
Latent Variable Perceptron Algorithm for Structured Classification

Xu Sun† Takuya Matsuzaki† Daisuke Okanohara† Jun’ichi Tsujii†‡§

†Department of Computer Science, University of Tokyo,

Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
‡School of Computer Science, University of Manchester, UK

§National Centre for Text Mining, UK

{sunxu, matuzaki, hillbig, tsujii}@is.s.u-tokyo.ac.jp

Abstract

We propose a perceptron-style algorithm for fast
discriminative training of structured latent variable
model, and analyzed its convergence properties.
Our method extends the perceptron algorithm for
the learning task with latent dependencies, which
may not be captured by traditional models. It relies
on Viterbi decoding over latent variables, combined
with simple additive updates. Compared to existing
probabilistic models of latent variables, our method
lowers the training cost significantly yet with com-
parable or even superior classification accuracy.

1 Introduction

Real-world problems may contain latent dependencies (i.e.,
hidden sub-structures) that are difficult to be captured by con-
ventional models for structured classification, such as condi-
tional random fields (CRFs). In such cases, models that ex-
ploit latent variables are advantageous in learning [Petrov and
Klein, 2008]. As a result, recently discriminative probabilis-
tic latent variable models (DPLVMs) have become popular
for performing a variety of tasks with latent dependencies,
e.g., vision recognition [Morency et al., 2007], syntactic pars-
ing [Petrov and Klein, 2008], and syntactic chunking [Sun et
al., 2008].

Morency et al. [2007] demonstrated that DPLVM models
can learn latent dependencies of natural problems efficiently,
and outperform several widely-used conventional models,
such as support vector machines (SVMs), conditional random
fields and hidden Markov models (HMMs). Petrov and Klein
[2008] reported on a syntactic parsing task that DPLVM mod-
els can learn more compact and accurate grammars than that
of the conventional techniques without latent variables.

However, experimental results in Petrov et al. [2008] have
highlighted both time and memory cost problems on train-
ing. They used 8 CPUs in parallel for 3 days to train the
weighted grammars with latent variables. And because of the
memory limitations, their solution fails to learn more com-
plex grammars. Furthermore, our experiments on the named
entity recognition (NER) task confirmed that the training of
DPLVMs with a low Markov order is already computationally

expensive on large scale problems. On a corpus of 10K sen-
tences, the training took more than a week for a linear chain
model with latent variables.

On the other hand, the perceptron algorithms (including
voted or averaged version) [Rosenblatt, 1958; LeCun et al.,
2006] have been shown to be competitive to the modern learn-
ing algorithms on structured classification tasks, while their
computational costs are much lower [Freund and Schapire,
1999; Collins, 2002]. However, it is still not clear how to ap-
ply the perceptron algorithms for the learning task with latent
dependencies.

In this paper we propose a novel latent variable percep-
tron algorithm (latent perceptron below) as an alternative to
the DPLVMs. We will show that the latent perceptron gives
comparable or even superior performance than the DPLVMs,
while it is significantly faster, making it amenable to large
scale problems.

2 Problem Definition and Background

In practice, given a limited training data, the relationship be-
tween specific observations and their contexts may be best
modeled at a level finer than explicit class labels but coarser
than direct token observations.

For example, in the noun phrase (NP) chunking task, sup-
pose that there are two lexical sequences, “He is her –” and
“He gave her –”. They would both be conventionally labeled
as ‘BOB’, where B signifies the ‘beginning NP’, and O ‘out-
side NP’. However, this labeling is too general to encapsulate
their respective syntactic dependencies, which is crucial for
labeling the next word. For “He is her –”, the NP started by
‘her’ is still incomplete, so the label for ‘–’ is likely to be I,
which signifies the continuation of the phrase, e.g., “[He] is
[her brother]”. In contrast, for “He gave her –”, the phrase
started by ‘her’ is normally self-complete and makes the next
label more likely to be B, e.g., “[He] gave [her] [flowers]”.
We expect better performance if the model is able to represent
the ‘latent’ fact, that in the first case, ‘her’ is most likely the
possesive pronoun, while in the second case, it is probably
the indirect object pronoun.

