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Abstract. A powerful approach to probabilistic modelling involves sup-
plementing a set of observed variables with additional latent, or hidden,
variables. By defining a joint distribution over visible and latent variables,
the corresponding distribution of the observed variables is then obtained
by marginalization. This allows relatively complex distributions to be ex-
pressed in terms of more tractable joint distributions over the expanded
variable space. One well-known example of a hidden variable model is the
mixture distribution in which the hidden variable is the discrete component
label. In the case of continuous latent variables we obtain models such as
factor analysis. The structure of such probabilistic models can be made
particularly transparent by giving them a graphical representation, usually
in terms of a directed acyclic graph, or Bayesian network. In this chapter we
provide an overview of latent variable models for representing continuous
variables. We show how a particular form of linear latent variable model
can be used to provide a probabilistic formulation of the well-known tech-
nique of principal components analysis (PCA). By extending this technique
to mixtures, and hierarchical mixtures, of probabilistic PCA models we are
led to a powerful interactive algorithm for data visualization. We also show
how the probabilistic PCA approach can be generalized to non-linear latent
variable models leading to the Generative Topographic Mapping algorithm
(GTM). Finally, we show how GTM can itself be extended to model tem-
poral data.
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1. Density Modelling

One of the central problems in pattern recognition and machine learning
is that of density estimation, in other words the construction of a model
of a probability distribution given a finite sample of data drawn from that
distribution. Throughout this chapter we will consider the problem of mod-
elling the distribution of a set of continuous variables t1, . . . , td which we
will collectively denote by the vector t.

A standard approach to the problem of density estimation involves para-
metric models in which a specific form for the density is proposed which
contains a number of adaptive parameters. Values for these parameters are
then determined from an observed data set D = {t1, . . . , tN} consisting of
N data vectors. The most widely used parametric model is the normal, or
Gaussian, distribution given by

p(t|µ,Σ) = (2π)−d/2|Σ|−1/2 exp

{
−

1

2
(t − µ)Σ−1(t − µ)T

}
(1)

where µ is the mean, Σ is the covariance matrix, and |Σ| denotes the
determinant of Σ. One technique for setting the values of these parame-
ters is that of maximum likelihood which involves consideration of the log
probability of the observed data set given the parameters, i.e.

L(µ,Σ) = ln p(D|µ,Σ) =
N∑

n=1

ln p(tn|µ,Σ) (2)

in which it is assumed that the data vectors tn are drawn independently
from the distribution. When viewed as a function of µ and Σ, the quantity
p(D|µ,Σ) is called the likelihood function. Maximization of the likelihood
(or equivalently the log likelihood) with respect to µ and Σ leads to the
set of parameter values which are most likely to have given rise to the
observed data set. For the normal distribution (1) the log likelihood (2)
can be maximized analytically, leading to the intuitive result [1] that the

maximum likelihood solutions µ̂ and Σ̂ are given by

µ̂ =
1

N

N∑

n=1

tn (3)

Σ̂ =
1

N

N∑

n=1

(tn − µ̂)(tn − µ̂)T (4)

corresponding to the sample mean and sample covariance respectively.
As an alternative to maximum likelihood, we can define priors over µ

and Σ use Bayes’ theorem, together with the observed data, to determine
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the posterior distribution. An introduction to Bayesian inference for the
normal distribution is given in [5].

While the simple normal distribution (1) is widely used, it suffers from
some significant limitations. In particular, it can often prove to be too flex-
ible in that the number of independent parameters in the model can be
excessive. This problem is addressed through the introduction of continu-
ous latent variables. On the other hand, the normal distribution can also
be insufficiently flexible since it can only represent uni-modal distributions.
A more general family of distributions can be obtained by considering mix-
tures of Gaussians, corresponding to the introduction of a discrete latent
variable. We consider each of these approaches in turn.

1.1. LATENT VARIABLES

Consider the number of free parameters in the normal distribution (1). Since
Σ is symmetric, it contains d(d + 1)/2 independent parameters. There are
a further d independent parameters in µ, making d(d + 3)/2 parameters in
total. For large d this number grows like d2, and excessively large numbers
of data points may be required to ensure that the maximum likelihood
solution for Σ is well determined. One way to reduce the number of free
parameters in the model is to consider a diagonal covariance matrix, which
has just d free parameters. This, however, corresponds to a very strong
assumption, namely that the components of t are statistically independent,
and such a model is therefore unable to capture the correlations between
different components.

We now show how the number of degrees of freedom within the model
can be controlled, while still allowing correlations to be captured, by intro-
ducing latent (or ‘hidden’) variables. The goal of a latent variable model
is to express the distribution p(t) of the variables t1, . . . , td in terms of a
smaller number of latent variables x = (x1, . . . , xq) where q < d. This is
achieved by first decomposing the joint distribution p(t,x) into the product
of the marginal distribution p(x) of the latent variables and the conditional
distribution p(t|x) of the data variables given the latent variables. It is of-
ten convenient to assume that the conditional distribution factorizes over
the data variables, so that the joint distribution becomes

p(t,x) = p(x)p(t|x) = p(x)
d∏

i=1

p(ti|x). (5)

This factorization property can be expressed graphically in terms of a
Bayesian network, as shown in Figure 1.
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Figure 1. Bayesian network representation of the latent variable distribution given by
(5), in which the data variables t1, . . . , td are independent given the latent variables x.

y(x;w)
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Figure 2. The non-linear function y(x;w) defines a manifold S embedded in data
space given by the image of the latent space under the mapping x → y.

We next express the conditional distribution p(t|x) in terms of a map-
ping from latent variables to data variables, so that

t = y(x;w) + u (6)

where y(x;w) is a function of the latent variable x with parameters w,
and u is an x-independent noise process. If the components of u are uncor-
related, the conditional distribution for t will factorize as in (5). Geomet-
rically the function y(x;w) defines a manifold in data space given by the
image of the latent space, as shown in Figure 2.

The definition of the latent variable model is completed by specifying
the distribution p(u), the mapping y(x;w), and the marginal distribution
p(x). As we shall see later, it is often convenient to regard p(x) as a prior

distribution over the latent variables.
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The desired model for the distribution p(t) of the data is obtained by
marginalizing over the latent variables

p(t) =

∫
p(t|x)p(x) dx. (7)

This integration will, in general, be analytically intractable except for spe-
cific forms of the distributions p(t|x) and p(x).

