
Lateral Regionalization and Diffusion of a Maturation-dependent 

Antigen in the Ram Sperm Plasma Membrane 

David  E. Wolf ,*  S t ephan i e  S. Hagop ian ,*  R i c h a r d  G.  Lewis,* J o s e f  K. Voglmayr ,*  a n d  

G r a n t  Fairbanks* 

*Endocrine Reproductive and *Cell Biology Groups, Worcester Foundation for Experimental Biology, Shrewsbury, 
Massachusetts 01545. Dr. Voglmayr's present address is Division of Reproductive Biology, Florida Institute of Technology, 
Melbourne, Florida 32901. 

A b s t r a c t .  We have used a monoclonal antibody 

ESA 152 in fluorescence recovery after photobleaching 

(FPR) studies of  a maturation-dependent surface anti- 

gen of  ram sperm. The antibody is an immunoglobu- 

lin G secreted by a hybridoma derived from NS 1 

mouse myeloma cells. The ESA 152 antigen is not de- 

tectable in testicular sperm. It is localized on the sur- 

face of  ejaculated sperm where it is present on all 

regions of  the surface, but tends to be concentrated on 

the posterior region of  the head. The ESA 152 antigen 

can be extracted by detergents or chloroform-metha- 

nol. The extracted antigen is sensitive to proteases and 

migrates with an apparent Mr ~ 30,000 in SDS-con- 

raining 10-20% polyacrylamide gradient gels. FPR 

measurements of  ESA152 lateral mobility in the 

membrane yield diffusion coefficients in the range 

10 -9-10 -8 cm2/s, values typical of  lipids but observed 

for proteins only at the fluid dynamic limit where 

diffusion is controlled by lipid fluidity. Immobile frac- 

tions, typical of  membrane proteins, are observed on 

all regions. When the antigen is stained by a fluores- 

ceinated Fab fragment of  the ESA 152 antibody, the 

diffusibility is highly regionalized, with particularly 

low, but rapid, recovery on the midpiece. Cross-link- 

ing of  the antigen with the intact ESA152 antibody 

induces a redistribution in'wfiich~the antigen is ex- 

cluded from the posterior head region. This cross- 

linking is accompanied by increases in ESA152 diffu- 

sibility on both the anterior head and the midpiece. 

S 
INCE the experiments of Frye and Edidin (16), which 
demonstrated the ability of surface antigens to intermix 
upon heterokaryon fusion, it has been clear that cell 

plasma membrane components are generally free to diffuse 
within the plane of the membrane. The development of 
fluorescence recovery after photobleaching (FPR) ~ has ena- 
bled us to quantitate diffusion of membrane proteins and 
lipids in a number of cell systems (for reviews see references 
8, 11, and 35). Diffusion is a random process (12). Yet, during 
processes of cellular differentiation, such as sperm maturation 
and capacitation (4), preimplantation embryogenesis (22, 52, 
55, 58), erythropoiesis (37), epithelial tight junction formation 
(29, 43), and myotube development (2), cells overcome the 
randomizing effect of diffusion and regionalize the distribu- 
tion of certain membrane components. The ubiquity of sur- 
face regionalizations during cellular differentiation suggests a 
close relationship between these two phenomena, and dem- 
onstrates the need to understand how cells restrain the free 
diffusion of their surface components if one hopes to under- 
stand the processes of differentiation. 

Some of the most dramatic examples of surface component 
regionalization and its relationship to cellular differentiation 

1. Abbreviations used in this paper.- D, diffusion; FPR, fluorescence recovery 
alter photobleaehing; %R, percent recovery. 

are exhibited by mammalian sperm. Sperm localize a number 
of surface components: antigens (13, 20, 23, 25, 30, 38, 39, 
45, 46), enzymes (for review see reference 23), lectin receptors 
(23, 30, 32, 33), charged lipids (4, 15), and cholesterol (4, 15) 
to specific surface regions. Some of these patterns of region- 
alization are transformed during the differentiative processes 
of epididymal maturation (19, 32) in the male tract and 
capacitation (4, 34) in the female tract. These processes result 
in the functional differentiations that lead to the acquisition 
of motility, the acrosome reaction, and fertilization compe- 
tence. 

