
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [BUTC]
On: 9 December 2009
Access details: Access Details: [subscription number 906402604]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Vehicle System Dynamics
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713659010

Lateral load transfer and normal forces estimation for vehicle safety:
experimental test
M. Doumiati a; A. Victorino a; A. Charara a; D. Lechner b

a HEUDIASYC Laboratory, UMR CNRS 6599, Centre de recherche Royallieu, Université de Technologie
de Compiègne, Compiègne, France b INRETS-MA Laboratory Department of Accident Mechanism
Analysis, Chemin de la Croix Blanche, Salon de Provence, France

To cite this Article Doumiati, M., Victorino, A., Charara, A. and Lechner, D.(2009) 'Lateral load transfer and normal forces
estimation for vehicle safety: experimental test', Vehicle System Dynamics, 47: 12, 1511 — 1533
To link to this Article: DOI: 10.1080/00423110802673091
URL: http://dx.doi.org/10.1080/00423110802673091

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713659010
http://dx.doi.org/10.1080/00423110802673091
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Vehicle System Dynamics

Vol. 47, No. 12, December 2009, 1511–1533

Lateral load transfer and normal forces estimation

for vehicle safety: experimental test

M. Doumiatia*, A. Victorinoa, A. Chararaa and D. Lechnerb

aHEUDIASYC Laboratory, UMR CNRS 6599, Centre de recherche Royallieu, Université de
Technologie de Compiègne, BP 20529, 6200, Compiègne, France; bINRETS-MA Laboratory

Department of Accident Mechanism Analysis, Chemin de la Croix Blanche, Salon de Provence, France

(Received 2 May 2008; final version received 3 December 2008 )

Knowledge of vehicle dynamics data is important for vehicle control systems that aim to enhance vehi-
cle handling and passenger safety. This study introduces observers that estimate lateral load transfer
and wheel–ground contact normal forces, commonly known as vertical forces. The proposed method is
based on the dynamic response of a vehicle instrumented with cheap and currently available standard
sensors. The estimation process is separated into three blocks: the first block serves to identify the
vehicle’s mass, the second block contains a linear observer whose main role is to estimate the roll
angle and the one-side lateral transfer load, while in the third block we compare linear and nonlin-
ear models for the estimation of four wheel vertical forces. The different observers are based on a
prediction/estimation filter. The performance of this concept is tested and compared with real experi-
mental data acquired using the INRETS-MA (Institut National de Recherche sur les Transports et leur
Sécurité – Département Mécanismes d’Accidents) Laboratory car. Experimental results demonstrate
the ability of this approach to provide accurate estimation, thus showing its potential as a practical
low-cost solution for calculating normal forces.

Keywords: vehicle dynamics; state observers; load transfer; vertical tyre force estimation; rollover
avoidance

1. Introduction

Extensive research has shown that over 90% of road accidents occur as a result of driver error

[1]. Most drivers have little knowledge of dynamics, and so driver assistance systems have an

important role to play. This is why the last few years have seen the emergence of on-board

advanced driver assistance systems control systems in cars as a way of improving security and

helping to prevent dangerous situations. Among these controllers we find systems such as the

anti-lock braking system and electronic stability programs. Improving vehicle stabilisation and

control decisions is possible when certain vehicle parameters, such as velocity, roll angle, yaw

rate, sideslip angle, weight of the vehicle and wheel ground forces are known. Unfortunately,

for technical, physical and economic reasons, some of these parameters are not measurable

in a standard vehicle. For example, in [2,3] observers were proposed for estimating sideslip
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1512 M. Doumiati et al.

angle and lateral tyre force. Measuring tyre forces requires wheel transducers that currently

cost in the region of ¤100,000, for a six-component measurement system, which is prohibitive

for ordinary cars, and therefore this data must be observed or estimated. Knowledge of wheel–

ground contact normal forces is essential for improving transport security. Vertical load on the

tyre has a primary influence on steering behaviour, vehicle stability and cornering stiffness,

which in turn determines the lateral force. Moreover, on-line measurement of vehicle tyre

forces in a moving vehicle allows a better calculation of the road damage or lateral transfer

ratio (LTR) parameter. LTR is an indicator used to prevent or forecast rollover situations [4].

The LTR coefficient is defined as the ratio of the difference between the sum of the left wheel

loads and the right wheel loads to the sum of all the wheel loads. Estimating the vertical tyre

load is generally considered a difficult task. Variations in the vehicle’s mass, the position of

the centre of gravity (cog), road grade, road irregularities and in load transfer increase the

complexity of the problem.

