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Abstract: We report on terahertz quantum-cascade lasers (THz QCLs)
based on first-order lateral distributed-feedback (lDFB) gratings, which
exhibit continuous-wave operation, high output powers (>8 mW), and
single-mode emission at 3.3–3.4 THz. A general method is presented
to determine the coupling coefficients of lateral gratings in terms of the
coupled-mode theory, which demonstrates that large coupling strengths
are obtained in the presence of corrugated metal layers. The experimental
spectra are in agreement with simulations of the lDFB cavities, which take
into account the reflective end facets.
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1. Introduction

Terahertz quantum-cascade lasers (THz QCLs) have been proposed and demonstrated for ap-
plications such as local oscillators in heterodyne receivers [1–5] above 2 THz. This requires
THz QCLs, which operate in continuous-wave (cw) mode with a high output power in a
single spectral mode. Operation in a liquid nitrogen dewar or a small-size Stirling cooler is
preferred [6]. The two conventional approaches for obtaining single-mode QCLs have been
distributed-feedback (DFB) gratings and external-cavity setups [7,8]. However, for THz QCLs,
the realization of tunable external cavities is complicated by the limitations due to the cryogenic
operating temperatures and the fabrication of THz anti-reflection coatings [9]. THz QCLs with
a DFB grating are often realized by slits in the top metallization of the laser ridge [10–13],
which provide a strong feedback due to the large modal intensity at the top metal and the large
refractive index modulation. The electrical contacting of the laser ridges is typically performed
by just one or two thin bonding wires attached to the ends of the laser ridge in order to avoid
any interference with the grating slits. An alternative approach is the use of lateral DFB (lDFB)
gratings [14–16], which allow for a closed top metallization such as for Fabry-Pérot THz QCLs.
The advantages of lateral gratings are a homogeneous current injection and the possibility of
using a larger number of bonding wires, which reduces the current load for each wire and
consequently the risk of failure in the case of cw operation. THz QCLs with first-order lDFB
gratings and sub-mW output powers have already been demonstrated for metal-metal wave-
guides [15], for which the optical mode is confined between two metal layers. In contrast, we
pursue the approach of first-order lDFB gratings in combination with single-plasmon wave-
guides. In single-plasmon waveguides [17, 18], the optical mode is confined between the top
metal and a highly n-doped layer underneath the active region. Fabry-Pérot lasers based on
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Fig. 1. (a) Schematic diagram of a THz QCL with a lDFB grating. L denotes the length of
the laser, Λ the grating period, and φF (0) and φF (L) the facet phases with respect to the
grating comb. (b) Scanning electron microscopy (SEM) image of an lDFB mesa after dry
etching.

this type of waveguide have shown to be beneficial over metal-metal waveguides with respect
to output power and beam quality [19]. Note that the lasing mode is transverse magnetically
(TM) polarized in QCLs. In the first part of this paper, we present a general method to calculate
the coupling strength of lDFB gratings in terms of the well established coupled-mode theory
(CMT) [20]. In the second part, experimental results are discussed and compared to simulations
of the lDFB cavities.

2. Modeling of lateral gratings

In a DFB grating, the dielectric function is modulated in the ridge direction (labeled z), where in
the following Δε(z) denotes the modulation of the dielectric function with respect to a reference
waveguide. In Fig. 1(a), a schematic diagram of an lDFB QCL with its two end facets is shown.
The grating period Λ corresponds to the vacuum Bragg wavelength of λB = 2Λn/m, where n
denotes the real part of the effective refractive index of the waveguide (neff = n+ ik) and m the
grating order. Figure 1(b) depicts an lDFB mesa after dry etching.

Within the CMT, the coupling coefficients describe the coupling of the forward and backward
traveling waves. This section deals mainly with determining the coupling coefficients of lDFB
gratings; for a comprehensive introduction to the CMT of DFB lasers, see for example Ref. [21].
The coupling coefficients of an mth-order grating are usually determined by two-dimensional
integrals of the mth Fourier components of Δε weighted by the modal intensity profile of the
corresponding reference waveguide (cf. Ref. [21]). For the integration, the change of the modal
intensity profile between the two grating sections is assumed to be negligibly small. There
are in general two complex coupling coefficients for the coupling of forward with backward
and of backward with forward traveling waves. Here, only symmetric gratings are considered,
for which the origin in the ridge direction z can be chosen such that Δε(z) = Δε(−z). In this
case, the two complex coupling coefficients can be subsumed into a single complex coupling
coefficient K + iKg, where the index coupling coefficient K is positive and the gain coupling
coefficient Kg can be positive or negative due to a possible phase difference of 0 or π between
index and gain coupling.

