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ABSTRACT 

In many countries reinforced concrete (RC) flat slabs supported on columns is one of the most 
commonly used structural systems for office and industrial buildings. To increase the lateral stiffness 
and strength of the structure, RC walls are typically added and carry the largest portion of the 
horizontal loads generated during earthquakes. While the slab-column system is typically not relevant 
with regard to the lateral stiffness and strength of the structure, each slab-column connection has to 
have the capacity to follow the seismically induced lateral displacements of the building while 
maintaining its capacity to transfer vertical loads from the slab to the columns. If this is not the case, 
brittle punching failure of the slab occurs and the deformation capacity of the entire building is limited 
by the deformation capacity of the slab-column connection. This article presents an analytical 
approach for predicting the moment resistance of all mechanisms that contribute to the strength of the 
slab-column connection when subjected to earthquake-induced drifts. The approach is based on the 
Critical Shear Crack Theory (CSCT). The performance of the model is verified comparing the 
analytical predictions with experiments from the literature. The influence of gravity induced loads on 
the flexural behaviour of slab-column connections under seismic loading as well as the contribution of 
the various resistance-providing mechanisms for increasing drifts are discussed. 

INTRODUCTION 

Reinforced concrete (RC) flat slabs supported on columns offers several advantages for office and 
industrial building construction, such as large open spaces and short construction times. Due to the 
low horizontal stiffness of the structure, vertical spines (shear and/or core walls) are added in seismic 
prone areas to carry the largest portion of the horizontal loads generated during earthquakes. Although 
the slab-column system is not part of the lateral force resisting system of the structure, each slab-
column connection has to have the capacity to follow the seismically induced lateral displacements of 
the building while maintaining its capacity to transfer vertical loads from the slab to the columns. 
Otherwise brittle punching failure of the slab occurs and the deformation capacity of the connection 
determines the deformation capacity of the entire building.  
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When a slab-column connection is subjected to a combination of moment and shear force and is 
responding in the elastic range, three different mechanisms are contributing to the moment resistance 
(Fig.1a): (i) shear force eccentric to the column axis, (ii) flexure and (iii) torsion. As the behaviour of 
the slab-column connection subjected to an eccentric moment becomes non-linear—even if this 
nonlinearity results only from cracking—an accurate and realistic estimation of the contribution of the 
resisting mechanisms to the overall capacity of the slab-column connection is rather difficult. This is 
accentuated by the fact that the aforementioned resistance mechanisms are associated with different 
failure modes.  

Several researchers investigated the contribution of the different mechanisms to the overall 
resistance of the slab-column connection. The common experimental approach for estimating the 
contribution of flexure and torsion mechanisms consists in cutting slots in the slab in the proximity of 
the column faces (Hanson and Hanson, 1968). Other researchers (Kanoh and Yoshizaki, 1979) applied 
a force couple to a column connected monolithically to the slab specimen at only one column-slab 
interface so that only torsion is tranferred from the column to the slab.  

Although experimental evidence on the different contributions of the resisting mechanisms is 
limited, the design equations in codes of practice (ACI 318, 2011; Eurocode 2, 2004) are based on 
estimating the contribution of the eccentric shear and bending moment mechanisms on the basis of 
empirical works while neglecting the contribution of the torsion mechanism. Another important 
assumption of these equations is the fact that the distribution of shear stresses on the critical perimeter 
is linear according to ACI 318 (2011) or uniform according to Eurocode 2 (2004) as shown in Fıg.1b. 
As a result, due to the nonlinear distribution of shear stresses on the control perimeter and depending 
on the actual contribution of the resistance-providing mechanisms at failure the code equations 
underpredict / overpredict the moment capacity of slab-column connections. Furthermore, a generally 
accepted method for calculating the moment that is transferred to the connection and a model for 
capturing the relationship between moment and deformation capacity are lacking.  
    

 
(a) (b) 

Figure 1. (a) Internal forces in the vicinity of the column for vertical loading and inserted moment due to 
earthquake-type loading according to the theory of elasticity, and (b) assumed distribution of shear stresses in the 
control perimeter according to Eurocode 2 (2004) and ACI 318 (2011)  
 

In order to design and assess buildings with flat slabs and columns for seismically induced 
drifts, the estimation of the moment-rotation relationship of slab-column connections including the 
rotation capacity are essential. A model for predicting the moment-rotation relationship should capture 
the size effect, the gravity load effect, the influence of column size and the influence of the 
reinforcement ratio. Moreover, as punching is a brittle local failure due to excessive shear stresses in 
the proximity of the slab-column connection, the need for a relationship between local rotations and 
global interstory drift ψst becomes obvious (Fig.2).  