In the literature, many studies have looked at the calculation of the wheel–ground contact

normal forces. In [5], the author presents a model for calculating vertical forces. Lechner’s

model respects the superposition principle, assuming independent longitudinal and lateral

acceleration contributions. In [6], a study of a 14 DOF (degree of freedom) vehicle model is

proposed where the dynamics of the roll centre are used to calculate vertical tyre forces. In [7],

the tyre forces are modelled by coupling longitudinal and lateral acceleration. Authors in [8]

investigated the application of the dual extended Kalman filter for estimating vertical forces.

They concluded that the obtained results differ from the reference data, the discrepancy being

attributable to the problem of the vehicle’s mass.

In this article, our main objective is to develop a real-time process for estimating the

wheel–ground contact vertical forces, regardless of tyre model, while taking into account

the constraints of industrial applicability. To simplify the model, pitch angle, road angle and

Figure 1. Description of the three-block estimation process.
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Vehicle System Dynamics 1513

road irregularities are not considered in our study. The proposed estimation process is mod-

elled in three blocks as shown in Figure 1. The first block identifies the vehicle’s mass at rest

and calculates the static load applied to the vehicle. The identified mass will be used as a

known vehicle parameter in the other blocks. The aim of the second block is to calculate the

one-side lateral load transfer using roll dynamics. The estimated value will be considered as an

essential measure for the third block, guaranteeing its convergency and observability. The third

block estimates the four vertical tyre forces, and serves to calculate the LTR coefficient. Each

block will be described in detail in the following sections. By using cascaded observers, the

observability problems entailed by an inappropriate use of the complete modelling equations

are avoided, enabling the estimation process to be carried out in a simple and practical way.

The structure of the article is organised as follows. Section 2 describes a method for identi-

fying vehicle mass. In Sections 3 and 4, we describe in detail each of the observers designed

for estimation of lateral load transfer and normal forces. Section 5 presents the method of esti-

mation and the Kalman filter algorithm. Section 6 presents an observability analysis. Section 7

introduces the importance of vertical forces for rollover calculations. Section 8 presents briefly

the road angle effects on normal forces. In Section 9, observer results are compared with exper-

imental data, and then in the final section we make some concluding remarks regarding our

study and future perspectives.

2. Block 1: identification of the vehicle’s mass

The vehicle’s mass is an important parameter in studying lateral load transfer and normal tyre

forces. Moreover, knowing the load distribution when the vehicle is at rest is essential for

initialising the observers (see Section 4). This section deals with this problem and presents a

simple method for determining a vehicle’s mass.

Determining the mass of a vehicle is a problem seldom discussed in the literature. For exam-

ple, in [9], a recursive least-squares method is developed for online estimation of a vehicle’s

mass. This method cannot be effective in our application because it takes a considerable time

to converge to the real mass value. The objective of this section is to identify the vehicle’s

mass, at rest, by considering a quarter-car model (Figure 2) and applying relative position

sensors. Nowadays, many controlled suspensions are equipped with relative position sensors

for measuring suspension deflections δij (relative positions of the wheels z2 with respect to

the body z1) at each corner, where i represents front (f) or rear (r) and j represents left (l) or

right (r). The suspension spring is loaded with the corresponding sprung mass. The quarter

mass meij (sum of the sprung and unsprung masses) at each corner of the empty vehicle is

provided by the manufacturer. Given a conventional suspension without level regulation and

assuming that it works in its linear range, and neglecting the tyre deflection, a load variation

in the sprung mass �msij changes the spring deflection δij → δij + �ij , where

�msij =
ks�ij

g
; (1)

�ij is the spring deflection variation, ks the spring stiffness and g the gravitational constant.

The total quarter mass mij and the total mass of the vehicle mv are then calculated as follows:

{
mij = meij + �msij

mv =
∑

i,j mij .
(2)

Then the static load (when the vehicle is at rest) applied to each wheel is equal to mijg.

Experimental tests that validate the presented identification method are presented in Section 9.
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1514 M. Doumiati et al.

Figure 2. A quarter-car model with linear suspension.

In the remainder, the identified mij will be used in initialising observers (Section 4) and mv

as a known vehicle parameter.

