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Abstract
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Graduate Department of Aerospace Science and Engineering

University of Toronto

2016

Loss-of-control resulting from airplane upset is a leading cause of worldwide commercial

aircraft accidents. In response, the Federal Aviation Administration requires all U.S. air

carrier pilots to receive upset-recovery training in flight simulators by 2020. However, the

aerodynamic models in most flight simulators are not valid at upset conditions and must

be updated before they can be used for training. In this thesis, a method is proposed for

generating representative lateral stall models to better represent the aircraft dynamics

at stall. Using certification flight test data and supplementary data provided by the

manufacturer, the aerodynamic database of a turboprop aircraft is extended to cover

large-angle-of-attack flight, while leaving the original model untouched at low angles of

attack. It is then integrated into a 6-DOF simulator and shows reasonable match to the

behavior observed in flight tests.
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Chapter 1

Introduction

1.1 Background

The Boeing Company concluded that loss-of-control: inflight (LOC-I) was the leading

cause of worldwide fatal commercial aircraft accidents during the period from 2000 to

2009. Wilborn [39] defined LOC-I as an irregular flight condition that is characterized

by behaviors such as the aircraft motion not predictably altered by pilot control inputs,

disproportionately large responses to small state variable changes that may lead to insta-

bility, high angular rates, and the inability to maintain heading, altitude, or wings-level

flight.

Aircraft upset, is commonly described as a situation where the aircraft is unintentionally

brought outside of its normal flight envelope. An aircraft in upset can often develop

into a LOC condition if proper recovery measures are not applied. A study by the U.S.

Federal Aviation Administration (FAA) [26] summarized the causes of airplane upsets,

which were aerodynamic stall (36%), flight control malfunction (21%), pilot spatial dis-

orientation (11%) , contaminated airfoils (11%), atmospheric disturbance (8%), and other

causes (13%). 74 accidents were included in this study, accounting for 3241 fatalities due

to LOC-I.

Several high profile accidents involving LOC-I and inappropriate recovery procedures

by the pilots spurred the FAA to take action to prevent similar situations from happen-

ing again. One such accident is Air France 447, which due to malfunction of the pitot

tubes, lost accurate airspeed information and went into a sustained stall, signaled by

the stall warning and strong buffet. Despite these persistent symptoms, the crew never

understood that they were stalling and consequently never applied a recovery maneuver
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Chapter 1. Introduction 2

[10]. The airliner struck the surface of the sea in a normal flight attitude, with a high

rate of descent, killing all on board. In another accidient, A Colgan Air, Inc. aircraft,

operating as Continental connection flight 3407, crashed into a residence in Clarence

Center, New York, resulting in the death of everyone on board and one person on the

ground. The U.S. National Transportation Safety Board (NTSB) determined that the

probable cause of this accident was the pilot in command’s inappropriate response to the

activation of the stick shaker, which led to an aerodynamic stall.

The Federal Aviation Administration enacted a number of requirements to conduct rule-

making related to the results of the NTSB investigation of the Colgan Air accident. It is

proposed that better pilot training in stall recovery would reduce stall related accidents.

As a result of the rulemaking process, all pilots that fly for air carriers in the United

States will receive training to recover from fully developed stalls by 2020 [15]. Studies

have shown that using ground-based simulators is a cost-effective way to train pilots to

recover from upset, although care must be taken to ensure transfer of training [6]. How-

ever, current flight models in ground-based simulators are inaccurate beyond stall and

do not exhibit LOC-I conditions as mentioned earlier, which would significantly hinder

training efforts. Therefore, the aerodynamic database of simulators must be extended

handle a wider flight envelope that depicts proper aircraft behavior in upset conditions.

The most common way of developing accurate flight models is through wind-tunnel test-

ing and a well designed flight test program. It is economically infeasible to conduct such

testing for all airliners that are flying today and it is certainly not possible it could be

done before 2020, when the FAA rule takes effect. Yet, studies have shown insignificant

differences in training benefits between a representative model and a high-fidelity model

that was developed from wind-tunnel or flight test programs [35]. A representative model

is a stall model which captures the important qualitative characteristics of an aircraft in

upset conditions, but not necessarily in high precision.

A collaborative project between the University of Toronto Institute for Aerospace Stud-

ies (UTIAS), the FAA, and Bombardier Aerospace (BA) has been initiated to develop

a method for generating representative models for upset recovery training. Through the

work done in this project, the FAA would have a better understanding of the potential

difficulties that airlines and simulation companies would encounter as they try to equip

their training simulators with new flight models.
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1.2 Scope and Organization

The objective of the project is to propose a methodology to develop representative mod-

els and generate such a model for a currently in service airliner. As part of this project,

this thesis documents the methodology and results of the development of a representative

model for a T-tailed turboprop regional airliner by Bombardier Aerospace. To support

this work, BA has provided certification flight test data and the MATLAB Simulink

Qualification Test Guide (QTG) qualified model. The data used for development of the

model is mostly from certification and therefore such data is obtainable for every airliner

that is in service today. Certification is the process in which manufacturers prove the

airworthiness of a new production aircraft through a series of tests as demanded by the

appropriate government agencies. As such, the method described in this document is

applicable to aircraft other than the turboprop and should help the effort in upgrading

simulators so that they are ready for upset recovery by 2020 and beyond. Although a

high-fidelity model is not required, the approach taken by UTIAS is to develop as accu-

rate of a model as possible with the given resources.

This thesis focuses on the work that extends the lateral part of the turboprop’s qualified

model up to an angle of attack that is 10◦ past stall. The longitudinal model extension

is documented in a separate report. The remainder of this document is organized as

follows:

• Chapter 2: This chapter is a literature review on model structures used for aero-

dynamic modeling, parameter estimation methods, and projects that extended an

aerodynamic database into the stall regime

• Chapter 3: This chapter describes in detail the method used to extend the qual-

ified model into the stall regime using flight test data.

• Chapter 4: This chapter presents the results from applying the method outlined

in Chapter 3, including time-history matches to flight test data, qualitative discus-

sion of the updated aerodynamic database, and the integration into a full 6-DOF

simulator.

• Chapter 5: This Chapter summarizes the findings of the study and outlines di-

rections for future research.



Chapter 2

Literature Review

This chapter reviews the current literature on flight modeling in the stall regime. To

evaluate the fidelity of a stall model, the behavior of the aircraft at stall must be known

first for the model to be compared against. Studies have revealed various behaviors one

may expect in upset conditions; some are discussed below. For stall modeling, a model

structure must first be postulated and then the model must be identified. Both topics

are an active field of research, and the most common methods are discussed. Since this

thesis focuses on lateral stall modeling, the focus of the literature review is on lateral

aerodynamics.

2.1 Aircraft Behavior at Stall

Other than providing thrust, propellers also impart undesired forces and moments on an

aircraft. Phillips et al. [34] derived mathematical formulas for calculating the yawing

moment and normal force of running propellers and showed that it matched well with

empirical data. When a rotating propeller is at some angle of attack relative to the

freestream flow, there is a component of the freestream in the plane of propeller rotation.

This changes the angle of flow as seen by the blades. At a positive angle of attack, it

increases the relative airspeed for the downward moving blades and decreases for the

upward moving blades. Thus both lift and drag are increased on the downward moving

side of the propeller. This difference in thrust caused by the two sides creates yawing

moment, and the difference in drag forces produces a net normal force. By the same

reasoning, a sideslip would cause sideforce. These forces and moments become more sig-

nificant at upset conditions due to large α and β.

Chambers [7] listed and explained some common lateral behaviors of aircraft at stall,
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Chapter 2. Literature Review 5

such as asymmetric rolling moments, and unstable roll damping. As a result of positive

rate of roll (rolling to the right), the upgoing left wing sees a decrease in local angle of

attack, while the downgoing right wing sees a local increase in angle of attack of the

same magnitude. Depending on the local lift-curve slope on each wing, the net effects

of the rolling motion can propel rather than damp the motion. For low angles of attack,

the decrease of local angle of attack on the left wing loses lift and increase of local angle

of attack on the right wing gains lift. This opposes (damps) the roll rate. However,

at higher angles of attack just before stall, the local increase in angle of attack on the

right wing would result in a loss of lift due to stall that is larger than the loss of lift on

the upgoing left wing. A net rolling moment that augments the roll rate is created. In

this situation, the aircraft is said to be roll unstable. Asymmetric rolling moments occur

at stall because of one-wing stalling before the other. Coupled with the unstable roll

damping, the initial roll rate caused by one stalled wing further propels the roll and a

severe wing-drop may occur.

Foster et al. [16] found that aerodynamic databases for large commercial transport

airplanes are typically not designed to be accurate for upset conditions because simu-

lator certification requirements are very limited for conditions beyond the normal flight

envelope, and aerodynamic measurements at upset conditions are normally not acquired

from wind tunnel nor flight tests. Hence, they conducted an extensive wind tunnel

test of a commercial transport aircraft at upset conditions to bridge that gap. Static

lateral-directional stability is indicated by the variation of aerodynamic rolling moment

and yawing moment with sideslip angle. The data indicated a linear variation of rolling

moment with β at low angles of attack, but significant non-linear variations at higher an-

gles. At α near stall, Cl,β becomes progressively less stable and even becomes unstable.

Stability is regained at the extreme angles of attack. The data also showed aerody-

namic asymmetries, where side force or rolling/yawing moment coefficients at zero β are

non-zero.The source of asymmetries are not well-understood, but the data clearly shows

significant rolling moment Cl,0 as a function of α. The control effectiveness of the rudder

is shown to decay with angle of attack in the stall regime and has a reduction of 66% in

effectiveness at α = 30◦. The roll damping is shown to decrease as α increases towards

stall. Near stall, the roll damping reverses sign and becomes unstable, but returns to

slightly stable at even higher α. The study also showed that roll damping reduction be-

comes more severe with the extension of trailing edge flaps. In a related study of another

aircraft model, Brandon [5] et al. collected wind tunnel data of a transport aircraft that

displayed unstable roll damping before the stall angle of attack, which may be explained
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by Chamber’s description of the reversal of roll damping.

Gingras et al. [17] collected wind tunnel data for various types of aircraft (similar con-

figuration, such as T-tail, low wing, etc.) and built representative models for each type.

Pilots who have substantial experience with stalling certain types of aircraft, called Sub-

ject Matter Experts (SME), evaluated the models and data showed that the pilots could

tell no difference between the representative and the type-specific high-fidelity models. It

is also shown that roll-off and other behaviors associated with roll have the largest effect

on the perceived fidelity of the models according to the SMEs.

Abramov et al. developed an aerodynamic model in extended flight envelope for a generic

airliner as part of a research project Simulation of Upset Recovery in Aviation (SUPRA)

[1]. It was developed from data obtained in TsAGI’s wind tunnels. Consistent with

the wind tunnel data collected by Foster, Abramov’s data showed that Clβ reduced sig-

nificantly as α increased, but slightly recovers at the extreme angles of attack. Yawing

stability Cnβ
reduces steadily as angle of attack increases, even becoming zero and inverts

at the extreme α’s.

2.2 Aerodynamic Model Structure Determination for

Stall

One of the most difficult tasks in this project is the postulation of an appropriate model

that relate the aerodynamic force and moment coefficients to the states and control inputs

of the aircraft. The model structure should be able to capture the underlying aerody-

namics in the prestall and stall regimes of flight and be identifiable from the available

flight test data. The most common model structures found in literature are discussed

subsequently.

The forces and moments on the airplane during flight depend on the states of the aircraft.

However, due to the complicated nature of the dependencies and the need for models that

are easy to work with, a polynomial function in the states is commonly used to relate

the aerodynamic forces and moments. The use of a polynomial model is an assumption

about the underlying physics of aircraft dynamics and is based on the observed depen-

dence between aerodynamic coefficients and independent state variables such as α and

β in wind tunnels. Mathematically, the polynomial results from series expansions about
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a flight condition and assumes the relationships between forces and moments and the

states as well as their derivatives are continuous. This is valid in the subsonic regime and

in the absence of shocks [19]. However, there is little guidance on what terms should be

included and the determination of a good model is for the most part based on experience.

The most basic type of modeling seeks to identify a set of linear aerodynamic derivatives

for the flight condition. It has the advantage of associating the results with classical

stability derivatives [20]. An example for the lift coefficient would be:

CL = CLo
+ CLV

∆V

Vo
+ CLα

∆α + CLα̇

α̇c̄

2Vo
+ CLq

qc̄

2Vo
+ CLδ

∆δ (2.1)

The idea of expansions could be further extended to allow high-order polynomials to

represent the desired functions. However, the advantage afforded by this representation is

usually offset by the difficulty of identifiability due to over-parameterization. In general,

most of the higher order dependence is on the angle of attack α and β. Therefore, a

general expansion for any specific force or moment coefficient is: [23]

CL = C0(α, β) +
∑

i

Cαiαi +
∑

j

Cβjβj +
∑

i

∑

j

Cαiβjαiβj (2.2)

where CL on the left hand side could be replaced with any of the other five aerodynamic

coefficients. The C’s on the right hand side are the constant parameters associated with

the powers of α and β. Many authors have models based on this general form for the

static effects for post-stall modeling and have obtained satisfactory results. The idea is

expanded further to include angular rates and control deflections.

Hall [20] used the following models to explain most of the Cl and Cn variations in his

dataset of a fully instrumented F-4 Phantom aircraft.

Cl = Clββ + Clδa
δa + Clpp (2.3a)

Cl = Clββ + Clδa
δa + Cl

α2β2
α2β2 (2.3b)

Cl = Clββ + Clδa
δa + Clpp+ Clrr (2.3c)

Cn = Cnδr
δr + Cnβ

β + Cnr
r (2.3d)

Cn = Cnδr
δr + Cnβ

β + Cnr
r + Cnp

p (2.3e)

Equations 2.3a and 2.3d were used to explain data near α = 5◦, equations 2.3b and 2.3e

for data near α = 15◦ and 2.3c and 2.3d for α = 25◦.
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The models are linear in the parameters so that standard system identification tech-

niques could be used to find the values based on flight test data. To make the notation

more compact, only the regressors (functions of the state variables) will be listed, for

example, Equation 2.3c would be rewritten as Cl = f(bias, β, δa, p, r)

Many other authors such as Batterson [3], Eulrich [13], Hall [19], Gupta [20] and Klein

have had success with similar models, but the most recent publication regarding this

commonly applied method of modeling is Grauer’s Generic Global Aerodynamic (GGA)

Model, published in 2014 [18]. It uses the following set of regressors for their respective

coefficients and have predicted good results for a number of aircraft in high angle of

attack regions, including fighters such as the F-4, F-16C, transport T-2, and high agility

testing aircraft X-31.