Recent FPR studies have begun to investigate the nature of 
the restraints to random mixing by diffusion of surface com- 
ponents in mammalian sperm (31, 53, 59). Myles et al. (31) 
have shown that a membrane protein antigen that is localized 
to the posterior region of the guinea pig sperm tail is com- 
pletely free to diffuse within this region and diffuses at or near 
its fluid dynamic limit. Such a result is consistent with the 
presence of a barrier to interregional diffusion or with lateral 
segregation of antigen due to its insolubility in regions other 
than the posterior region of the tail. Wolf and Voglmayr (59) 
have measured the regionalization and diffusion of an exog- 
enously added fluorescent lipid analogue on testicular and 
ejaculated ram spermatozoa. While this analogue stained all 
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regions of the sperm, both its distribution and diffusion were 

re#onalized. At least some of the analogue was free to ex- 

change between regions, and both distribution and diffusion 

changed with epididymal maturation. These experiments 

demonstrate that the sperm plasma membrane cannot be 
treated as having a sin#e bulk membrane fluidity, but rather 
is laterally segregated into large scale interactive domains. 

In the present paper, we consider the distribution and 

diffusion of a maturation-dependent membrane antigen on 
ram sperm. This antigen, which is a protein or glycoprotein 

with an Mr - 30,000, has been probed using a monoclonal 
antibody denoted ESAI52. The antigen is not detectable on 
the surface of immature testicular sperm. It is present on all 
regions of the surface of ejaculated sperm, but tends to con- 

centrate on the posterior region of the head. 
The unusual distribution of ESA152 over the entire sperm 

surface provides us with the opportunity to extend the work 
of Wolf and Vo#mayr (59) to a membrane protein, and to 
compare results with those of Myles et al. (31) for PT- 1, which 
is highly restricted in its distribution. Like PT-I, ESA152 
shows lipid-like diffusion coefficients on all regions. Unlike 
PT-I, significant immobile fractions are observed on all re- 
gions. Both diffusion coefficient and mobile fraction vary 

significantly over the surface. Exposure to bivalent antibody 
induces a redistribution of the antigen which excludes it from 
the posterior region of the head. This redistribution is associ- 
ated with striking and distinct shifts in the diffusibilities of 

the antigen on the midpiece and head. 

Materials and Methods 

Sperm 

Sperm were collected as described below from Shropshire rams aged 4--6 yr. 

These animals were maintained in a controlled environment (I 2 li of light/day 

at 15°C). Ejaculated spermatozoa and seminal plasma were obtained by elec- 

trical stimulation using the bipolar electrode described by Blackshaw (6). To 

avoid temperature shock, semen was collected and stored in a receptacle 
maintained at 34"C. Tesficular sperm and rete testis fluid were collected through 

a catheter inserted into the rete testis as described by Voglmayr et ai. (49). The 
free end of the catheter was placed into a receptacle attaelied to the anterior 

surface of the scrotum. 
Immediately after collection, sperm were washed three times in pbosphate- 

buffered saline (PBS) pH 7.4 that contained 5 mM glucose (PBS) by eentrif- 
ugation at 500 g=~ for 10 rain. Spermatozoa can be maintained under these 

conditions at 34"C for - 3  h without significant diminution ofglycolytie activity 

(41). 

Production of Hybridoma ESA152 

Immunization. Ejaculated spermatozoa were washed three times in Kxebs- 

Ringer-phosphate buffer and resuspended in 20 vol of the same buffer. The 

suspension was mixed with an equal volume of Freund's complete adjuvant, 
and a portion of the emulsion that contained - 5  x 107 spermatozoa was 
injected subcutaneously into a male BALB/c mouse (Charles River Breeding 

Laboratories, Inc., Wilmington, MA). A similar subcutaneous injection was 
given 2 wk later. 2 mo after the initial immunization, the mouse was given an 
intraperitoneal booster injection that consisted of ~2 x 107 spermatozoa in the 

adjuvant. 
Fusion. NSI mouse rayeloma cells (P3-NSI/IAg4-1 [241, obtained from Dr. 

George S. Bloom, University of Texas, Dallas) were cultured in RPMI 1640 
medium (Gibco, Grand Island, NY) supplemented with 20% fetal bovine 

serum (HyClone Laboratories, Hogan, LIT) and 0.25% glucose, 1 mM sodium 
pyruvate, 1% 100X non-essentiai amino acids, and 100 ug/ml gentamicin 
(complete culture medium) (see references 17 and 61). Spleen cells prepared 
from the hyperiramunized mouse 5 d after the final booster injection were 

mixed with NSI ceUs at a spleen cell/myeloma cell ratio of 4:1. The ceils were 
pelleted and induced to fuse by addition of 42% (wt/voi) polyethylene glycol 
3350 (Cat. No. U221, lot 238504, J. T. Baker Co., Sanford, ME) in 15% (vol/ 
vol) dimethyl sulfoxide (spectrophotometric grade). 

