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A traditional representation of aerodynamic characteristics based on the concept of aero-
dynamic derivatives becomes inadequate at high angles of attack due to significant dynamic
effects generated by separated and vortical flow. The main difficulty in an application of
aerodynamic derivatives at these conditions is linked with their strong dependence on fre-
quency and amplitude of oscillations. To describe these dependencies the mathematical
model for aerodynamic characteristics in the time domain should be dynamic and nonlin-
ear.

To capture frequency effects the lateral/directional aerodynamic characteristics are rep-
resented in the form of differential equations and applied for the open- and closed-loop
dynamic analysis.

I. Introduction

Representation of aerodynamic coefficients based on the aerodynamic derivatives concept is conventionally

used in all engineering flight dynamics applications. The same representation is extended also to high

incidence flight conditions by adding nonlinear dependencies obtained in wind tunnel tests using static and

rotary balance rigs. However, this approach based on the concept of aerodynamic derivatives becomes

inadequate at high angles of attack due to significant dynamic effect from separated and vortical flow.

Aerodynamic derivatives may strongly depend on frequency and amplitude of oscillations and this makes it

difficult to model aerodynamic coefficients in the time domain.1

A general formulation of the aerodynamic characteristics in aircraft dynamics requires inclusion of motion

prehistory effects.2 This is especially important for high angles of attack beyond stall conditions, where flow

separation and vortex breakdown processes produce time lag effects significant for rigid body dynamics.

Expanding a flight envelope to high angle of attack can be beneficial for many existing aircraft and also

for future ones and UAVs. For example, the experimental aircraft X-31 VECTOR program3 has recently

demonstrated a possibility of an automated landing at angles of attack up to α = 240. The landing speed

was reduced considerably resulting in significantly shorter roll-out distances. Further increase of angle of

attack beyond the stall conditions and reduction in landing speed will require for reliable control design

solutions an improved aerodynamic modelling technique.
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A simple modelling method for unsteady nonlinear aerodynamic characteristics based on an application
of dynamical models has been proposed and studied in.5,6, 7, 8, 9 The frequency dependant in-phase and out-
phase aerodynamic derivatives obtained in conventional wind tunnel forced oscillations tests can be simulated
by unsteady aerodynamic model in the form of linear first order differential equations with characteristic time
constants specifying the internal flow time lag effects. This unsteady aerodynamic model generates aero-
dynamic loads with the identical to experimentally obtained frequency dependant aerodynamic derivatives.
At angles of attack α ≥ 250 beyond the stall conditions the characteristic time scales identified in paper9

for the X-31 aircraft equal (15÷ 20)
c̄

V
allow the linear unsteady aerodynamic model to fit the experimental

aerodynamic derivatives4 very accurately as shown in Fig.2. The frequency effect in aerodynamic derivatives
is getting stronger above α ≥ 250 and should be adequately accounted for in dynamics analysis, while below
α < 250 this effect is not significant and the conventional aerodynamic derivatives model for representation
of aerodynamic coefficients is acceptable.
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Figure 1. Predicted and experimental dependencies for the X-31 aircraft normal force aerodynamic
derivatives4,9.

The paper11 reported about comparative analysis of the aircraft longitudinal dynamics at high incidence
flight considering two forms of aerodynamics representation, the conventional one based on the aerodynamic
derivatives concept and the unsteady aerodynamic model taking into account internal flow time lag effects.

This paper as an extension of11 is presenting comparative analysis of the aircraft lateral/directional
motion considering these two forms of aerodynamic models. The same hypothetical aircraft model based on
the 650 delta wing and thrust vectoring control has been accepted in this paper as a case study (Fig.2,a).