3. Block 2: lateral transfer load model

The lateral load transfer model we have developed is based on the vehicle’s roll dynamics. This

dynamic considers a roll plane model including the roll angle θ , as shown in Figure 3. This

model has a roll DOF for the suspension that connects the sprung and unsprung mass, and its

sprung mass is assumed to rotate about the roll centre. During cornering, roll angle depends

on the roll stiffness of the axle and on the position of the roll centre. The roll centre, which is

defined as a point at which lateral forces applied to the sprung mass do not produce suspension

roll, can be constructed from the lateral motion of the wheel contact points [10]. In reality, the

roll centre of the vehicle does not remain constant, but in this study a stationary roll centre is

assumed in order to simplify the model. The roll axis is defined as the line that passes through

the roll centre at the front and rear axles (see Figure 4).

Figure 3. Roll dynamics.
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Vehicle System Dynamics 1515

Figure 4. Roll axis.

According to the torque balance in the roll axis, the roll dynamics of the vehicle body can

be described by the following differential equation (case of small roll angle):

Ixx θ̈ + CRθ̇ + KRθ = msayhcr + mshcrgθ, (3)

where Ixx is the moment of inertia of the sprung mass with respect to the roll axis, CR and

KR denote, respectively, the total damping and spring coefficients of the roll motion of the

vehicle’s system, ay is the lateral acceleration and hcr the height of the sprung mass about the

roll axis.

Summing the moments about the front and rear roll centres, the simplified steady-state

equation for the lateral load transfer applied to the left part of the vehicle is given by the

dynamic relationship (4):

�Fzl = (Fzfl + Fzrl − Fzfr − Fzrr)

= −2

(
kf

ef

+
kr

er

)
θ − 2ms

ay

l

(
lrhf

ef

+
lfhr

er

)
,

(4)

where h is the height of the centre of gravity; hf and hr are the heights of the front and rear roll

centres; ef and er the front and rear vehicle’s track, respectively; kf and kr the front and rear

roll stiffnesses, respectively; lr and lf the distances from the cog to the front and rear axles,

respectively; and l is the wheelbase (l = lr + lf) [10,11]. We note that the lateral load transfer

in Equation (4) can be expressed with the following terms:

• �Fzge = msay/l(lrhf/ef + lfhrer) is the geometric load transfer, which depends on the height

of the roll centres;

• �Fzel = θ (kf/ef + kr/er) is the elastic load transfer load, a function of the roll stiffness.

The lateral acceleration ay used in Equations (3) and (4) is generated at the cog. The

accelerometer, however, is unable to distinguish between the acceleration caused by the

vehicle’s motion on the one hand, and the gravitational acceleration on the other. In fact

the signal aym, sensed by the lateral accelerometer, is a combination of the gravitational force

and the acceleration of the vehicle as represented in the following equation (case of small roll

angle):

aym = ay + gθ. (5)

Measuring the roll angle requires additional sensors, which makes it a difficult and costly

operation. In this study, we consider that the roll angle can be calculated via relative suspension

sensors. During cornering on a smooth road, the suspension is compressed on the outside and

extended on the inside of the vehicle. If we neglect pitch dynamic effects on roll motion, the

roll angle can be calculated by applying the following equation based on the geometry of the
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1516 M. Doumiati et al.

roll motion [12,13]:

θ =
(δfl − δfr + δrl − δrr)

(2ef)
−

mvaymh

kt

, (6)

where kt is the roll stiffness resulting from tyre stiffness.

3.1. Stochastic state–space representation-observer O1L

By combining the relations (3)–(6), the stochastic state–space representation of the model

described in the previous section can be given as follows:

{
Ẋ(t) = AX(t) + bm(t)

Z(t) = HX(t) + bs(t).
(7)

The state vector X is

X =
[
�Fzl�Fzr ay ȧy θ θ̇

]
. (8)

It is initialised as a null vector. We assume that ȧy is represented using a nondescriptive model

(äy = 0).

The observation vector Z is

Z =
[
aym(�Fzl + �Fzr)θ θ̇�Fzl

]
, (9)

where

• aym, lateral acceleration measured by the accelerometer;

• �Fzl +�Fzr , the sum of right and left transfer loads is assumed to be zero at each instant;

• θ , roll angle calculated using Equation (6);

• θ̇ , roll rate measured directly by the gyrometer; and

• �Fzl, left transfer load calculated from Equation (4).

The process and measurement noise vectors, respectively, bm(t) and bs(t), are assumed to

be white, zero mean and uncorrelated. The constant matrices A and h are given as:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −2
ms

l

(
lrhf

ef

+
lfhr

er

)
0 −2

(
kf

ef

+
kr

er

)

0 0 0 2
ms

l

(
lrhf

ef

+
lfhr

er

)
0 2

(
kf

ef

+
kr

er

)

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 ms

hcr

Ixx

0
msghcr − KR

Ixx

−CR

Ixx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

H =

⎛
⎜⎜⎜⎜⎝

0 0 1 0 g 0

1 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

.