Selection and Screening. The fusion products were dispensed to 2.0-cm 2 

wells of duster plates to which mouse peritoneal maerophages had been allowed 

to attach during an overnight preincubation (14). Hybridomas were selected as 

the survivors of growth for 9 d in HAT medium (complete culture medium 

that contained 0.136 mg/mi hypoxanthine, 0.19/=g/mi aminopterin, and 3.8 
/ag/ml thymidine). The hybridoma cells were then propagated in HT medium 

(complete culture medium with hypoxanthine and thymidine). Culture super- 

hates were screened by ELISA and indirect immunofluorescence for the pres- 
ence of antibodies against dried ram spermatozoa i m m o b ~  in fiat-bottom 

96-well microtiter plates or on multi-well printed microscope slides (Carlson 

Scientific Inc., Peotone, IL). In the ELISA, sperm-associated hybridoma anti- 
body was detected with a secondary antibody that consisted of beta-galactosid- 

ase conjngated to F(ab'h fragments of sheep anti-mouse IgG (light and heavy 
chain specific, BRL Hybridoma Screening Kit, Cat. No. 9502SA, Bethesda 
Research Laboratories, Bethesda, MD). In immunofluorescence screening, the 

secondary antibody was rhodamine-conjugated IgG fraction of rabbit anti- 

mouse IgG (heavy and light chain specific, Cat. No. 22114)082, Cappel Labo- 
ratories, Cochranville, PA). The slides were mounted using Elvanol (18) and 

examined for fluorescence under ep'tillumination using dry 40x objective. 

Cloning. One culture that tested positive with ejaculated sperm and negative 

with testicular sperm was cloned by Limiting dilution (42). The clone designated 

ESA152 was recloned (42) in 0.25% Noble agar. 
Antibody Characterization. Commercial immunoglobulin typing kits (Boeh- 

ringer Mannheim Diagnostics, Inc., Houston, TX [Cat. No. 100 036] and 

Hyclone Laboratories [Cat. No. 55030Kl) were used. The ESAt52 antibody 
yielded negative results in all tests for the lgM heavy chain. Strong positives in 

other tests established that it is an IgG of the GI subclass. The kappa light 
chain is present. 

Production of ESA152 Ascites Fluid. Pristane-primed BALB/c mice (57) 

were given intraperitoneal injections of -10  7 ESA152 hybridoma cells in PBS. 
Ascites tumors appeared after 5 d. Fluid was withdrawn aRer 10 d and daily 

for up to 8 d thereafter until all mice died. The fluid was clarified by centrif- 

ugation and gored frozen. 

Fab Fragments 

The ascites fluid was first tested for its ability to react with protein A by indirect 

immunofluorescent staining of ejaculated ram sperm using fluorescein-conju- 
gated protein A (Vector Laboratories, Inc., Burlingame, CA). The ascites fluid 
was then dialyzed against PBS and absorbed to a protein A Sepharose CL-4B 

column. The IgG fraction was eluted with 0.1 M acetic acid. This fraction was 

dialyzed against PBS and concentrated to -0.5 mg/ml by soLid dialysis against 
polyvinyipyrrolidone. Monovalent F.b fragments were produced by digestion 

in 0.01 M cysteine, 0.002 M EDTA, and 1 nag papain/100 nag protein for 7 h 

at 37"C with occasional agitation. This digestion mixture was dialyzed at 4"C 
for 4 h against 500 ml deionized water and for 4 h against each of three 500 

ml changes of PBS. The solution was passed through the protein A column to 
remove F, fragments, and the nonabsorbcd fractions were concentrated by dry 

dialysis to 1.3 ml which was estimated to contain -0.2 nag by its absorbance at  

280 nm. To prepare fluorescein-conjugated F~, the solution was diluted with 
260 t~l of 200 mM carbonate buffer and the pH was adjusted to 9.5. 100 td of 

a 1 mg/ml solution of fluorescein isothiocyanate in PBS was then added and 
the mixture was stirred in the dark for 4 h at room temperature. The sample 

was dialyzed extensively against PBS. 

A similar procedure was used to conjugate a F.b fragment of a goat anti- 
mouse IgG (Cappel Laboratories) with lissamine rhodamine sulfonyl chloride 
(Molecular Probes, Eugene, OR). 