Following this example, we give a more formal definition
of the problem. The task is to learn a mapping between a
sequence of observations x = x1, x2, . . . , xm and a sequence
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of labels y = y1, y2, . . . , ym. Each yj is a class label for the
j’th token of a observation sequence and is a member of a
label set, Y . For each sequence, we also assume a vector of
latent variables h = h1, h2, . . . , hm, which is not observable.
To keep the training efficient, we restrict the model to have
a disjointed set of latent variables associated with each class
label; Each hj is a member of a set, Hyj

, which represents
the possible latent variables for the class label yj .

Following the problem definition described above,
DPLVMs are defined as [Morency et al., 2007; Petrov and
Klein, 2008]:

P (y|x,Θ) =
∑
h

P (y|h,x,Θ)P (h|x,Θ), (1)

where Θ represents the parameters of the model. Since se-
quences with hj /∈ Hyj

will have P (y|x,Θ) = 0 by the
restriction of disjointed association, the model can be further
defined as [Morency et al., 2007; Petrov and Klein, 2008]:

P (y|x,Θ) =
∑

h∈Hy1
×...×Hym

P (h|x,Θ), (2)

where P (h|x,Θ) is defined using the usual conditional ran-
dom field formulation:

P (h|x,Θ) =
expΘ·f(h,x)∑
∀h expΘ·f(h,x)

, (3)

in which f(h,x) is the global feature vector. Given training
sequences (xi,y

∗
i ) for i = 1 . . . d, training is performed by

optimizing the likelihood of the training data, usually with a
regularization of R(Θ):

L(Θ) =

d∑
i=1

log P (y∗i |xi,Θ) − R(Θ). (4)

3 Latent Variable Perceptron

Based on the above problem definition, now we present an
alternative model for DPLVMs. We define the score of a label
sequence F (y|x,Θ) as the maximum score among its latent
sequence:

F (y|x,Θ) = max
h:Proj(h)=y

F (h|x,Θ), (5)

where Proj(h) is the projection from a latent sequence h to
a label sequence y:

Proj(h)= y ⇐⇒ hj ∈Hyj
for j = 1, . . . , m, (6)

and F (h|x,Θ) is the score of a latent sequence:

F (h|x,Θ) = Θ · f(h,x) =
∑

k

Θk · fk(h,x), (7)

where the k’th value of the global feature vector, fk(h,x),
can be represented as a sum of the local edge features,
t(hj−1, hj ,x

′), or local state features, s(hj ,x
′), in which x′

reprents the context, i.e., the local observations. It is com-
mon (e.g., see [Collins, 2002]) for each feature to be an in-
dicator function. For example, one such feature might be

Input: example xi with gold standard label sequence
y∗i , weight vector Θ, and feature vector f(y,x)
Initialization: set parameters Θ1 = 0
for i = 1 . . . d do

yi = argmaxyF (y|xi,Θ
i)

if yi �= y∗i then
Θi+1 = Θi + f(y∗i ,xi) − f(yi,xi)

else
Θi+1 = Θi

Output: parameter vectors Θi+1 for i = 1 . . . d

Input: xi with y∗i , weight vector Θ, and feature vector
f(y,x)
Initialization: randomly initialize parameters under
the condition ||Θ1|| ≈ 0
for i = 1 . . . d do

hi = argmaxhF (h|xi,Θ
i)

yi = Proj(hi)
if yi �= y∗i then

h∗i = argmaxhF (h|y∗i ,xi,Θ
i)

Θi+1 = Θi + f(h∗i ,xi) − f(hi,xi)
else

Θi+1 = Θi

Output: parameter vectors Θi+1 for i = 1 . . . d

Figure 1: The training algorithms of the perceptron (upper
one) and the latent perceptron (lower one).