Global Generic Aerodynamics Model

CD = f(bias, α, αq̂, αδe, α
2, α2q̂, α2δe, α

3, α3q̂, α4) (2.4a)

CY = f(β, p̂, r̂, δa, δr) (2.4b)

CL = f(bias, α, q̂, δe, αq̂, α
2, α3, α4) (2.4c)

Cl = f(β, p̂, r̂, δa, δr) (2.4d)

Cm = f(bias, α, q̂, δe, αq̂, α
2q̂, α2δe, α

3q̂, α3δe, α
4) (2.4e)

Cn = f(β, p̂, r̂, δa, δr, β
2, β3) (2.4f)

To aid in the process of selecting regressors, Klein [23] applied a method called step-

wise regression to the aerodynamic modeling problem. The procedure begins with no

variables in the postulated model equation other than a bias term. Independent variable

terms are then inserted into the model one at a time based on the correlation of the term

and the remainder of the model value that is being fit after taking into account terms

that are already in the model. The one with the highest correlation is added first.

F =
θ̂2

s2(θ̂)
(2.5)

At each step of the selection process, the partial F-statistic is used to check for redun-

dancy of previously added terms. The F-statistic is given by Equation 2.5 , where θ̂ is
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the estimated value of the parameter returned by the regression analysis after adding it

to the model, and s2(θ̂) is the variance of the parameter. The process is usually manual

as it requires some engineering judgment to shortlist a pool of regressors based on their

correlation and F-statistic, while giving preference to those that have physical meaning.

Klein [24] also suggested the use of the following trial regressors for modeling the non-

linear lateral behavior of aircraft outside of the usual flight envelope: β, p, r, δa, δr, βα,

pα, rα, δaα, δrα, βα
2, pα2, rα2, δaα

2, δrα
2, β2, β3, β4, β5, β3α2, β3α, α, α2, α3. He

also noted that additional regressors can also be formed as polynomial spline terms such

as (α − αknot)
m
+ , where αknot is value at which the spline takes effect and the subscript

’+’ denotes that the term is zero when the value inside the brackets is negative. These

can be used in conjunction with stepwise regression to determine whether any regressors

can improve the fit to the data. Klein believes that this pool of regressors is capable of

capturing the aerodynamics of even large perturbation maneuvers, however caution must

be exercised in selecting a small enough set suitable for identification yet be still useful.

Instead of using a complicated model to capture the non-linearities of aerodynamic effects

with respect to α, Batterson used a method called data partitioning which segregates the

data into different bins according to the angle of attack. Data points that have similar

angles of attack are used to estimate the parameters of a model that is valid around the

given α. Together all these models span the entire α range and therefore the full model

constitutes multiple simpler models, each of which does not have dependence on α [4].

In Batterson’s work, a linear model using stability derivatives was adopted.

Morelli [32] introduced the method of Multivariate Orthogonal Functions to automat-

ically generate a suitable model structure. Given a list of independent variables, MOF

generates combinations of the variables up to a specified order and treats those as the

candidate regressors for search of a model structure. For example, an independent vari-

able list of α, β, δa up to 2nd order would return regressors α2,αβ, αδa, β
2, βδa , δ

2
a. These

regressors are then orthogonalized which decouples the normal equations associated with

equation error parameter estimation. This also enables the evaluation of each orthogo-

nalized regressor’s ability to reduce the least-squares fit of the data. The regressors that

reduce the error the most are chosen to be included in the model structure.
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2.3 Parameter Estimation

Once a candidate model structure is selected, the parameters must be identified using

parameter estimation techniques so that it represents the dynamics of a specific aircraft.

This procedure is an optimization problem to minimize the error between the model

output and the outputs calculated from the measurements. Mathematically, we are

trying to minimize the innovations in some way. The innovation ν(i) is the difference

between the measurements z(i) and the model outputs y(i).

ν(i) = z(i)− y(i) (2.6)

Once an aerodynamic model structure is postulated, the parameters would need to be

estimated so that it represents the dynamics of one specific aircraft. Several common

methods in the literature for estimating the parameters in the aerodynamic model to

minimize the innovations are discussed.

2.3.1 Equation Error

Equation error refers to the method of using linear regression to estimate parameters

that minimize the difference between the output of an equation and the measurements

in the least-squares sense. When applied to aerodynamic modeling, the equation is the

aerodynamic force and moment coefficients expressed as functions of response and input

variables. For example, a simple rolling moment coefficient expressed as a function of

response p̂ and input δa is given in Equation 2.7.

Cl = Cl0 + Clp p̂+ Clδa
δa + Clδaα

δaα (2.7)

The rolling moment Cl is assumed to depend on p̂, δa, and δaα in the manner postulated

by the form of the model, where p̂, δa, and α are the measured values of the non-

dimensionalized roll rate, the aileron deflection, and angle of attack from flight test

respectively. In Equation 2.7, Cl0 , Clp , Clδa
, and Clδaα

are the parameters that we are

trying to identify and p̂, δa, and δaα are the regressors. In order to use linear regression

and the associated matrix algebra to solve the least-squares problem, the equation must

be linear in the parameters. However, the regressors are not restricted to linear functions

of the state variables. Equation 2.7 is linear in the parameters but contains the nonlinear
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regressor δaα. The parameter vector θ and regressor matrix X are formulated as follows:

θ =













Cl0

Clp

Clδa

Clδaα













(2.8)

X =













1 p̂(1) δa(1) δa(1)α(1)

1 p̂(2) δa(2) δa(2)α(2)
...

...
...

...

1 p̂(N) δa(N) δa(N)α(N)













(2.9)

where N is the number of data points available. Hence, the model outputs y could be

expressed as a matrix product of the regressor matrix X and the parameter vector θ:

y =













Cl(1)

Cl(2)
...

Cl(N)













= Xθ (2.10)

The measured rolling moment Cl,meas forms the measurement vector z:

z =













Cl,meas(1)

Cl,meas(2)
...

Cl,meas(N)













(2.11)

The objective is to estimate the parameters that best describe the aerodynamic forces

and moments measured from flight test. In a least-squares sense, the best estimator of θ

is derived from minimizing the sum of squared differences between the measurements z

and the model output y, which could be expressed as a cost function

J(θ) =
1

2
(z −Xθ)T (z −Xθ) (2.12)

Equation 2.12 is minimized when its derivative with respect θ is zero due to its quadratic

nature. Setting the derivative to zero and solving for θ, we obtain the best estimate of

the parameter vector.

θ̂ = (XTX)−1XTz (2.13)
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The equation error method assumes the regressors are known without error. Error in

the state variables would cause inaccurate parameter estimates; Therefore, it is common

practice to smooth the state variables that constitute the regressors before formulating

the regressor matrix in Equation 2.9 in an attempt to remove part of the error due to

random noise. One of the major advantages of equation error method is that it does

not involve equations of motion and hence the time relationship of the data points with

respect to each other is not important. This implies equation error could use data that

is stitched together from multiple flight maneuvers.

2.3.2 Output Error

Discrete time measurements made on a continuous-time dynamic system such as an air-

craft in flight could be formulated mathematically into a framework suitable for parameter

estimation. In general, the discrete-time dynamic equations are

ẋ(t) = f [x(t),u(t),θ] +Bww(t) (2.14a)

y(t) = h[x(t),u(t),θ] (2.14b)

z(i) = y(i) + ν(i) i = 1, 2, . . . , N (2.14c)

where x is the state vector, f is the nonlinear equations of motion, h is the measurement

model, u is a vector of control inputs, θ is the parameters of the aerodynamic model

embedded the equations of motion as forces and moments, z is a vector of measurements,

and y is the model output. Bww is the process noise formulated as a stochastic forcing

function and its weighting matrix, and ν is the measurement error.

The so called output error method is a popular parameter estimation method that utilizes

this framework. Unlike equation error in which the outputs are aerodynamic coefficients,

the output error method uses the aircraft states as outputs. The process minimizes the

difference between the measured output states and the model states that are integrated

in time. The aerodynamic model contains the parameters θ, which itself is embedded in

the state equation. The output error method assumes that there is no process noise but

there is measurement noise, which simplifies Equation 2.14 to [29]:

ẋ(t) = f [x(t),u(t),θ] (2.15a)

y(t) = h[x(t),u(t),θ] (2.15b)

z(i) = y(i) + ν(i) i = 1, 2, . . . , N (2.15c)
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The time history of model states could be obtained by integrating the equations in time

for x. Due to the lack of process noise modeling in the state equations, only flight test

data that was collected during a calm day with no turbulence should be used with output

error.

The cost function to minimize is the weighted squared error of the innovations z(i)−y(i)

with their covariance matrix R̂

J(θ) =
1

2

N
∑

i=1

[z(i)− y(i)]R̂−1[z(i)− y(i)]T (2.16)

Adding a perturbation to the cost function and performing a second-order Taylor series

expansion will result in the following expression.

J(θo +∆θ) ≈ J(θo) + ∆θT ∂J

∂θ

∣

∣

∣

∣

θ=θo

+∆θT ∂2J

∂θ∂θT

∣

∣

∣

∣

θ=θo

∆θ (2.17)

After setting its derivative to zero, the parameter vector change can be calculated and

be used to update the solution

∆θ̂ = −
[

∂2J

∂θ∂θT

∣

∣

∣

∣

θ=θo

]

−1
∂J

∂θ

∣

∣

∣

∣

θ=θo

(2.18)

θ̂ = θo +∆θ (2.19)

The elements of the second-order gradient matrix in Equation 2.18 are

∂J(θ)

∂θj∂θk
=

N
∑

i=1

∂yT (i)

∂θj
R̂

−1∂y(i)

∂θk
−

N
∑

i=1

∂2y(i)

∂θj∂θk
R̂

−1
ν(i) (2.20)

The second order gradient is computational expensive to obtain and is susceptible to

numerical error due to higher-order differentiation. An approximation to Equation 2.20

can be made by ignoring the 2nd term in the equation. This would alleviate the computa-

tional issues while not significantly sacrificing accuracy because as the optimization nears

the solution, the innovation ν(i) becomes small and the approximation is very good at

the solution. The optimization algorithm with this approximation scheme is called the

modified Newton-Raphson method. Substituting in the cost function of equation 2.16,
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the update for the parameters become

∆θ̂ =

[

N
∑

i=1

∂yT (i)

∂θ
R̂−1∂y

T (i)

∂θ

]−1

θ=θo

[

N
∑

i=1

∂yT (i)

∂θ
R̂

−1
ν(i)

]

θ=θo

(2.21)

R̂ =
1

N

N
∑

i=1

ν(i)νT (i) (2.22)

where the sensitivities ∂yT (i)
∂θ

are calculated using finite difference approximations to par-

tial derivatives. The modified Newton-Raphson process is repeated until the update

parameter vector is sufficiently small or the change in the cost is small per step.

The output error method returns more accurate parameter estimates compared to linear

regression because the minimization of error between model and measurement is done on

the aircraft states rather than the forces and moments. Since linear regression does not

involve integration of equations of motion, it is very susceptible to outliers or extrane-

ous data points as the algorithm will try to minimize the large squared error associated

with the outliers. In addition, equation error does not account for measurement noise

and treats the model outputs as deterministic. The Output error method do not have

these problems; However, output error is computationally expensive and may run into

convergence issues. Hence, when still in the stage of determining a suitable model, linear

regression can be more useful. It would also help in the convergence of output error if pro-

vided with initial parameter values that are close to the solution, such as the parameter

estimates by equation error [25].

2.3.3 Filter Error Method and related methods

The filter error method was developed as an aircraft parameter estimation technique

that would return accurate results even in the presence of measurement and process

noise. When a flight test is being conducted in turbulent air, there are wind effects on

the dynamics of the aircraft that are not accounted for by the equations of motion such

as Equation (2.15). Equations 2.14 cannot be simply integrated due to the stochastic

process noise term. Maine and Iliff published the filter error algorithm that combines the

output error method and a Kalman state estimator to account for the noise in the state

equations [28]. In their work however, linearized aircraft dynamics are used for the state

equations in order to easily calculate the Kalman gain associated with the Kalman state

estimator. It is known that for flight maneuvers that exhibit a wide range of α, linear
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dynamics do not capture the motion well.

Chowdhary and Jategaonkar further developed this concept by using the nonlinear equa-

tions of motion along with an extended Kalman Filter or an unscented Kalman Filter

as the state estimators [8]. They called these methods recursive parameter estimation

(RPE) methods and have applied it to flight test data of the DLR HFB-320 research air-

craft. The parameters estimated with RPE methods are in close agreement to the filter

error method, demonstrating the validity of the algorithm. However, the aerodynamic

model identified was a linear model based on stability derivatives and the data used was

from small-amplitude flight maneuvers ranging from an α of 5◦ to 7.5◦. The general use

of filter error and related methods for stall modeling involving nonlinear aerodynamics

and large ranges of α is still to be explored.

2.3.4 Frequency Domain Parameter Estimation

The above methods could also be applied to flight test data in the frequency domain.

Time history data of the states can be transformed into the frequency domain through

Fourier transform. Performing parameter estimation in the frequency domain has its

advantages, including direct applicability to control system design, physical insight in

terms of frequency content, and less susceptibility to measurement sensor bias [25]. For

example, the angle of attack vane must be carefully calibrated for a flight test campaign;

however, even with the best calibration a bias error may still manifest in conditions

that differ from the calibration values. This error would manifest itself in the inaccurate

estimate of the parameters if the identification process is done in the time domain. Yet,

in the frequency domain, a Fourier Transform of the measured angle of attack data would

remove the bias since it has zero frequency.