In Ref. [22], the coupling coefficients for interband DFB lasers based on lateral gratings
are determined by assuming a reference waveguide with an average refractive index in the
lateral corrugation region. However, this approach does not account for changes of the intensity
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profile of modes, which are located in different grating sections. In our case, different mode
profiles in the wide- and narrow-ridge sections are caused by the presence of a corrugated
metal layer. A more appropriate way to calculate the coupling coefficients in this case arises
from the correspondence of uniform DFB gratings and one-dimensional photonic crystals.

The band gap of a one-dimensional photonic crystal corresponds to the stop band of a uni-
form DFB grating caused by the coupling of forward and backward propagating waves. It can
be shown (see Appendix) that the complex coupling coefficient of a first-order symmetric grat-
ing is related to the complex eigenfrequencies ω± of the lowest two bands of a one-dimensional
photonic crystal at the Bragg wavevector by

ω± =
c

n+ ik

[π
Λ
± (K+ iKg)

]
≈ c

n

[π
Λ
± (K+ iKg)+ i

gn

2

]
, (1)

where c denotes the speed of light. The net gain gn is given by gn = Γg−αw with Γg being the
confinement factor times material gain and αw the waveguide losses. The difference of the two
eigenfrequencies corresponds to the complex coupling coefficient

K+ iKg =
ng

2c
(ω+−ω−) (2)

with ng denoting the group refractive index. The problem of calculating the coupling coeffi-
cients is now shifted from a two-dimensional integration to a calculation of the complex eigen-
frequencies of a photonic crystal at the Bragg wavevector. For an lDFB grating implemented in
a THz waveguide, this requires to solve Maxwell’s equations for the volume of the DFB unit
cell with periodic boundary conditions in the z direction. We performed this task by means of a
finite-element method using a commercial Maxwell solver (JCMwave, JCMsuite).

In the simple case of an index DFB grating, which consists of two alternating homogeneous
slabs, i.e. a grating with a square modulation of the dielectric constant and no waveguide dis-
persion (ng = n), the expression for K becomes a very simple analytic one:

K =
Δε

2Λn2 =
2Δn
λB

, (3)

where Δε = 2nΔn denotes the difference of the dielectric constant between the sections. Equa-
tion (3) can be easily derived from the general Eqs. (1) and (2) cited in [22]; other derivations
can be found in many textbooks (cf. citations in [15, 22]). Using Λ = 12.5 μm, Δε = 0.2, and
n = 3.584, Eq. (3) results in K = 6.23 cm−1. This is exactly the same value as obtained via the
numerical determination of ω− and ω+ for the corresponding one-dimensional photonic crys-
tal, which confirms the validity of the photonic-crystal approach. Since a stack of homogeneous
slabs is considered here, the numerical result for K does not depend on the lateral and vertical
dimensions of the simulated unit cell.

Figure 2(a) depicts the geometry of the unit cell used for the calculations of the lDFB cou-
pling coefficients; exploiting the symmetry of the problem, only half of the original grating unit
cell is simulated. Modes, which are symmetric and antisymmetric with respect to the center of
the ridge, are found for different boundary conditions at x = 0 (vanishing tangential magnetic
or electric field, respectively). The grating period is 12.5 μm, and the full width of the ridge is
120 and 107 μm in the wide- and narrow-ridge section, respectively. The THz dielectric con-
stants used in the simulations are basically the same as in Ref. [23]. However, for GaAs and
AlxGa1−xAs, we take into account the contribution of bulk phonons, and we neglect free-carrier
absorption in the active region. The different panels in Fig. 2(b) show the two perpendicular pro-
jections of the modal intensity for the ω− and ω+ modes with the fundamental TM00 symmetry.
The ω+ mode is localized in the narrow-ridge section of the grating, and the mode profile is
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Fig. 2. (a) Geometry and initial finite-element grid of the unit cell (periodic in the z-
direction) used in the simulation of the uniform lDFB grating. Top and bottom metalliza-
tions are yellow colored, the active region red, the highly doped bottom contact layer blue,
and the substrate gray. Perfectly matched layers are applied at x = 100 μm (transparent
boundary conditions). (b) Projections of the intensity distribution of the ω− and ω+ TM00
modes to the xz and xy plane.

basically that of a Fabry-Pérot single-plasmon waveguide. The ω− mode is localized mainly
in the wide-ridge section, and the mode profile is significantly altered as compared to the ω+

mode. The intensity distribution exhibits features of a surface plasmon bound to a metal film
of finite width [24] such as the large intensity peaks, which occur at the edges of the top metal-
lization outside the actual ridge volume. Furthermore, the ω− mode appears to couple weakly
to the bottom contact metallization.