Labeling of Sperm for FPR Measurements 

Washed sperm were diluted to 4 × 107 cells/ml in PBS with 0.5% BSA and 

0.1% NAN,. 100 td of sperm were incubated with either 400 t~l of ESAi52 or 
with 10 ~1 of the fluorescein-F~ fragment for 15 rain at room temperature, The 
suspension was overlayed on PBS with 0.1% NaN3 and 5% BSA (for the intact 
ESAI52) or 10% BSA (for the fluorescein F,~ fragment). This was centrifuged 

at 480 g.m for 10 rain at room temperature and the pellet resnspended in PBS 
with 0.1% NaN~ and 0.5% BSA. To samples labeled with ESA152, 10 ~1 of the 
rhodamine F,b fragment of goat anti-mouse IgG was added, and the solution 

incubated at room temperature for 15 rain. This suspension was overlayed on 
PBS with 0.1% NaN3 and 10% BSA and centrifuged and resuspended as before. 

~20 ~! of sperm were then placed between an acid-washed sLide and coverslip 
for viewing and/or FPR measurements. 

Labeling of Sperm for Photomicroscopy 

Printed microscope slides with 6-ram wells were treated twice with MICRO 
Laboratory Cleaner (International Products Corp., Trenton, NJ) at 90"C and 
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rinsed with deionized water. They were dried in an oven and stored in a 

dessicator over activated charcoal. 5 #1 of a suspension of poly-D-lysine (0.01 

mg/ml) were added to each well and allowed to dry. Slides were washed with 

water followed by PBS. Sperm were pelleted and diluted 50-fold in PBS. 20 #1 
of sperm were placed in each well and allowed to adsorb for 5-15 min  at 4"C. 
Slides were rinsed with cold PBS; each well was aspirated and 20 #1 of ESA 152 

was immediately added to it. After incubation for 45 rain at 4"C, 20 ul of a 

l:10 dilution of second antibody, either rhodamine-labeled rabbit anti-mouse 
IgG (Cappel Laboratories) or the rhodamine-labeled F.b fragment of goat anti- 

mouse, was added and incubation was continued for 45 rain at 4"C. The slide 
was then washed with PBS. The final wash was done with PBS that contained 

25 ~g/ml gentamicin. Excess PBS was shaken offand a 22 x 50-mm coverslip 
applied. Excess buffer was aspirated away and the edges sealed with mineral 

oil. 

Photomicroscopy 

Photomicroscopy was done on an Olympus BHS phase contrast fluorescence 

microscope with an Olympus Photomicroscopy System using a Zeiss 63 x 1.4 
numerical aperture Apochromat objective and standard rhodamine filters. 

Photomicrographs were made on Kodak Tri-X and developed in D76. 

FPR Measurements 

The technique of FPR has been described in detail elsewhere (1, 27, 51). FPR 

provides two measures of lateral diffusion in the plane of the membrane: (a) 
the fraction of the component that is free to diffuse (%R), and (b) the diffusion 

coefficient (D) of that fraction. Our instrument is similar to published designs 

(27, 51) and its particulars have been described elsewhere (58, 59). The beam 
exp (-2) radius was determined (40) to be (0.9 _+ 0.2) urn. For rhodamine 

bleaching times were ~5 ms at -10  mW and monitoring intensities were ~l  

#W. For fluorescein bleaching, times were -20  ms at 0.2 mW and monitoring 
intensities were ~0.02 #W (fluorescein). Rhodamine was excited at 514.5 nm 
and fluorescein at 488 nm. The counting interval was 30 ms. Data were fitted 

by nonlinear least squares programs after Bevington (5), according to algorithms 

described by Bailsas and Leuther (3) and Wolf and Edidin (51). Data were 

corrected for sperm geometry. The one- and two-dimensional solutions appro- 
pilate to the tail and head, respectively, can be found in the literature (1, 26). 

A solution appropriate for the midpiece was developed using standard proce- 

dures and assuming a Gaussian beam and diffusion on a cylinder. Identical 
results are obtained when either a spot or a line is used for bleaching. Details 

of this solution will be published elsewhere (Wolf, D. E., manuscript in 

preparation). 