One of the simplest latent variable models is called factor analysis [3, 4]
and is based on a linear mapping y(x;w) so that

t = Wx + µ + u, (8)

in which W and µ are adaptive parameters. The distribution p(x) is chosen
to be a zero-mean unit covariance Gaussian distribution N (0, I), while the
noise model for u is also a zero mean Gaussian with a covariance matrix Ψ

which is diagonal. Using (7) it is easily shown that the distribution p(t) is
also Gaussian, with mean µ and a covariance matrix given by Ψ+WWT.

The parameters of the model, comprising W, Ψ and µ, can again be
determined by maximum likelihood. There is, however, no longer a closed-
form analytic solution, and so their values must be determined by iterative
procedures. For q latent variables, there are q×d parameters in W together
with d in Ψ and d in µ. There is some redundancy between these param-
eters, and a more careful analysis shows that the number of independent
degrees of freedom in this model is given by

(d + 1)(q + 1) − q(q + 1)/2. (9)

The number of independent parameters in this model therefore only grows
linearly with d, and yet the model can still capture the dominant correla-
tions between the data variables. We consider the nature of such models in
more detail in Section 2.

1.2. MIXTURE DISTRIBUTIONS

The density models we have considered so far are clearly very limited in
terms of the variety of probability distributions which they can model since
they can only represent distributions which are uni-modal. However, they
can form the basis of a very general framework for density modelling, ob-
tained by considering probabilistic mixtures of M simpler parametric dis-
tributions. This leads to density models of the form

p(t) =
M∑

i=1

πip(t|i) (10)
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in which the p(t|i) represent the individual components of the mixture and
might consist, for example, of normal distributions of the form (1) each
with its own independent mean µi and covariance matrix Σi. The param-
eters πi in (10) are called mixing coefficients and satisfy the requirements
0 ≤ πi ≤ 1 and

∑
i πi = 1 so that p(t) will be non-negative and will in-

tegrate to unity (assuming the individual component densities also have
these properties). We can represent the mixture distribution (10) as a sim-
ple Bayesian network, as shown in Figure 3.

t

p i( | )t

i

pi

Figure 3. Bayesian network representation of a simple mixture distribution.

The mixing coefficients can be interpreted as prior probabilities for the
values of the label i. For a given data point tn we can then use Bayes’
theorem to evaluate the corresponding posterior probabilities, given by

Rni ≡ p(i|tn) =
πip(tn|i)∑
j πjp(tn|j)

. (11)

The value of p(i|tn) can be regarded as the responsibility which component i
takes for ‘explaining’ data point tn. Effectively this is using Bayes’ theorem
to reverse the direction of the arrow in Figure 3.

The log likelihood for the mixture distribution takes the form

L({πi, µi,Σi}) =
N∑

n=1

ln

{
M∑

i=1

πip(t|i)

}
. (12)

Maximization of this log likelihood is more complex than for a single com-
ponent due to the presence of the sum inside the logarithm. An elegant and
powerful technique for performing this optimization called the expectation-
maximization (EM) algorithm [11], and an introductory account of EM in
the context of mixture distributions is given in [5]. The EM algorithm is
based on the observation that, if we were given a set of indicator variables
zni specifying which component i was responsible for generating each data
point tn, then the log likelihood would take the form

Lcomp({πi, µi,Σi}) =
N∑

n=1

M∑

i=1

zni ln {πip(t|i)} (13)
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and its optimization would be straightforward, with the result that each
component is fitted independently to the corresponding group of data points,
and the mixing coefficients are given by the fractions of points in each group.

The {zni} are regarded as ‘missing data’, and the data set {tn} is said
to be ‘incomplete’. Combining {tn} and {zni} we obtain the corresponding
‘complete’ data set, with a log likelihood given by (13). Of course, the values
of {zni} are unknown, but their posterior distribution can be computed
using Bayes’ theorem, and the expectation of zni under this distribution
is just the set of responsibilities Rni given by (11). The EM algorithm is
based on the maximization of the expected complete-data log likelihood
given from (13) by

〈Lcomp({πi, µi,Σi})〉 =
N∑

n=1

M∑

i=1

Rni ln {πip(t|i)} . (14)

It alternates between the E-step, in which the Rni are evaluated using
(11), and the M-step in which (14) is maximized with respect to the model
parameters to give a revised set of parameter values. At each cycle of the
EM algorithm the true log likelihood is guaranteed to increase unless it is
already at a local maximum [11].

The EM algorithm can also be applied to the problem of maximizing
the likelihood for a single latent variable model of the kind discussed in
Section 1.1. We note that the log likelihood for such a model takes the
form

L(W, µ,Ψ) =
N∑

n=1

ln p(tn) =
N∑

n=1

ln

{∫
p(tn|xn)p(xn) dxn

}
. (15)

Again, this is difficult to treat because of the integral inside the logarithm.
In this case the values of xn are regarded as the missing data. Given the
prior distribution p(x) we can consider the corresponding posterior distri-
bution obtained through Bayes’ theorem

p(xn|tn) =
p(tn|xn)p(xn)

p(tn)
(16)

and the sufficient statistics for this distribution are evaluated in the E-step.
The M-step involves maximization of the expected complete-data log like-
lihood and is generally much simpler than the direct maximization of the
true log likelihood. For simple models such as the factor analysis model dis-
cussed in Section 1.1 this maximization can be performed analytically. The
EM (expectation-maximization) algorithm for maximizing the likelihood
function for standard factor analysis was derived by Rubin and Thayer
[23].
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We can combine the technique of mixture modelling with that of latent
variables, and consider a mixture of latent-variable models. The correspond-
ing Bayesian network is shown in Figure 4. Again, the EM algorithm pro-

t1
tdt2

p t i( | , )d x

i

pi p( )x

x

Figure 4. Bayesian network representation of a mixture of latent variable models. Given
the values of i and x, the variables t1, . . . , td are conditionally independent.

vides a natural framework for determination of the model parameters, and
allows both the values of the component label i and of the latent variable
x to be treated together as missing data.

In the subsequent sections of this chapter we shall see how the con-
cepts of latent variables and mixture distributions can be used in a fruitful
partnership to obtain a range of powerful algorithms for density modelling,
pattern classification and data visualization.

2. Probabilistic Principal Component Analysis

Principal component analysis is a well-established technique for dimension-
ality reduction, and a chapter on the subject may be found in practically
every text on multivariate analysis. Examples of its many applications in-
clude data compression, image processing, data visualization, exploratory
data analysis, and pattern recognition.