The experimental investigation carried out in 1999-2001 in TsAGI, Russia with support from DERA, UK
has provided a comprehensive set of static and dynamic wind tunnel data for the 650 delta wing (Fig.2,b).
A simple representation of aerodynamic characteristics based on an application of dynamical models and
available experimental data has been developed for the longitudinal and lateral/directional motion modes.8,9

The Dutch-roll, roll-subsidence and spiral modes are analyzed in terms of coupling with unsteady aero-
dynamic eigenvalues generated at high incidence by internal vortical and separated flow dynamics. It is
demonstrated that the results of the open-loop stability analysis for the conventional aerodynamic deriva-
tives based model and unsteady aerodynamic model at some angles of attack can differ significantly. Control
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(a) An all-wing tailless concept employing a 650 sweep

delta wing12

(b) The 650 delta wing tested in TsAGI low speed wind

tunnel8,9

Figure 2. A hypothetical 650 delta wing aircraft model with thrust vectoring.

law design issues with combination of aerodynamic and thrust vectoring control are also discussed considering
linear and nonlinear problem formulation.

II. Mathematical models of the rolling and yawing moment coefficients

A. Conventional aerodynamic derivatives representation

Aerodynamic effects in the lateral/directional moments and side force due to rotation and change of sideslip
is normally described in the form of aerodynamic derivatives. Unsteady aerodynamic derivatives due to

β′ =
β̇b

2V
are commonly combined with the rotary derivatives with respect to reduced angular rates p′ =

pb

2V

and r′ =
rb

2V
in a form they are extracted from the forced oscillation tests. This aerodynamic representation is

rather accurate at low angles of attack, where aerodynamic loads are practically linear functions of kinematic
parameters and their derivatives do not depend on frequency of oscillations. It is a conventional form for
dynamics simulation and stability analysis at normal flight conditions.

Extension of the linear derivatives representation to high angles of attack regimes is normally attained
by a formal inclusion of nonlinear static terms and making aerodynamic derivatives dependent on angle of
attack and sideslip:

Ci = Cist
(α, β) + Cipf.o.

(α, k)
pb

2V
+ Cirf.o.

(α, k)
rb

2V
+ Ciδa

(α)δa (1)

where i = l, n, Y , b is the wing span, f.o. stands for forced oscillations, k =
ωb

2V
is reduced frequency.

The static term in (1) is essentially nonlinear at high angles of attack α = 20÷400 and also very sensitive
to wing motion. The nonlinear steady aerodynamic loads become very coupled with unsteady aerodynamic
contributions and are directly associated with dependence of the aerodynamic derivatives on frequency.
However, in modelling with (1) the dependence on reduce frequency k is usually ignored as it is very difficult
to specify k in the time domain during non-periodic motion.
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Figure 3. Experimental rolling moment coefficient Cl(α, β) for the 650 delta wing in slow yaw sweep motion
(red lines - β̇ = 4 deg/s, green line β̇ = −4 deg/s).

A sensitivity of the rolling moment even to slow wing motion is high when the vortex breakdown processes
dominate and produce a significant aerodynamic contribution. Instead of traditional static tests at different
angles of attack and sideslip the 650 delta wing has been tested at slow sweep pitch and yaw motion with
α̇, β̇ ≈ ±4 deg/s. The rolling moment coefficient dependencies Cl(α, β) are presented in Fig.3, where the red
lines correspond to positive yaw rate and the green lines - to negative yaw rate. The hysteresis loops reflect
the critical states crossings, when vortex breakdown processes produce significant delays and non-linearities
in aerodynamic loads. Based on these slow sweep motion results the static dependencies for the rolling and
yawing moment coefficients have been approximated for further mathematical modelling.

The rolling moment coefficient in -phase and out-of-phase aerodynamic derivatives for the 650 delta wing
with a center body are presented in Figs.4c,d. In the range α ≈ 25÷400 they have significant dependence on
reduced frequency of oscillation k (or ω). The unsteady aerodynamic responses superimposed on nonlinear
static dependence are presented in Fig.4a,b, respectively for α = 300 and α = 350. In periodical motion with
small amplitude ∆β = 2.50 at two frequencies ω = 0.017 and ω = 0.051 they have in experiment practically
elliptical form, the presented ideal ellipses have been reconstructed from the aerodynamic derivatives. The
out-of-phase aerodynamic derivative specifies a size of ellipse-area, while in-phase aerodynamic derivative
specifies orientation of ellipse-axis. At small frequencies the ellipse-axis approaches the static dependence
slope (green ellipses), and at large frequencies they decline from the static slope significantly (black ellipses).
Aerodynamic derivatives in (1) can capture a change of size of ellipse area, but unable to model a change in
ellipse orientation, which is in fact an effect of internal flow dynamics.