Partial Characterization o f  the ESA 152 A ntigen 

ESAI52 monoclonal antibodies were used with indirect immunofluorescence, 

ELISA, and dot blot assays of extracts to examine ejaculated and testicular 
spermatozoa for the presence of the corresponding antigen. All assays demon- 

strated the presence of the ESA 152 antigen on mature spermatozoa and none 

yielded evidence of antigen in immature spermatozoa. In immunofluorescence 
studies ring staining of intact spermatozoa was seen (Fig. 1). When unfixed 

sperm were damaged on the slide, they often lost cell-associated fluorescence 

and released fluorescent debris. Spermatozoa extracted with 0.9% Triton X- 
100 were negative in immunofluorescence, and the presence of the antigen in 

Nonidet P-40 and SDS extracts was readily demonstrated by dot blot assays. 
These observations define ESA152 as a maturation-dependent surface antigen 

(Fairbanks, G., R. G. Lewis, and J. K. Voglmayr, manuscript in preparation). 

The ESA152 antigen is robust, in that it survives in SDS and chloroform- 
methanol extracts and its immunofluorescence is not attenuated by aldehyde 

fixation. However, pretreatment of spermatozoa for 15 rain at 36"C with 
trypsin, chymotrypsin, or pronase (0.05 mg/ml) did not remove surface antigen 

demonstrable by immunofluorescence; attempts to immunoprecipitate an 1"I- 
labeled protein from Nonidet P-40 extracts of radioiodinated spermatozoa have 

so far yielded negative results. Although it is very efficiently extracted by 

chloroform-methanol, the antigen did not migrate in thin-layer chromato- 
graphic systems used for glycolipid characterization. After phase separation by 

addition of chloroform and water to chloroform-methanol extracts in the 

Figure 1. Fluorescence photomicrographs  showing ESA 152 staining patterns. Specific details o f  staining are given in the text (a). Sperm fixed 

in 5% glutaraldehyde and  then  labeled with intact  ESA 152 ant ibody followed by a rhodamina ted  rabbit a n t i - m o u s e  IgG. Similar staining was 

observed in unfixed cells labeled directly with a fluorescein-labeled F~b fragment of  ESA 152. ESA 152 is seen on all regions o f  the  sperm surface, 

being mos t  intense on the  posterior region o f  the head (b). Unf ixed sperm labeled with intact  ESA152 followed by a rhodamine-labeled Fab 

f ragment  o f  a goat a n t i - m o u s e  IgG. Cross-l inking by first ant ibody results in a redistribution o f  antigen, excluding it f rom the posterior region 

o f  the head (c). Unf ixed  sperm labeled with intact  ESA152 followed by a rhodamine-labeled rabbit a n t i - m o u s e  IgG. In addition to the  

redistribution observed in b, intact  second ant ibody leads to patching o f  the  antigen. The  particular samples in a and  c were plated on poly-I> 

lysine as described, whereas b was labeled as described for FPR  measurements .  Bar, 10 ~,m. 
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method of Bligh and Dyer (7), the antigen was recovered at the interface. When 

the interface material was solubilized in SDS and fractionated electrophoreti- 

cally in 10-20% polyacrylamide gradient gels (28), the antigen was detected by 

immunoblotting (21) at a position that corresponded to apparent Mr ~30,000. 

This zone of reactivity was eliminated by treatment with pronase or proteinase 

K in SDS before electrophoresis. These observations imply that, although the 

ESAI52 antigen has amphipathic properties akin to lipids, it is a protein or 

glycoprotein. Further characterization of this interesting plasma membrane 

antigen is in progress, and these results will be presented separately in greater 

detail. 

Results 

Distribution ofES,4152 on Ram Sperm Surfaces 

Fig. 1 a shows the fluorescence staining pattern of ejaculated 
ram spermatozoa fixed in 5% glutaraldehyde and indirectly 
labeled with bivalent antibody. Fixed sperm were similarly 
stained when intact ESAI52 followed by rhodamine-conju- 
gated F~b fragments of an anti-mouse IgG were used. Unfixed 
sperm also yielded this same pattern when labeled directly 
with fluorescein-conjugated Fab fragments of ESAI52 IgG. 
The labeling is detectable over the entire surface of ejaculated 
sperm, but staining is most intense on the posterior region of 
the head. The staining observed is specific. In the case of 
indirect labeling, staining does not occur when the ESA 152 is 
replaced by normal mouse serum or omitted altogether. In 

Table I. Diffusion of Fluorescein-conjugated Fab Fragments 
of ESA 152 on Ejaculated Ram Spermatozoa 

D x 109 s/cm 2 %R n 

ah 1.31 ... 0;21 50 + 3 34 

ph 1.03 + 0.19 51 _+ 3 28 

m* 6.98 _+ 1.63 28 __. 3 16 

t* 2.57 --+ 0.21 54 _ 3 24 

Values are means -4- standard error of the mean. ah, anterior region of the head; 
ph, posterior region of the head; m, midpiece; t, tail. n, number of measure- 
ments. 