The state vector X(t) will be estimated by applying a linear Kalman filter (LKF). The LKF is

presented in Section 5.
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Vehicle System Dynamics 1517

Figure 5. Load shifting (acceleration + cornering).

4. Block 3: wheel–ground vertical contact force models

As a result of longitudinal and lateral accelerations, the load distribution in a vehicle can

significantly vary during a journey. It can be expressed by the vertical forces that act on each

of the four wheels (see Figure 5). This section presents two models for calculating vertical

forces. The first is a nonlinear model that takes into account longitudinal and lateral acceleration

coupling, while the second applies the superposition assumption.

4.1. Nonlinear model

In this section a vertical force model will be discussed taking into account longitudinal and

lateral acceleration coupling [7]. Constructing the torque balance at the rear axis contact point

yields

lF zF = lrmvg − mvhax, (10)

where ax the longitudinal acceleration and FzF the vertical load on the front tyres.

Consequently,

FzF = mv

(
lr

l
g −

h

l
ax

)
. (11)

In addition, during cornering the lateral acceleration causes a roll torque that increases the

load on the outside and decreases it on the inside of the vehicle.

The two axles are considered to be decoupled from one another. In the case of the front axle

load a virtual mass m∗ is used:

m∗ =
FzF

g
. (12)

From the torque balance equation at the ground contact point of the front left wheel

Fzfref = FzF

ef

2
+ m∗ayh, (13)
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1518 M. Doumiati et al.

where Fzij is the vertical load on each wheel. Solving for Fzfr, and by analogy for the other

forces, these can be formulated as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fzfl =
1

2
mv

(
lr

l
g −

h

l
ax

)
− mv

(
lr

l
g −

h

l
ax

)
h

efg
ay

Fzfr =
1

2
mv

(
lr

l
g −

h

l
ax

)
+ mv

(
lr

l
g −

h

l
ax

)
h

efg
ay

Fzrl =
1

2
mv

(
lf

l
g +

h

l
ax

)
− mv

(
lf

l
g +

h

l
ax

)
h

erg
ay

Fzrr =
1

2
mv

(
lf

l
g +

h

l
ax

)
+ mv

(
lf

l
g +

h

l
ax

)
h

erg
ay .

(14)

4.1.1. Stochastic state–space representation-observer O2N

Using relations (14) and the estimated results from the second block, a nonlinear state–

space representation (nonlinear evolution model and linear observation model) of the system

described in the section above is given as:

⎧
⎨
⎩

Ẋ(t) = f (X(t)) + bm(t)

Z(t) = h(X(t)) + bs(t).

(15)

The vehicle state vector X is

X =
[
Fzfl Fzfr Fzrl Fzrr ax ȧx ay ȧy

]
. (16)

It is initialised as follows:

X0 = [mflg mfrg mrlg mrrg 0 0 0 0] . (17)

The particular nonlinear functions of the state equation are then given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 =
−h

2l
mvx6 − mv

lrh

lef

x8 + mv

h2

lefg
x5x8 + mv

h2

lefg
x6x7

f2 =
−h

2l
mvx6 + mv

lrh

lef

x8 − mv

h2

lefg
x5x8 − mv

h2

lefg
x6x7

f3 =
h

2l
mvx6 − mv

lfh

ler

x8 − mv

h2

lerg
x5x8 − mv

h2

lerg
x6x7

f4 =
h

2l
mvx6 + mv

lfh

ler

x8 + mv

h2

lerg
x5x8 + mv

h2

lerg
x6x7

f5 = x6

f6 = 0

f7 = x8

f8 = 0.

(18)
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Vehicle System Dynamics 1519

The measurement vector Z,

Z =

[
�Fzl (Fzfl + Fzfr) ax ay

∑
Fij

]
(19)

consists of the following measurements:

• �Fzl is provided by the second block;

• Fzfl + Fzfr is calculated directly from Equation (14);

• ax is measured using an accelerometer;

• ay is provided by the second block; and

•
∑

Fij is assumed to be equal to mvg at each instant.

The observation functions take the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1 = x1 − x2 + x3 − x4

h2 = x1 + x2

h3 = x5

h4 = x7

h5 = x1 + x2 + x3 + x4.

(20)

The state vector X(t) will be estimated by applying an extended Kalman filter (EKF). The

EKF is presented in Section 5.