The results for the eigenfrequencies and coupling coefficients are summarized in Table 1. The
magnitude of the coupling coefficient increases strongly with increasing lateral mode index,
which is related to a stronger localization of the ω− modes at the edges of the corrugated ridge.
Since the imaginary parts of ω− and ω+ are different, the coupling coefficient contains an
imaginary component Kg. Because gain has been neglected in the simulations, i.e. gn = −αw,
the effective waveguide losses for the corresponding reference waveguide can be determined
via αw = Im(ω+ + ω−)n/c. A value of 11.1 cm−1 for the TM00 modes is obtained, while
2D waveguide simulations of the narrow- and wide-ridge section result in 9.5 and 9.4 cm−1,
respectively. Hence, the lateral grating causes on average additional losses of about 1.7 cm−1.
The larger magnitudes of the imaginary part of ω± for the TM01 and TM02 modes correspond
to effective losses of 20 and 30 cm−1, respectively, which should usually inhibit lasing in the
higher-order lateral modes.

To illustrate the impact of the corrugated metal grating, we can estimate the grating coupling
strength assuming the same mode profile for the ω+ and ω− modes. In this case, an upper limit
for the coupling strength is given by Eq. (3) using Δε = n2

w − n2
n with the effective indices nw
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Table 1. Real and imaginary part of the eigenfrequencies ω− and ω+ and corresponding
coupling coefficient K + iKg (ng = 3.8) for the TM00, TM01, and TM02 modes for the
grating geometry shown in Fig. 2(a).

TM00 TM01 TM02

Re(ω−/[2πc]) (cm−1) 110.83 111.79 113.66
Re(ω+/[2πc]) (cm−1) 111.09 112.79 115.54
Im(ω−/[2πc]) (cm−1) −0.28 −0.53 −0.79
Im(ω+/[2πc]) (cm−1) −0.21 −0.34 −0.55
K (cm−1) 3.0 11.9 22.5
Kg (cm−1) 0.8 2.3 2.9

and nn corresponding to separate two-dimensional (2D) waveguide simulations for the wide-
and narrow-ridge section, respectively. By doing so, we obtain a value of K = 0.75 cm−1 for the
fundamental TM00 mode, which is by a factor of 4 smaller than compared to the value obtained
via the rigorous photonic-crystal method. Hence, the origin of the strong coupling is related
to the plasmonic intensity peaks at the grating edges, which occur only for the ω− mode [cf.
Fig. 2(b)] and result in a large difference between ω+ and ω−.

For known coupling coefficients, the CMT allows for a determination of the complex eigen-
values of the DFB cavity, i.e. the frequencies and threshold gain for the different longitudinal
modes. Note that in case of reflective end facets the cavity eigenvalues depend also on the facet
phases φF [cf. Fig. 1(a)]. In the case of cleaved facets, these are not known a priori due to the
limited accuracy of the cleaving process. This causes an uncertainty of the frequency values,
which is approximately equal to the mode spacing of the corresponding Fabry-Pérot cavity.

3. Experimental results and discussion

The THz QCL active region is based on the GaAs/Al0.25Ga0.75As heterostructure reported as
sample B in Ref. [25]. The processing is similar to single-plasmon Fabry-Pérot lasers. In the
first step, the metal grating is defined in a lift-off process (10/100 nm Ti/Au). This is followed
by a dry etching step to form the corrugated mesa and a second metallization/lift-off step,
which defines the bottom contact and reinforces the bonding area of the top contact (300 nm
AuGe/Ni). For dry etching, we used a silicon oxide hard mask and a reactive ion etch system
based on an inductively coupled plasma (SAMCO RIE-140iP). The grating duty cycle is 0.5,
and the widths of the wide- and narrow-ridge sections of the etched mesa are approximately
120 and 107 μm. These are also the parameters, which we used for the simulations (neglecting
a small technological gap of about 1 μm between the top metallization and the etch mask).