“s(hj ,x
′) = 1 (if current context x′ is the word the) or 0

(otherwise)”. In this paper, we also use indicator features.
The latent perceptron attempts to minimize the difference

between the score of the goal feature vector for a training
instance (xi,y

∗
i ) and the score of current feature vector of

the best latent sequence, with the following update formula:

Θi+1 = Θi + f [argmax
h

F (h|y∗i ,xi,Θ
i),xi]

− f [argmax
h

F (h|xi,Θ
i),xi],

(8)

where argmaxh F (h|y∗i ,xi,Θ
i) is the Viterbi path of the la-

tent sequences under the constraint of gold standard label se-
quence, and argmaxh F (h|xi,Θ

i) is the current best latent
sequence.

3.1 Learning Model Parameters

First, to make a comparison, we review the training
of DPLVMs. Fitting the DPLVMs involves the nor-
malizer,

∑
∀h expΘ · f(h|x), and the marginalization

over latent sequences for corresponding label sequence,∑
h∈Hy1

×...×Hym
P (h|x,Θ). Both of them are computa-

tionally expensive. In addition, if to adopt a Quasi-Newton
optimizer as most DPLVMs did, it requires computing the
derivatives ∂L(Θ)/∂Θ, which is also computationally ex-
pensive.

Compared to DPLVMs, training the latent perceptron is
much more efficient. It avoids computing the normalizer,
the marginalization operation and the derivatives during op-
timization. The major cost of the latent perceptron is from
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the computation of the best latent path by using the Viterbi
algorithm.

The latent perceptron training algorithm is shown in Fig-
ure 1, with a comparison to the training of the perceptron.
The parameters are initialized randomly. Each sentence in
turn is decoded using the current parameter settings. If the
latent path with the highest score under the current model is
incorrect, then the parameter vector Θ is updated in a simple
additive fashion.

A Modified Estimation Method for Latent Perceptron

There is a refinement to the algorithm in Figure 1 , called the
‘averaged parameters’ method. Define Θq, i as the values of
parameters after the i’th training example has been processed
in pass q over the training data. The averaged parameters are
then defined as γQ,d =

∑
q=1...Q, i=1...d Θq, i/dQ [Freund

and Schapire, 1999].
However, we found this refinement is not adequate for the

latent perceptron. Naturally, one possible way to further con-
trol the overfitting is to ‘decay’ the new parameters by using
the averaged parameters. Following this idea, we propose
a modified averaged parameters algorithm for training the
latent perceptron: instead of using Θq, start = Θq−1, end,
we re-initiate the parameters of the new iteration with the
averaged parameters in each k iteration, i.e., Θq, start =
γq−1, end when q%k = 0. Here, % represents the mod op-
eration. Selecting a proper value of k is important for the
performance, and this can be done by using a development
data set. We normally choose the value of k within the range
of [2,8], depending on the specific task.

Although this modification does not improve the perfor-
mance of the perceptron, it reduces the overfitting of the la-
tent perceptron and improves its performance. Therefore, we
use this modified estimation method for training the latent
perceptron.

3.2 Convergence Analysis

We now give theorems regarding the convergence of the latent
perceptron. We will prove that a separable data will remain
separable with a bound. Moreover, after a finite number of
updates, the latent perceptron is guaranteed to converge to
the parameter values with zero training error. Furthermore,
as for the data which is not separable, we will derive a bound
on the number of updates in the latent perceptron.

To facilitate the discussion, we will refer to a problem as
separable with the following definition:

Definition 1. Let G(xi) signify all possible label sequences

for an example xi; Let G(xi) = G(xi) − {y∗i }. We will say
that a training sequence (xi,y

∗
i ) for i = 1 . . . d is separable

with margin δ > 0 if there exists some vector U with ||U|| =
1 such that1

∀i,∀z ∈ G(xi),U · f(y∗i ,xi) − U · f(z,xi) ≥ δ. (9)

Also, a latently separable problem is defined as following:

Definition 2. Let GH(xi) signify all possible candidates
of latent sequence for an example xi, we then define

1||U|| is the 2-norm of U, i.e., ||U|| =

pP
k
U2

k.