This article presents an analytical model for predicting the contribution of all resistance-
providing mechanisms for slab-column connections subjected to earthquake-induced drifts (Fig.2), 
considering both the load and the deformation of the slab. The model is based on the Critical Shear 
Crack Theory (Muttoni, 2008) which has been employed successfully for predicting the flexural 
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behaviour of slab-column connections for gravity induced loads considering both the load and the 
deformation and which forms the basis of the punching shear equations of the FIB Model Code 
(2010). The contribution of the different resistance-providing mechanisms is obtained by means of 
formulating equilibrium equations for a slab sector when a moment due to seismically induced drifts is 
applied to the slab-column connection. 

Figure 2. Deformation state of slab-column connections at global level for seismically induced drifts  
 
The analytical approach is compared to experimental results from the literature to verify 

whether the influence of gravity loads on the flexural behaviour is effectively captured. Comparisons 
with respect to the reinforcement ratio and eccentricity influence can be found elsewhere (Drakatos et 
al., 2014). The contribution of the different resisting mechanisms for increasing values of lateral 
deformations is also discussed. 

ANALYTICAL MODEL 

The theoretical background of the proposed model is presented hereafter focusing in particular on the 
modifications introduced when compared to the CSCT. The load is assumed to be transferred to the 
column through an inclined compression strut. The presence of a critical shear crack that propagates 
along this strut reduces the shear strength of the connection (Muttoni, 2008). Therefore, the slab is 
divided into n sector elements and the region inside the shear crack. The difference when compared to 
the CSCT is the fact that the state of rotations is not the same for all the sector elements. Consequently 
torsional moments and moments due to eccentric shear force are introduced in the connection in 
addition to the moments due to flexure. The kinematic assumption and curvature distributions are 
shown in Fig.3. The equilibrium principles on the local level are illustrated in Fig.4. The half of the 
slab where the transferred moment increases the deflection of the slab due to vertical loads is denoted 
as “negative slab half” (negative moment due to seismic loading), whereas the other half where 
tension in the bottom reinforcement may appear is denoted as “positive slab half” (positive moment 
due to seismic loading).  
 

(a) (b) 
 
Figure 3. Proposed mechanical model: (a) kinematic assumption for the rotations of the sector elements (negative 
slab half), and (b) distribution of radial and tangential curvatures along the diameter of the isolated slab element 
(for upwards deflection of the positive slab half) 
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(a) (b) 
 
Figure 4.  Internal forces acting on the slab region: (a) outside the shear crack (negative slab half), and (b) inside 
the shear crack  
 

Further assumptions required for the calculation of the moment-rotation relationship according 
to the proposed model are the following: 

1) The rotation of the slab is assumed to follow a sinusoidal law with maximum value ψmax at 90° 
(tip of the negative slab half – Fig.3a) and minimum value ψmin at 270° from the bending axis, 
as it is described in the following equation (angle φ measured from the bending axis): 
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൅
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2) No torsional moments are developed in the faces of the sector elements (rigid bodies). 
3) The tangential moments are equal to the radial ones in the region inside the critical shear crack 

(Fig.3b). 
4) The radius r0 of the critical shear crack is equal to the eccentricity e. 
5) The quadrilinear moment-curvature diagram that is assumed for concentric punching 

(Muttoni, 2008) is also adopted as the envelope for the extended model. 
The mathematical expressions are presented hereafter. Mtan(φ-Δφ/2) and Mtan(φ+Δφ/2) are the 

integrals of the tangential moments at the faces of each sector element (Fig.3b). Subsequently these 
moments will be referred to as Mtan