2.4 Flight Path Reconstruction

Data compatibility or flight path reconstruction is a process performed on flight test data

to remove ill effects due to sensor biases, gains and winds. When performed before a pa-

rameter estimation process for aerodynamic modeling, it is called an estimation before

modeling (EBM) approach or a 2-step approach [37]. This is especially important for the

equation error method because it assumes that there is no error in the state variables.

Sri-Jayantha applied this method along with equation error and data partitioning tech-

niques to fully estimate a model of a a Scheweizer 2-32 sailplane up to an angle of attack
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of 17◦ [36].

The usual quantities measured in a flight test are ax, ay, az, p, q, r, V, α, β, θ, φ, ψ, pressure

altitude h, and GPS coordinates X,Y , and Z. The idea is to integrate the accelerations

and the rates (ax, ay, az, p, q, r), considered to be inputs, in time using standard 6-degree-

of-freedom kinematic relationships to obtain V, α, β, θ, φ, ψ, and h (outputs) and compare

it to the measured values. An error model is assumed for all of these quantities and the

parameters are estimated using the techniques mentioned above to make the dataset

consistent with itself. For example, a bias in the measurement of forward (x-direction)

acceleration will cause a drift in the integrated velocity V . The bias would then be esti-

mated to minimize that drift.

The velocity components in the body frame with respect to the Earth u, v, w are re-

lated to V, α, β through the following relationships:

V =
√
u2 + v2 + w2 (2.23a)

α = tan−1
(w

u

)

(2.23b)

β = sin−1

(

v√
u2 + v2 + w2

)

(2.23c)

and the error model for the output V is

VE(i) = (1 + λV )
√

u2(i) + v2(i) + w2(i) + bV + vV (i) (2.24)

where VE is the experimental measured value and u(i), v(i), w(i) would be the integrated

values from kinematics using ax, ay, az, p, q, r, each with their own error model with ap-

propriate bias and scaling parameters added to the measured axE
, ayE , azE , pE, qE, rE. For

example, the x-acceleration is the experimental value plus bias and random noise, given

by:

ax(i) = axE
(i) + bax + vax(i) (2.25)

The bias and scaling factors are estimated to make the experimental outputs match the

integrated ones from dead-reckoning. First the measured rates and accelerations undergo

their respective error model corrections, then it is integrated in time to get the states, in

which they go through their own error model corrections as well, and finally this quantity
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is compared to the measured states. The following illustrates the process

VE ← (1 + λV )V + bV + vV ← V = f(ax, ay, az, p, q, r)← ax = axE
+ bax (2.26)

A more sophisticated flight path reconstruction algorithm using forcing functions is pre-

sented by Bach [2]. It can estimate time histories of the winds during the flight test

maneuver as well as the sensor biases.



Chapter 3

Stall Flight Model

3.1 Introduction

This chapter describes the methodology used to extend the lateral aerodynamic database

of the Bombardier Aerospace turboprop aircraft to cover upset conditions at high angles

of attack. First, a brief outline of the available data and existing model is provided,

as they serve as the starting point of the model development. The resources available

also strongly influenced the methodology that was adopted; lack of wind-tunnel data for

lateral coefficients required modeling methods whose prerequisite is flight test data only.

In this chapter, all terms and graphs (non-dimensional coefficients, accelerometer read-

ings, aircraft states) are expressed in the body axes, whose coordinate system is pictorially

shown in Figure 3.1. This is a right-handed coordinate system that is centered at the

aircraft’s center of gravity, with the x-axis pointed out the nose and parallel to the fuse-

lage, the y-axis pointed towards the right, and z-axis pointed directly downwards. The

moments about these axes are defined positive according to the right-hand rule and are

depicted by the arrows in the figure. Sensors are often mounted in the body-axis because

it is stationary with respect to the aircraft and the measured values could be easily used

with aircraft equations of motion without the need of transformation. The symbol δ will

be used for control surface deflections where δa = aileron, δr = rudder, δs = spoiler,

all expressed in degrees of deflection. A positive control surface deflection will tend to

generate negative forces and moments. For example, positive aileron causes a rolling

moment to the left; and positive rudder causes yawing to the left. This convention is

consistent with Etkin and is common in flight dynamics literature [12].

18
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Figure 3.1: Notation for body axes. L = rolling moment, M = pitching moment, N
= yawing moment, p = rate of roll, q = rate of pitch, r = rate of yaw, [X, Y, Z] =
components of resultant aerodynamic force, [u, v, w] = components of velocity of the c.g.
relative to atmosphere

3.1.1 Simulator and Aerodynamic Modeling

Flight modeling mainly consists of two parts, a 6-DOF rigid body dynamics model and

an aerodynamic model. The 6-DOF are the location in space (x,y,z) and the attitude

(pitch θ, roll φ, yaw ψ). The dynamics model contains the equations of motion and the

aerodynamic model is a mathematical representation of the physics that would predict

the external aerodynamic forces and moments acting on the aircraft. The state of the

aircraft is the collective quantities that fully describe the aircraft’s situation with respect

to the atmosphere and the Earth. The states that are used by the dynamics model are

the components of velocity with respect to the atmosphere in the body frame u, v, w,

the dynamic rates p, q, r, the attitude φ,θ,ψ, the coordinates with respect to Earth xE,

yE, and altitude h. The aerodynamic and dynamic models form a loop and it can be

integrated to simulate the motion of the airplane over time. It is summarized in the

Figure 3.2. If the forces and moments acting on the aircraft is known at all times, its

trajectory as a function of time can be calculated by integrating the aircraft equations
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Aerodynamics Dynamics

Integrator
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Figure 3.2: Basic Simulator Schematic

of motion [11], which are

u̇ = rv − qw +
q̄S

m
CX − g sin θ (3.1a)

v̇ = pw − ru+ q̄S

m
CY + g cos θ sin θ (3.1b)

ẇ = qu− pv + q̄S

m
CZ + g cos θ cosφ (3.1c)

ṗ = (c1r + c2p− c4IpΩp)q + q̄Sb(c3Cll + c4Cn) (3.1d)

q̇ = (c5p+ c7IpΩp)r − c6(p2 − r2) + c7q̄Sc̄Cm (3.1e)

ṙ = (c8p− c2r − c9IpΩp)q + q̄Sb(c9Cn + c4Cl) (3.1f)

φ̇ = p+ tan θ(q sinφ+ r cosφ) (3.1g)

θ̇ = q cosφ− r sinφ (3.1h)

ψ̇ =
q sinφ+ r cosφ

cos θ
(3.1i)

ẋE = u cosψ cos θ + v(cosψ sin θ sinφ− sinψ cosφ)

+ w(cosψ sin θ cosφ+ sinψ sinφ)
(3.1j)

ẏE = u sinψ cos θ + v(sinψ sin θ sinφ+ cosψ cosφ)

+ w(sinψ sin θ cosφ− cosψ sinφ)
(3.1k)

ḣ = u sin θ − v cos θ sinφ− w cos θ cosφ (3.1l)
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where

c1 = [(Iy − Iz)Iz − I2xz]/Γ Γ = IxIz − I2xz
c2 = [(Ix − Iy + Iz)Ixz]/Γ c3 = Iz/Γ

c4 = Ixz/Γ c5 = (Iz − Ix)/ Iy
c6 = Ixz/Iy c7 = 1/Iy

c8 = [(Ix − Iy)Ix + I2xz]/Γ c9 = Ix/Γ

All quantities are expressed in the body axes, u, v, and w are x, y, z components of

velocity with respect to the atmosphere; CX , CY , and CZ are the non-dimensional forces;

Cl, Cm, and Cn are the moments about the x, y, and z axes following a right-hand rule

convention for pitch, roll and yaw. Ixx, Iyy, and Izz are principle moments of inertia,

Ixz is the product of inertia, Ip is the inertia of the spinning propellers; Ω is the angular

velocity of the propellers; m is mass; g is the acceleration due to gravity; q̄ is dynamic

pressure given by 1
2
ρV 2 where V is total airspeed and ρ the air density; S is the wing

area, c is chord, and b is the wingspan. The navigational Equations 3.1j, 3.1j, 3.1j are

valid assuming there is no atmospheric wind, however wind effects on aircraft motion

relative to an Earth inertial frame can easily be added. In real-time applications such

as a flight simulator, the forces and moments experienced at time step ti is fed into the

dynamics block to calculate the rate of change of the states by Equations 3.1. These

values are then integrated in time to obtain the states at ti+1. The states at ti+1, along

with some auxiliary quantities, such as the air density ρ from h, are fed into the aerody-

namic model to predict what the forces and moments are at ti+1. The loop continues as

long as the simulation needs to run. Of course, the pilot inputs directly affect the forces

and moments, therefore the aerodynamic model has to compute the additional forces and

moments due to control surface deflections as well.

Since the dynamics of the aircraft are well understood for rigid body motion, the difficulty

in simulating aircraft motion is predicting the aerodynamic forces and moments acting on

the aircraft. At low angles of attack, the aerodynamics are relatively linear in the states,

and the longitudinal and lateral forces and moments are often decoupled from each other

and from the respective lateral and longitudinal states. Hence, stability derivatives are

adequate and often used to capture the behavior when the aircraft is perturbed from a

trimmed state. At higher angles of attack, flow separation and flow interactions between

different parts of the aircraft cause the aerodynamics to be highly non-linear and coupled.

This project aims to develop an aerodynamic model that is accurate in predicting the
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forces and moments even in upset conditions, and particularly at high angles of attack.

3.2 Resources

3.2.1 Flight Test Data

The two major sources of information that were used to develop the stall model is flight

test data and a qualified pre-stall model based on low angle of attack wind-tunnel data.

Bombardier Aerospace provided certification flight test data collected in the 1990’s for

the turboprop aircraft considered in this report. The certification dataset consist of stalls

with a stick pusher, a device that automatically applies nose-down control input when

conditions nearing a stall are met. There is another set of data that do not have a stick

pusher active, which is not from certification. Note that the non-pusher data is not from

certification. There are a total of 198 flight maneuvers, categorized into straight stalls,

turning stalls, accelerated stalls, and asymmetric thrust stalls. Straight stalls are stalls

in which the pilot slows down at ≈ 1 knot per second while keeping constant power

setting and wings-level. Depending on the power setting, the aircraft may need to climb

or descend to achieve the desired deceleration rate. Turning stalls are exactly the same

except the aircraft is banked at roughly 30◦ to either side. Accelerated stalls involve

the aircraft slowing down at a progressively faster rate, and achieving a load factor

of greater than 1.3 at stall through the use of the elevator. Asymmetric thrust stalls

are stalls with significantly different power settings between the left and right engines,

while maintaining wings-level and deceleration of ≈1 knot per second. Each maneuver is

roughly one minute in duration and covers one complete stall starting from quasi-steady

(i.e. trim) condition. The data streams are time history recordings of various sensors at

the same sampling frequency; measurements that are used in this report include static air

temperature, static pressure, total pressure, control surface deflections of rudder, aileron,

flaps, spoilers, total pressure from pitot tube, engine torque and rpm, and data from a

tri-axial set of accelerometers, a tri-axial of rate-gyros, an α vane, and a β vane. Figure

3.3 shows an example flight test data file containing one straight stall maneuver. ax, ay,

and az are the x, y, z accelerometer readings respectively. Due to proprietary reasons,

the presentation of data is without numerical values on the axes.

3.2.2 Qualified Model

The Simulink model of the turboprop aircraft provided by Bombardier Aerospace has

passed the Qualification Test Guide (QTG) for flight training simulators as set out by
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the FAA and Transport Canada. It should be noted that this qualification does not

require post-stall modeling [38]. This model is hereinafter referred to as the ”qualified

model”. It employs the full six degrees of freedom nonlinear flight equations governing

the motion of a rigid body, as shown in Equation 3.1.

The aerodynamic database of the qualified model was built with wind-tunnel data that

Bombardier Aerospace has collected [22]. Most of it is implemented in the form of lookup

tables in which aircraft states and are fed into the tables to find the corresponding force

and moment coefficients. A small portion of the database is computed from auxiliary

equations, such as the tail α computed from kinematic equations. A lookup table is

implemented for each independent channel that was tested in the wind-tunnel; for exam-

ple, Cl,δa(α, β, δf , δa) is the lookup table for the rolling moment generated due to aileron

deflection as a function of angle of attack α, sideslip β, flaps δf , and aileron deflection δa,

and it is one of many lookup tables that constitute the Cl model. Wind-tunnel testing

was not done for the lateral force and moment coefficients at high angles of attack, there-

fore the aerodynamic database does not have data past a certain α. The values used for

the simulation outside of the data envelope are either extrapolated or set to be the value

of the last data point. Table 3.1 shows the range of states that these lookup tables are

valid for, with a different range covered by the basic static wind tunnel tests and the tests

for control surfaces. Data does not exist for the forces and moments caused by control

surface deflections past α = 10◦. Based on holding the value at the last data point, all

the control surfaces would remain effective as if the aircraft is flying at a relatively low

α even though the simulation may be in a stall. It is obvious that this is not true and

the qualified model would fail to reproduce representative characteristics of the aircraft

at stall. Hence, a stall model must be developed to capture these effects. Although the

range of data for β is very large, keep in mind that it was not collected for higher angles

of attack.

3.2.3 SIDPAC

System IDentification Programs for AirCraft (SIDPAC) is a MATLAB library written

by Eugene A. Morelli that contains useful functions that perform many parameter esti-

mation tasks [31]. The first version was developed at NASA Langley Research Center in

1992, and has been applied to flight data, wind-tunnel data, and simulation data from

many different projects. For this particular project, equation error computations, the

computation of non-dimensional coefficients, and smoothing of data using a Wiener filter
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Table 3.1: QTG Qualified Turboprop Lateral Model Aerodynamic Database Range

State Min Max
Static α -15◦ 15◦

Static β -40◦ 40◦

Static CT -0.1 1.5
Flaps 0 35

Controls α -4◦ 10◦

Controls β -35◦ 35◦

Controls CT 0 1

was carried out with SIDPAC. Version 2.0 of the software package is included with the

purchase of the book Aircraft System Identification: Theory and Practice by Klein and

Morelli [25]. Modifications to the programs have been made to better suit the needs of

this particular project.