GH∗(xi) = {h|Proj(h) = y∗i }, and GH(xi) = GH(xi)−
GH∗(xi). In other words, GH∗(xi) represents the correct

latent candidates for xi, and GH(xi) represents the incor-
rect ones. Then a training sequence (xi,y

∗
i ) for i = 1 . . . d

is latently separable with margin δ > 0 if there exists some
vector U with ||U|| = 1 such that

∀i,∀h ∈ GH∗(xi), ∀z ∈ GH(xi),

U · f(h,xi) − U · f(z,xi) ≥ δ.
(10)

By using latent variables, a local state feature in the per-
ceptron, s(y,x′), will be mapped into a new feature set,
{s(hi,x

′)} for all possible hi ∈ Hy , with the dimension

mk = |Hy|.2 Similar mapping can be also extended to lo-

cal edge features.3 Since a global feature vector consists
of local features, we use mk to denote the ‘dimension aug-
mentation’ of the k’th feature of the original feature vec-
tor, fk(y,x), then we get a vector m = (m1, . . . , mn) so
that a global feature vector, f(y,xi) = (β1, . . . , βn), will
be mapped into a new feature vector with latent variables,
f(h,xi) = (β1

1 , . . . , βm1

1 , . . . , β1
n, . . . , βmn

n ).
Based on the mapping, it is straightforward to prove that

βk =
∑mk

i=1 βi
k for k = 1 . . . n. Since mk is only related to

|Hy| for all possible y from fk(y,x) and Hy is fixed before
the training, mk will be an integral constant. We then define
the latent feature mapping as the vector m = (m1, . . . , mn),
and we can state the following theorems:

Theorem 1. Given the latent feature mapping m =
(m1, . . . , mn), for any sequence of training examples
(xi,y

∗
i ) which is separable with margin δ by a vector U rep-

resented by (α1, . . . , αn) with
∑n

i=1 αi
2 = 1, the examples

then will also be latently separable with margin δ, and δ is
bounded below by

δ ≥ δ/T, (11)

where T = (
∑n

i=1 miαi
2)1/2.

The proof is sketched in Appendix.

Theorem 2. For any sequence of training examples (xi,y
∗
i )

which is separable with margin δ, the number of mistakes of
the latent perceptron algorithm in Figure 1 is bounded above
by

number of mistakes ≤ 2T 2M2/δ2, (12)

where T is as before, and M is the maximum 2-norm of an
original feature vector, i.e., M = maxi ||f(y,xi)||.

The proof is sketched in Appendix.
In the case of inseparable data, we need the following def-

inition:

Definition 3. Given a sequence (xi,y
∗
i ), for a U, δ pair, de-

fine gi = minh∈GH∗(xi) U · f(h,xi) − maxz∈GH(xi)
U ·

f(z,xi). Then, define DU,δ as the least obtainable error:

DU,δ = [
d∑

i=1

(max{0, δ − gi})2]1/2. (13)

2See Section 2 for Hy ; |set| means the number of elements of
the set.

3The only difference for the mapping is that an edge feature con-
sists of more than one labels.
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Figure 2: Latent dependencies of the synthetic data, and the
corresponding label dependencies.

Hence we can further have the following theorem:

Theorem 3. For any training sequence (xi,y
∗
i ), the number

of mistakes made by the latent perceptron training algorithm
is bounded above by

number of mistakes ≤ min
U,δ

(
√

2M + DU,δ)
2/δ

2
, (14)

where M is as before.

The proof can be adapted from Freund and Shapire [1999]

and Collins [2002].

4 Experiments on Synthetic Data

In this section we use synthetic data to demonstrate that the
latent perceptron is able to address problems containing la-
tent dependencies, which cannot be solved by conventional
models.