The considered delta wing without a vertical tail has a very low yawing moment coefficient Cnst
, which

is mostly statically unstable with magnitudes only about 10% of the rolling moment coefficient Clst
.
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B. Dynamic representation

1. Linear model

To capture the frequency effect in the out-of-phase and in-phase aerodynamic derivatives a simple dynamic
model describing unsteady contribution to the full aerodynamic loads can be applied.8,9

The rolling moment coefficient during forced roll oscillations can include a separate term for unsteady
aerodynamic contribution:

Cl = Clβatt
β + Clpatt

pb

2V
+ Cld , (2)

where Clβatt
, Clpatt

represent aerodynamic derivatives for ”hypothetical” attached flow conditions and Cld

describes dynamic contribution from vortical or separated flow. The dynamic contribution Cld is governed
by a linear differential equation:

τ
dCld

dt
+ Cld = Clβd

β, (3)

where τ is the non-dimensional characteristic time scale, term Clβd
β is the static value of Cld , t = 2t′V/b is

the non-dimensional time, b is the wing span.
All parameters in aerodynamic model (2) and (3) can be identified from the wind tunnel forced oscillation

data. In forced roll oscillations the bank angle varies harmonically φ = φs sin ωt and is linked with sideslip
angle as β = φ sin α0.

The in-phase and out-of-phase aerodynamic derivatives are obtained from the forced oscillation data
as coefficients of the Fourier series expansion of the measured periodic aerodynamic responses. In accor-
dance with structure of mathematical model (2) and (3) the following connections between the experimental
aerodynamic derivatives and parameters of the mathematical model can be derived:

Clβexp
(ω) = Clβatt

sin α0 +
Clβd

sin α0

1 + τ2ω2

Clpexp
(ω) = Clpatt

−
τClβd

sin α0

1 + τ2ω2

(4)

Equations (4) can be transformed to a simple linear relation between the experimental in-phase and
out-of-phase aerodynamic derivatives:

Clout
(ω) = −τClin

(ω) + a0, (5)

where
a0 = τClβatt

sin α0 + Clpatt

Similar linear connection between aerodynamic derivatives (5) is valid for the experimental data obtained
in yaw oscillations. The characteristic time constants and other model parameters can be identified applying
to (5) the two-step linear regression method.9 The linear regression results for the experimental derivatives
obtained in roll and yaw oscillations are presented in Fig.5.

The characteristic time constants τroll and τyaw in Fig.5,c are identified very accurately at angles of
attack α = 25÷350 as the mean square deviations, the vertical bars, are very small. It shows that the model
structure fits very well the experimental data. However, in some points the mean square deviation is very
high (α < 25o and α > 370) because of a reduced frequency effect leading to higher sensitivity to the data
errors. Note, that the identified time constants τroll and τyaw are very close at α = 300, and they diverge at
higher angles of attack, for example, at α = 350 the difference is about 30%.

The in-phase and out-of-phase aerodynamic derivatives predicted by mathematical model (2), (3) and
experimental ones for shown in Fig.6 demonstrate an excellent agreement. It means that at small amplitude
lateral/directional motion the mathematical model will be totally consistent in he time domain with the
experimental aerodynamic responses and their dependence on frequency of oscillations.
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(a) Linear regression of the roll oscillation aerodynamic
derivatives

(b) Linear regression of the yaw oscillation aerodynamic
derivatives

(c) Characteristic time scales identified from the roll and
yaw oscillation data

(d) Attached component Clβatt
identified from the roll

and yaw data

Figure 5. Results of the two-step linear regression identification of the aerodynamical model parameters
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Figure 6. The 650 delta wing rolling moment coefficient - predicted and experimental dependencies for the
in-phase and out-of-phase aerodynamic derivatives.