The most common derivation of PCA is in terms of a standardized
linear projection which maximizes the variance in the projected space [14].
For a set of observed d-dimensional data vectors {tn}, n ∈ {1 . . . N}, the
q principal axes vj , j ∈ {1, . . . , q}, are those orthonormal axes onto which
the retained variance under projection is maximal. It can be shown that
the vectors vj are given by the q dominant eigenvectors (i.e. those with the
largest associated eigenvalues λj) of the sample covariance matrix

S =
1

N

N∑

n=1

(tn − µ̂)(tn − µ̂)T (17)

such that Svj = λjvj . Here µ̂ is the sample mean, given by (3). The q
principal components of the observed vector tn are given by the vector
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un = VT(tn − µ̂), where VT = (v1, . . . ,vq)
T, in which the variables uj are

decorellated such that the covariance matrix for u is diagonal with elements
{λj}.

A complementary property of PCA, and that most closely related to
the original discussions of Pearson [20], is that, of all orthogonal linear
projections xn = VT(tn−µ̂), the principal component projection minimizes
the squared reconstruction error

∑
n ‖tn − t̂n‖

2, where the optimal linear
reconstruction of tn is given by t̂n = Vxn + µ̂.

One serious disadvantage of both these definitions of PCA is the absence
of a probability density model and associated likelihood measure. Deriving
PCA from the perspective of density estimation would offer a number of
important advantages, including the following:

• The corresponding likelihood measure would permit comparison with
other density–estimation techniques and would facilitate statistical
testing.

• Bayesian inference methods could be applied (e.g. for model comparison)
by combining the likelihood with a prior.

• If PCA were used to model the class–conditional densities in a classifica-
tion problem, the posterior probabilities of class membership could be
computed.

• The value of the probability density function would give a measure of the
novelty of a new data point.

• The single PCA model could be extended to a mixture of such models.

In this section we review the key result of Tipping and Bishop [25], which
shows that principal component analysis may indeed be obtained from a
probability model. In particular we show that the maximum-likelihood es-
timator of W in (8) for a specific form of latent variable models is given by
the matrix of (scaled and rotated) principal axes of the data.

2.1. RELATIONSHIP TO LATENT VARIABLES

Links between principal component analysis and latent variable models
have already been noted by a number of authors. For instance Anderson [2]
observed that principal components emerge when the data is assumed to
comprise a systematic component, plus an independent error term for each
variable having common variance σ2. Empirically, the similarity between
the columns of W and the principal axes has often been observed in situa-
tions in which the elements of Ψ are approximately equal [22]. Basilevsky
[4] further notes that when the model WWT + σ2I is exact, and therefore
equal to S, the matrix W is identifiable and can be determined analytically
through eigen-decomposition of S, without resort to iteration.
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As well as assuming that the model is exact, such observations do not
consider the maximum-likelihood context. By considering a particular case
of the factor analysis model in which the noise covariance is isotropic so
that Ψ = σ2I, we now show that even when the data covariance matrix
cannot be expressed exactly using the form WWT + σ2I, the maximum-
likelihood estimator WML is that matrix whose columns are the scaled and
rotated principal eigenvectors of the sample covariance matrix S [25]. An
important consequence of this derivation is that PCA may be expressed in
terms of a probability density model, which we shall refer to as probabilistic
principal component analysis (PPCA).

2.2. THE PROBABILITY MODEL

For the isotropic noise model u ∼ N(0, σ2I), equations (6) and (8) imply
a probability distribution over t-space for a given x given by

p(t|x) = (2πσ2)−d/2 exp

{
−

1

2σ2
‖t − Wx − µ‖2

}
. (18)

In the case of an isotropic Gaussian prior over the latent variables defined
by

p(x) = (2π)−q/2 exp

{
−

1

2
xTx

}
(19)

we then obtain the marginal distribution of t in the form

p(t) =

∫
p(t|x)p(x)dx (20)

= (2π)−d/2|C|−1/2 exp

{
−

1

2
(t − µ)TC−1(t − µ)

}
(21)

where the model covariance is

C = σ2I + WWT. (22)

Using Bayes’ theorem, the posterior distribution of the latent variables
x given the observed t is given by

p(x|t) = (2π)−q/2|σ2M|−1/2 ×

exp

{
−

1

2
(x − 〈x〉)T(σ2M)−1(x − 〈x〉)

}
(23)

where the posterior covariance matrix is given by

σ2M = σ2(σ2I + WTW)−1 (24)
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and the mean of the distribution is given by

〈x〉 = M−1WT(t − µ). (25)

Note that M has dimension q × q while C has dimension d × d.
The log-likelihood for the observed data under this model is given by

L =
N∑

n=1

ln{p(tn)}

= −
Nd

2
ln(2π) −

N

2
ln |C| −

N

2
Tr

{
C−1S

}
(26)

where the sample covariance matrix S of the observed {tn} is given by (17).
In principle, we could determine the parameters for this model by max-

imizing the log-likelihood L using the EM algorithm of Rubin and Thayer
[23]. However, we now show that, for the case of an isotropic noise covari-
ance of the form we are considering, there is an exact analytical solution
for the model parameters.

2.3. PROPERTIES OF THE MAXIMUM-LIKELIHOOD SOLUTION

Our key result is that the log-likelihood (26) is maximized when the columns
of W span the principal subspace of the data. To show this we consider the
derivative of (26) with respect to W:

∂L

∂W
= N(C−1SC−1W − C−1W) (27)

which may be obtained from standard matrix differentiation results (see
[19], pp 133). In [25] it is shown that, with C given by (22), the only non-
zero stationary points of (27) occur for:

W = Uq(Λq − σ2I)1/2R (28)

where the q column vectors in Uq are eigenvectors of S, with correspond-
ing eigenvalues in the diagonal matrix Λq, and R is an arbitrary q × q
orthogonal rotation matrix. Furthermore, it is also shown that the station-
ary point corresponding to the global maximum of the likelihood occurs
when Uq comprises the principal eigenvectors of S (i.e. the eigenvectors
corresponding to the q largest eigenvalues) and that all other combinations
of eigenvectors represent saddle-points of the likelihood surface. Thus, from
(28), the columns of the maximum-likelihood estimator WML contain the
principal eigenvectors of S, with scalings determined by the corresponding
eigenvalues together with the parameter σ2, and with arbitrary rotation.
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It may also be shown that for W = WML, the maximum-likelihood
estimator for σ2 is given by

σ2
ML =

1

d − q

d∑

j=q+1

λj (29)

which has a clear interpretation as the variance ‘lost’ in the projection,
averaged over the lost dimensions. Note that the columns of WML are not
orthogonal since

WT
MLWML = RT(Λq − σ2I)R, (30)

which in general is not diagonal. However, the columns of W will be or-
thogonal for the particular choice R 6= I.