The synthetic datasets are generated by the HMM
model. The labels are {y1, y2}; the latent variables are
{h1, h2, h3, h4}, with the association Hy1

= {h1, h2} and
Hy2

= {h3, h4}; the observable tokens are {x1, x2}. We
vary the significance of the latent dependencies to make com-
parisons. The latent dependencies are illustrated in Figure 2.
P represents the transition probability P (hj |hi). A large
value of P indicates a strong dependency (the remaining prob.
mass ‘1−P ’ is uniformly distributed to the remaining transi-
tions). x1 and x2 are generated with P (x1|hi) and P (x2|hi),
but since this is not the focus, we set them to be very weakly
dependent. Therefore, one artificial label sequence could be
like ‘y1, y1, y2, y2, y1, . . .’, while the observable tokens will
appear like a random sequence. The artificial label sequences
are observable as gold standards during training but not ob-
servable during test. The latent variable sequences are unob-
servable in both training and test.

We varied the probability P and therefore generated a vari-
ety of synthetic data with latent dependencies. All the models
employ similar feature templates: node features {xi} × {yi}
with edge features {yi−1yi} for conventional models, and
node features {xi}×{hi} with edge features {hi−1hi} for la-
tent models; therefore only the 1st order dependencies among
labels or latent variables are considered. We use the label ac-
curacy to measure the performance.

As can be seen in Figure 3, the latent perceptron and
DPLVMs4 outperform conventional models like CRFs, and
the gap increases rapidly when the latent dependencies are
significant. When P is 0.9, the accuracy of the latent per-
ceptron and DPLVMs are both 84.9%, in contrast to CRFs’

4Since the batch-training performs better than stochastic-training
for DPLVMs (see next section), we adopts the batch-training here.
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Figure 3: The curves of the latent perceptron (Lat-Perc),
DPLVMs, perceptron (Perc) and CRFs, when P varies.

63.4% and the perceptron’s 57.3%. In most cases, latent per-
ceptron performs as well as DPLVMs, as can be seen from
their almost identical curves. We also found that, by using
more latent variables than necessary (e.g., 4 latent variables
for each label), both the latent perceptron and DPLVMs kept
roughly the same accuracies.

Note that, in the previous section, we have proved the con-
vergence in the worst case, by using a very strict definition of
latent separability. Clearly there are many ‘separable’ cases
under the latent perceptron that do not satisfy this strict defi-
nition.

Here, we relax the ‘separation’ under the latent perceptron
as follows: maxh∈GH∗(xi) Θ

′·f(h,xi) > maxz∈GH(xi)
Θ′ ·

f(z,xi) for i = 1 . . . d. Then, there are many cases that
an originally inseparable instance (under the perceptron) be-
come ‘separable’ by involving latent variables. For exam-
ple, with P = 0.9, among the 3,000 training instances of
this data, we found that less than 10% instances were sep-
arable when use the perceptron (trained with enough itera-
tions), i.e., Θ · f(y∗i ,xi) > Θ · maxz∈G(xi)

f(z,xi), while

the separable instances increased to more than 40% when
use the latent perceptron, i.e., maxh∈GH∗(xi) Θ

′ · f(h,xi) >
maxz∈GH(xi)

Θ′ · f(z,xi).

5 Experiments on Real-World Tasks

In this section we perform experiments on two real-world
tasks, biomedical named entity recognition and noun phrase
chunking. As the baseline systems, we implemented
DPLVMs and CRFs by extending the HCRF library devel-
oped by Morency et al. [2007]. We added a popular batch-
training optimizer, the Limited-Memory BFGS algorithm (L-
BFGS) [Nocedal and Wright, 1999]. For higher efficiency,
we also implemented the stochastic gradient descent algo-
rithm (SGD) [Bottou, 1998]. To reduce overfitting, we em-
ployed a Gaussian prior. We varied the the variance of the
Gaussian prior (with values 10k, k from -3 to 3), and we
found that σ2 = 1.0 was optimal for both DPLVMs and CRFs
on the development data and used it throughout the experi-

1239



Word Features:
{wi−2, wi−1, wi, wi+1, wi+2, wi−1wi, wiwi+1}
×{hi, hi−1hi, hi−2hi−1hi}
POS Features:
{ti−2, ti−1, ti, ti+1, ti+2, ti−2ti−1, ti−1ti, titi+1,
ti+1ti+2, ti−2ti−1ti, ti−1titi+1, titi+1ti+2}
×{hi, hi−1hi, hi−2hi−1hi}
Orth. Features:
{oi−2, oi−1, oi, oi+1, oi+2, oi−2oi−1, oi−1oi,
oioi+1, oi+1oi+2}
×{hi, hi−1hi, hi−2hi−1hi}

Table 1: Feature templates used in the Bio-NER task. wi

is the current word, ti is the POS tag, oi is the orthography
mode, and hi is the latent variable (for latent models) or the
label (for conventional models).