- and Mtan
+, respectively, and are determined directly as a function 

of the assumed rotation, using the following formula (quadrilinear moment-curvature relationship): 
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where EI0 and EI1 are the stiffnesses before and after cracking, mcr and mR are the cracking moment 
and moment capacity respectively per unit width, χTS is the curvature due to the tension stiffening 
effect, and r0, ry, r1, rcr and rs are the radii of the critical shear crack, of the yielded zone, of the zone in 
which cracking is stabilized, of the cracked zone and of the circular isolated slab element respectively. 
The operator x is x for x  0 and 0 for x < 0. These parameters are the same as in CSCT (Muttoni, 
2008). The only parameter that is updated for the case of seismically induced deformations is the 
radius r0 of the critical shear crack (assumption 4) to take into account the fact that the shear force 
becomes less determinant as eccentricity increases. Therefore, the integral of the radial moment for a 
sector element at angle φ at r = r0 is: 
 

௥ሺ߮ሻܯ  ൌ ݉௥ሺ߮ሻ ∙ ଴ݎ ∙  (3) ߮߂

 
where mr(φ) is the radial moment per unit width at r = r0 as function of the radial curvature (Muttoni, 
2008).  
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If φi is the angle formed by the axis of bending and the bisector of the ith sector element, the 
shear force that can be carried by the compression strut of this sector element is derived by moment 
equilibrium in the tangential direction with respect to the centre of the column with radius rc: 
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ߨ2
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The total shear force acting on the connection for the load step k is:  
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The moment equilibrium in the radial direction gives the torsional moment that is carried by 

the connection for the ith sector element: 
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The different external loads acting on different sector elements provoke different moments for 

each load step k. The moment due to flexure (around the axis of the transferred moment) for the ith 
sector element is: 
 

 
௙௟௘௫.௞ሺ߮௜ሻܯ ൌ ௜ܸ ∙

߮߂
ߨ2

∙ ሺݎ௤ െ ௖ሻݎ ∙ sinሺ߮௜ሻ (7) 

 
The component of the torsional moment Mtor.r(φi) that is parallel to the transferred moment for 

the ith sector element is: 
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The difference of compression forces of the strut along the shear crack between anti-diametric 

sector elements provokes moment due to shear force difference (Fig.4b). The component that is 
parallel to the bending axis is denoted as Mecc and can be calculated using the following formula: 
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Therefore, the total moment acting on the connection (parallel to the transferred moment) for 

the load step k is: 
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The total moment acting perpendicularly to the transferred moment is equal to zero (Mk. = 0) 

and therefore global equilibrium is satisfied. The eccentricity calculated at load step k is: 
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 To obtain the relationship characterizing the flexural behaviour an iterative procedure should 
be adopted. The maximum rotation ψmax is iterated so as to obtain the points that form the curve 
(denoted as load steps k) and the minimum rotation ψmin is calculated to satisfy local and global 
equilibrium. For constant shear force V acting to the connection the iterative process for each load step 
terminates when Vk ≈ V so the moment-rotation curve is obtained and the radius r0 of the shear crack is 
adapted at each load step.  

As punching is a brittle local failure due to excessive shear stresses in the proximity of the slab-
column connection, the need for a relationship between local rotations and global slab rotations ψgl 
becomes essential. At a global level, the rotation of the slab ψgl can be calculated as the average of the 
local rotations of the sector elements at the tip of the negative and positive slab half ψmax and ψmin 
respectively as follows: 

 
߰௚௟ ൌ

߰௠௔௫ ൅ ߰௠௜௡
2

 (12) 

The interstory drift rotation is related to the global slab rotation according to the following 
relationship: 

 ߰௦௧ ൌ ߰௚௟ ൅ ߰௖௢௟  (13) 

where ψcol is the contribution of the column deformation to the interstory drift. 

GRAVITY LOAD EFFECT 

EXPERIMENTAL INVESTIGATIONS 

The influence of gravity loads on the stiffness, strength and deformation capacity of RC members 
subjected to lateral loading is often referred to as gravity load effect. The effect of gravity induced 
shear stresses on the behaviour and the strength of slab-column connections subjected to earthquake-
type loading is rather significant. According to Pan and Moehle (1989) an increase of vertical load 
acting on a slab-column connection results in a decrease of stiffness, strength and rotation ductility. 
Although this affirmation is confirmed by numerous experimental campaigns (e.g. Pan and Moehle, 
1989), there are others that show the inverse (e.g. Bu and Polak, 2009), i.e., an increase in stiffness and 
strength and partial enhancement of the rotation ductility when the gravity induced shear stresses are 
increased. In the following, the model presented in the previous section will be used to explain these 
different trends.  