In summary, we can obtain a probabilistic principal components model
by finding the q principal eigenvectors and eigenvalues of the sample co-
variance matrix. The density model is then given by a Gaussian distri-
bution with mean µ given by the sample mean, and a covariance matrix
WWT + σ2I in which W is given by (28) and σ2 is given by (29).

3. Mixtures of Probabilistic PCA

We now extend the latent variable model of Section 2 by considering a mix-
ture of probabilistic principal component analysers [24], in which the model
distribution is given by (10) with component densities given by (22). It is
straightforward to obtain an EM algorithm to determine the parameters
πi, µi, Wi and σ2

i . The E-step of the EM algorithm involves the use of the
current parameter estimates to evaluate the responsibilities of the mixture
components i for the data points tn, given from Bayes’ theorem by

Rni =
p(tn|i)πi

p(tn)
. (31)

In the M-step, the mixing coefficients and component means are re-estimated
using

π̃i =
1

N

N∑

n=1

Rni (32)

µ̃i =

∑N
n=1 Rnitn∑N
n=1 Rni

(33)

while the parameters Wi and σ2
i are obtained by first evaluating the weighted

covariance matrices given by

Si =

∑N
n=1 Rni(tn − µ̃)(tn − µ̃)T

∑N
n=1 Rni

(34)
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and then applying (28) and (29).

3.1. EXAMPLE APPLICATION: HAND-WRITTEN DIGIT
CLASSIFICATION

One potential application for high-dimensional density models is handwrit-
ten digit recognition. Examples of gray-scale pixel images of a given digit
will generally lie on a lower-dimensional smooth continuous manifold, the
geometry of which is determined by properties of the digit such as rotation,
scaling and thickness of stroke. One approach to the classification of such
digits (although not necessarily the best) is to build a model of each digit
separately, and classify unseen digits according to the model to which they
are most ‘similar’.

Hinton et al. [12] discussed the problem of handwritten digit problem,
and applied a ‘mixture’ of conventional PCA models, using soft reconstruction-
based clustering, to the classification of scaled and smoothed 8-by-8 gray-
scale images taken from the CEDAR U.S. postal service database [15]. The
models were constructed using an 11,000-digit subset of the ‘br ’ data set
(which was further split into training and validation sets), and the ‘bs’
test set was classified according to which model best reconstructed each
digit. We repeated the experiment with the same data using the probabilis-
tic PCA mixture approach utilizing the same choice of parameter values
(M = 10 and q = 10). The same method of classification was used, and
the best model on the validation set misclassified 4.64% of the digits in
the test set, while Hinton et al. [12] reported an error of 4.91%. We would
expect the improvement to be a result partly of the localized clustering of
the PPCA model, but also the use of individually-estimated values of σ2

i

for each component, rather than a single, arbitrarily-chosen, global value
used in [12].

One of the advantages of the PPCA methodology is that the definition of
the density model permits the posterior probabilities of class membership
to be computed for each digit and utilized for subsequent classification.
After optimizing the parameters M and q for each model to obtain the
best performance on the validation set, the model misclassified 4.61% of
the test set. An advantage of the use of posterior probabilities is that it
is possible to reject (using an optimal criterion) a proportion of the test
samples about which the classifier is most ‘unsure’, and thus improve the
classification performance on the remaining data. Using this approach to
reject 5% of the test examples resulted in a misclassification rate of 2.50%.
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4. Hierarchical Mixtures for Data Visualization

An interesting application for the PPCA model, and mixtures of PPCA
models, is to the problem of data visualization. By considering a further
extension to a hierarchical mixture model, we are led to a powerful inter-
active algorithm for visualization which retains a probabilistic framework
and which can provide considerable insight into the structure of data in
spaces of high dimensionality [10].

4.1. VISUALIZATION USING PROBABILISTIC PCA

Consider first the use of a single PPCA model for data visualization. In
standard principal component analysis, the data points are visualized by
orthogonal projection onto the principal components plane (spanned by the
two leading eigenvectors). For our probabilistic PCA model this projection
is modified slightly. From (23) and (25) it may be seen that the posterior

mean projection of tn is given by 〈xn〉 = M−1WT(tn − µ̂). When σ2 → 0,
M−1 → (WTW)−1 and WM−1WT then becomes an orthogonal projec-
tion, and so PCA is recovered (although the density model then becomes
singular, and thus undefined). For σ2 > 0, the projection onto the manifold
is shrunk towards the origin as a result of the prior over x. Because of this,
W〈xn〉 is not an orthogonal projection of tn. We note, however, that infor-
mation is not lost because of this shrinkage, since each data point may still
be optimally reconstructed from the latent variable by taking the shrinkage
into account. With W = WML the required reconstruction is given by

t̂n = WML{W
T
MLWML}

−1M〈xn〉, (35)

and is derived in [25]. Thus the latent variables convey the necessary infor-
mation to reconstruct the original data vector optimally, even in the case
of σ2 > 0.

The data set can therefore be visualized by mapping each data point
onto the corresponding posterior mean 〈xn〉 in the two-dimensional latent
space, as illustrated in Figure 5. Note that this type of visualization plot
satisfies a topographic property in that points in data space which are
sufficiently close will map to points in latent space which are also close.

We illustrate the visualization properties of this model using a toy data
set consisting of 450 data points generated from a mixture of three Gaus-
sians in three-dimensional space. Each Gaussian is relatively flat (has small
variance) in one dimension, and two of these clusters are closely spaced
with their principal planes parallel to each other, while the third is well
separated from the first two. The structure of this data set has been chosen
order to demonstrate the benefits of the interactive hierarchical approach
developed in Section 4.3. A single two-dimensional latent variable model is
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tn

x

prior

posterior

Figure 5. Illustration of the projection of a data vector tn onto the point on the principal
subspace corresponding to the posterior mean.

trained on this data set, and the result of plotting the posterior means of
the data points is shown in Figure 6.
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Figure 6. Plot of the posterior means of the data points from the toy data set, obtained
from the probabilistic PCA model, indicating the presence of (at least) two distinct
clusters.