2. Non-linear model

The linear mathematical model (2),(3 ) may lose its accuracy at large amplitude oscillations and in vicinity
of critical states and static hysteresis loops. To reconcile the mathematical model with these conditions the
dynamic equation in (3) is transformed to the nonlinear form:

dCld

dt
= k0 + k1∆C + k2∆C2 + k3∆C3, (6)

where t =
2t′V

b
is nondimensional time, ∆C(α, β) = Clst

(α, β) − Clatt
(α, β) − Cld and coefficients k1, k2, k3

depend on angle of attack and sideslip ki(α, β).
In the case when k0(α, β) = k2(α, β) = k3(α, β) = 0 equation (6) is totally identical to the linear one (3)

and the characteristic time scale is linked with k1 coefficient τ = 1/k1. If the terms k2(α, β) 6= 0, k3(α, β) 6= 0
while k0(α, β) = 0 equation (6) can model a weak nonlinearity, when an increase in oscillation amplitude is
apparent as a change in the time scale τ . Onset of static hysteresis requires k0 6= 0 and D = k2

2−4k3k1 > 0.8,9

The characteristic time scale τ = 1/k1 and attached component of the rolling moment derivative Clβatt
(α)

have been identified by the two-step linear regression method using small amplitude oscillations data at zero
sideslip. They are included in the linearized mathematical model (2),(3) as functions only of angles of attack.
Large sideslip angles can require correction of these two parameters due to changes in the flow structure.
Their modified forms accounting for sideslip effect is shown in Fig.7. The value τi1 has been identified in the
linear model, τi2 and sideslip angles ψ1, ψ2, where the characteristic time scales change, have been identified
using the large amplitude oscillations in yaw.

The variations of angle of attack and sideslip in the experiment are used as inputs to the mathematical
model (2),(6), and mathematical model outputs are compared with the experimental aerodynamic responses.
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(a) Static and attached dependencies (b) Characteristic time scale

Figure 7. Non-linear dependence on sideslip angle.

The following positively defined error function is minimized to estimate the unknown model parameters:

Φǫ =
1

m(n + 1)

m
∑

r=1

n
∑

i=0

[Crexp
− Crmod

]2, (7)

where r is the number of aerodynamic responses, i is the number of sampling points in aerodynamic response
time history.

The nonlinear model parameters have been identified in the angle of attack range α0 = 200 ÷ 400

with strong nonlinearities in the experimental aerodynamic responses. Without these nonlinear effects the
identification of model parameters would be definitely impossible.

Detailed comparison of the aerodynamic responses predicted by the identified nonlinear mathematical
model (2), (6) with the experimental aerodynamic responses for α = 350 are presented in Fig.8 for different
reduced frequencies k = 0.023, 0.046, 0.07 and two oscillation amplitudes in yaw ∆Ψ = 10, 200. Predicted re-
sponses Clmod

(t) are shown by blue lines, while experimental responses Clexp
(t) are shown by yellow squares.

The red lines with diamond markers show static dependence Clst
(β), cyan lines show hypothetical attached

flow dependence Clatt
(β) and red lines with triangle markers show the difference between the static de-

pendence and the attached one Clst
(β) − Clatt

(β). Magenta solid lines show variation of dynamic variable
Cld(t). Presented comparison shows rather good agreement between the mathematical model aerodynamic
responses and experimental aerodynamic responses both qualitatively and quantitatively.

III. Aircraft lateral/directional dynamics at high incidence

In the conceptual and preliminary aircraft design stage simple methods and criteria based on static
stability and control characteristics have been widely used in engineering practice to estimate manoeuvre

boundaries at high incidence flight.10 The directional departure parameter Cnβdynamic
= Cnβ

−
Iz

Ix
Clβ sin α,

the Lateral Control Departure Parameter LCDP=Cnβ

(

1 −
Clβ

Cnβ

Cnδa

Clδa

)

, the damping-in-roll parameter Clp +

Cl
β̇

sin α have been effectively used in the past for prediction of departures and wing-rock onset.
Modern and future aircraft are potentially able to fly at high angles of attack due to introduction of

thrust vectoring and digital automatic control technologies. However, the design of control system, which
will maintain stable and controllable flight beyond stall conditions, requires an accurate knowledge of the
nonlinear and unsteady aerodynamic characteristics over a large range of α, β.