4.2. Linear model

In this section a linear model that assumes the principle of superposition is used for calculating

vertical forces [5]. The principle of superposition states that the total of a series of effects

considered concurrently is identical to the sum of the individual effects considered individually.

Therefore, we can numerically add the changes in wheel loads resulting from lateral and

longitudinal load transfer in order to produce loads that are valid for combined operational

conditions.

As proved in the previous section, and without taking into account the coupling term

(m∗ = mvlr/l), the vertical forces are given as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fzfl = mvg
lr

2l
− mv

h

2l
ax − mv

hlr

ef l
ay

Fzfr = mvg
lr

2l
− mv

h

2l
ax + mv

hlr

ef l
ay

Fzrl = mvg
lf

2l
+ mv

h

2l
ax − mv

hlf

erl
ay

Fzrr = mvg
lf

2l
+ mv

h

2l
ax + mv

hlf

erl
ay .

(21)
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1520 M. Doumiati et al.

4.2.1. Stochastic state–space representation-observer O2L

Considering Equation (21) instead of Equation (14), the system described in Section 4.1.1

becomes linear. The evolution and observation matrices, respectively, A and H, are given as:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
−mvh

2l
0

−l2mvh

le1

0 0 0 0 0
−mvh

2l
0

l2mvh

le1

0 0 0 0 0
mvh

2l
0

−l1mvh

le2

0 0 0 0 0
mvh

2l
0

l1mvh

le2

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

H =

⎛
⎜⎜⎜⎜⎝

1 −1 1 −1 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

1 1 1 1 0 0 0 0

⎞
⎟⎟⎟⎟⎠

.

The state vector X(t) will be estimated by applying the LKF.

5. Estimation methods

In order to estimate the lateral load transfer and vertical tyre forces presented in Section 4,

an observer-based approach is needed. This section introduces the estimation concept and

presents the Kalman filter algorithm.

A simple example of an open-loop observer is the model given by relations (4), (6) and (14).

Because of the system–model mismatch (unmodelled dynamics, parameter variations, . . . )

and the presence of unknown, unmeasurable disturbances, the estimates obtained from the

open-loop observer would deviate from the actual values over time. In order to reduce the

estimation error, at least some of the measured outputs are compared with the same variables

estimated by the observer. The difference is fed back into the observer after being multiplied

by a gain matrix K, and so we have a closed-loop observer [12]. A schematic block diagram

for our observers is given in Figure 6. All observers were implemented in a first-order Euler

approximation discrete form. At each iteration, the state vector is first calculated according to

the evolution equation and then corrected online with measurement errors (innovation) and

filter gain K in a prediction–correction recursive mechanism. The gain is calculated by the

Kalman filter method.

5.1. Structure of the estimation concept

The Kalman filter is essentially a set of mathematical equations that implement a predictor–

corrector type estimator [14–16]. It is optimal in the sense that it minimises the estimated
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Figure 6. Observer operations.

error covariance under certain given assumptions. The stochastic discrete form of state–space

models presented in the preceding sections is

Xk+1 = f (Xk, uk, bm,k)

Zk = h(Xk, bs,k),
(22)

where bm,k and bs,k represent model and measurement noise at time tk , and uk is the system

input.

Assuming that noises are Gaussian, white and centred, with Qk and Rk the noise variance–

covariance matrices for bm,k and bs,k , respectively, and f () and h() linear functions, these

constraints reduce the state-model:

{
Xk+1 = AkXk + Bkuk + bm,k

Zk = HkXk + bs,k.
(23)

Given that our observers have no inputs (uk = 0), and with X̂k/k−1 and X̂k/k the state prediction

and estimation vectors, respectively, at time tk , the LKF requires the following equations:

Predict next state, before measurements are taken:

X̂k/k−1 = AkX̂k−1/k−1

Pk/k−1 = AkPk−1/k−1A
t
k + Qk.

(24)

Update state, after measurements are taken:

Kk = Pk/k−1H
t
k (HkPk/k−1H

t
k + Rk)

−1

X̂k/k = X̂k/k−1 + Kk(zk − HkX̂k/k−1)

Pk/k = (I − KkHk)Pk/k−1,

(25)

where K is the Kalman gain used in the update data, and P the covariance matrix for the state

estimate containing information about the accuracy of the data. The EKF works almost like a

regular Kalman filter, except that it linearises the system before the estimation, by calculating
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1522 M. Doumiati et al.

the Jacobian (matrix of all partial derivatives of a vector) of the nonlinear equations around

the estimated states:

Ak =
∂f (X̂k/k, uk, 0)

∂X

Hk =
∂f (X̂k/k−1, 0)

∂X
.