3.3 Methodology

The turboprop aircraft that is being modeled has 5 different flap conditions, namely 0, 5,

10, 15, and 35. Since flaps significantly change the geometry of the aircraft, it is best to

model them separately as the geometry change may affect the aircraft’s characteristics

at stall. Therefore, the modeling effort is repeated for each flap condition and a total of

five models are developed. They are combined later into the extended model.

Before any modeling work can be done, the flight test data has to be processed. All

measured states should be transformed to reflect the value as seen from the center of

gravity of the aircraft, as the equations of motion in Equation 3.1 are defined at the CG

of the aircraft. Although accelerometers are usually mounted with the orientation the

same as the body-axis, they rarely can be placed exactly at the center of gravity of the

aircraft. Reasons include that the c.g. is not at an accessible location, such as inside a

structural element, and that the c.g. is not stationary while the aircraft is burning fuel

or when carrying different payloads. Therefore, most flight test measurements will need

to be transformed to c.g. values before the modeling process could continue. α and β

vanes are mounted externally in a location far away from the fuselage and c.g.; depending

on the exact location of the sensor location, rolling, pitching, and yawing of the aircraft

will induce local flow changes around the aircraft that may be picked up by the sensor.

However, that effect must be removed since it does not represent the values seen from
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the aircraft’s center of gravity.

Once the sensor data is transformed to c.g., the accelerometer and rate gyro measure-

ments are converted to non-dimensional force and moment coefficients for ease of mod-

eling, since non-dimensional quantities can be related to the states directly through a

postulated model and is independent of dynamic pressure and airspeed. The measure-

ments are converted using the following equations; only the lateral coefficients are listed

below.

Cl,meas =
Ixxṗ− Ixz(ṙ + pq) + (Izz − Iyy)qr

1
2
ρV 2Sb

(3.2)

Cn,meas =
Izz ṙ − Ixz(ṗ− qr) + (Iyy − Ixx)pq + IpΩpq

1
2
ρV 2Sb

(3.3)

CY,meas =
may

1
2
ρV 2S

(3.4)

Ip and Ωp are the propeller’s moment of inertia and angular frequency. A pitch rate q of

the aircraft would induce a yawing moment due to the gyroscopic effects of the spinning

propellers of the turboprop. This effect is accounted for in the dynamics of the training

simulator and should not be included in the aerodynamic modeling process. Hence, its

effect is removed from the total Cn experienced by the aircraft through Equation 3.3,

leaving only the Cn caused by the aerodynamics. For the set of 198 stall maneuvers,

the pitch rate was never large enough to make the term IpΩpq

0.5ρV 2Sb
significant. The highest

pitch rates were near the maximum angle of attack, when the stick-pusher activated and

applied a large nose-down moment on the aircraft, or when the aircraft naturally stalled

and had a tendency to nose-down. The pilots always applied substantial rudder inputs

in those events, resulting in rather large Cn; the effect due to the gyroscopic effects of

the spinning blades of the propeller is < 0.5% of the total Cn.

3.3.1 Data Partitioning

It was found that most of the nonlinearity in the aerodynamics is with respect to angle

of attack α. However, in order for a single polynomial model to capture the nonlinear

dependence on a wide range of α, nonlinear regressors such as α2, α3, αβ, αδa would

need to be added. α2 and α3 are terms which would model the nonlinear contribution

of α directly on the aerodynamic coefficient, whereas αβ and αδa are terms that model

the interdependency of β and δa with α on the aerodynamic coefficient. For example, if

the change in Cl due to aileron input depends on the angle of attack, cross-terms such as
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Figure 3.4: Data partitioning into α bins

δaα would be needed. As such, the need to capture other effects’ dependency on angle

of attack would further increase the number of terms needed in the model. In addition,

the coefficients associated with these terms are difficult to estimate well with the data

available due to the low excitation of states and data collinearity that are discussed in

detail in Section 3.3.3. These are some of the major difficulties associated with the use

of a complicated aerodynamic model structure to cover a large range of α.

The method of data partitioning based on an α range as proposed by Batterson solves

this problem [4]. Although the total number of parameters that needs to be identified is

still very high (number of bins × number of parameters in the postulated model), lower

information content is required in the data to successfully estimate parameters, simply

because the problem is subdivided into many smaller estimation problems, each with a

fewer number of parameters.

Figure 3.4 shows the data from flight tests with flaps 10 partitioned according to an-

gle of attack. From 6◦ to 20◦, the bins are 0.2◦ wide. However, the bins at higher angles

of attack are coarser and cover a wider range of α due to a lack of data points. Even

with wide ranges that span 2.5◦ of α, the bins barely manage to have over 100 points

in the higher angle of attack regions. Since an equation error process has to be set up

in each bin, the number of data points should be kept at a reasonable number that is
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significantly higher than the number of parameters to be estimated. This ensures a well-

posed regression problem. That said, having finer bins whenever possible can offer a good

metric on whether a parameter is well-identified; well-identified parameters should have

similar values amongst adjacent bins. For example, a stability derivative Clβ should not

vary wildly from α = 15◦ to α = 15.2◦ and α = 14.8◦ ; if it does, there is a high chance

that it is due to modeling or estimation error. In addition, if the aerodynamics have a

strong dependency on alpha, then a large bin will still have significant alpha dependency

left within the bin.

3.3.2 Delta (∆) Model

Although the qualified model’s aerodynamic database does not extend up to high α and is

generally not meant for modeling stall, time history comparisons of the qualified model’s

output to flight test data showed that it was able to capture some of the trends at high

α but is not accurate in magnitude. For example, often the qualified model over-predicts

the magnitude of yawing moment at stall, but its prediction had the same time history

profile as the measured yawing moment.

It is known that a model structure with non-linear terms or with a large number of

terms are hard to estimate accurately as previously discussed. Yet, non-linear terms are

needed to model the complicated aerodynamics near stall. Furthermore, this conflicting

problem is exacerbated by the lack of information content in the available flight test data,

so it is virtually impossible to properly identify a highly nonlinear model structure.

As noted previously, the qualified model predicts the trends in the flight test well in

most cases, but is not accurate in predicting the magnitude of the forces and moments.

To take advantage of this, it is proposed that a relatively linear correction (∆) model

added to the qualified model may be able to correct for the shortcomings of the qualified

model. Some of the nonlinearities of the aerodynamics are already captured by the qual-

ified model, as shown by the match with flight data. The ∆ model would only need to

bridge the gap between the qualified model and the flight test data, which is more linear

as opposed to modeling the moments and forces entirely from scratch. In this framework,

the quantity that the ∆ model would try to match is the error of the qualified model,

and not the aerodynamic coefficients themselves.
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The error of the qualified model is given by:

Ci,error = Ci,meas − Ci,qualified i = l,m, Y (3.5)

A linear regression problem is set up to minimize the difference between the ∆ model

and the Ci,error in Equation 3.5. The outcome of the regression would be a ∆ model

that is used to cover the shortcomings of the qualified model at stall. The procedure for

obtaining the ∆ model is analogous to the standard Equation Error discussed in Chapter

2. The process is illustrated in an example below for ∆Cn. First, start with a postulated

∆ model:

∆Cn = ∆Cn0
+∆Cnβ

β +∆Cnp
p̂+∆Cnr

r̂ +∆Cnδr
δr +∆CnCT

CT (3.6)

For each α partition, formulate the regressor matrix according to the postulated model

structure,

X =



















1 β(1) p̂(1) r̂(1) δr(1) CT (1)

1 β(2) p̂(2) r̂(2) δr(1) CT (2)

1 β(3) p̂(3) r̂(3) δr(1) CT (3)
...

...
...

...
...

...

1 β(N) p̂(N) r̂(N) δr(N) CT (N)



















(3.7)

where N is the total number of data points available in an α partition. Note that to esti-

mate a constant offset for the model, the regressor matrix has a column of 1’s. Although

it appears in the regressor matrix, 1 is not a regressor in the strict sense. It is there so

that the constant parameter of the model can be estimated. Next, formulate the vector

of values that the ∆ model is to match, which is the qualified model error, or in other

words, the effects that were not captured by the qualified model,

z =



















Cn,error(1)

Cn,error(2)

Cn,error(3)
...

Cn,error(N)



















(3.8)

As mentioned in the literature review section, the goal is to minimize the difference in the

least-squares sense between the postulated model output Xθ and the values z through
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optimization of the parameter vector:

θ =























∆Cn0

∆Cnβ

∆Cnp

∆Cnr

∆Cnδr

∆CnCT























(3.9)

The best estimate for θ is one that optimizes the least-squares cost function shown in

Equation (2.12). The equation error method of parameter estimation therefore gives:

θ̂ = (XTX)−1XTz (3.10)

Suppose the angle of attack bins from the data partitioning are centered at 12◦, 12.2◦,

12.4◦, . . . , 20◦, the above parameter estimation procedure would be performed for each

bin separately. The estimated parameters from each bin θ̂α=12◦ , θ̂α=12.2◦ , θ̂α=12.4◦ , . . . ,

θ̂α=20◦ would constitute the ∆ model. Finally, the ∆ stall model is added to the qualified

model to become the extended model shown mathematically in equation (3.11), where

Ci,qualified is the qualified model.

Ci,extended = Ci,qualified +∆Ci i = l, n, Y (3.11)

3.3.3 Difficulties

Data Collinearity

In general, regressor time series must be dissimilar in form for good parameter estima-

tion, because if any regressor can be scaled to approximately match another, there is

an indeterminacy in how variations in the dependent variable can be modeled, and data

collinearity exists. The data used for this project does not include maneuvers that had

control inputs specifically meant for exciting the states for model identification. Morelli

has shown that a doublet input or a 3-2-1-1 input can significantly add information

content to a flight test maneuver and subsequently help in parameter estimation [33].

Instead, the data available were certification flight tests in which the airplane approaches

stall in a quasi-steady manner while the pilot is only using the controls to maintain

trim. As expected, a lot of data channels were correlated with each other and it made
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Figure 3.5: Error vs. Regressor Plot with low excitation of states

parameter estimation of anything but a simple model extremely difficult and prone to

error. Figure 3.3 shows how α varies with CT co-linearly, which would make separating

their contribution to aerodynamic coefficients very difficult. Any successful identification

basically relies on the minute differences between the two channels of data. If they were

identical, then the problem becomes ill-posed and a singularity will appear in the math in

the form of a non-invertible matrix. This problem was a significant setback in the efforts

to make a longitudinal stall model as CT and α both contribute to CL but are collinear.

Similar difficulties are encountered in the lateral model development since wind-tunnel

data from the qualified model showed CT as a contributor to all coefficients.

Low excitation of important states

Low excitation of states is another problem that effected the lateral model development

significantly. As the pilot flies the aircraft into a stall, as seen in Figure 3.3, most of the

lateral states stay relatively constant and do not traverse a wide range of values. deltaa,

δr, p, and φ have just tiny fluctuations around the zero axis in the pre-stall region. It

is not until stall that large changes in the reading occur. If there was no air turbulence

and the pilot controlled the aircraft perfectly, φ, δr, Cl, CY , Cn would all be very close
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to zero except for perhaps some trim required from the ailerons and rudder to balance

various asymmetries in the aircraft or its thrust. Figure 3.5 shows a Cl error vs regressor

plot for relatively low α bin, which illustrates this problem. Note that the ailerons have

very few data points outside of the −5◦ to 0◦ cluster, which meant the pilots did not

use the ailerons much in this angle of attack range. Trying to estimate parameters with

data that have extremely low signal to noise ratio such as this case will return erroneous

results. The Cl and δa values are almost 0 throughout this angle of attack range, with

slight variations probably due to noise and turbulence only. The erroneously estimated

parameter to the aileron effectiveness ∆Clδa
is positive in this particular bin, which from

a visual inspection shows that it is inconclusive at best. If the qualified model is very

good in its predictive capabilities at low angles of attack, the Cl error should remain zero

most of the time; and if there was more excitation in the range and the number of data

points in which the ailerons deflected, then a ∆Clδa
would have been identified very close

to zero. This would be consistent with the hypothetical assumption that the Cl qualified

model is good in that α region. It is believed that the ∆ stall models identified are not

accurate below a certain angle of attack due to this reason. The coefficient of determina-

tion value R2 could still be satisfactory, but some of the parameters may be erroneously

identified. Most of the flight data have more excitation as the α becomes progressively

near stall, which would aid in the proper identification of parameters. Another potential

problem is caused by the pilots actively trying to maintain all forces and moments in

trim. That is beneficial in terms of performing the flight maneuver perhaps; however,

the suppressed dynamics do not show up in the measured coefficients and is detrimental

in a system identification point of view. For example, consider the roll asymmetry Cl0

due to an increase in α be perfectly counteracted by the aileron inputs. In this case,

the measured Cl from the rate-gyros would effectively be zero, and from the parameter

estimation process we would draw the erroneous conclusion that the aircraft does not

exhibit asymmetry and that the ailerons are ineffective in generating rolling moment.

In other words, low excitation in the measured Cl, Cn, and CY would make parameter

estimation virtually impossible. Fortunately, the dynamics are being excited near stall as

there are substantial aileron and rudder inputs while the force and moment coefficients

are not in trim (i.e. zero).

3.3.4 Model Structure Determination

Morelli’s Multivariate Orthogonal Functions (MOF) method was used to generate a model

structure for stall modeling. As mentioned in the literature review, MOF is implemented
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in MATLAB by Morelli and could be obtained through purchase of his book [25]. It

was applied to the datasets of this project, however the results were not satisfactory.