Models F #iters Train-time

Lat-Perc, cc=2, odr=2 70.51 20 ≈30 hr

DPLVM-SGD, cc=2, odr=2 N/A N/A >240 hr

Perc, cc=2, odr=2 70.07 24 6 hr

Lat-Perc, cc=2, odr=1 70.13 24 3 hr

DPLVM-SGD, cc=2, odr=1 68.74 100 ≈120 hr

Perc, cc=2, odr=1 68.93 20 1 hr

Lat-Perc, cc=5, odr=1 68.49 60 3 hr

DPLVM-BFGS, cc=5, odr=1 N/A N/A >240 hr

DPLVM-SGD, cc=5, odr=1 66.01 90 ≈60 hr

Perc, cc=5, odr=1 65.61 22 <1 hr

CRF-BFGS, cc=5, odr=1 66.12 200 ≈40 hr

Lat-Perc, cc=15, odr=1 67.33 45 1 hr

DPLVM-BFGS, cc=15, odr=1 67.41 300 ≈160 hr

DPLVM-SGD, cc=15, odr=1 65.96 100 ≈30 hr

Perc,cc=15, odr=1 65.83 20 <1 hr

CRF-BFGS, cc=15, odr=1 64.17 300 ≈20 hr

Table 2: Comparisons among models on the Bio-NER task.
Odr=2 means it is a 2nd-order model. #iter is the number of
training iterations, which is determined by using the develop-
ment data.

ments in this section.

5.1 BioNLP/NLPBA-2004 Shared Task (Bio-NER)

A large amount of training data is available for the Bio-NER
task, which are appropriate to be used for testing the scalabil-
ity of the models. Named entity recognition aims to identify
and classify technical terms in a given domain. The bio-NER
task is for recognizing 5 kinds of biomedical named-entities
on the GENIA corpus [Kim et al., 2004]. The typical ap-
proach to this problem recast it as a sequential labeling task
with the BIO encoding. The data consists of 1,800 abstracts
(from MEDLINE) for training, 200 abstracts for the develop-
ment data, and 404 abstracts for testing. The standard evalu-
ation metrics [Kim et al., 2004] are precision p, recall r, and
the F-measure given by F = 2pr/(p + r).

We use word features, POS features and orthography fea-
tures (prefix, uppercase/lowercase, etc.), as listed in Table 1.
For both the latent perceptron and DPLVMs, we varied the
number of latent variables per label from 2 to 8 on our prelim-

inary experiments, and we finally use 4. The latent perceptron
adopts the modified averaged parameter training (see com-
parisons in next subsection), and the perceptron adopts the
original one.

As can be seen in Table 2, we performed 4 sets of experi-
ments by scaling the models from simple to complex5. Cc=n
means only features occurring n times or more are included.
When cc=15, the training speed6 of the latent perceptron is
130 times faster than that of the DPLVMs with batch-training
(L-BFGS). The latent perceptron performs almost as well
as DPLVM-BFGS, and outperforms DPLVM-SGD and other
models. When more features were added by setting cc=5,
DPLVMs with batch-training became intractable, while the
latent perceptron still worked efficiently and achieved much
better performance than the DPLVM-SGD, by reducing over
7.0% errors. It also outperformed the CRFs and the percep-
tron with statistically significant differences (McNemar’s sig-
nificance test).

When cc=2, CRFs also became intractable. When the 2nd
order dependencies were further added, even the stochastic-
training became intractable for DPLVMs. On the other hand,
the latent perceptron worked efficiently, with further error re-
ductions.