In the following, the experimental results for three laser stripes from a single die with grat-
ing periods of 12.4, 12.5, and 12.6 μm and as-cleaved facets are discussed. The corresponding
Bragg frequencies fall within the emission range of 3.15–3.45 THz found for Fabry-Pérot lasers
of the same wafer. Since the three laser stripes are located on the same die, they have all the
same ridge length (1.454 mm). Figure 3(a) shows the light-current-voltage (L-I-V ) character-
istics of the three lasers for driving currents up to 0.75 A (455 A cm−2). In this range, the
emission of the lasers is dominated by a single spectral mode. Due to the large dissipated elec-
trical power, only temperatures above 20 K can be maintained over the whole range of driving
currents. The three lasers exhibit similar L-I-V characteristics with threshold current densities
Jth of 290, 290, and 270 A cm−2 at 30 K for Λ = 12.4, 12.5, and 12.6 μm, respectively. The
maximum operating temperature is about 55 K for Λ = 12.4 and 12.5 μm and about 60 K for
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Fig. 3. (a) Continuous-wave L-I-V characteristics of three lDFB QCLs (ridge length
1.454 mm) with grating periods of 12.4, 12.5, and 12.6 μm at different temperatures. The
nominal temperature of 10 K is maintained only up to current values of 0.46 A. (b) Typi-
cal emission spectra of the three lasers in their single-mode regime (linear intensity scale).
Insets: Corresponding power spectra on a logarithmic scale for a wide frequency range.

Λ = 12.6 μm. The slope efficiency at threshold (30 K) is approximately 30 mW/A for all three
lasers. The output powers at a driving current of 0.75 A are 8.7, 8.0, and 8.7 mW at 30 K and
3.6, 3.3, and 4.8 mW at 50 K for Λ = 12.4, 12.5, and 12.6 μm, respectively. For comparison, a
Fabry-Pérot laser ridge of the same wafer with similar dimensions (0.10×1.52 mm2) operated
in cw mode up to 55 K. For this laser, values for the threshold current density, slope efficiency,
and maximum cw output power at 30 K are 320 A cm−2, 20 mW/A, and 6.5 mW, respectively.
The smaller threshold current densities of the lDFB QCLs in comparison with Fabry-Pérot
QCLs are qualitatively explained by a smaller threshold gain as a consequence of the feedback
provided by the grating in addition to the feedback of the reflective end facets. However, the
effect is stronger than expected. While the levels of cw output power are comparable for lDFB
and Fabry-Pérot laser ridges, the spectral power density for the lDFB QCLs is much higher due
to single-mode operation.

Figure 3(b) shows typical spectra of the three lasers in their respective single-mode regime.
The side-mode suppression ratio exceeds the signal-to-noise ratio of 20–30 dB, which is limited
by the baseline of the used Fourier-transform spectrometer and the QCL intensity. No side-
modes could be detected within the entire current and temperature range of Fig. 3(a) for the
laser with Λ = 12.5 μm. For the lasers with Λ = 12.4 (12.6) μm, this regime extends up to 0.7
(0.6) A at 20 K and over the entire driving current range at elevated temperatures (> 50 K). The
single-mode emission for Λ = 12.4, 12.5, and 12.6 μm occurs at frequencies of 3.35, 3.38, and
3.30 THz, respectively. The single-mode tuning with driving current and temperature is limited
to about 5 GHz for each laser, which is related to the rather small temperature dependence of the
dielectric constants at low temperatures. The line width of the laser emission, which can be as
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Fig. 4. (a) Continuous-wave L-I-V characteristics for the lDFB QCL with Λ = 12.5 μm
including the multi-mode emission regime (disabled temperature control loop). (b) Corre-
sponding emission spectra at four different driving currents.

small as a few kHz for THz QCLs [26], cannot be determined from the spectra due to the limited
resolution of the used spectrometer (Bruker, IFS66v). The instrumental resolution allows for a
clear identification of modes, which are separated by more than 3.5 GHz. The question may
arise, if these spectra consist of different transverse modes which are not resolved. However,
we disregard this possibility for a simple reason. According to the simulation results discussed
above, the effective index for the TM00 and TM01 mode differ by 1.2%, which causes a shift
of the Bragg frequency from 3.33 to 3.37 THz. Hence, the longitudinal mode with the lowest
threshold gain is expected to differ by more than 40 GHz for TM00 and TM01 symmetry, which
is well beyond the resolution limit. In contrast, higher-order transverse modes are likely to
explain the complicated multi-mode emission spectra observed at elevated driving currents.