The model terms returned often had little physical sense associated with them and were

difficult to interpret to the modeler. One example would be δeδaCT ; although one could

see that the effect exists, it is hard to interpret how the three control inputs would have

a coupled effect on the forces and moments on the aircraft. The lack of prior knowledge

of how δeδaCT should behave will limit the amount of engineering insight towards the

parameter estimation process. It may be reasonable to include a few such terms if the

inclusion of them improves the model fit significantly, but too many would make the

model difficult to interpret physically. MOF often generated a model that contains many

of these complicated terms. Perhaps for the dataset that was available for this project,

the MOF process deemed the model terms as more efficient in explaining the measured

forces and moments than terms of a lower degree and simpler nature.

The model structure returned by MOF changes depending on the order in which the

independent variables are supplied. For example, if the input vector was [α, β, δa], α

would have a higher chance of appearing in the final model structure than δa. In addi-

tion, the model structures returned by MOF also did not have good predictive capabilities

since time-history comparisons to flight test did not show good fits for the moment and

force coefficients, especially on data that were not used in the identification.

MOF was initially used for the regressor selection of this project, but due to the above

reasons it was later used only to generate candidate regressors, which are to be selected

through a different process. Note this is in no way suggesting that Multivariate Orthog-

onal Functions do not work in general. It is suspected that the method did not work well

due to the nature of the flight test maneuvers. MOF requires the data to have a clear

excitation of states so that it can efficiently capture the dependencies in as few terms as

possible using mathematical metrics discussed in Chapter 2. These metrics most likely

do not work as well when the data is highly correlated and when there is low excitation

[30].

The adopted method for determining the model structure is somewhat of a manual one.

First, a list of candidate regressors are generated. These can be from MOF, the public

literature, the qualified flight model, or from engineering judgement based on physical

insight. For example, δsα̇ was included in the candidate regressor pool since α̇ affects the

flow re-attachment and the spoilers’ effectiveness depend on the flow condition on the
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wing. This term was later found to be well-identified and improved the model fidelity

compared to flight data.

The next step is to plot the model error against all the candidate regressors for each

α bin, and observe direct correlations between the regressand and the regressor. An

example plot is shown in Figure 3.6 for the model rolling moment error at an angle of

attack near stall. There is a clear relationship between aileron δa and the Cl model error

near stall, which is expected for an aerodynamic database that only covers up to α of

10◦. If a line were to fit through the Cl model error vs δa plot, the slope would be posi-

tive, meaning positive aileron generates positive rolling moment. When the ∆ correction

model is added to the qualified model, this translates to a lowered aileron effectiveness

at that angle of attack. The figure is for data points that span a small range of α, and

the Cl error vs. α graph shows that within that small range of α, Cl can be treated as

not dependent on α. The band of data points in the graph span the α range of the bin,

but the Cl error is more or less random. All regressors with a visually identifiable trend

to model error should be included in the model structure. For the particular figure in

discussion, other regressors that have a obvious relationship are the spoilers δs, β, and r̂.

Once candidate regressors are formed, the selection process an iterative one. A pre-

liminary model structure for the Delta (∆) model is identified with partitioned data as

discussed in Section 3.3.2. As mentioned before, the parameter estimation process is

independent for each bin. Therefore, if a parameter is well identified, its estimated value

should be similar for bins that are close in α with each other. Large fluctuations in value

among adjacent bins suggest that the parameter estimation process struggled to find a

strong correlation between the regressor and the measured aerodyanmic coefficients. It is

caused by the condition shown in Figure 3.5 where if a line were to be fitted to the Cl error

of the qualified model vs β plot, the confidence in the fit would be low. The fluctuations

come from a poor fit of a linear line to data that do not suggest any relationship, and the

slope of the fitted line is highly sensitive to noise could therefore fluctuate wildly amongst

adjacent bins which have a similar condition but with slightly different measurements due

to noise. Therefore, this qualitative metric of parameter variance among adjacent bins is

used to select or reject candidate regressors in the preliminary model structure. Only the

parameters that were well-identified were kept in the structure. After that, the identified

∆-model is combined with the qualified model which forms the extended model. The

extended model’s output of aerodynamic coefficients is compared to measured flight data

in a time-history plot. The plots are deemed satisfactory if the extended model captures
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Figure 3.6: Error vs. Regressor Plot
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the general trend of the changes of the force and moment coefficients during the flight. If

not, then the search for a regressor with better predictive capabilities continues. A more

detailed discussion of the comparisons are in Chapter 4.

3.3.5 Blending

At low angles of attack, the qualified aerodynamic model would be used in the training

simulator and that would ensure that it is still QTG qualified. At higher angles of attack,

the aerodynamic model would be the extended model, which is what the above process

generates.

Although it is expected that the stall model corrections to be small at low angles of

attack, large corrections could still be erroneously identified due to low excitation of

states. Nevertheless the correction is non-zero. To ensure a smooth transition from the

qualified model to the extended model, a blending region defined by angle of attack is im-

plemented. This is done to avoid discontinuities in forces and moments triggered by the

switching between the extended model and qualified model. A linear blending procedure

triggered by angle of attack similar to Liu’s work on extending the aerodynamic model

of a Boeing 747 is used [27], so the model output transitions from the qualified model to

the extended model according to Equation (3.12). Ci,extended is the final extended model,

Ci,qualified is the original qualified model, and ∆Ci is the ∆-model.

Ci,extended =



















Ci,qualified if α ≤ αl

Ci,qualified +
α−αl

αu−αl
∆Ci if αl < α ≤ αu

Ci,qualified +∆Ci if α > αu

(3.12)

3.4 Cl Model

Following the methodology described above, the steps that were used to arrive at the

model is

1. Group the flight data based on flap setting, the following steps are to be done for

each flap setting.

2. Select bin ranges for alpha partitioning such that each bin will have roughly 10

times the data points as there are parameters to identify in the model.
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3. Within the group of data with the same flap condition, partition all the data into

their respective α bins.

4. Postulate a model structure based on the error vs. regressor list, adding splines if

a non-linearity is observed in the error vs regressor plots.

5. For each bin, estimate the parameters in the model using equation error, and store

the parameter values in a vector. Figure 3.4 show the identified parameters in blue

for different α bins.

6. Observe the variance of the identified values of parameters compared to that of

adjacent α bins. Since each parameter estimation step for the bins are independent,

similar values of parameters identified for similar angle of attack conditions strongly

suggest that the parameters were well-identified. The values of parameters should

change smoothly as a function of angle of attack and not fluctuate wildly, as it

is unlikely the aerodynamic forces and moments fluctuate wildly as a function of

α. If some of the parameter values seem to vary wildly as α changes, then repeat

step 4 to pick parameters that better capture the underlying physical dependency.

Judging by this qualitative metric, ∆Cl0 in Figure 3.4 is better identified at the α

as compared to the middle range of the plotted α axis.

7. Once all the bins have been well-identified, a smoothing spline is fit to the param-

eters vs. α so that they have a smooth transition as the angle of attack changes.

For example, the contribution to rolling moment due to aileron Cl,δa is Clδa
δa, but

it would be discontinuous at the boundaries of the α bins since Clδa
at 12◦ α is

different from Clδa
at 12.2◦ α. By fitting a smoothing spline to each of the param-

eters, the spline function could then be used to interpolate any α and will ensure

a smooth transition of the forces and moments; Clδa
δa becomes Clδa

(α)δa, where

Clδa
(α) is the spline function. The splines are computed using MATLAB’s csaps.m

function, which aims to minimize the following cost function shown in Equation

(3.13)[9],

J = p

n
∑

j=1

|yj − f(αj)|2 + (1− p)
∫

|d
2f

dt2
|2dt (3.13)

where yj is the parameter value at the jth alpha, p is a parameter that specifies how

much smoothing is applied, and f is the smoothing spline. When p = 1, the selected

spline would go through every yj exactly, as that would give the lowest cost since

the 2nd term is zero. However, when 0 < p < 1, the integral of the 2nd derivative

of the spline function is non-zero and punishes high curvatures. This achieves the



Chapter 3. Stall Flight Model 38

smoothing effect, since an optimization process would return a spline f that would

follow yj values but not as aggressively. The smoothing factor p is chosen to be 0.4

for most of the parameters based on visual inspection of the effects and removing

local fluctuations in value. Figure 3.4 shows the smoothing splines in red through

the parameters for each regressor.

8. Inspect time history match of the coefficient to flight test data. Example time-

history fits are shown in Chapter 4. In addition, inspect the extended aerodynamic

database for common effects that occur during stall, such as reduced roll damping

and whether such effects are reasonable. More discussion on this topic is in Chapter

4. If either of the two have behavior that is not reasonable based on the literature

stall behavior, then consider starting from from step 4 again.

The model structure selected for the Cl model is shown in equation (3.14).

∆Cl = ∆Cl0 +∆Clββ +∆Clp p̂+∆Clr r̂

+∆Clδa
[(δa − 2◦)+ + (δa + 2)−] + ∆Clδr

δr +∆ClCT
CT

+∆ClCT,diff
CT,diff +∆Clδs

δs +∆Cl
β̇
β̇ +∆Clα̇δs

α̇δs

(3.14)

(δa − 2◦)+ =







δa − 2◦, if δa − 2◦ > 0

0, otherwise
(3.15)

(δa + 2◦)− =







δa + 2◦, if δa + 2◦ < 0

0, otherwise
(3.16)

By examining qualified model error vs regressor plots, the terms that had good predictive

capability were added to the model. The extended model has relatively few terms yet it is

able to closely match the measured Cl from flight data. The only cross-term used is α̇δs,

which is found to have a clear relationship to the Cl error through error vs regressor plots.

The difference in thrust coefficient CT,diff between the left and the right engines are

defined such that a positive value would tend to produce a positive yawing moment Cn.

Expressed mathematically,

CT,diff = CT,left − CT,right (3.17)

δs = δs,right + δs,left (3.18)
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Figure 3.7: Estimated ∆Cl parameters for flaps 0
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Figure 3.8: Estimated ∆Cl parameters for flaps 10
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The parameters in Equation (3.14) are estimated separately in each α partition and

each bin would have different values for the parameters. By fitting a spline through the

parameters as discussed previously, Equation (3.19) becomes the final ∆Cl stall model.

The parameters are cubic splines as a function of α. The parameter values are computed

by the splines at the given the angle of attack; they are then multiplied by their respective

regressors and summed. That value is then added to the qualified model to become the

extended model.

∆Cl = ∆Cl0(α) + ∆Clβ(α)β +∆Clp(α)p̂+∆Clr(α)r̂

+∆Clδa
(α)[(δa − 2◦)+ + (δa + 2◦)−] + ∆Clδr

(α)δr +∆ClCT
(α)CT

+∆ClCT,diff
(α)CT,diff +∆Clδs

(α)δs +∆Cl
β̇
(α)β̇ +∆Clα̇δs

(α)αδs

(3.19)

The final implementation of the stall model is in the form of MATLAB Simulink lookup

tables for easy visualization and integration. Several models could be easily tested and

swapped by loading a different data file that contains the values for the lookup table.

This is useful for running experiments in the future where pilots are asked to fly multiple

versions of the model. The extended model being developed is for an angle of attack of

up to 10◦ past stall, as discussed in Chapter 1. Although few, there are data points up

to 14◦ past stall. However, the amount of bins in the extreme α region is small and is

therefore hard to judge whether the parameters are reasonably identified by observing

adjacent bins. Since the confidence in parameters at high α is not particularly high and

the requirement of the project does not call for the modeling of that region, the extended

model’s lookup tables are clipped at 10◦ α past stall. If any time during flight simulation

the α is beyond what the lookup tables have data for, it will refer to the values at 10◦ α

past stall.

3.4.1 Spoiler Effect

The flight test data files have four separate channels for spoilers; they are: left inboard,

left outboard, right inboard, and right outboard spoilers. However, the inboard and

outboard spoiler deflections on the same side were always identical. For the turboprop

aircraft, the spoilers are deployed based on a schedule that is linked with the pilot’s aileron

input. They are deployed even if the ailerons are only deflected by a small amount. In

addition, only one side of the spoilers would be deployed at any given time. This is

expected as it is documented in the reports that Bombardier Aerospace have provided

with the qualified model. Based on the above, only a single term is used in the model to

capture the effects produced by the spoilers. This would also reduce model complexity
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for a better posed parameter estimation problem.

Adding spoilers as a regressor to the stall model improved the time history fits to the

flight test data significantly. Note that the spoiler effect is one sided spoilers used to aid

roll control (so-called spoilerons) and not flight spoilers that are deployed equally on both

wings. As mentioned previously, the qualified model’s aerodynamic database covered up

to approximately 12◦ α for the lateral coefficients. It is reasonable to see large changes to

the effectiveness of the spoilers as the aircraft approaches stall where separation of flow

occurs from the trailing edge of the wing. The spoilers that span a large portion near

the trailing edge of the wing would be rendered less effective since flow is disrupted there

and subsequent deployment of the spoilers to disrupt it further would see little effect.

3.4.2 δa Splines

It was found that a simple δa regressor in the model structure returned parameters that

were very scattered among the adjacent bins, suggesting that the aileron effect was not

well identified. In addition, the identified parameter values suggest aileron effectiveness

is lost at the very low angles of attack, which suggest estimation errors. It was strongly

believed that this was an erroneous result since the qualified model disagreed with the

finding and it was in a region where the qualified model had valid wind tunnel data

for. The solution was to not estimate the aileron effectiveness term when it is near 0◦

deflection. Gusts of wind during flight testing will cause the aircraft to roll slightly to

either side, causing fluctuations in Cl. The pilots would try to maintain wings-level and

apply an aileron input. If the pilots are extremely efficient and quick in maintaining

Cl to be trimmed (zero) at all times, then it would appear that the ailerons are not

very effective in generating Cl. This is the problem of low excitation of states that was

discussed previously, shown in Figure 3.5, where the estimation of a parameter associated

with δa is difficult due to the data points being clustered around 0 where no excitation

occurs. The data shown in Figure 3.5 is typical of α bins of lower angles of attack, where

the aircraft is approaching stall in a very controlled manner. The signal to noise ratio

for determining the relationship between Cl and δa is low in these low α ranges. The

noise, which are the small changes in Cl caused by winds, are more or less constant over

a duration of time. Therefore the data points in which aileron deflections are relatively

larger, the signal to noise ratio would increase. Instead of using δa directly as a regressor,

splines of δa are used to avoid using aileron data smaller than 2◦ as a regressor. This

is done mathematically shown in Equation (3.15). This is equivalent to ignoring data
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Figure 3.9: Cl and δa vs. t graph for observing un-commanded roll-off example 1

points of δa within the band of [−2◦, 2◦] in Figure 3.5.