4.2. MIXTURE MODELS FOR DATA VISUALIZATION

Next we consider the application of a simple mixture of PPCA models to
data visualization. Once a mixture of probabilistic PCA models has been
fitted to the data set, the procedure for visualizing the data points involves
plotting each data point tn on each of the two-dimensional latent spaces at
the corresponding posterior mean position 〈xni〉 given by

〈xni〉 = (WT
i Wi + σ2

i I)
−1WT

i (tn − µi) (36)

as illustrated in Figure 7.
As a further refinement, the density of ‘ink’ for each data point tn

is weighted by the corresponding responsibility Rni of model i for that
data point, so that the total density of ‘ink’ is distributed by a partition of
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tn

Figure 7. Illustration of the projection of a data vector onto two principal surfaces in a
probabilistic PCA mixture model.

unity across the plots. Thus, each data point is plotted on every component
model projection, while if a particular model takes nearly all of the posterior
probability for a particular data point, then that data point will effectively
be visible only on the corresponding latent space plot.

We shall regard the single PPCA plot introduced in Section 4.1 as the
top level in a hierarchical visualization model, in which the mixture model
forms the second level. Extensions to further levels of the hierarchy will be
developed in Section 4.3.

The model can be extended to provide an interactive data exploration
tool as follows. On the basis of the single top-level plot the user decides
on an appropriate number of models to fit at the second level, and se-
lects points x(i) on the plot, corresponding, for example, to the centres of
apparent clusters. The resulting points y(i) in data space, obtained from
y(i) = Wx(i) +µ, are then used to initialize the means µi of the respective
sub-models. To initialize the matrices Wi we first assign the data points to
their nearest mean vector µi and then compute the corresponding sample
covariance matrices. This is a hard clustering analogous to K-means and
represents an approximation to the posterior probabilities Rni in which the
largest posterior probability is replaced by 1 and the remainder by 0. For
each of these clusters we then find the eigenvalues and eigenvectors of the
sample covariance matrix and hence determine the probabilistic PCA den-
sity model. This initialization is then used as the starting point for the EM
algorithm.

Consider the application of this procedure to the toy data set intro-
duced in Section 4.1. At the top level we observed two apparent clusters,
and so we might select a mixture of two models for the second level, with
centres initialized somewhere near the centres of the two clusters seen at
the top level. The result of fitting this mixture by EM leads to the two-level
visualization plot shown in Figure 8.

The visualization process can be enhanced further by providing infor-
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Figure 8. The result of applying the two-level visualization algorithm to the toy data
set. At the second level a mixture of two latent variable models has been fitted and the
data plotted on each latent space using the approach described in the text. In addition,
the two latent planes have been visualized by projection back onto the top-level model.
The left-hand plane at the second level is almost perpendicular to the top-level plane
(as can be seen by its projection) giving further insight into why the two clusters which
appear well separated on the left-hand second-level model appear to be overlapping at
the top level.

mation at the top level on the location and orientation of the latent spaces
corresponding to the second level, as shown in Figure 8. This is achieved
by considering the orthogonal projection of the latent plane in data space
onto the corresponding plane of the parent model.

4.3. HIERARCHICAL MIXTURE MODELS

We now extend the mixture representation of Section 1.2 to give a hier-
archical mixture model. Our formulation will be quite general and can be
applied to hierarchical mixtures of any parametric density. So far we have
considered a two-level system consisting of a single latent variable model at
the top level and a mixture of M0 such models at the second level. We can
now extend the hierarchy to a third level by associating a group Gi of latent
variable models with each model i in the second level. The corresponding
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probability density can be written in the form

p(t) =
M0∑

i=1

πi

∑

j∈Gi

πj|ip(t|i, j) (37)

where p(t|i, j) again represent independent latent variable models, and πj|i

correspond to sets of mixing coefficients, one set for each i, which satisfy
0 ≤ πj|i ≤ 1 and

∑
j πj|i = 1. Thus each level of the hierarchy corresponds

to a generative model, with lower levels giving more refined and detailed
representations. This model is illustrated in Figure 9.

Figure 9. An example structure for the hierarchical mixture model.

Hierarchical mixtures of conditional density estimators were introduced
by Jordan and Jacobs [16] in which all of the component distributions,
as well as the various mixing coefficients, are conditioned on an observed
‘input’ vector. However, we are interested in hierarchical mixtures of un-
conditional density models. In this case a mixture of mixtures would be
equivalent to a simple flat mixture and nothing would be gained from the
hierarchy. In order to achieve the goal of hierarchical modelling we need to
constrain the parameters of the model.

To see the appropriate form for the constraint, we note that the deter-
mination of the parameters of the models at the third level can again be
viewed as a missing data problem in which the missing information corre-
sponds to labels specifying which model generated each data point. When
no information about the labels is provided the log likelihood for the model
(37) would take the form

L =
N∑

n=1

ln





M0∑

i=1

πi

∑

j∈Gi

πj|ip(t|i, j)



 (38)
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and the model would collapse to a simple mixture model. If, however, we
were given a set of indicator variables zni specifying which model i at the
second level generated each data point tn then the log likelihood would
become

L =
N∑

n=1

M0∑

i=1

zni ln



πi

∑

j∈Gi

πj|ip(t|i, j)



 . (39)

In fact we only have partial, probabilistic, information in the form of the
posterior responsibilities Rni for each model i having generated the data
points tn, obtained from the second level of the hierarchy. The correspond-
ing log likelihood is obtained by taking the expectation of (39) with respect
to the posterior distribution of the zni to give

L =
N∑

n=1

M0∑

i=1

Rni ln



πi

∑

j∈Gi

πj|ip(t|i, j)



 (40)

in which the Rni are treated as constants. In the particular case in which the
Rni are all 0 or 1, corresponding to complete certainty about which model
in the second level is responsible for each data point, the log likelihood (40)
reduces to the form (39).

Maximization of (40) can again be performed using the EM algorithm,
as shown in [10]. This has the same form as the EM algorithm for a simple
mixture, discussed in Section 1.2, except that in the E-step, the posterior
probability that model (i, j) generated data point tn is given by

Rni,j = RniRnj|i (41)

in which

Rnj|i =
πj|ip(tn|i, j)∑
j′ πj′|ip(tn|i, j′)

. (42)

This result automatically satisfies the relation

∑

j∈Gi

Rni,j = Rni (43)

so that the responsibility of each model at the second level for a given data
point n is shared by a partition of unity between the corresponding group
of offspring models at the third level. It is straightforward to extend this
hierarchical approach to any desired number of levels.

The result of applying this approach to the toy data set is shown in
Figure 10.
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Figure 10. Plot of the complete three-level hierarchy for the toy data set. At the
third level the three clusters have been almost perfectly separated. The structure of this
particular hierarchical model is as shown in Figure 9.