Overall, with the same feature set, the latent perceptron
demonstrates consistent superiority over the DPLVM-SGD
model and the perceptron. Compared to a straightforward
high order perceptron, one advantage of the latent percep-
tron comes from its use of latent variables to adaptively learn
long range dependencies. With the F-measure of 70.51%,
the latent perceptron achieved a comparable performance to
the state-of-the-art systems, and it would be further improved
when enhanced with external features or resources, as is done
in other systems. The state-of-the-art systems is Okanohara
et al. [2006] (71.4%), who used a semi-Markov CRF model
with specifically designed global features. Whereas in our
latent perceptron model, we did not use such global fea-
tures. Finkel et al. [2004] (70.0%) used a maximum entropy
Markov model with external resources like web-querying.
Settles [2004] (69.8%) used a CRF model with additional se-
mantic knowledge.

5.2 Noun Phrase Chunking Task (NP-Chunking)

We choose the NP-chunking task [Sang and Buchholz, 2000]

because it is a popular benchmark for testing a structured
classification model. In this task, the non-recursive cores of
noun phrases called base NPs are identified. The training set
consists of 8,936 sentences, and the test set consists of 2,012
sentences. We use features that depend on words and POS
tags (see Table 3), and our preliminary experiments in this
task suggested the use of 5 latent variables for each label.

In this experiment, our main purpose is to compare the
traditional parameter averaging technique with our modified
version. However, we also showed the performance of other
models for reference.

5The major feature templates are similar.
6On Intel Dual-Core Xeon 5160/3GHz CPU, excluding time for

feature generation and data input/output.
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Word Features:
{wi−2, wi−1, wi, wi+1, wi+2, wi−1wi, wiwi+1}
×{hi, hi−1hi, hi−2hi−1hi}
POS Features:
{ti−1, ti, ti+1, ti−2ti−1, ti−1ti, titi+1, ti+1ti+2,
ti−2ti−1ti, ti−1titi+1, titi+1ti+2}
×{hi, hi−1hi, hi−2hi−1hi}

Table 3: Feature templates used in the NP-chunking experi-
ments. wi, ti and hi are as before.

Models F #iters Train-time

Lat-Perc, mavg 94.37 80 2 hr

Lat-Perc, avg 94.13 70 2 hr

Lat-Perc 92.06 25 0.2 hr

DPLVM-BFGS 94.29 300 ≈120 hr

DPLVM-SGD 94.03 100 ≈20 hr

Perc, mavg 94.25 65 <1 hr

Perc, avg 94.27 68 <1 hr

Perc 91.33 12 0.1 hr

CRF-BFGS 94.25 280 ≈30 hr

Table 4: Comparisons on the NP-chunking task. All the mod-
els set cc=0 and odr=2, i.e., all features are included and the
2nd order dependency is used.

As can be seen in Table 4, the latent perceptron with
modified averaged parameter training (mavg) achieves the
best performance, which is significantly better than the same
model trained by the traditional parameter averaging (avg).
Compared with the avg, we also observed that the mavg train-
ing (on the latent perceptron) reached an empirically more
stable convergent plateau. For example, further training with
the mavg for 200 iterations following the beginning of the
plateau, the fluctuation of its F-measure was bounded by
±0.1%, while for the avg training, it reached ±0.8%. The
latent perceptron with mavg training also outperformed the
DPLVM model with stochastic training. As for the percep-
tron, we did not observe significant difference between the
training of mavg and avg. In this simple task, based on a 2nd-
order dependency and a rich feature set, we observed that the
superiority of the latent perceptron over other models is not
very significant.

Finally, with the F-measure of 94.37%, the performance of
the latent perceptron is one of the best reports on this data.
The state-of-the-art systems include Sha & Pereira [2003]

(94.38% by a 2nd order CRF model) and Kudo & Matsumoto
[2001] (94.22% by the combination of multiple SVM mod-
els).