The unsteady aerodynamic models presented in the previous section take into account the time lag effects
produced by separated flow dynamics and thus incorporate dependence on oscillation frequency or in fact
on motion prehistory.
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(c) ∆Ψ = 100, k = 0.07
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Figure 8. Rolling moment coefficient Cl - predicted and experimental aerodynamic responses at large ampli-
tudes oscillations in yaw.
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The current practice is mostly based on application of aerodynamic derivatives representation for high
angles of attack simulation and control design. The main objective of this paper is to show the difference
in terms of the open- and closed-loop stability characteristics of the lateral/directional motion if a more
adequate aerodynamic model will be applied.

We will consider small amplitude lateral/directional motion and suppose that this dynamics is decoupled
from the longitudinal dynamics. The only dependence from longitudinal dynamics will be trimmed angle of
attack α0. This angle of attack is trimmed in level flight at some given altitude H and Mach number by
aerodynamic or thrust vectoring control as it is shown in.11

A. Lateral/directional motion equations

For the lateral/directional motion control we will use the thrust vectoring in yaw δTψ
(see Fig.2, a) and

ailerons δa. The aileron control derivatives Clδa
are Cnδa

for the 650 delta wing are available from the wind
tunnel tests conducted in TsAGI.

In dynamic analysis we will consider the following linearized lateral/directional equations of motion:

dβ
dt

= p sin α0 − r cos α0 +
−TδTψ

+ q̄SCy

mV
+

g

V
cos α0φ

dp
dt

=
q̄Sb

Ix
Cl

dr
dt

=
q̄Sb

Iz
Cn +

TRT

Iz
δTψ

dφ
dt

= p + r tanα0,

(8)

where the side force, the rolling and yawing moment coefficients will be used in two different forms - based
on the aerodynamic derivative concept and based on partitioning and dynamic representation of vortical
flow contribution in the full aerodynamic loads.

B. Aerodynamic coefficients representation

The first form of aerodynamic coefficients representation is based on aerodynamic derivative concept and
has the following form:

Cy = Cyβfo
(α0, k)β + Cypfo

(α0, k)
pb

2V
+ Cyrfo

(α0, k)
rb

2V
+ Cyδa

(α0)δa

Cl = Clβfo
(α0, k)β + Clpfo

(α0, k)
pb

2V
+ Clrfo

(α0, k)
rb

2V
+ Clδa

(α0)δa

Cn = Cnβfo
(α0, k)β + Cnpfo

(α0, k)
pb

2V
+ Cnrfo

(α0, k)
rb

2V
+ Cnδa

(α0)δa,

(9)

where the aerodynamic derivatives obtained in forced oscillation tests in roll and yaw as a combination of
rotary and unsteady aerodynamic derivatives depend on angle of attack α0 and reduced frequency parameter

k =
ωb

2V
.

The second form for representation of aerodynamic coefficients is based on aerodynamic loads parti-
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tioning and dynamic modelling of flow time lag effects. It has the following form:

Cy = Cyβatt
(α0)β + Cypatt

(α0)
pb

2V
+ Cyratt

(α0)
rb

2V
+ Cyδa

(α0)δa + Cyd

Cl = Clβatt
(α0)β + Clpatt

(α0)
pb

2V
+ Clratt

(α0)
rb

2V
+ Clδa

(α0)δa + Cld

Cn = Cnβatt
(α0)β + Cnpatt

(α0)
pb

2V
+ Cnratt

(α0)
rb

2V
+ Cnδa

(α0)δa + Cnd
,

(10)

where aerodynamic derivatives Cyβatt
, Clpatt

, Cnratt
, etc. corresponding to attached flow conditions do not

depend on reduced frequency k and dynamic contributions from vortical flow Cyd
, Cld , Cnd

are described by
the following dynamic equations:

τcy
b

2V
dCyd

dt
+ Cyd

= Cyβd
(α0)β

τcl
b

2V
dCld

dt
+ Cld = Clβd

(α0)β

τcn
b

2V
dCnd

dt
+ Cnd

= Cnβd
(α0)β

(11)