4.4. EXAMPLE: OIL FLOW DATA

We now illustrate the application of the hierarchical visualization algorithm
by considering an example data set arising from a non-invasive monitoring
system used to determine the quantity of oil in a multi-phase pipeline con-
taining a mixture of oil, water and gas [7]. The diagnostic data is collected
from a set of three horizontal and three vertical beam-lines along which
gamma rays at two different energies are passed. By measuring the degree
of attenuation of the gammas, the fractional path length through oil and
water (and hence gas) can readily be determined, giving 12 diagnostic mea-
surements in total. In practice the aim is to solve the inverse problem of
determining the fraction of oil in the pipe. The complexity of the problem
arises from the possibility of the multi-phase mixture adopting one of a
number of different geometrical configurations. Our goal is to visualize the
structure of the data in the original 12-dimensional space. A data set con-
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sisting of 1000 points is obtained synthetically by simulating the physical
processes in the pipe, including the presence of noise determined by photon
statistics. Locally, the data is expected to have an intrinsic dimensionality
of 2 corresponding to the 2 degrees of freedom given by the fraction of oil
and the fraction of water (the fraction of gas being redundant). However,
the presence of different configurations, as well as the geometrical inter-
action between phase boundaries and the beam paths, leads to numerous
distinct clusters. It would appear that a hierarchical approach of the kind
discussed here should be capable of discovering this structure. Results from
fitting the oil flow data using a 3-level hierarchical model are shown in
Figure 11.
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Figure 11. Results of fitting the oil data. The symbols denote different multi-phase flow
configurations corresponding to homogeneous (•), annular (◦) and laminar (+). Note, for
example, how the apparently single cluster, number 2, in the top level plot is revealed to
be two quite distinct clusters at the second level.

In the case of the toy data, the optimal choice of clusters and sub-
clusters is relatively unambiguous and a single application of the algorithm
is sufficient to reveal all of the interesting structure within the data. For
more complex data sets, it is appropriate to adopt an exploratory perspec-
tive and investigate alternative hierarchies through the selection of differing
numbers of clusters and their respective locations. The example shown in
Figure 11 has clearly been highly successful. Note how the apparently single
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cluster, number 2, in the top-level plot is revealed to be two quite distinct
clusters at the second level. Also, data points from the ‘homogeneous’ con-
figuration have been isolated and can be seen to lie on a two-dimensional
triangular structure in the third level. Inspection of the corresponding value
of σ2 confirms that this cluster is confined to a nearly planar sub-space, as
expected from the physics of the diagnostic data for the homogeneous con-
figurations.

5. Non-linear Models: The Generative Topographic Mapping

The latent variable models we have considered so far are based on a map-
ping from latent variables to data variables of the form (6) in which the
function y(x;w) is linear in x. Thus the manifold S in data space, shown
in Figure 2 is a hyperplane. Data living on a manifold which is not hyper-
planar (for example the hand-written digits data considered in Section 3.1)
can then be approximated using a mixture of linear latent variable models.
An alternative approach, however, would be to consider a latent variable
model which is non-linear.

The difficulty with using a non-linear mapping function y(x;w) in (6)
is that in general the integration over x in (7) will become analytically
intractable. However, by making careful model choices a tractable, non-
linear model, called the Generative Topographic Mapping or GTM, can be
derived [9].

The central concept is to introduce a prior distribution p(x) given by
a sum of delta functions centred on the nodes of a regular grid in latent
space

p(x) =
1

K

K∑

i=1

δ(x − xi) (44)

in which case the integral in (7) can be performed analytically even for non-
linear functions y(x;w). The conditional distribution p(t|x) is chosen to be
an isotropic Gaussian with variance σ2. (Note that this is easily generalized
to deal with mixed continuous and categorical data by considering the
corresponding product of Gaussian and multinomial distributions.) Each
latent point xi is then mapped to a corresponding point y(xi;w) in data
space, which forms the centre of a Gaussian density function, as illustrated
in Figure 12. From (7) and (44) we see that the distribution function in
data space then takes the form

p(t|W, σ2) =
1

K

K∑

i=1

p(t|xi,W, σ2) (45)
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t1

t2t3

y(x;w)

x1

x2

Figure 12. In order to formulate a tractable non-linear latent variable model, we
consider a prior distribution p(x) consisting of a superposition of delta functions,
located at the nodes of a regular grid in latent space. Each node xi is mapped to a
corresponding point y(xi;w) in data space, and forms the centre of a corresponding
Gaussian distribution.

which corresponds to a constrained Gaussian mixture model [13] since the
centres of the Gaussians, given by y(xi;w), cannot move independently but
are related through the function y(x;w). Note that, provided the mapping
function y(x;w) is smooth and continuous, the projected points y(xi;w)
will necessarily have a topographic ordering in the sense that any two points
xA and xB which are close in latent space will map to points y(xA;w) and
y(xB;w) which are close in data space.

5.1. AN EM ALGORITHM FOR GTM

Since GTM is a form of mixture model it is natural to seek an EM algorithm
for maximizing the corresponding log likelihood. By choosing a particular
form for the mapping y(x;w) we can obtain an EM algorithm in which the
M-step has a simple form. In particular we shall choose y(x;w) to be given
by a generalized linear regression model of the form

y(x;w) = Wφ(x) (46)

where the elements of φ(x) consist of M fixed basis functions φj(x), and W

is a d × M matrix. Generalized linear regression models possess the same
universal approximation capabilities as multi-layer adaptive networks, pro-
vided the basis functions φj(x) are chosen appropriately. The usual limita-
tion of such models, however, is that the number of basis functions must
typically grow exponentially with the dimensionality q of the input space
[5]. In the present context this is not a significant problem since the dimen-
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sionality is governed by the number of latent variables which will typically
be small. In fact for data visualization applications we generally use q = 2.

In the E-step of the EM algorithm we evaluate the posterior probabilities
for each of the latent points i for every data point tn using

Rin = p(xi|tn,W, σ2) (47)

=
p(tn|xi,W, σ2)

∑K

i′=1
p(tn|xi′ ,W, σ2)

. (48)

Then in the M-step we obtain a revised value for W by solving a set of
coupled linear equations of the form

ΦTGΦWT = ΦTRT (49)

where Φ is a K × M matrix with elements Φij = φj(xi), T is a N × d
matrix with elements tnk, R is a K × N matrix with elements Rin, and G

is a K × K diagonal matrix with elements

Gii =
N∑

n=1

Rin(W, σ2). (50)

We can now solve (49) for W using singular value decomposition to allow
for possible ill-conditioning. Also in the M-step we update σ2 using the
following re-estimation formula

σ2 =
1

Nd

N∑

n=1

K∑

i=1

Rin(W, σ2) ‖Wφ(xi) − tn‖
2 . (51)

Note that the matrix Φ is constant throughout the algorithm, and so need
only be evaluated once at the start.