Table 1 summarises key parameters of eight tests by four groups of authors that investigated 
the gravity load effect by testing the same slab configuration under two different gravity shear ratios 
(GSR). These tests will be used to investigate why different groups of authors observed different 
trends. Next to the specimen size and the GSR the table summarises for each test the applied moment 
Mu at failure, the eccentricity eu at failure (eu = Mu / V), and the interstory drift ψst.u at failure. The GSR 
is calculated as the vertical load acting on the connection divided by the punching resistance according 

to ACI 318 (2011) that is equal to 0.33ܾ௢݀ඥ ௖݂
ᇱ, where ܾ଴ is the control perimeter located at ݀/2 from 

the face of the column, ݀ the effective depth of the slab and ௖݂
ᇱ the concrete compressive strength. The 

control perimeter is computed on the basis of straight corners.  
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Table 1. Parameters and results of tests represented in Fig.6 and Fig.7 

Authors Specimen size 2rs 
(m) 

Vertical load (kN) GSR eu / rs (-) Mu (kNm) ψst.u (%) 

Pan and Moehle 
(1989) 

3.66 63 / 104 0.22 / 0.36 0.72 / 0.28 82 / 52 3.38 / 1.40 

Choi et al. 
(2007) 

2.40 81 / 150 0.30 / 0.50 0.84 / 0.38  81 / 68 2.67 / 3.00 

Bu and Polak 
(2009) 

1.50 110 / 160 0.53 / 0.68 0.86 / 0.66 70 / 78 2.79 / 2.69 

Park et al. 
(2012) 

2.70 132 / 159 0.44 / 0.41 0.40 / 0.34 71 / 74 1.24 / 1.37 

GEOMETRY AND DEFORMATION CONSIDERATIONS 

When analysing the tests displaying different trends, it was noticed that a key variable is the e/L ratio. 
Since rs is a function of L and r0 is assumed equal to e, the ratio r0/rs is directly related to e/L. For the 
same rs and the same moment M transferred by the slab-column connection: An increase in V 
corresponds to a decrease in eccentricity e since e=M/V. Since r0=e, the smaller the eccentricity, the 
larger the side faces of the sector elements and therefore the larger the tangential moment Mtan that is 
transferred via these faces (Eq. (2)). On the contrary, the smaller the eccentricity, the smaller the face 
formed by the critical shear crack and therefore the smaller the radial moment Mrad (Eq. (3)). This 
reasoning is based on the geometry of the sector element for a decrease of eccentricity, as illustrated in 
Fig.5.  
 

Figure 5. Influence of modified geometry on the sector element equilibrium components for (a) low 
eccentricity, and (b) high eccentricity 

 
The deformation state of the slab is influencing the tangential moments that are developed in 

the side faces of the sector elements. The tangential moment per side face is calculated as the integral 
of the moment profile along the slab radius (Fig.3b and Eq.2). For an incremental rotation Δψ at both 
positive and negative slab half the radii ry, r1 and rcr decrease and increase by the same length Δr 
respectively, as they are proportional to ψ (Muttoni, 2008). The resulting tangential moment increment 
ΔΜtan due to the variation by Δr of the radii ry, r1 and rcr results from the part of the sector outside the 
radius ry, i.e., rs – ry (Fig.3b) and therefore the smaller rs – ry the smaller is the tangential moment 
increment ΔΜtan. With an increase in V the radius ry where overall reinforcement yielding occurs 
increases and therefore the radius rs – ry decreases. Consequently the increase of the tangential 
moment ΔΜtan for the same rotation difference Δψ is smaller than for a case with less vertical load. 
Therefore, the behaviour under increased V becomes softer. 

For the same e the geometry of the sector elements is not modified and to assess the effect of an 
increase of rs only the deformation state of the slab is considered. For the same e and M the vertical 
load V is the same (since e=M/V) and therefore the tangential moment Mtan increases to compensate 
the increase of the lever arm rq – rc (Eq.4). So the rotation of the slab increases and the behaviour 
becomes softer. 
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GRAVITY LOAD EFFECT AS FUNCTION OF r0 / rs 

For large values of r0/rs the geometry of the sector elements is more important than the specimen size. 
An increase in V provokes an increase of rotations rendering the increase of the tangential moment 
Mtan more important and the decrease of the radial moment Mrad less important. Therefore, for an 
increase in V the behaviour becomes stiffer. On the contrary, for low values of r0/rs the geometry of the 
sector elements becomes less important than the specimen size. For these cases an increase in V results 
in a softer behaviour.  