C. State-space dynamic models

Combining (8) and (9) we can represent the equations for the lateral/directional motion with aerodynamic
derivatives formulation in the state space form:

ẋ = Ax + Bu, (12)

where x = (β, p, r, φ)T , u = (δTψ
, δa)T and

A =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

q̄S

mV
Cyβfo

(α0, k) sin α0 − cos α0

g

V
cos α0

q̄Sb

Ix
Clβfo

(α0, k)
q̄Sb2

2IxV
Clpfo

(α0, k)
q̄Sb2

2IxV
Clrfo

(α0, k) 0

q̄Sb

Iz
Cnβfo

(α0, k)
q̄Sb2

2IzV
Cnpfo

(α0, k)
q̄Sb2

2IzV
Cnrfo

(α0, k) 0

0 1 tan α0 0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

B =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

−
T

mV
0

0
q̄Sb

Ix
Clδa

(α0)

TRT

Iz

q̄Sb

Iz
Cnδa

(α0)

0 0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(13)
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Combining (8) and (10),(11) we can represent equations for the lateral/directional motion with dynamic
aerodynamic model also in the state space form (12), where x = (β, p, r, φ, Cld , Cnd

)T and u = (δTψ
, δa)T

(the dynamic contribution in the side force is neglected).
In this case matrices A and B have the following representation:

A =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

q̄S

mV
Cyβatt

(α0) sinα0 − cos α0

g

V
cos α0 0 0

q̄Sb

Ix
Clβatt

(α0)
q̄Sb2

2IxV
Clpatt

(α0)
q̄Sb2

2IxV
Clratt

(α0) 0
q̄Sb

Ix
0

q̄Sb

Iz
Cnβatt

(α0)
q̄Sb2

2IzV
Cnpatt

(α0)
q̄Sb2

2IzV
Cnratt

(α0) 0 0
q̄Sb

Iz

0 1 tanα0 0 0 0

2V

τcl
b
Clβd

(α0) 0 0 0 −
2V

τcl
b

0

2V

τcn
b
Cnβd

(α0) 0 0 0 0 −
2V

τcn
b

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

B =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

−
T

mV
0

0
q̄Sb

Ix
Clδa

(α0)

TRT

Iz

q̄Sb

Iz
Cnδa

(α0)

0 0

0 0

0 0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(14)

For large amplitude simulation of the lateral/directional dynamics nonlinear aerodynamic models for the
rolling moment coefficient Cl and yawing moment coefficient Cn in the form (6) will be used. In this case
equations (14) are added by nonlinear term:

ẋ = Ax + Bu + f(x), (15)

IV. Open-loop and closed-loop dynamic analysis of lateral/directional motion
at high incidence flight

The open- and closed-loop lateral/directional dynamics at high angles of attack is analyzed considering
two types of aerodynamic representation, namely, using system (13) and system (14). In the first case
reduced frequency k is considered as a parameter and its effect is analysed.
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A. Open-loop analysis

The eigenvalues of the linearized lateral/directional motion equations in the form (14) and (13) for different
four angles of attack α0 = 25, 30, 35, 400 are shown in Fig.9.

System (14) for the dynamic aerodynamic model has six eigenvalues, they are marked by black circles.
Four eigenvalues for the aerodynamic derivatives model (system (13)) are marked by red, green and blue
crosses for k = 0.026, 0.046, 0.0702, respectively.

The Dutch-roll mode eigenvalues in system (14) exist with rather high frequency ω ≈ 2 1/s at all
considered angles of attack. In system (13) with conventional aerodynamic model the Dutch-roll mode
eigenvalues exist only at α0 = 250 - ω ≈ 1.5s−1. At α0 = 30 ÷ 400 all eigenvalues in (13) are concentrated
close to the real axis.

At α > 300 the both systems become aperiodically unstable, the roll mode eigenvalues move to the right
semiplane, however, the level of aperiodic instability is higher for system (14), when more adequate unsteady
aerodynamic model is taken into account.