(26)

6. Observability analysis

Observability is a measure of how well the internal states of a system can be inferred by

knowledge of its inputs and external outputs.

6.1. Linear system

The systems described in Sections 3.1 and 4.2.1 are observable. We have verified that the

observability matrix O, defined in Equation (27), for each system has full rank:

O =
[
C CA CA2 · · · CAn−1

]
, (27)

where n represents state–space vector dimension.

6.2. Nonlinear system

Using the nonlinear state–space formulation of the system described in Section 4.1.1, the

observability definition is local and uses the Lie derivative [17]. The Lie derivative of hi

function, at p + 1 order, is defined as

L
p+1
f hi(X) =

∂L
p

f hi(X)

∂X
f (X, u) (28)

with

L1
f hi(X) =

∂hi(X)

∂X
f (X, u). (29)

The observability function oi corresponding to the measurement function hi is defined as

oi =

⎛
⎜⎜⎝

dhi(X)

dL1
f hiX)

· · ·

dL7
f hi(X)

⎞
⎟⎟⎠ . (30)

where d is the operator:

dhi =

(
∂hi

∂x1

, . . . ,
∂hi

∂x8

)
. (31)

The observability function of the system is calculated as

O =

⎛
⎝

o1

· · ·

o5

⎞
⎠ . (32)

The ranks of all observability functions, calculated along experimental trajectories, cor-

responded to the state vector dimensions, and so the system described in Section 4.1.1 is
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Figure 7. Observability index parameter for the slalom and circle trajectories.

locally observable. The standard definition of observability for linear systems with unchanged

parameter is a ‘yes’ or ‘no’ measure; that is, the system is either observable or not. For non-

linear systems, it seems reasonable to suppose that there are regions in phase space that

are less observable than others. In order to quantify system observability degree, we use an

observability index, defined as

�(x) =
λmin[O

TO, x(t)]

λmax[OTO, x(t)]
, (33)

where λmax[O
TO, x(t)] indicates the maximum eigen value of matrix OTO estimated at point

x(t) (likewise for λmin). Then, 0 ≤�(x) ≤ 1, and the lower bound is reached when the system

is unobservable at point x ([18,19]). The index defined in Equation (33) is a type of condition

number of the observability matrix O. Figure 7 presents index parameter of matrix O for the

manoeuvre computed using data acquired from a moving vehicle in experimental tests (see

Section 9).

7. LTR calculation

In this section we indicate the importance of online measurement of the tyre loads in rollover

vehicle prediction and rollover controller design.

The rollover index LTR, which is simply represented in Equation (34), is suggested as a

convenient method for supervising the vehicle’s dynamic roll behaviour [4],

LTR =
Fzl − Fzr

Fzl + Fzr

=
�Fzl

Fzl + Fzr

, (34)

where Fzl and Fzr are, respectively, vertical loads on the left and right tyres. The value of LTR

varies from − 1 at the lift-off of the left wheel, tends toward 0 at no load transfer and to 1

at the lift-off of the right wheel. A simplified steady-state approximation of LTR in terms of

lateral acceleration aym and the cog height h is given as [20]:

LTR = 2
aymh

gem

, (35)

where aym is the lateral accelation and em is the width tracks average value (em = (ef + er)/2).

One of this article’s contributions is our observation that the rollover estimation based upon
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1524 M. Doumiati et al.

Equation (35) is not sufficient to detect the rollover transient phase, and that the best way

to identify the LTR is by estimating vertical forces. Subsequently, a precise direct measure-

ment of the LTR can be used as a reliable rollover warning, or as a switch for a rollover

controller [20].

Section 9 shows the LTR evaluation during experimental tests, while Section 9.4 illustrates

the relation between the LTR and roll angle.

8. Effects of road angle

This section introduces briefly the effect of road angle on wheel–ground vertical force

calculation. In fact, road disturbances such as road bank angle and road slope act directly

on vehicle dynamics and accelerometer measurements, introducing significant effects on the

normal force calculation. For example, accelerometer measurements are affected by the grav-

ity component. Cancelling this component needs knowledge of road angle, which is a research

topic in itself [21,22].

Consequently, knowing road angle values is a prerequisite for studying road disturbance

effects on vehicle dynamics and measurements. However, dealing with these parameters is

beyond the scope of this study.