The gravity load effect for low values of r0/rs is illustrated in Fig.6. The gravity load effect for 
large values of r0/rs is illustrated in Fig.7a. The two aforementioned effects tend to cancel each other 
out when the comparison is performed at intermediate values of r0/rs, as shown in Fig.7b. 

(a) (b) 
Figure 6. Gravity load effect for isolated specimens with low values of r0/rs at failure: (a) Pan and Moehle 
(1989), and (b) Choi et al. (2007) 
 

(a) (b) 
Figure 7. Gravity load effect for isolated specimens (a) with low values of r0/rs at failure (Bu and Polak, 2009), 
and (b) intermediate values of r0/rs at failure (Park et al., 2012) 

PARAMETRIC ANALYSES 

To support these findings, Fig.8 shows calculated moment-rotation curves for various vertical loads 
for configurations identical to the specimens tested by Pan and Moehle (1989) and Bu and Polak 
(2009). In Fig.8a the red and black color curves represent the vertical load levels adopted by Pan and 
Moehle (1989), 60 kN and 100 kN respectively. As can be seen from the green curve (V = 40kN), if a 
smaller vertical load V had been chosen the behaviour for high values of r0/rs would be softer 
comparing to higher vertical loads. In Fig.8b the red and blue color curves represent the vertical load 
levels chosen by Bu and Polak (2009), 100 kN and 150 kN respectively. If the adopted vertical load V 
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had been higher (black color curve corresponding to V = 200 kN), the moment-rotation relationship 
would have been softer.  

    

(a) (b) 
Figure 8. Influence of vertical loading on the flexural response of slab-column connections under seismic 
loading: (a) Pan and Moehle (1989), and (b) Bu and Polak (2009) 
 

These considerations have considerable implications for the earthquake-resistant design of flat 
slab buildings with relatively short spans. As the primary aim of increasing the number of columns is 
the reduction of the vertical load carried by each slab-column connection, the eccentricity e increases. 
Moreover, for shorter spans the span length L decreases and consequently rs decreases as well. 
Therefore, the ratio r0/rs increases and, as shown before, decreased vertical loads appear to confer 
lower moment capacity. Thus, for the earthquake-resistant design of flat slab buildings with relatively 
short spans it is rather unsafe to consider low vertical loads, contrary to the earthquake-resistant design 
of flat slab buildings with medium and large spans.  

As shown above the gravity load effect on the flexural behaviour of slab-column connections 
is effectively captured by the analytical model proposed by the authors. Moreover, it allows to explain 
why for some configurations an increase in gravity loads results in a stiffer behaviour. The model 
shows that the key variable is the ratio r0/rs, i.e., the ratio of eccentricity to specimen size.  

LATERAL FORCE RESISTING MECHANISMS 

A realistic estimation of the contribution of the resisting mechanisms to the overall capacity of the 
slab-column connection is rather difficult because of the non-linear behaviour of the slab-column 
connection and the fact that the externally applied bending moment is resisted by three different 
mechanisms (eccentric shear force, flexure and torsion). The design approaches in codes of practice 
(ACI 318, 2011; Eurocode 2, 2004) are based on estimating the contribution of the eccentric shear and 
bending moment mechanisms on the basis of experiments and empirical works while neglecting the 
contribution of the torsion mechanism. This approach presents however several shortcomings, the 
most important being the fact that the distribution of shear stresses on the critical perimeter is in reality 
not linear as assumed in the model. Furthermore, the contribution of eccentric shear force and flexure 
mechanisms is constant for any drift level, equal to 40% and 60% respectively for square columns 
according to ACI 318 (2011). This is not representative of the actual behaviour of slab-column 
connections under increasing lateral deformations as results of the analytical model will show.  