The difference in location of the Dutch roll and roll-subsidence modes eigenvalues in system (14) is due to
coupling of the lateral/directional modes eigenvalues with unsteady aerodynamic. These two negative real
eigenvalues are located very close to eigenvalues of the lateral/directional modes eigenvalues. For example,
at α0 = 200 the unsteady aerodynamic eigenvalues equal su1

= −2.7s−1 and su2
= −1.4s−1 and at α0 = 350

they are much smaller su1
= −0.3s−1 and su2

= −0.2s−1.
Effect of reduced frequency parameter k on eigenvalues of system (13) is more significant on the ends of

the considered angle of attack interval at α = 250 and α = 400.
Comparative analysis of the open-loop eigenvalues with two types of aerodynamic representation shows

that account of adequate unsteady aerodynamic effects (14) leads at α > 330 to a higher level of aperiodic
instability. System (14) also has the stable Ducth roll complex pair at all angels of attack, while in system
(13) the oscillatory mode practically disappears at α > 280.

A significant difference in eigenvalues location for aerodynamic derivatives model (13) with respect to
more adequate unsteady aerodynamic model will make practically impossible design of control laws stabilizing
the lateral/directional aircraft motion, when aerodynamic derivatives model is implemented.

B. Closed-loop analysis

To maintain stable flight at high angles of attack stabilizing control laws should be not only stable locally,
but also provide reasonable stability at large disturbances. As shown in Fig.3 the rolling moment at high
incidence has very nonlinear dependence on sideslip, which is the result of vortex breakdown processes above
the wing.

Linearly designed control law can fail at large amplitude disturbed motion and will be unable to suppress
wing-rock motion, the large amplitude stable oscillations in roll and yaw, which are typical at high angle
of attack for many modern aircraft. The nonlinear stabilization of the lateral/directional motion at high
incidence flight in the range α = 35 ÷ 400 is rather complicated problem due to unsteady and nonlinear
nature of the aerodynamic loads and we will not consider this problem in this paper.

1. Stabilizing control laws

Two linear control design techniques are considered for stabilization of the linearized lateral/directional
dynamics: the LQ-optimal and the pole placement methods.

The state vector in (12) for aerodynamic derivative model x = (β, p, r, φ)T can be measured by standard
sensors and so are totally observable, while in the case of unsteady aerodynamic model x = (β, p, r, φ, Cld , Cnd

)T

two internal unsteady aerodynamic variables Cld , Cnd
can not be directly measured. So, the measurement

vector
y = Cx
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in these two cases has the same dimension, matrix C ∈ R4×6 for unsteady aerodynamic model, and C ∈
R4×4 = I4 for aerodynamic derivative model.

The control vector u = (δTψ
, δδa

)T including thrust and aileron deflection has amplitude and deflection
rate limits:

|δTψ
| ≤ umax1

, |δa| ≤ umax2
,

|δ̇Tψ
| ≤ u̇max1

, |δ̇a| ≤ u̇max2
,

where umax1
= umax2

= 200, u̇max1
= u̇max2

= 50 o/s.
The open-loop lateral/directional motion are periodically unstable at α > 340 considering both aerody-

namic models, and in the case of unsteady aerodynamic model the level of instability is higher.
Stabilization of unstable system with constrained control has some specific problems.13 An unstable

linear system under control constraints has bounded controllable region, in which the stabilization problem
can be solved. As a result, this linear system may not be globally stabilizable.

The controllable region is the set of states that can be steered to the origin with available bounded control.
Its size can serve as a metric showing the complexity of the stabilization problem. If the controllability region
size is very small it indicates the need in more powerful control effectors. In our study for computation of
controllability regions we implement the algorithm from,14 taking into account the amplitude and deflection
rate limits.

The closed-loop system with any control law will have attraction region, which size will be less or equal
to the size of controllability region of the open-loop system. A relative size of the attraction region can be
considered as an additional indicator for the closed loop system.

2. Observer and LQR design

To stabilize the unstable system with one positive real value a controller must know the states of unstable
subsystem. But it is practically impossible without two unsteady aerodynamic variables.

Unmeasurable variables Cld , Cnd
can be obtained using the Kalman estimator in the form:

ẋe(t) = Axe(t) + Bu(t) + L(y(t) − Cxe(t)),

so that the feeback controller can be now designed with estimated full vector

u(t) = Kxe(t).