6 Conclusions

We proposed the latent variable perceptron algorithm to learn
latent dependencies, and analyzed its convergence proper-
ties. We showed that simply using averaged parameter train-
ing on latent perceptron is not good enough. To address this
problem, we proposed the modified averaged parameter train-
ing. Compared to existing probabilistic models of latent vari-
ables, our method lowers the training cost significantly yet

with comparable or even superior classification accuracy. Al-
though we only focused on the sequential labeling tasks in
this paper, the theoretical framework and algorithm should
also be applicable to a wide variety of models beyond linear-
chain structure.
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Appendix: Proof of Convergence7

Proof of theorem 1. Given the latent feature mapping m =
(m1, . . . , mn) and U ∈ R

n represented by (α1, . . . , αn),
there exist a U ∈ R

N with N =
∑n

i=1 mi represented

as follows: (

m1︷ ︸︸ ︷
α1, . . . , α1,

m2︷ ︸︸ ︷
α2, . . . , α2, . . . ,

mn︷ ︸︸ ︷
αn, . . . , αn). Then

∀i,∀h ∈ GH∗(xi), ∀z ∈ GH(xi),

U · f(h,xi) − U · f(z,xi)

= U[f(h,xi) − f(z,xi)]

=

n∑
j=1

[αj

mj∑
k=1

(βk∗
j − βk

j )]

=

n∑
j=1

αj(

mj∑
k=1

βk∗
j −

mj∑
k=1

βk
j )

=

n∑
j=1

αj(β
∗
j − βj)

= U[f(y∗i ,xi) − f(yz,xi)]

≥ δ,

(15)

where βk∗
j ∈ f(h,xi) is the k’th feature value mapped

from β∗j ∈ f(y∗i ,xi) by using latent variables; similarly,

βk
j ∈ f(z,xi) is mapped from βj ∈ f(yz,xi); y

z is the label
sequence projected from the latent sequence z.

Let T = ||U|| = (
∑n

i=1 miαi
2)1/2, then it can be seen

that the vector U/||U|| latently separates the data with mar-
gin δ/T .

Proof of theorem 2. Let Θk be the parameters before the
k’th mistake is made, and suppose it is made at the i’th
example. Let z be the output proposed at this example,
z = argmaxh∈GH(xi)f(h,xi) · Θk. Also, let h∗i =

argmaxh∈GH∗(xi)f(h,xi) · Θk. Then, by using theorem 1

and adapting Collins [2002] for the lower bound of ||Θk+1||,
we can derive that

||Θk+1|| ≥ kδ/T. (16)

We also derive an upper bound for ||Θk+1||2. First, we
have

7For a more detailed version of the proof, see Sun [2009].
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||Θk+1||2 =||Θk||2 + ||f(h∗i ,xi) − f(z,xi)||2
+ 2 ·Θk · [f(h∗i ,xi) − f(z,xi)].

(17)

Since Θk · [f(h∗i ,xi) − f(z,xi)] < 0 (because of the up-
date rule) and f(h∗i ,xi) · f(z,xi) ≥ 0 (because of indicator
features), it follows that

||Θk+1||2 ≤ ||Θk||2 + ||f(h∗i ,xi) − f(z,xi)||2
≤ ||Θk||2 + ||f(h∗i ,xi)||2 + ||f(z,xi)||2

= ||Θk||2 +

n∑
j=1

mj∑
k=1

(βk∗
j )2 +

n∑
j=1

mj∑
k=1

(βk
j )2

≤ ||Θk||2 +
n∑

j=1

(

mj∑
k=1

βk∗
j )2 +

n∑
j=1

(

mj∑
k=1

βk
j )2

= ||Θk||2 +
n∑

j=1

(β∗j )2 +
n∑

j=1

(βj)
2

= ||Θk||2 + ||f(y∗i ,xi)||2 + ||f(yz,xi)||2
≤ ||Θk||2 + 2M2.

(18)

Then, it follows that ||Θk+1||2 ≤ 2kM2.

Combining the upper bound and lower bound completes
the proof.
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