The analytical model allows to predict the contribution of all resistance-providing mechanisms 
at any drift level. The results are illustrated for the tests conducted by Pan and Moehle (1989) in Fig.9 
and for the tests by Bu and Polak (2009) in Fig.10. For those two test series the analytical model yields 
rather accurate predictions of the moment-rotation curve, as shown in the previous section. 
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(a) (b) 
Figure 9. Mechanisms contributing to the lateral resistance of slab-column connections for large specimens as 
function of the interstory drift for (a) high vertical loads and (b) low vertical loads 
 

As can be seen from Fig.9 and Fig.10 the contribution of the mechanisms of flexure, eccentric 
shear force and torsion depends strongly on the drift level as well as on the vertical load acting on the 
slab. For relatively low vertical loads, the torsion contribution is decreasing much more rapidly for 
increasing values of drifts (Fig.9b) when compared to high vertical loads (Fig.9a). This is due to the 
modified geometry of the sector elements for high eccentricity (see previous section). As the radius r0 
is increasing the slab region outside the shear crack decreases and consequently the unequal tangential 
moments that provoke the torsion transfer (Eq.8) are decreasing. Likewise, the contribution of flexure 
becomes more important for increasing drifts, in particular for high eccentricities. Furthermore, higher 
eccentricities result in larger contribution of the eccentric shear force mechanism.   

 
 

(a) (b) 
Figure 10. Mechanisms contributing to the lateral resistance of slab-column connections for small specimens as 
function of the interstory drift for (a) high vertical loads and (b) low vertical loads 
 

From Fig.9 and 10, when comparing the contribution of the various mechanisms for 
specimens with approximately equal vertical loads, it is observed that for shorter specimens (Fig.10b) 
the torsion contribution is decreasing much more rapidly than for larger ones (Fig.9a). It should be 
noted that the unequal tangential moments of each sector element that provoke the torsion in the 
connection are smaller for smaller specimen sizes as the region outside the shear crack becomes 
smaller. Moreover, the sensitivity of a small specimen to an increase of eccentricity provokes much 
more rapidly a decrease of tangential moments than for a relatively large specimen. 
 The presented approach yields hence new insights into the performance of approaches 
included in codes of practice for predicting the ultimate moment of slab-column connections under 
earthquake loading. The assumption that the flexure mechanism contribution is approximately equal to 
60% of the total moment inserted in the connection (ACI 318, 2011) seems rather accurate for 
relatively low drifts whereas for higher drift values it is underestimating the actual contribution of the 
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flexural mechanism to the overall resistance. The latter results in an overestimation of the contribution 
of the eccentric shear force mechanism. As the total moment capacity is calculated using the shear 
stress criterion, the resulting predictions are conservative. 

CONCLUSIONS AND OUTLOOK 

An analytical approach for estimating (i) the contribution of all resistance-providing mechanisms of 
RC slab-column connections as well as (ii) the moment-rotation relationship of RC slab-column 
connections under seismically induced deformations is presented. The model is based on the Critical 
Shear Crack Theory and can effectively uncouple the contribution of the various resisting mechanisms 
(flexure, eccentric shear force and torsion) when a slab-column connection is subjected to earthquake-
induced deformations. 

The decreasing lateral stiffness of slab-column connections with increasing vertical loads is 
verified for experiments with small ratios of eccentricities to the specimen size. For high ratios of 
eccentricities to specimen size the increasing lateral stiffness of slab-column connections with 
increasing vertical loads is also predicted and theoretically explained. Therefore, the gravity load 
effect for slab-column connections depends on the eccentricity level and the column-to-column 
distance. 

In terms of the contribution of the different resisting mechanisms it is shown that for small 
values of drifts the flexural mechanism is carrying about 60% of the total resisting moment as 
prescribed by ACI 318 (2011). Nevertheless, under decreasing vertical loads the flexure mechanism is 
rapidly increasing for increasing values of drifts whereas the contribution of torsion is rapidly 
decreasing. Moreover, for relatively small specimen sizes the contribution of torsion is found to 
decrease much more rapidly than for large specimens.  

An ongoing experimental campaign will provide more insight into the behaviour of slab-
column connections under increasing vertical loads. Moreover, it is anticipated that these new tests 
will offer a better understanding of the contribution of resistance-providing mechanisms and of the 
parameters that are influencing the failure criterion. Other aspects, such as the influence of cyclic 
loading as well as the column size effect will also be investigated. 
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