When using GTM for data visualization we can again plot each data
point at the point on latent space corresponding to the mean of the posterior
distribution, given by

〈x|tn,W, σ2〉 =

∫
xp(x|tn,W, σ2) dx (52)

=
K∑

i=1

Rinxi. (53)

It should be borne in mind, however, that as a consequence of the non-
linear mapping from latent space to data space the posterior distribution
can be multi-modal in which case the posterior mean can potentially give a
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very misleading summary of the true distribution. An alternative approach
is therefore to evaluate the mode of the distribution, given by

imax = arg max
{i}

Rin. (54)

In practice it is often convenient to plot both the mean and the mode for
each data point, as significant differences between them can be indicative
of a multi-modal distribution.

One of the motivations for the development of the GTM algorithm
was to provide a principled alternative to the widely used ‘self-organizing
map’ (SOM) algorithm [17] in which a set of unlabelled data vectors tn

(n = 1, . . . , N) in a d-dimensional data space is summarized in terms of
a set of reference vectors having a spatial organization corresponding to
a (generally) two-dimensional sheet. These reference vectors are analogous
to the projections of the latent points into data space given by y(xi;w).
While the SOM algorithm has achieved many successes in practical appli-
cations, it also suffers from some significant deficiencies, many of which are
highlighted in [18]. These include: the absence of a cost function, the lack
of any guarantee of topographic ordering, the absence of any general proofs
of convergence, and the fact that the model does not define a probability
density. These problems are all absent in GTM. The computational com-
plexities of the GTM and SOM algorithms are similar, since the dominant
cost in each case is the evaluation of the Euclidean distanced between each
data point and each reference point in data space, and is the same for both
algorithms.

Clearly, we can easily formulate a density model consisting of a mixture
of GTM models, and obtain the corresponding EM algorithm, in a prin-
cipled manner. The development of an analogous algorithm for the SOM
would necessarily be somewhat ad-hoc.

5.2. GEOMETRY OF THE MANIFOLD

An additional advantage of the GTM algorithm (compared with the SOM)
is that the non-linear manifold in data space is defined explicitly in terms
of the analytic function y(x;w). This allows a whole variety of geometrical
properties of the manifold to be evaluated [8]. For example, local magnifi-
cation factors can be expressed in terms of derivatives of the basis functions
appearing in (46). Magnification factors specify the extent to which the area
of a small patch of the latent space of a topographic mapping is magnified
on projection to the data space, and are of considerable interest in both
neuro-biological and data analysis contexts. Previous attempts to consider
magnification factors for the SOM were been hindered because the manifold
is only defined at discrete points (given by the reference vectors).
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We can determine the properties of the manifold, including magnifica-
tion factors, using techniques of differential geometry as follows [8]. Con-
sider a standard set of Cartesian coordinates xi in the latent space. Since
each point P in latent space is mapped by a continuous function to a cor-
responding point P ′ in data space, the mapping defines a set of curvilinear
coordinates ξi in the manifold in which each point P ′ is labelled with the
coordinate values ξi = xi of P , as illustrated in Figure 13. Throughout this

y(x;W)

x 1dA dA′
ξ1

ξ2x 2

Figure 13. This diagram shows the mapping of the Cartesian coordinate system
xi in latent space onto a curvilinear coordinate system ξi in the q-dimensional
manifold S.

section we shall use the standard notation of differential geometry in which
raised indices denote contravariant components and lowered indices denote
covariant components, with an implicit summation over pairs of repeated
covariant-contravariant indices.

We first discuss the metric properties of the manifold S. Consider a local
transformation, at some point P ′ in S, to a set of rectangular Cartesian co-
ordinates ζi = ζi(ξ). Then the squared length element in these coordinates
is given by

ds2 = δµνdζµdζν = δµν
∂ζµ

∂ξi

∂ζν

∂ξj
dξidξj = gijdξidξj (55)

where gij is the metric tensor, which is therefore given by

gij = δµν
∂ζµ

∂ξi

∂ζν

∂ξj
. (56)

We now seek an expression for gij in terms of the non-linear mapping y(x).
Consider again the squared length element ds2 lying within the manifold S.
Since S is embedded within the Euclidean data space, this also corresponds
to the squared length element of the form

ds2 = δkldykdyl = δkl
∂yk

∂xi

∂yl

∂xj
dxidxj = gijdxidxj (57)
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and so we have

gij = δkl
∂yk

∂xi

∂yl

∂xj
. (58)

Using (46) the metric tensor can be expressed in terms of the derivatives
of the basis functions φj(x) in the form

g = ΩTWTWΩ (59)

where Ω has elements Ωji = ∂φj/∂xi. It should be emphasized that, having
obtained the metric tensor as a function of the latent space coordinates,
many other geometrical properties are easily evaluated, such as the local
curvatures of the manifold.

Our goal is to find an expression for the area dA′ of the region of S
corresponding to an infinitesimal rectangle in latent space with area dA =∏

i dxi as shown in Figure 13. The area element in the manifold S can
be related to the corresponding area element in the latent space by the
Jacobian of the transformation ξ → ζ

dA′ =
∏

µ

dζµ = J
∏

i

dξi = J
∏

i

dxi = JdA (60)

where the Jacobian J is given by

J = det

(
∂ζµ

∂ξi

)
= det

(
∂ζµ

∂xi

)
. (61)

We now introduce the determinant g of the metric tensor which we can
write in the form

g = det(gij) = det

(
δµν

∂ζµ

∂xi

∂ζν

∂xj

)
= det

(
∂ζµ

∂xi

)
det

(
∂ζν

∂xj

)
= J2 (62)

and so, using (60), we obtain an expression for the local magnification factor
in the form

dA′

dA
= J = det 1/2g. (63)

Although the magnification factor represents the extent to which ar-
eas are magnified on projection to the data space, it gives no information
about which directions in latent space correspond to the stretching. We
can recover this information by considering the decomposition of the met-
ric tensor g in terms of its eigenvectors and eigenvalues. This information
can be conveniently displayed by selecting a regular grid in latent space
(which could correspond to the reference vector grid, but could also be
much finer) and plotting at each grid point an ellipse with principal axes
oriented according to the eigenvectors, with principal radii given by the
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square roots of the eigenvalues. The standard area magnification factor is
given from (63) by the square root of the product of the eigenvalues, and
so corresponds to the area of the ellipse.