Although this work neglected road angle when modelling, the estimation process is valid

for small angles ( < 8%).

9. Experimental results and discussions

9.1. Experimental car

The experimental vehicle shown in Figure 8 is the INRETS-MA (Institut National de

Recherche sur les Transports et leur Sécurité – Département Mécanismes d’Accidents) Lab-

oratory’s test vehicle. This Peugeot 307 is equipped with a number of sensors including

accelerometers, gyrometers, steering angle sensors, linear relative suspension sensors and

wheel force transducers that measure in real time the forces acting at the wheel centre. The

sampling frequency of these sensors is 100 Hz.

Figure 8. Experimental vehicle.
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Figure 9. Load distribution in terms of number of passengers.

9.2. Validation of the vehicle’s weight identification method

In order to validate the proposed vehicle’s weight identification method (see Section 2), two

experimental tests were done. Five passengers were asked to sit in the car. Measurements

(vertical forces and suspension deflections) were done when at rest, when the car was empty,

with one, then with two and so on until all five passengers were seated in the car. Measurements

were then taken when these passengers left the car one after the other till it was empty again. By

disregarding suspension dynamics, we suppose that real mij are equal to Fzij/g, where the Fzij

are measured by the wheel force transducers. Figure 9 compares real mij and the identified ones

(see Section 2). Although the identification method is simple, results are globally acceptable.

However, some differences appear because of noises, model simplification and suspension

deflection sensors precision. In the remainder, the identification method was applied in order

to initialise the observers (see Section 4).

9.3. Observers validation

Test data from nominal as well as adverse driving conditions were used to assess the perfor-

mance of observers in realistic driving situations. Among numerous experimental tests, two

tests are presented: a ‘starting–slalom–braking’ and a circle. These tests are representative

of both longitudinal and lateral dynamic behaviours. The vehicle trajectories, speeds and the

acceleration diagrams of both tests are shown, respectively, in Figures 10 and 11. Accelera-

tion diagrams show that large lateral accelerations were obtained (absolute value up to 0.5 g),

meaning that the experimental vehicle was put in a critical driving situation.

The performance of the developed observers can be characterised by the normalised mean

and normalised standard deviation (SD). The normalised error is defined in [19] as:

ǫz = 100 ×
‖zobs − zmeasured‖

max(‖zmeasured‖)
, (36)
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1526 M. Doumiati et al.

Figure 10. Experimental test: vehicle positions, speed and acceleration diagrams for the slalom test.

Figure 11. Experimental test: vehicle positions, speed and acceleration diagrams for the circle test.

where zobs is the variable calculated by the observer, zmeasured is the measured variable and

max(‖zmeasured‖) is the absolute maximum value of the measured variable during the test

manoeuvre.

9.3.1. Slalom test

During the slalom test (see Figure 10), the vehicle first accelerated up to ax ≈ 0.3 g, then nego-

tiated a slalom at a velocity of 10 ms−1 with − 0.6 g ≤ ay ≤ 0.6 g, before finally decelerating
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Table 1. Observer O1L: maximum absolute values, normalised mean errors and normalised SD.

Slalom Maximum (‖‖) Mean (%) SD (%) Circle Maximum (‖‖) Mean (%) SD (%)

�Fzl 7705 (N) 4.05 3.08 �Fzl 7088 (N) 3.40 3.01

θ 0.04 (rad) 2.75 2.67 θ 0.03 (rad) 4.83 0.74

Table 2. Observers O2L and O2N: maximum absolute values, normalised mean errors and normalised SD for the
slalom test.

Mean (%) SD (%)

Maximum (‖‖) O2L O2N O2L O2N

Fzfl 6386 (N) 2.42 2.35 2.30 2.38

Fzfr 6958 (N) 2.01 2.06 1.94 1.99

Fzrl 4906 (N) 2.38 3.97 2.60 4.51

Fzrr 4862 (N) 1.99 3.78 2.22 4.36

LTR 0.53 3.97 3.97 4.60 4.61

Figure 12. Roll angle and roll rate.

to ax≈− 0.5 g. In the following, we propose to compare estimation results and the obtained

real measures. Tables 1 and 2 present maximum absolute values, normalised mean errors

and normalised SD for lateral transfer load, roll angle, vertical forces and the LTR parameter.

Figure 12 presents the roll angle and the changes in the roll rate during the trajectory. Figure 13

shows the one-side lateral load transfer, while Figures 14 and 15 show vertical forces on the

front and rear wheels. We can deduce that for this test the performance of the observer is

satisfactory.