From beam-profile measurements for one of the lDFB lasers operated in a Stirling cooler, we
found that the far field is very similar to single-plasmon lasers without a grating (cf. Ref. [6]).
For a driving current of 600 mA and operating temperature of 50 K, the beam profile of the
Λ = 12.4 μm laser consists mainly of a single lobe, covering approximately 80% of the power,
for which we estimate a full width at half maximum divergence of about 24◦ in both, the lateral
and the vertical, directions. The beam divergence appears to be comparable to the one of third-
order DFB QCLs, for which values of 15 to 30◦ have been reported [16].

In Fig. 4(a), the L-I-V characteristics are shown for the laser with Λ = 12.5 μm including the
multi-mode emission regime. Due to the large dissipated electrical power at elevated current
levels, the temperature control loop was disabled for this measurement resulting in a linear
temperature increase of 20 K between the threshold and the maximum applied current of 1.0 A.
At its maximum, the cw output power exceeds 12 mW for this laser. In Fig. 4(b), the emission
spectra for different operating currents are shown. Between 0.75 and 0.9 A, the laser emission
switches from 3.38 to 3.40 THz. This new regime is related to a discontinuity at 0.82 A in the
light-current characteristics, which is also observed in the I-V characteristics. When the driving
current is increased to 0.97 A, another mode at 3.53 THz starts to appear, and, at a driving
current of 1.0 A, the laser emission exhibits a complex multi-mode pattern with strong modes
at 3.38/3.40 THz and 3.50/3.53 THz.

The emission spectra can be interpreted within the framework of the coupled-mode equations
for a DFB cavity (see Appendix) with the boundary condition of two reflective end facets, for
which the facet phases as defined in Fig. 1(a) enter the eigenvalue problem. The coupled-mode
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Fig. 5. Calculated threshold gain gth vs. frequency of the eigenmodes of the lDFB lasers
(Λ = 12.4, 12.5, and 12.6 μm) in units of gth of the reference Fabry-Pérot cavity. The
vertical dashed lines indicate the Bragg frequency using n = 3.58. The facet phases φF as
defined in Fig. 1(a) have been determined by SEM imaging and are given in radians. Circles
refer to a complex coupling coefficient [K + iKg = (3.0+ 0.8i) cm−1] and squares to a
real coupling coefficient (K = 3.0 cm−1). Triangles indicate the experimentally observed
frequencies.

equations have been solved numerically for this case. In Fig. 5, the calculated threshold gain
for the TM00 mode is plotted versus the frequency eigenvalues for the three lDFB QCLs with
Λ = 12.4, 12.5, and 12.6 μm. We have performed simulations either for a complex coupling
coefficient or for a real coupling coefficient (Kg = 0). The experimentally observed single-mode
emission and the calculated longitudinal modes with the lowest threshold gain occur at almost
the same frequencies, where the quantitative agreement appears to be better for the simulations
with a real coupling coefficient. In this case, an agreement better than 9 GHz is found for all
three lasers, while in the case of a complex coupling coefficient the calculated mode with the
second lowest threshold gain coincides with the lasing frequency for Λ = 12.6 μm. While the
Bragg frequency (depicted as dashed lines in Fig. 5) decreases with increasing grating period,
the finite facet reflectance and the different facet phases cause lasing in the longitudinal mode
below the Bragg frequency for Λ = 12.4 and 12.6 μm and above the Bragg frequency for Λ =
12.5 μm. The differences in the calculated threshold gain explain the different experimentally
observed threshold current densities. However, the calculation predicts the lowest threshold
gain for Λ = 12.5 μm, while experimentally the lowest value of Jth is found for Λ = 12.6 μm
[cf. Fig. 3(a)]. Differences between the experimental and simulated results are likely due to
the uncertainty of the involved parameters such as the coupling coefficients. For instance, the
occurrence of a small displacement between the etch mask and the metallization mask might
result in a phase difference between the index and gain coupling, which has been neglected in
the simulations.