3.4.3 Stochastic Roll-off

Since the stall maneuvers are done in a quasi-steady manner leading up to stall, none of

the recorded lateral aircraft states are changing rapidly in that region. In many flights,

there is a sudden Cl spike that is not correlated with any of the states that are still

relatively unchanged. It is shortly after this sudden change that aileron inputs were used

to generate a roll moment that is opposite to this initial spike. Based to the large inputs

the pilots had to put in shortly after the initial spike, it is believed that the spike is a

random roll-off that was not predicted by the pilot. Further investigation showed that

this initial roll-off happened consistently at the same range of angle of attack. Figure

3.9 shows the measured Cl and aileron input plotted against time for a given flight. The

aileron channel is scaled down to match the magnitudes of the rolling moment coefficient.

Shortly before the maximum achieved angle of attack, there is a large negative Cl excur-

sion from zero. A sharp negative aileron input followed, which tends to create positive

moment to oppose the roll-off. Another interesting observation is that the initial roll-off

seems to subside quickly, sometimes even before the pilot took action. It can be seen in

Figure 3.9 that the Cl line, shown in blue, is returning to zero before the aileron input

by the pilot. However, the stick pusher was activated for this flight and prevented the
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Figure 3.10: Cl and δa vs. t graph for observing un-commanded roll-off example 2

aircraft from achieving a higher α. The activation α was only slightly higher than the

roll-off α in this flight, so it is not clear if the roll-off subsided due to other dynamics of

the aircraft during pusher activation.

Figure 3.10 is a flight from a non-pusher case so that the pitch down motion at stalls

does not happen until much later. The spike of the roll-off is marked by the red line

in the figure. The initial counter-acting aileron input by the pilots failed to change the

Cl in a significant way even when the ailerons are almost at its maximum deflection. It

is believed that the roll-off subsided shortly, which caused the Cl to return to zero and

subsequently to negative values in response to positive aileron inputs.

Figure 3.11 is another non-pusher flight that illustrates the roll-off occurs consistently

at roughly the same α, which is significantly lower than the α achieved in a non-pusher

stall maneuver. A positive aileron input creates negative rolling moment, therefore the

aileron input after the roll off (depicted by the red line) is in response to the unexpected

rolling moment. However, it seems the roll-off magnitude peaked and was returning to

zero just when the pilot started to react.

Based on the above observations, there seems to be identifiable roll-off which starts

consistently at roughly the same α. Although it is not conclusive for how long of a
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Figure 3.11: Cl and δa vs. t graph for observing un-commanded roll-off example 3

duration the roll-off is sustained, flight test data seems to suggest it is relatively short.

Nevertheless, useful information regarding the magnitude, direction, and onset α could

still be gathered. The following procedure was followed in sifting through the flight data

to obtain some statistics to characterize the random roll-off:

1. Look for a sudden uncommanded spike in rolling moment Cl when the aileron input

was relatively constant up to that time

2. Verify that the spike in Cl was not caused by any other sudden change in the states

3. Record the angle of attack at which it happens

4. Record the peak magnitude and direction of the uncommanded spike in Cl

Table 3.2 shows the results of the procedure, which was done for straight stalls only

because the roll-off characteristics may change due to the other type of stalls maneuvers.

Yet, the other types of stall did not have enough flights to perform the same analysis on

each flap condition. It was found that the α at which roll-off occurs (identified using the

method above) is often before the max α achieved in the flights and are consistent in

value; however, the initial roll-off is roughly always at the same α. Note that this method

only identifies the initial roll-off as the aircraft approaches stall in a quasi-steady manner.

There seems to be additional roll-off experienced by the aircraft at even higher angles of
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Table 3.2: Roll-off statistics for straight stalls

Flaps Mean α Cl Magnitude Direction
0 17.09◦ 0.01030 8 Right 6 Left
5 17.81◦ 0.01587 9 Right 6 Left
10 17.75◦ 0.01760 10 Right 7 Left
15 18.04◦ 0.02315 11 Right 10 Left
35 17.60◦ 0.02566 10 Right 6 Left

attack and certainly during recovery when flow re-attaches to the left and right wings at

different times as angle of attack decreases. However, the roll-off in those conditions is

hard to identify since the states and control surfaces are changing rapidly, and it is close

to impossible to separate deterministic and stochastic effects on Cl.

Considering that the roll-off happens sharply and ends quickly in most of the flight

maneuvers that are available, it should not significantly bias the parameters estimation

results. Equation error in principle is a least-squares approach; With the roll-off affecting

a small portion of the data-points and being stochastic in nature, it is akin to being mea-

surement noise, which equation error can handle with ease. This is especially true when

many flight maneuvers are used for estimation, each having different roll-off magnitude

and direction. Generally speaking, the roll-off would be very similar to noise, however it

is larger in magnitude and does not fluctuate wildly.

Methods for observing rolloff other than examining time-history plots have been sug-

gested in the public literature. The Boeing Company and the NASA Langley Research

Center have jointly developed a set of metrics for defining loss of control. These metrics,

called Quantitative Loss-of-Control Criteria (QLC), offer insight to accident investiga-

tors as to why loss of control occurred in a graphical and quantitative sense [39]. The

Dynamic Roll Control (DRC) metric maps roll axis control against dynamic roll attitude

φ′, which represents the sum of the current roll angle with its expected change after one

second:

φ′ = φ+ φ̇ (3.20)

Therefore, an aircraft that is at a large roll angle but rolling back towards wings level

would get a lowered value of φ′ for recovering properly, whereas another aircraft that

is banked less aggressively but rolling quickly that further increases bank would have a

rather large φ′.
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Figure 3.12: Dynamic Roll Control Envelope φ′

Figure 3.12 plots the aileron input against dynamic roll φ′ for all 198 flights that are

in the dataset. The DRC envelope, depicted as a the black boundary in the figure,

reflects whether the trend in roll attitude is consistent with the roll control inputs or

whether the inputs are opposing the roll motion. The aircraft is considered to be in a

loss-of-control situation if it exceeds the boundary. Figure 3.12 confirms that there is

a clear roll-off at the beginning of flights when the pilot was not expecting a roll-off to

occur, therefore allowing the dynamic roll attitude to reach high values without aileron

input. The sudden spike in φ′ occurs in both directions, suggesting randomness associ-

ated with roll-off. For a typical stall maneuver, φ′ ≈ 0 and %δa ≈ 0 at the beginning;

then a sudden spike in φ′ occurs, showing the roll-off. It is not until the φ′ almost exceeds

the DRC envelope before the pilots applied aileron to correct for the roll. Since positive

aileron input generates negative rolling moment, quadrants I and III in the figure rep-

resents proper recovery actions. Lateral pilot-induced-oscillations (PIO) would appear

in quadrants II and IV, where inappropriate control input augments the roll excursion.

Note that the pilots hit the maximum physical limit of the ailerons very often, suggesting

that they did not have enough roll control authority. The figure also shows the pilots
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Figure 3.13: Maximum roll angle achieved during straight stalls

applied correct aileron inputs to oppose the roll-off in the flight tests. However, this

observation is only accurate if the aileron control effectiveness is not reversed, which is

the assumption of the DRC metric.

Figure 3.13 show the maximum roll angle achieved in all the Straight Stalls, which started

with wings level flight. According to the FAA Federal Aviation Regulations Part 25, air-

craft must demonstrate the following stall characteristics for airworthiness: ”For level

wing stalls, the roll occurring between the stall and the completion of the recovery may

not exceed approximately 20 degrees” [14]. Most of the flights managed to keep roll angle

during stall below 20◦. The flights that exceeded 20◦ were all non-pusher flights in which

the aircraft reached significantly higher α than the pusher flights, where often the pilot

applied max aileron input for a sustained period of time. This demonstrates that either

he/she did not have enough control authority to arrest the roll, or that the application

of ailerons worsened the situation. It is difficult to conclude from the flight test data.
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Implementation

A Simulink block with the above statistics is implemented for generating the roll-off ex-

perienced at stall. Through observation of flight tests, although there is variability in

terms of the angle of attack in which roll-off starts, once started the roll-off seems to

end within 1◦ angle of attack. The pilots often has already taken measures to correct

for the spike in rolling moment by the time that happens, but the abrupt end of the

roll-off causes the pilots to over compensate slightly. A Gaussian function centered at

the respective mean α of each flap condition serve as the general shape of the roll-off.

The magnitude of the Gaussian functions are set to the mean roll-off magnitude observed

in each flap condition. The Gaussian’s standard deviation is set to 0.5, to roughly ac-

count for roll-off that happens within a 1 degree window while having a smooth ramp up.

Figure 3.14 shows the implementation of the Gaussian functions in the lookup table

block. Some of the observed statistics associated with the randomness is listed below:

• α standard deviation: 1.31 ◦

• Magnitude variance: 22.5% of mean magnitudes for each flap condition

• Direction statistics: 58% Right, 42% Left

For variability in the magnitude of the rolloff, a random number generator (RNG) with

the observed statistics is used to generate a factor that scales the output of the lookup

table. A RNG that outputs -1 42% of the time and +1 58% of the time is used for the

creating the randomness in direction as it flips the signs of the output roll-off coefficient.

For variability of the α when roll-off occurs, a zero-mean random number is added to

the true α which is then used to sample the lookup table, effectively changing where the
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Gaussian shape functions are centered at. A random factor and direction, as well as a α

offset is generated every time the simulation passes through 15◦α from below.

3.5 Cn Model

Following the same procedure and methodology used to develop the Cl model, the final-

ized Cn model structure is:

∆Cn = ∆Cn0
+∆Cnβ

β +∆Cnp
p̂+∆Cnr

r̂

+∆Cnδa
[(δa − 2◦)+ + (δa + 2)−] + ∆Cnδr

δr +∆CnCT
CT

+∆CnCT,diff
CT,diff +∆Cnδs

δs

(3.21)

During the initial stages of model development, only the straight stalls were used

in the identification process. The parameters for the correction yawing moment due

to differential thrust CT,diff was poorly identified since it was more or less zero at all

times. The parameters were very scattered when compared to the values of adjacent bins.

Once data for the asymmetric power stalls were added to the data pool, the parameter

estimates improved and clearly showed a trend as a function of angle of attack. This is

shown in Figures 3.15 and 3.16, with the flaps 10 parameters showing that the qualified

model requires a bigger Cn modification due to thrust effects. This is the general trend

observed as the flaps continue to extend. Other parameters that exhibit a well-identified

trend include ∆Cn0
, ∆Cnβ

, ∆Cnp
, ∆Cnr

, and ∆Cnδs
. It is difficult to interpret the results

of the ∆ model without knowing the qualified model. Effects of the extended model are

shown in Chapter 4, which adds the ∆ models to the qualified model so that physical

interpretations could be made.

3.6 CY Model

∆CY = ∆CY0
+∆CYβ

β +∆CYp
p̂+∆CYr

r̂

+∆CYδa
[(δa − 2◦)+ + (δa + 2)−] + ∆CYδr

δr +∆CYCT
CT

+∆CYδs
δs +∆CYα̇β

α̇β +∆CY
β̇
β̇ +∆CY

α̇β̇
α̇β̇ +∆CY

β̇δs
βδs

(3.22)

The estimated ∆CY parameters for flaps 0 and flaps 10 are shown in Figure 3.17

and 3.18 respectively. There is a slight negative offset at low angles of attack for both

flap conditions. The state that CY depend on the most is β; its parameter show that

as α increases, the sideforce generated by β should be adjusted to be slightly lower in
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Figure 3.15: Estimated ∆Cn parameters for flaps 0
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Figure 3.16: Estimated ∆Cn parameters for flaps 10
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the qualified model. Both flap conditions show well-identified CT parameters with low

variance among adjacent bins. The propeller slipstream interactions with the fuselage

and vertical tail may have contributed to the relationship between thrust and sideforce.

The rudder parameters are mostly positive even up to stall, which means the qualified

model is over-estimating the sideforce caused by rudder and the ∆ model would reduce

it.
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Figure 3.17: Estimated ∆CY parameters for flaps 0
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Figure 3.18: Estimated ∆CY parameters for flaps 10



Chapter 4

Results and Validation

Although the identified parameters with low variability among adjacent bins suggest that

they were well identified and that data had good information content, it is difficult to

apply engineering judgement and intuition to the correction terms as they only form part

of the total model. Without knowing how the qualified model behaves, it is difficult to

make sense of the delta (∆) model. For example, if the original model is already very

good in its predictive capabilities near stall, then the delta (∆) model will have small

corrections. However, if the original model is poor in the stall regime, then relatively

large corrections would be added by the ∆ stall model, even though the final extended

model of these two hypothetical cases may be exactly the same. Therefore, the behav-

ior of the extended model must be examined to apply engineering judgment based on

knowledge in the field of aircraft dynamics to identify erroneous effects in the model or to

support the findings from parameter estimation. Several validation methods have been

chosen for this project. The first method is a time history match of the force and moment

coefficients to measured data from flight test stall maneuvers. The second method is to

examine some effects that are significant in determining the lateral handling characteris-

tics of an aircraft, such as the the effect of p, r, β, δa, δr on the forces and moments as

a function of α. This would allow the comparison of the extended model’s behavior to

the expected behavior of an aircraft near stall, such as having reduced roll stability and

loss of effectiveness in the controls. As a final validation of the model, the lateral model

is integrated with the longitudinal stall model into a 6-DOF simulation. Elevator input

time histories from flight tests are fed into the simulation to observe whether it behaves

qualitatively the same as the flight tests. In addition, it is also a check for non-sensible

behavior that may be hard to spot while purely examining forces and moments, such as

one that would cause the simulator to integrate a state until it blows up. It should be

noted that due to the chaotic behavior at stall, such a comparison may not offer insight

56
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on the accuracy of the model, but it should tell whether the ∆ model’s parameters are

of the proper magnitude and not generating completely senseless values.

