (e.g.

Kenny & Judd, 1984). Arminger & Muthén (1998) and Lee & Zhu (2002), among others,

discuss nonlinear versions of the LISREL model for continuous responses (see section 2.2).

The structural model for latent response variables �j in terms of the latent explanatory vari-

ables �j is given by

�j
=B�j +�
j + �j , 
j ≡g(�j).

As for nonlinear factor models, g(�j) is a known deterministic vector function and normal-

ity is typically assumed for �j and �j . An example of a nonlinear relationship between latent

variables is discussed by Wall & Amemiya (2000) where the effect of parenting skills on chil-

dren’s self-restraint is large for low parenting skills and eventually levels off. Wall & Amemiya

(2007) provide a recent overview of nonlinear structural equation modelling.

6. Concluding remarks

Although our survey has been quite extensive, reflecting the major developments since

Andersen (1982), we do not claim that it is exhaustive. For instance, we have omitted model

types such as state-space models (e.g. Jones, 1993; Durbin & Koopman, 2001), Bayesian

models (e.g. Fox & Glas, 2001; Lee & Song, 2003; Dunson & Herring, 2005) and spatial

models (e.g. Knorr-Held & Best, 2001; Christensen & Amemiya, 2003; Liu et al., 2005).

We have not discussed identification and equivalence which are important challenges in

latent variable modelling (e.g. Dupacǒvá & Wold, 1982; Rabe-Hesketh & Skrondal, 2001;

Skrondal & Rabe-Hesketh, 2004, Chapter 5). Roughly speaking, identification concerns

whether the parameters of a specific model are unique in the sense that there is only one set

of parameter values that can produce a given probability distribution, whereas equivalence

concerns whether different models can produce identical probability distributions.

Regarding models with continuous latent variables, we have focused on the standard

multivariate normal case. Approaches to relaxing this assumption include using multivariate

t-distributions (e.g. Pinheiro et al., 2001), finite mixtures of normal distributions (e.g. Ueber-

sax, 1993; Magder & Zeger, 1996), truncated Hermite series expansions (e.g. Gallant &
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Nychka, 1987; Davidian & Gallant, 1992), non-parametric maximum-likelihood estimation

(e.g. Lindsay, 1995), other non-normal distributions (e.g. Lee & Nelder, 1996; Wedel & Kamak-

ura, 2001; Lee et al., 2006) or, in a Bayesian setting, semiparametric mixtures of Dirichlet

processes (e.g. Müller & Roeder, 1997).

Finally, we have not discussed the estimation of latent variable models and therefore give

a very brief outline here. When the marginal distribution of the responses is multivariate

normal, maximum-likelihood estimation is relatively straightforward because the marginal

likelihood can be written in closed form. In non-normal models, such at item–response

models, there is generally no analytic expression for the likelihood (exceptions being models

with conjugate latent variable distributions). In this case, the integrals are typically approx-

imated in one of three ways: (i) Laplace approximation and penalized quasi likelihood (e.g.

Breslow & Clayton, 1993); (ii) numerical integration (e.g. Bock & Lieberman, 1970; Rabe-

Hesketh et al., 2005); or (iii) Monte Carlo integration (e.g. Meng & Schilling, 1996; Train,

2003; Lee & Song, 2004). For models with multivariate normal latent responses, such as that

shown in (17), Muthén (1984) and Muthén & Satorra (1996) developed a limited-informa-

tion approach based on univariate and bivariate marginal distributions. Markov chain Monte

Carlo has also been used (e.g. Zeger & Karim, 1991; Lee, 2007), typically with vague prior

distributions. We refer to Skrondal & Rabe-Hesketh (2004, Chapter 6) for a comprehensive

treatment of the estimation of latent variable models.

Acknowledgements

We wish to thank The Research Council of Norway for a grant supporting our collaboration.

References

Adcock, R. J. (1877a). Note on the method of least squares. Analyst 4, 183–184.

Adcock, R. J. (1877b). A problem in least squares. Analyst 5, 53–54.

Airy, G. B. (1861). On the algebraical and numerical theory of errors of observations and the combination

of observations. MacMillan, Cambridge.

Aitkin, M., Anderson, D. & Hinde, J. (1981). Statistical modeling of data on teaching styles. J. Roy.

Statist. Soc. Ser. A 144, 419–461.

Allenby, G. M., Arora, N. & Ginter, J. L. (1998). On the heterogeneity of demand. J. Mark. Res. 35,

384–389.

Allison, P. D. (1982). Discrete time methods for the analysis of event histories. In Sociological method-

ology 1982 (ed. S. Leinhardt), 61–98. Jossey-Bass, San Francisco, CA.

Andersen, E. B. (1970). Asymptotic properties of conditional maximum likelihood estimators. J. Roy.

Statist. Soc. Ser. B Statist. Methodol. 32, 283–301.

Andersen, E. B. (1972). The numerical solution of a set of conditional estimation equations. J. Roy.

Statist. Soc. Ser. B Statist. Methodol. 34, 42–54.

Andersen, E. B. (1973). Conditional inference and models for measuring. Mentalhygiejnisk Forlag,

Copenhagen.

Andersen, E. B. (1980a). Comparing latent populations. Psychometrika 45, 121–134.

Andersen, E. B. (1980b). Discrete statistical models with social science applications. North-Holland,

Amsterdam.

Andersen, E. B. (1982). Latent structure analysis: a survey. Scand. J. Statist. 9, 1–12.

Andersen, E. B. & Madsen, M. (1977). Estimating the parameters of the latent population distribution.

Psychometrika 42, 357–374.

Anderson, T. W. & Rubin, H. (1956). Statistical inference in factor analysis. In Proceedings of the Third

Berkeley Symposium on Mathematical Statistics and Probability (ed. J. Neyman), 111–150. University

of California Press, Berkeley, CA.

Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika 43, 561–573.

Ansari, A. & Jedidi, K. (2000). Bayesian factor analysis for multilevel binary observations. Psycho-

metrika 65, 475–496.

 Board of the Foundation of the Scandinavian Journal of Statistics 2007.



Scand J Statist 34 Latent variable modelling: A survey 739
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