While the single-mode operation regime is quite well explained by the coupled-mode equa-
tions for the fundamental lateral TM00 mode, the situation becomes more complex for the
multi-mode emission regime. In Fig. 4(b), the emission of a second mode at 3.40 THz for the
laser with Λ = 12.5 μm can be understood by the Stark shift of the gain with increasing bias,
since the emission frequency agrees with the calculated frequency of the mode with the second
lowest threshold gain. However, the multi-mode emission pattern for the highest driving cur-
rent seems to exhibit a stop band between 3.40 and 3.50 THz. This cannot be explained by the
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spectral position and threshold gain of the longitudinal modes with TM00 symmetry. A likely
explanation is the presence of higher-order lateral modes such as TM01 and TM02, for which
the coupling coefficient is much larger and the Bragg frequency is increased due to the smaller
effective index of these modes. For lasing of higher-order lateral modes in favor of the funda-
mental TM00 mode, the threshold gain has to be smaller as compared to the TM00 mode, i.e.
the larger coupling coefficient has to compensate the higher waveguide losses.

4. Summary and conclusions

We have demonstrated THz QCLs based on first-order lateral DFB gratings and single-plasmon
waveguides, which operate in continuous-wave mode with high output powers and single-mode
emission around 3.3 THz. For the single-mode regime, cw output powers exceeding 8 mW have
been obtained, while the maximum output power including the multi-mode regime can exceed
even 12 mW. A method has been developed to calculate the coupling strength of DFB gratings
in the presence of corrugated metal layers, which demonstrates that the origin of the large
coupling strength in the investigated lasers is the strong plasmonic metal-light interaction at the
lateral grating edges. The emission frequency of the lasers is determined by the Bragg frequency
of the grating and the positions of the cleaved facets with respect to the grating comb. By taking
into account the reflective end facets, a quantitative agreement between the experimental spectra
and simulations based on the coupled-mode equations of DFB lasers is obtained. The present
approach is limited by the accuracy of the cleaving process, which causes an uncertainty of
the emission frequency approximately equal to the mode spacing of the corresponding Fabry-
Pérot cavity. However, the number of mounted laser dies, which have to be tested to obtain a
particular target frequency, can be kept small if laser ridges with different grating periods are
located on the same die.

5. Appendix

In order to derive Eq. (1), we start with the coupled-mode equations following the notation of
Ref. [21]:

d
dz

(
A(z)
B(z)

)
= i

(
Δβ Kab

−Kba −Δβ

)(
A(z)
B(z)

)
. (4)

A(z) and B(z) denote the amplitudes of the forward and backward propagating wave, respec-
tively. Kab and Kba refer to the coupling coefficients of the forward and backward propagating
mode, respectively, and Δβ = β0−βB corresponds to the difference of the propagation constant
β0 = ωneff/c and the Bragg wavevector βB = π/Λ. The coupled-mode equations in Eq. (4) are
formally solved by (

A(z)
B(z)

)
=

(
A±
B±

)
e±iqz (5)

with
q =

√
Δβ 2 −KabKba . (6)

The latter equation is the dispersion relation for the coupled system of forward and backward
propagating waves of a uniform grating of infinite length. The propagation constant of the
coupled system are given by β± = π/Λ±q, while β0 and Δβ refer to the reference waveguide.
Note that q, β0, and Δβ are complex quantities in the current notation due to the presence of
gain and losses, while the frequency ω is a real quantity.

In the case of index and gain coupling, the coupling coefficients can be written as Kab =
K+ iKg exp(iφg) and Kba = K+ iKg exp(−iφg) with K denoting the index coupling coefficient,
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Kg the gain coupling coefficient, and φg the phase difference between index and gain coupling.
We obtain the relation

KabKba = K2 −K2
g +2iKKg cos(φg) . (7)

Here, only symmetric gratings are considered, for which the origin in the ridge direction z can
be chosen such that Δε(z) = Δε(−z). The only possible values for φg are 0 and π , KabKba =
(K ± iKg)

2, where we chose the plus sign in the following by allowing for negative amplitudes
Kg. We rewrite Eq. (6) using ω = β0c/neff = β0c/(n+ ik):

ω±(q) =
c

n+ ik

(π
Λ
±
√

q2 +KabKba

)
. (8)

In the following, the wavevector π/Λ±q is treated as a real quantity, which causes β0 and Δβ
to be real, while the frequency ω becomes complex. The case q = 0 correspond to the eigenfre-
quencies of a one-dimensional photonic crystal at the edge of the Brillouin zone. Assuming a
symmetric grating with KabKba = (K + iKg)

2, the complex frequencies of the two eigenmodes
at q = 0 are given by Eq. (1).
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