The estimator gain L is obtained using function kalman MATLAB Control System Toolbox15 with the
following parameters:

Qn = I, Rn = I.

The state feedback gain matrix for the linear quadratic regulator

K = −BT P.

needs matrix P , which is the unique positive solution of the following Riccati equation:

AT P + PA − PT BBT P = 0,

where A and B are matrices of the linear system (12).
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Figure 9. Open-loop system eigenvalues in level flight at H = 1 km. Black circles - system (14), red, green
and blue crosses - system (13) for k = 0.026, 0.046, 0.07, respectively.
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3. Comparison of LQ and pole placement controllers

The closed-loop system stability region or domain of attraction depends on applied controller. To illustrate
this fact the designed LQ-optimal controller was compared with the pole placement control law, which was
obtained via function place from MATLAB Control System Toolbox.

At α0 = 400 the following closed-loop poles were chosen to provide the closed-loop system satisfactory
dynamics:

Unsteady aerodynamic model Aerodynamic derivative model

−0.49 + 2.1i −0.49 + 2.1i

−0.49 − 2.1i −0.49 − 2.1i

−1.41 −1.41

−0.02 −0.02

−1.202

−1.825

The boundaries of controllability regions and domain of attractions in different cross sections are presented
in Figs. 10 and 11. Domain of attractions have been obtained by direct numerical integration of the closed-
loop system under saturated control laws with a number of initial conditions taken inside the controllable
region.

The controllability region with aerodynamic control δa is very small and unsatisfactory, while in combi-
nation with thrust vectoring δTψ

, the controllability region size expands significantly (see Fig.10, a). Effect

of the rate limit δ̇max
Tψ

= 50deg/s in thrust vectoring on the size of controllability region is not very significant

(see Fig.10, b).
As it was expected,13 the domain of attraction for the LQ-optimal controller is much bigger and covers a

large part of controllable region, while the controllability region for the pole placement control law is quite
small and therefore unsatisfactory (see Fig.10, c,d).

In the case of aerodynamic derivative model the domain of attraction for the LQ-optimal controller covers
all states in the controllable region. The result for the unsteady aerodynamic model (see Fig. 10) is worse due
to incorporated into the control system observer. In both cases, the minimum energy LQ-optimal controller
outperforms the pole placement control law in terms of size of domain of attraction, which is the critical
factor in control design for inherently unstable dynamics.

Analysis of the closed-loop dynamics of the linearized lateral/directional system has highlighted the
problem in design of stabilizing control laws in terms of the stability region size. The application of the
LQ-optimal controller provides reasonably good results if the size of controllable region is sufficient to reject
external disturbances.

When control law affects also the stable subspace of the system in order to shape the lateral/directional
dynamics with handling quality requirements the size of the closed-loop system stability region may become
very small.

The design of stabilizing control law for the lateral/directional motion at high angles of attack is much
more complicated that we considered above. In reality the rolling and yawing moment coefficients are
essentially nonlinear in sideslip (see Fig.4) and have significant time lag effects due to flow dynamics. The
control design in such conditions needs special approach and investigation.

Conclusions

Comparative analysis of two forms of aerodynamic representation, the dynamic unsteady aerodynamic
model and the conventional model based on aerodynamic derivatives concept, in terms of their impact on
the lateral/directional stability characteristics and control design issues shows, that:
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Figure 10. Open-loop controllablity and closed-loop stability regions for unsteady aerodynamic model.
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Figure 11. Open-loop controllability and closed-loop stability regions for unsteady aerodynamic model.
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- at high angles of attack conditions the unsteady aerodynamic model taking into account the time lag
effects produced by flow dynamics is more adequate for flight dynamics analysis and control design,

- the conventional aerodynamic derivative model beyond the stall conditions can not provide accurate
prediction of stability characteristics and be applied for control design,

- special attention should be given during control design to the closed-loop system stability region size,
aerodynamic control at high angles of attack at the presence of control constraints is effective only in
combination with thrust vectoring.
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