4.1 Time History Matches to Flight Test Data

The states of the aircraft are fed into the extended lateral aerodynamic model, which

outputs the force and moment coefficients. The coefficients are plotted against time and

are compared to the qualified model and flight test measured values. Based on how well

the matches are, the model may be rejected and further developments must be made.

Since this project is interested in the development of a representative stall model, it is

more important that the model behaves qualitatively correct rather than it predicting

the magnitudes of the forces and moment coefficients accurately. Needless to say, it is

desirable to satisfy both conditions. Generally, we consider the model to be satisfactory

if the direction of forces and moments match the measured data and the magnitudes of

the peak values are not significantly off. However, it is hard to establish a metric which

would characterize this. A coefficient of determination R2 value for example would not

capture this and would also weigh constant offsets in the pre-stall region too high. For

most lateral coefficients, if the model outputs are offset slightly from the actual measured

data, then all it amounts to is a different trim value on some of the control surfaces in

the simulation. It would not take away fidelity of the core functionality of simulator,

which is to train pilots in the post-stall regime and allow them to feel the response of the

aircraft to changes in input.

4.1.1 Cl time history matches

Figure 4.1 shows a time history match that is relatively poor for the Cl coefficient.

Although the extended model did not completely match the flight test data, especially

in the recovery region during stall, it was still a major improvement over the qualified

model, in which it erroneously predicted large rolling moment oscillations. Upon closer

inspection it was found that these spikes in the qualified model are from pilot aileron

inputs. The pilots must have used a lot of wheel input in the actual flight since they felt

that the controls were not very responsive and larger inputs have to be applied. How-

ever, the qualified model does not capture such effects very well and therefore translated

that large aileron input into large rolling moments. Note that there is also a relatively
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Figure 4.1: Cl time history match: relatively poor fit (pusher active)

significant offset in Cl in the quasi-steady conditions as the aircraft approaches stall. The

initial spike in Cl of the flight test is due to roll-off, shown in blue. Both the qualified

model and the extended models fail to capture that since all the independent variables

up leading up to that point is quasi-steady. The stochastic rolling moment term is not

enabled in the extended model for time history comparisons because these comparisons

are for checking fits of the deterministic part of the model. It is also a good visual con-

firmation that there is roll-off by not including the stochastic model.

Figure 4.2 is an example of a good fit to the data. This particular flight test was not

used for the identification of the model and it demonstrates the predictive capability

of the model. Roll-off was not observed in this flight as there are no sudden spikes.

The extended model’s fit to the flight data is excellent. It is a huge improvement over

the qualified model. The major contributions in the ∆ model were associated with the

ailerons and the roll rate. Several times during recovery the pilot hit the maximum limit

for ailerons, which demonstrates how hard he had to fight the roll instability of the air-

craft at stall and the loss of control authority in upset conditions.
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Figure 4.2: Cl time history match: relatively good fit

Figure 4.3 shows a typical pusher flight, which is matched quite well but not as sat-

isfactory as the non-pusher flights such as Figure 4.2. In general, the really good fits

are from stall maneuvers that did not have the stick pusher active. This is most likely

due to the larger pitch down motion that follows from a high α stall, which can only

be achieved without the pusher. The large pitch rate reduces the angle of attack much

faster in the recovery portion of the flight, which as mentioned previously is where most

of the modeling errors occur. There is less sustained time in the recovery region where

flow re-attachment occurs to the main wings could be the reason why non-pusher flight

data is better predicted by the extended model.

4.1.2 Cn time history matches

In general, the yawing moment extended model had the best results among the three

lateral coefficients in terms of matching flight test data. Corrections that were needed

to obtain a good fit are mainly associated with β and δr, r̂ and CT effects. Figure 4.4

shows a relatively poor time history match of the extended model. The parts in which

discrepancies occur are always in the recovery region when the aircraft is pitching down

quickly as it loses lift, so large negative α̇ and pitch rates occur. There is probably
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Figure 4.3: Cl time history match: typical fit (pusher active)

some complicated coupling between the longitudinal and lateral aerodynamics that are

not captured well by the extended model. Although there are regressors or splines that

could be included in the model structure in theory to capture such effects, identifying

them is a different issue in which significant difficulties would be encountered due to data

limitations mentioned in Chapter 3.

Figure 4.5 shows a relatively good fit of the extended model to the measured Cn. It

can be observed that the qualified model produced significantly larger Cn values than

was actually measured. This is due to the rather aggressive rudder inputs during the stall

in an attempt to keep the aircraft laterally pointed forward. The aircraft loses directional

stability at stall due to tail blanking and tends to yaw. However the correction input

through the rudder is not effective due to blanking and hence leads to large rudder inputs

by the pilots. The qualified model does not capture this tail blanking effect and over

estimates the yawing moment generated by the rudder at high angles of attack, causing

the large discrepancy. The extended model was able to correct for it and predicted the

yawing moment with excellent accuracy.
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Figure 4.6: Cn time history match: typical fit (pusher active)

Figure 4.6 shows a typical fit from flights that have pusher active. Unlike Cl time history

predictions, how well the Cn extended model fits the data does not depend on whether

stick pusher was activated.

4.1.3 CY time history matches

Shown in Figure 4.7 is a relatively bad fit of the CY . The axes values are not shown due to

data proprietary reasons, but the scale is small for this flight case. It is small enough such

that the noise from the accelerometer reading shows up as fluctuations in the flight test

measured CY . The absolute value of the error is therefore not big but visually large in the

figure. Once again, the major correction in the CY model is a constant offset. Even with-

out the stall model, the qualified model itself was able to capture the trend of the forces.

The model structure for CY is the hardest one out of the three coefficients to explain

physically, with complicated nonlinear cross terms. However, those terms improved the

time history fits to the data significantly. Shown in Figure 4.8 is a flight maneuver in

which the extended model was able to predict well. Note that the qualified model’s fit is

somewhat satisfactory except for a visible offset; some of the nonlinearities of the aero-
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Figure 4.7: CY time history match: relative bad fit

dynamics have already been captured by the qualified model. This makes a point for the

advantage of the ∆ model approach to develop stall models; it allows for a simple model

structure to predict the only slightly nonlinear corrections needed.

4.2 Effects of the Updated Aerodynamic Database

After extending the qualified model with the stall delta model, it is of interest to examine

the final aerodynamic database and qualitatively evaluate some of the most important

effects in aircraft handling. This would serve as support that the delta model was iden-

tified correctly and was able to capture some of the lateral effects that are common near

stall conditions. The following section discusses the roll stability Clβ , aileron effectiveness

Clδa
, roll damping Clp , yaw stability Cnβ

, rudder effectiveness Cnδa
, and the sideforce due

to sideslip CYβ
.

4.2.1 Clβ
Lateral Stability

In Figure 4.9, it is shown that lateral stability is significantly reduced as angle of attack

increases. In general, wing effective dihedral, wing sweep, and the vertical tail are the
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main contributors to lateral static stability Clβ . The T-tailed turboprop aircraft that is

being modeled does not have sweep but has dihedral on a portion of the wing and it is

a high wing so it has an effective dihedral. When an aircraft is in sideslip and a positive

α, the wing heading into the wind with dihedral will experience a higher angle of attack

from the increase in vertical velocity component v [12]. For example, if Γ is the dihedral

angle, then the velocity normal to the wing is Vnormal = w cos Γ + v sin Γ. This increases

the lift of the wing heading into the wind and cause a restoring rolling moment.

A stable Clβ is also provided by the flow interactions around the fuselage and the wing

for a high-wing aircraft such as the one being modeled. As the airflow goes around the

fuselage during a sideslip, the angle of attack of the high wing on the sideslip side is

increased slightly and decreased slightly on the other side. This generates a restoring

rolling moment.

Even in the absence of dihedral and sweep, a lifting wing has a Clβ proportional to

CL. The vortex wake of a lifting wing is generated at the wingtips due to the pressure

difference between the upper and lower surfaces of the wing. If the aircraft is sideslipping

to the right with a positive β for example, the induced downwash caused by the vortex

is stronger at the left wing then the right simply due to geometry that the left wing is

now downstream relative to the right wing and is more susceptible to the wake. The

local angle of attack of the left wing is lower than the right, and a negative Clβ results.

This effect depends linearly on the vortex wake, which is proportional to the lift [12].

Therefore, when the aircraft stalls, the stable Clβ provided by this effect would diminish

at high angles of attack.

Figure 4.9 shows the rolling moment experienced by the aircraft at various sideslip angles

for two flap conditions: flaps 0 and flaps 10. The graphs on the left hand column are

from the aerodynamic database of the qualified model, and the right hand side graphs

are from the extended model. The qualified model shows a trend of decreasing Clβ as

α increases in the pre-stall region. Although it contradicts with some of the expected

behavior discussed, it is believed that Clβ for this airccraft is mainly provided by the

vertical tail; when it is positioned into the wake of the wing as angle of attack increases,

its ability to provide lateral stability also diminishes. The condition improves when α is

high enough that the vertical tail is free from the wake again. This is the trend observed

for the extended model. For the flaps 0 configuration, it decreases until it is almost zero.

Both flap configurations show that lateral stability is restored at the extreme angles of
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Figure 4.9: Cl,β Roll Stability before and after stall extension

attack.

4.2.2 Clδa
Aileron effectiveness

Figure 4.10 shows that the qualified model’s aerodynamic database has minimal loss in

aileron effectiveness up to the maximum range of α it had data for. Extrapolation into

the higher angles of attack maintained the aileron’s effectiveness. As seen in the figure,

both flaps 0 and flaps 10 conditions have the aileron effectiveness decrease significantly

near stall. Flaps 10’s aileron even exhibit relatively severe control reversal at extreme α.

For the aileron deflections of 5◦ and −5◦, they are sufficiently close to the spline points of

2◦ and −2◦ as per the ∆Cl model structure that the corrections are not as big compared

to the larger aileron deflections.
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The ailerons are positioned at the trailing edge of the wing near the tip. The aileron’s

ability to create extra lift or dump lift is lost when there is flow separation in that area,

thus losing the aiblity to roll the aircraft. When the aircraft is stalled it could also cause

roll control reversal: as one side of the ailerons deflect downwards in attempt to generate

more lift, the local angle of attack increases and wing stalls further, causing a loss of lift

instead. The aileron on the other side of the airplane should be deflecting up in attempt

to dump lift, but due to the wing already being stalled around that area it is not very

effective. If the loss in lift from the side that was stalled further is greater, then control

is reversed. The plane rolls in the opposite direction the pilot commanded it to. This is

shown in Figure 4.10.

At high angles of attack, the qualified model has almost full roll control, therefore not

punishing pilots for not following the correct stall recovery procedures. The proper pro-

cedure is to lower the angle of attack first, and then correct for roll. The unstable and

unexpected behaviors associated with high-angle-of-attack flight makes lowering α the

foremost action in stall recovery. With the extended model showing decreasing aileron

effectiveness near stall and even reversing in the post-stall region, it would be difficult

and sometimes unproductive to correct for roll before un-stalling the aircraft first. Pilots

who do so in the simulation would probably be shown that it is a relatively futile effort.

4.2.3 Clp
Roll Damping

Roll damping becomes unstable past stall in a similar manner to how the ailerons become

reversed as shown in Figure 4.11. As the aircraft rolls from wings-level flight, the wing

that drops will experience an increase in angle of attack. This would stall the wing if it

is nearly stalled and would stall it further if it is already so, hence decreasing lift on the

wing and would tend to roll the aircraft further in that direction. Cl,p > 0 depicts that

condition, where a positive roll rate p (rolling to the right) would cause a positive (right)

rolling moment, further increasing the roll rate.

Coupled with the loss in aileron effectiveness, and sometimes even reversal, the plane

is roll unstable at high angles of attack with the inability to arrest the roll. Although

the pilot may still be able to maintain roll attitude at high α in calm conditions, any

slight disturbance that imparts a roll rate p to the aircraft, such as a stochastic roll-off

or wind gust, would be extremely difficult to stop until the angle of attack is decreased.
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Figure 4.10: Clδa
Aileron effectiveness before and after stall extension
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Figure 4.11: Clp Roll damping before and after stall extension
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Shown later in the chapter, integration with the longitudinal stall model shows that the

plane near stall cannot maintain lift as it banks, and would pitch down subsequently,

decreasing the angle of attack.

4.2.4 Cnβ
Yaw Stability

When an airplane is at an angle of sideslip β relative to its flight path, the yawing moment

produced should be such as to tend to restore it to symmetric flight. With the convention

of β being positive for flow approaching from the right of the airplane, Cnβ
> 0 would

provide that stability. Figure 4.12 shows the yawing moment experienced by the aircraft

at various sideslip angles for flaps 0 and flaps 10.

Cnβ
is mainly provided by the vertical tail of the aircraft [12]. It can be seen that

yaw stability reduces significantly near stall, and for the flap 0 case it even reaches 0.

As α gets progressively higher past stall, the aircraft becomes yaw stable again. Using

engineering judgment, it is hypothesized this is due to the vertical tail becoming unblan-

keted from the wake of the stalled wing. Dynamic pressure restores over the vertical tail

and hence it generates larger forces leading to the stable Cnβ
. This would also agree with

Clβ , where it becomes more roll stable past stall as the tail becomes unblanketed.

4.2.5 Cnδr
Rudder Effectiveness

Figure 4.13 show that the rudder generates significantly less yawing moment at high α.

The reason is twofold; the first is due to the vertical tail being positioned in the turbulent

wake of the stalled wing, therefore losing dynamic pressure. The second reason is that

the rudder becomes blanketed by the fuselage at higher angles of attack. These two

combined effects would make the rudder progressively less effective in generating yaw.