Finally, Figure 16 compares the LTR obtained from measured forces with the LTR obtained

from estimated forces. We deduce that the estimated LTR fits the measured LTR well. Online

calculation of the LTR is essential for rollover avoidance; when LTR exceeds a set value

(|LTR|> 0.6), the driver must be alerted in order to prevent a dangerous situation.
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Figure 13. Lateral transfer load.

Figure 14. Estimation of front vertical tyre forces.

9.3.2. Circle test

In the second test the vehicle performed a circle on a random road profile at maximum steer-

ing angle of 40° (see Figure 11). Acceleration diagrams show that large lateral accelerations

persist for more than 20 s. Tables 1 and 3 along with Figures 17–20 show that the estimation

results are relatively good, although not as good as in the slalom test. The explanation is that

in the circle test camber angles are high and change the shape of the contact patch, conse-

quently influencing vehicle dynamics substantially. In addition, we believe this to be a result

of road irregularities, which act on vertical suspension dynamics and influence vertical forces.
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Figure 15. Estimation of rear vertical tyre forces.

Figure 16. Estimation of the LTR parameter.

Table 3. Observers O2L and O2N: maximum absolute values, normalised
mean errors and normalised SD for the circle test.

Mean (%) SD (%)

Maximum (‖‖) O2L O2N O2L O2N

Fzfl 4788 (N) 3.62 3.54 2.74 2.65

Fzfr 6889 (N) 4.99 3.65 3.12 2.49

Fzrl 3438 (N) 5.31 5.21 3.46 3.42

Fzrr 4876 (N) 5.79 4.10 3.15 2.58

LTR 0.48 3.20 3.18 2.87 2.86

The circle test shows robustness of the applied process. Indeed, although the experimental test

violated some initial simplifying assumptions (road irregularities, suspension dynamics and

high camber angle), the observers were able to function well.

9.4. Comparison between linear and nonlinear observers: O2L vs O2N

Comparing observers O2L and O2N from the experimental tests, we find that they give similar

results for the slalom test, but not for the circle test. Heavily longitudinal and lateral dynamics
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Figure 17. Roll angle and roll rate.

Figure 18. Lateral transfer load.

do not appear simultaneously in the slalom test. Therefore, the product axay → 0, and the

superposition principle are always valuable. Conversely, in the circle test, longitudinal and

lateral coupling dynamics are significant, especially in traction on the front wheels to maintain

the speed, and observer O2N proves able to work better than O2L.

9.5. Relation between LTR and roll angle

It will be of interest to illustrate the relation between the estimated LTR and the roll angle

obtained according to the measurements of the suspension relative displacement sensors.
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Figure 19. Estimation of front vertical tyre forces.

Figure 20. Estimation of rear vertical tyre forces.

Figure 21 shows a linear relationship between LTR and roll angle. This relationship becomes

apparent when Equations (4) and (34) are combined. The linearity is valid as long as the

suspension operates in linear mode, meaning that roll stiffness is constant. However, when

roll angle greatly increases, nonlinear suspension behaviour occurs, causing the roll stiffness

to increase gradually [23].
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Figure 21. Relation between LTR and roll angle.

10. Conclusions and future works

This article has presented a new algorithm to estimate lateral transfer load and vertical tyre

forces, regardless of the tyre model. Our study presents three observers (O1L, O2L and O2N)

developed for this purpose and based on the Kalman filter. Observer O1L is based on a roll

dynamics model and provides lateral load transfer estimation. Observers O2L and O2N are

derived, respectively, from linear and nonlinear models. The linear model rests on the lon-

gitudinal and lateral dynamics superposition principle, while the nonlinear model proposes

coupling these dynamics. The LTR rollover index parameter was also calculated and discussed

within the context of estimating vertical wheel forces.

Experimental evaluations in real-time embedded estimation processes yield good estima-

tions close to the measurements. However, we note that the observer O2N gives better results

when high longitudinal/lateral accelerations act simultaneously. The potential of the estima-

tion process demonstrates that it may be possible to replace expensive dynamometric hub

sensors by software observers that can work in real time while the vehicle is in motion. This

is one of the important results of our work.

Although the identified mass tends towards the real mass value, one of the weak points of

this approach is the determination of the vehicle’s mass, which is highly dependent on the

sensitivity of the relative suspension sensors. Moreover, the suspension model is considered

linear, which does not always correspond to reality. Future studies will improve the vehicle

mass identification method, and take into account road irregularities and road angle, which

can significantly impact load transfer.
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