As an illustration of the GTM algorithm and the evaluation of magnifi-
cation factors we consider a data set of measurements taken from the genus
Leptograpsus of rock crabs1. Measurements were taken from two species
classified by their colour (orange or blue) with the aim of discovering mor-
phological differences which would allow preserved specimens (which have
lost their colour) to be distinguished. The data set contains 50 examples of
each sex from each species, and the measurements correspond to length of
frontal lip, rear width, length along mid-line, maximum width of carapace,
and body length. Since all of the variables correspond to length measure-
ments, the dominant feature of the crabs data is an overall scaling of the
data vector in relation to the size of the crab. To remove this effect each
data vector tn = (t1n, . . . , tdn)T is normalized to unit mean, so that

t̃kn = tkn

/
d∑

k′=1

tk′n. (64)

The latent space visualization of the crabs data is shown in Figure 14
together with the local magnification factor. It can be seen that the two
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Figure 14. Plot of the latent-space distribution of the crabs data, in which ♣
denotes blue males, ♦ denotes blue females, ♥ denotes orange males, and ♠ denotes
orange females. The grey-scale background shows the corresponding magnification
factor as a function of the latent space coordinates, in which darker shades indicate
larger values of the magnification factor.

species form distinct clusters, with the manifold undergoing a relatively

1Available from Brian Ripley at: http://markov.stats.ox.ac.uk/pub/PRNN.
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large stretching in the region between them. Within each cluster there is a
partial separation of males from females.

The corresponding plot of the local eigenvector decomposition of the
metric is given in Figure 15, and shows both the direction and magnitude
of the stretching.

Figure 15. Plots of the local stretching of the latent space, corresponding to the
example in Figure 14, using the ellipse representation discussed in the text.

6. Temporal Models: GTM Through Time

In all of the models we have considered so far, it has been assumed that
the data vectors are independent and identically distributed. One common
situation in which this assumption is generally violated in where the data
vectors are successive samples in a time series, with neighbouring vectors
having typically a high correlation. As our final example of the use of latent
variables, we consider an extension of the GTM algorithm to deal with
temporal data [6]. The key observation is that the hidden states of the
GTM model are discrete, as a result of the choice of latent distribution
p(x), which allows the machinery of hidden Markov models to be combined
with GTM to give a non-linear temporal latent variable model.

The structure of the model is illustrated in Figure 16, in which the hid-
den states of the model at each time step n are labelled by the index in
corresponding to the latent points {xin}. We introduce a set of transition
probabilities p(in+1|in) corresponding to the probability of making a tran-
sition to state in+1 given that the current state is in. The emission density
for the hidden Markov model is then given by the GTM density model
(45). It should be noted that both the transition probabilities p(in+1|in)
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pi1

i1 i2 i3

t1 t2
t3

p i |i( )2 1 p i |i( )3 2

p |i( )t1 1 p |i( )t2 2 p |i( )t3 3

Figure 16. The temporal version of GTM consists of a hidden Markov model in
which the hidden states are given by the latent points of the GTM model, and
the emission probabilities are governed by the GTM mixture distribution. Note
that the parameters of the GTM model, as well as the transition probabilities
between states, are tied to common values across all time steps. For clarity we have
simplified the graph and not made the factorization property of the conditional
distribution p(t|i) explicit.

and the parameters W and σ2 governing the GTM model are common to
all time steps, so that the number of adaptive parameters in the model is
independent of the length of the time series. We also introduce separate
prior probabilities πi1 on each of the latent points at the first time step of
the algorithm.

Again we can obtain an EM algorithm for maximizing the likelihood for
the temporal GTM model. In the context of hidden Markov models, the
EM algorithm is often called the Baum-Welch algorithm, and is reviewed
in [21]. The E-step involves the evaluation of the posterior probabilities of
the hidden states at each time step, and can be accomplished efficiently
using a technique called the forward-backward algorithm since it involves
two counter-directional propagations along the Markov chain. The M-step
equations again take the form given in Section 5.1.

As an illustration of the temporal GTM algorithm we consider a data
set obtained from a series of helicopter test flights. The motivation behind
this application is to determine the accumulated stress on the helicopter air-
frame. Different flight modes, and transitions between flight modes, cause
different levels of stress, and at present maintenance intervals are deter-
mined using an assumed usage spectrum. The ultimate goal in this appli-
cation would be to segment each flight into its distinct regimes, together
with the transitions between those regimes, and hence evaluate the overall
integrated stress with greater accuracy.

The data used in this simulation was gathered from the flight recorder
over four test flights, and consists of 9 variables (sampled every two seconds)
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measuring quantities such as acceleration, rate of change of heading, speed,
altitude and engine torque. A sample of the data is shown in Figure 17.

Figure 17. Sample of the helicopter data showing the evolution of 9 different
dynamical quantities such as acceleration, speed, and engine torque as a function
of time.

Figure 18 shows the posterior probability distribution in latent space for
a trained temporal GTM model, in which the posterior probabilities for a
given temporal sequence have been evaluated using the forward-backward
algorithm as described earlier.

Figure 18. Plots of the posterior probability distribution in latent space at 4 time
steps, corresponding to a transition from one flight regime to another.

7. Discussion

In this chapter we have surveyed a number of hidden variable models for
representing the distributions of continuous variables. We considered ex-
amples involving discrete, continuous and mixed hidden variables, together
with linear and non-linear models for the distribution of observed variables
conditioned on the hidden variables.

These models can conveniently be expressed in terms of probabilistic
graphical structures, which provides insight into the corresponding infer-
ence and learning algorithms. For example, we saw that two key operations



402 CHRISTOPHER M. BISHOP

are the inference of the posterior distribution of the hidden variables given
the observed variables (corresponding to the E-step of the EM algorithm)
and the evaluation of the likelihood function which involves summing or
integrating over all possible configurations of the hidden variables. For the
models considered in this chapter, the integration over continuous hidden
variables was possible because of simple (linear and Gaussian) choices for
the model structure. In the case of discrete hidden variables we considered
models in which only one of the hidden states can be active at any one
time, giving rise to the standard mixture distribution.

The graphical viewpoint, however, also helps to motivate the devel-
opment of new classes of probabilistic model. For instance, more general
representations for discrete hidden states can be considered in which there
are multiple hidden variables. However, for many models this leads to in-
tractable algorithms since the number of configurations of hidden states
may grow exponentially with the number of hidden variables. The devel-
opment of controlled approximations to deal with such models is currently
the focus of extensive research within the graphical modelling and neural
computing communities.
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