4.3 Integration into full 6-DOF Simulator

The extended aerodynamic model is integrated with the qualified model into a 6-DOF

simulator. The longitudinal stall aerodynamic model is co-developed with the lateral

stall model and is included as well. For validation of the aerodynamic model, input time

history of the elevator from a flight test is fed into the simulation along with the initial

conditions of the flight test. The purpose is to verify if the aircraft behaves qualitatively

similar to the flight test from an integration of states point of view, and not just com-

paring the forces and moments at a specific point in time. Aileron and rudder input is
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Figure 4.12: Cnβ
before and after stall extension
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Rudder effectiveness before and after stall extension
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Figure 4.14: Flight test states for validation case 1

zero for the simulation. Figure 4.14 shows the true airspeed V , angle of attack α, sideslip

β, pitch θ, and roll φ against time of a non-pusher flight. Figure 4.15 is the simulation

of that same flight, with the initial conditions set the same as the actual flight data.

The measured elevator input is fed into the model to pilot the simulation into a stall

and achieve similar angles of attack as the flight test. It can be seen that the simulation

qualitatively behaves very similar to the flight test. The aircraft continually slows down

over a duration of time, increasing pitch and angle of attack at the same time. The roll

is maintained even though there is no aileron input in the simulation, which is expected

because the aircraft does not have any sudden changes in rolling moment in the low

angle of attack region and it has roll stability. As α continues to increase, roll-off appears

in the flight test quite a bit earlier than the maximum angle of attack. The pilots use

aileron and rudder to try to maintain roll attitude, as the plane continues to increase

α, stalls and pitches downward significantly. The rudder input by the pilot caused some

additional sideslip during the recovery part of the flight. The simulation also started the

flight very similarly, decreasing airspeed while increasing α and θ. Roll-off also happens

quite a bit earlier than the maximum angle of attack; however, due to low roll-damping

at high α and no control input to arrest the roll-off, the aircraft continues to roll until

Clp becomes more stable again at even higher α. This flight was done with flaps 0, and

that effect can be seen in Figure 4.12(b).
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Figure 4.15: Simulation states for validation case 2

Figure 4.16 is another flight case that was selected for comparison with the simulation.

Figure 4.17 shows the simulation of the same flight, again with elevator input history fed

into the model so the simulation goes into a stall. Again, all the qualitative behaviors

are very similar. However, the simulation rolled significantly due to the lack of lateral

control input. It finally stopped rolling on its own after the angle of attack lowered after

the pitch down, and that the large negative β induced by the left roll caused restoring

moment. Overall, the behavior of the lateral stall model is satisfactory. The simula-

tion remained stable throughout and none of the states blew up. It definitely rolls off

near stall, and once started, requires significant input from the pilot to keep the roll

angle small. According to the FAA Federal Aviation Regulations Part 25, aircraft must

demonstrate the following stall characteristics for airworthiness: ”For level wing stalls,

the roll occurring between the stall and the completion of the recovery may not exceed

approximately 20 degrees” [14]. The simulation suggest that the aircraft would not meet

this requirement unless the pilot takes proper action to limit the bank angle. For the

simulation shown here, the best course of action once a stall is encountered would be to

reduce the angle of attack by applying nose down moment to prevent α from climbing.

Once it is un-stalled quickly through proper action, then apply ailerons to control the

rolling of the aircraft with the now regained effectiveness associated with low angles of

attack. This recovery procedure is one of the training outcomes that the new proposed
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rule from the FAA tries to achieve, hence the extended model may be adequate for type-

representative stall training as of now. However, that is to be investigated further as

experiments are conducted with airline pilots.



Chapter 5

Conclusion and Future Work

5.1 Summary of Work

Loss-of-control resulting from airplane upset is a leading cause of worldwide commercial

aircraft accidents [26]. On November 5th 2013, the United States Federal Aviation Ad-

ministration issued final rule changes to 14 CFR Part 121 regarding the training of pilots

in extended envelopes [15] in an effort to reduce Loss-of-control related accidents. The

changes demanded that pilots ”receive ground training and flight training in recogniz-

ing and avoiding stalls, recovering from stalls, and recognizing and avoiding upset of an

aircraft, as well as the proper techniques to recover from upset.” The industry has to

comply to this rule by 2020.

Ground-based flight simulators need to have an aerodynamic model that captures the

complicated dynamics at stall in order to provide meaningful training to pilots. However,

the flight models in most training simulators are unlikely to be adequate for this purpose

and their aerodynamic database must be updated to cover the stall regime.

A method for generating representative stall models adequate for training purposes from

certification flight test data is proposed in this thesis. The novelty of the method is that

it could be applied with only certification flight test data and a qualified pre-stall model.

These prerequisites are easily met for most aircraft in service today since the resources

could be obtained from the aircraft manufacturer. The method was applied to extend

the lateral aerodynamic database of a Bombardier Aerospace turboprop commuter air-

craft to cover the high angle of attack regime, using 198 recorded stall maneuvers for

the development. Note that the work documented in this report was done with some

non-certification data, which improved the final models.

77
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Time-history comparisons of force and moment coefficients of the model to that of mea-

sured values from flight test show satisfactory matches. Close matches were observed even

for flight data that was set aside for validation and was not included in the development

process. Some of the important effects related to lateral aerodynamics were inspected

closely after the model correction. Significant corrections were applied to these effects

compared to the qualified model at high angles of attack, including reduced aileron effec-

tiveness, reduced rudder effectiveness, reduced and unstable roll damping, and reduced

yaw stability. Roll-off at stall was observed and also added to the model. The corrected

aerodynamic database is integrated with the qualified model with the full set of 6-DOF

nonlinear equations of motion. Measured elevator states from flight tests were fed into

the model to pilot it into a stall. The simulation behaved qualitatively similar to the

flight tests and was significantly less stable at stall compared to the qualified model. The

rolloff model implementation also meant that significant aileron input is needed to keep

the aircraft wings-level at stall.

5.2 Future Work

There are several aspects of the current research that are worth pursuing in future stud-

ies. First, the current stall modeling efforts uses data that are assumed to be free of

significant sensor bias and systematic errors. These sources of error in the data would

affect the accuracy of the parameters being estimated for the stall model. Using data

that is corrected by flight path reconstruction to repeat the modeling procedure is one

area that should be explored. The process removes systematic errors due to sensor bias

and errors so that in theory a higher fidelity stall model could be developed. In ad-

dition, some non-linearities in the states are not included in the current model due to

not having data information for capturing such effects. For example, at high angles of

attack, it was found that the aircraft is roll unstable at low roll rates; however, as p̂

becomes excessively large in either direction, it should impart a stabilizing Cl on the

aircraft instead of a destabilizing one. A wind-tunnel study by Brandon, Foster, and

Shah showed this phenomenon [5]. Unfortunately, wind-tunnel data of such effects for a

high-wing turboprop configuration is not available and therefore not included. As part

of a similar effort for the FAA, Birhle Applied Research is conducting wind-tunnel tests

of a turboprop configuration aircraft at their Large-Amplitude-Multi-Purpose (LAMP)

Wind Tunnel [21]. The fidelity of the lateral stall model could be improved further by

using extra sources of data for model development.
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The objective of this project is to develop a method for generating type-representative

stall models, which are supposed to be adequate for upset recovery training for aircraft of

one geometry type. This particular project developed a model for a high-wing T-tailed

commuter turboprop. Although validation efforts have shown the model to be adequate,

the human aspect of upset recovery training has not been validated. Experiments involv-

ing experienced pilots testing the model should be conducted to conclude whether the

model behaves like the real aircraft and whether it is adequate for training. Such experi-

ments have been planned and UTIAS is currently in the process of contacting prospective

pilots to participate in the study.
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[10] Bureau dEnquêtes et dAnalyses et al. Final report on the accident on 1st june 2009

to the airbus a330-203 registered f-gzcp operated by air france flight af 447 rio de

janeiro–paris. Paris: BEA, 2012.

[11] Bernard Etkin. Dynamics of atmospheric flight. Courier Corporation, 2012.

[12] Bernard Etkin and Lloyd Duff Reid. Dynamics of flight: stability and control, vol-

ume 3. Wiley New York, 1996.

[13] Bernard J Eulrich and Norman C Weingarten. Identification and correlation of the

f-4e stall/post-stall aerodynamic stability and control characteristics from existing

test data. Technical report, DTIC Document, 1973.

[14] FAA FAR. 14 cfr part 25 section 203. Stall Characteristics, Airworthiness standards:

Transport category airplanes, 1995.

[15] Federal Register Federal Aviation Administration. Qualification, service, and use of

crewmembers and aircraft dispatchers; final rule, 14 cfr part 121. 78(218).

[16] John V Foster, Kevin Cunningham, Charles M Fremaux, Gautam H Shah, Eric C

Stewart, Robert A Rivers, James E Wilborn, and William Gato. Dynamics modeling

and simulation of large transport airplanes in upset conditions. AIAA Paper, 5933,

2005.

[17] David Gingras, John N Ralston, Ryan Oltman, Chris Wilkening, Robert Watts, and

P Desrochers. Flight simulator augmentation for stall and upset training. In AIAA

Modeling and Simulation Technologies Conference, page 1003, 2014.

[18] Jared A Grauer and Eugene A Morelli. Generic global aerodynamic model for

aircraft. Journal of Aircraft, 52(1):13–20, 2014.

[19] W Earl Hall and Narendra K Gupta. System identification for nonlinear aerodynamic

flight regimes. Journal of Spacecraft and Rockets, 14(2):73–80, 1977.

[20] WE Hall Jr, NK Gupta, and RG Smith. Identification of aircraft stability and control

coefficients for the high angle-of-attack regime. Technical report, DTIC Document,

1974.

[21] Bihrle Applied Research Inc. Corporate research facility: Large-amplitude-multi-

purpose (lamp) wind tunnel. http://www.bihrle.com/company/lamp.dna, 2016.

[Online; accessed 15-September-2016].

http://www.bihrle.com/company/lamp.dna


Bibliography 82

[22] Bombardier Aerospace Jay Loftus, Personal Information, December 2014.

[23] Vladislav Klein and James G Batterson. Determination of airplane model structure

from flight data using splines and stepwise regression. 1983.

[24] Vladislav Klein, James G Batterson, and Patrick C Murphy. Determination of

airplane model structure from flight data by using modified stepwise regression.

1981.

[25] Vladislav Klein and Eugene A Morelli. Aircraft system identification: theory and

practice. American Institute of Aeronautics and Astronautics Reston, Va, USA,

2006.

[26] AA Lambregts, Gregg Nesemeier, JE Wilborn, and RL Newman. Airplane upsets:

Old problem, new issues. In AIAA Modeling and Simulation Technologies Conference

and Exhibit, page 6867, 2008.

[27] Stacey Fangfei Liu. Ground-Based Simulation of Airplane Upset Using an Enhanced

Flight Model. PhD thesis, University of Toronto, 2011.

[28] Richard E Maine and Kenneth W Iliff. Formulation and implementation of a practi-

cal algorithm for parameter estimation with process and measurement noise. SIAM

journal on applied mathematics, 41(3):558–579, 1981.

[29] Richard E Maine and Kenneth W Iliff. Application of parameter estimation to

aircraft stability and control: The output-error approach. 1986.

[30] Eugene A Morelli. Global nonlinear aerodynamic modeling using multivariate or-

thogonal functions. Journal of Aircraft, 32(2):270–277, 1995.

[31] Eugene A Morelli. System identification programs for aircraft (sidpac). In AIAA

Atmospheric Flight Mechanics Conference, 2002.

[32] Eugene A Morelli. Efficient global aerodynamic modeling from flight data. In 50th

AIAA Aerospace Sciences Meeting, pages 2012–1050, 2012.

[33] Eugene A Morelli and Vladislav Klein. Optimal input design for aircraft parameter

estimation using dynamic programming principles. 1990.

[34] WF Phillips, EA Anderson, and QJ Kelly. Predicting the contribution of running

propellers to aircraft stability derivatives. Journal of aircraft, 40(6):1107–1114, 2003.



Bibliography 83

[35] Jeffery A Schroeder, Judith Bürki-Cohen, David A Shikany, David R Gingras, and

Paul Desrochers. An evaluation of several stall models for commercial transport

training. In AIAA Modeling and Simulation Technologies Conference, page 1002,

2014.

[36] Muthuthamby Sri-Jayantha and Robert F Stengel. Determination of nonlinear aero-

dynamic coefficients using the estimation-before-modeling method. Journal of Air-

craft, 25(9):796–804, 1988.

[37] Harold L Stalford and S Ramachandran. Application of the estimation-before-

modeling (ebm) system identification method to the high angle of attack/sideslip

flight of the t-2c jet trainer aircraft. volume 2. simulation study using t-2c wind

tunnel model data. Technical report, DTIC Document, 1978.

[38] Transport Canada. Qualification Test Guide, 2nd edition, December 2001.

[39] James E Wilborn and John V Foster. Defining commercial transport loss-of-control:

A quantitative approach. In AIAA atmospheric flight mechanics conference and

exhibit, page 4811, 2004.


	Introduction
	Background
	Scope and Organization

	Literature Review
	Aircraft Behavior at Stall
	Aerodynamic Model Structure Determination for Stall
	Parameter Estimation
	Equation Error
	Output Error
	Filter Error Method and related methods
	Frequency Domain Parameter Estimation

	Flight Path Reconstruction

	Stall Flight Model
	Introduction
	Simulator and Aerodynamic Modeling

	Resources
	Flight Test Data
	Qualified Model
	SIDPAC

	Methodology
	Data Partitioning
	Delta () Model
	Difficulties
	Model Structure Determination
	Blending

	Cl Model
	Spoiler Effect
	a Splines
	Stochastic Roll-off

	Cn Model
	CY Model

	Results and Validation
	Time History Matches to Flight Test Data
	Cl time history matches
	Cn time history matches
	CY time history matches

	Effects of the Updated Aerodynamic Database
	Cl Lateral Stability
	Cla Aileron effectiveness
	Clp Roll Damping
	Cn Yaw Stability
	Cnr Rudder Effectiveness

	Integration into full 6-DOF Simulator

	Conclusion and Future Work
	Summary of Work
	Future Work

	Bibliography