* Results were similar for the midpiece and tails using either spot or line 
bleaching. The particular values reported here are from line bleaching. 

Table 11. Diffusion of Intact ESA152 on Ejaculated Ram 
Spermatozoa 

D x 109 s/cm 2 %R n 

all 4.1 ---0.6 61 ---2 29 

ph NP NP NP 

m 2.0 + 0.2 50 _+ 3 27 

t 2.7 ___ 0.3 66 + 3 29 

Values are means + standard error of the mean. ah, anterior region of the head; 
ph, posterior region oftbe head; m, midpiece; t, tail. NP, not present, n, number 
of measurements. 

Table IlL Student "s t Test Comparisons for ESA152 

the case of the direct labeling, staining with F~b fragment does 
not occur when incubation is done in the presence of excess 

ascites fluid that contains intact ESA 152. 

Fig. 1 b shows the staining pattern of unfixed ejaculated 
sperm labeled indirectly with intact ESA 152 followed by the 

rhodamine-conjugated lab fragment of anti-mouse IgG. Sim- 

ilar staining occurs on sperm fixed after the addition of 
ESA 152. The presence of bivalent ESA152 results in a redis- 
tribution of antigen such that it is much more prominent in 

the equatorial region of the head and excluded from the 
posterior region of the head where staining is otherwise strong- 
est. 

Fig. 1 c shows the staining pattern of unfixed ejaculated 
sperm labeled with intact ESAI52 followed by rhodamine- 
conjugated intact rabbit anti-mouse IgG. Under these con- 

ditions, the distribution of stain is similar to that observed in 
Fig. I b, except that when both antibodies are bivalent there 
is considerable patching of the antigen-antibody complexes. 

Neither the intensity nor the distribution of ESA 152 stain- 
ing was measurably reduced by pretreatment of sperm with 
proteolytic enzymes, as described above. Pre-labeling of sperm 
with a variety of fluorescent lectins--concanavalin A (1 mg/ 
ml), wheat germ agglutinin (0.8 mg/ml), soybean (1 mg/ml), 

Dolichos biflorus(l mg/ml), Ulex europius Agglutin 1 (1 rag/ 
ml), peanut agglutinin (1 mg/ml), Ricinus communis Agglutin 
1 (1 mg/ml) (Vector Laboratories)--also had no effect on 
ESA 152 staining intensity or distribution. 

FPR Measurements 

Tables I and II show the results of FPR measurements of the 
lateral diffusion of ESA152 on the different regions of ejacu- 
lated ram sperm labeled either directly, using the fluorescein- 
conjugated lab fragment of ESA 152, or indirectly, using intact 
antibody followed by rhodamine-conjugated F~ fragments of 
a goat anti-mouse IgG. Table III shows by Student's t test the 

interregional comparisons as well as comparison between 
monovalent and intact ESA152 measurements. Where the 
monovalent label is used ~50% of the antigen is free to diffuse 
on all regions, except for the midpiece where only 28 _.+ 3% 
is free to diffuse. The diffusion rate is the same ~1 × 10 -9 

cm2/s on the two regions of the head, but it is faster on the 
midpiece (~7.0 x 10 -9 cm2/s) and tail (~2.6 x 10 -9 cm2/s) 

(see Table I). Thus, diffusion of ESA152 differs on the mor- 
phologically distinct regions of the sperm surface. Use of 
intact ESAI52 antibody alters the diffusion as well as the 
distribution of the antigen. Most significant are: an increase 
in both the extent (to 61 _.+ 2%) and rate (to - 4  x 10 -9 c m 2 /  

s) of diffusion on the anterior region of the head, and a 
striking increase in the extent of diffusion (to 50 __. 3%) 

D %R 

ah ph m t ah ph m t 

ah <0.0005 NS <0.0005 <0.0005 <0.0005 NS -<0.0005 NS 
ph NP NP -<0.0005 _<0.0005 NP NP _<0.0005 NS 
m <0.0005 NP _<0.005 _<0.0005 <0.005 NP <0.0005 _<0.0005 
t <0.025 NP <0.05 NS NS NP <0.0005 <0.005 

P values above the diagonal test interregional comparisons with the fluorescein F~, direct stain (Table I). P values below the diagonal test interregional comparisons 
with the intact antibody (Table 11). Diagonal values compare the same region with the two staining procedures. NP, not present. NS, not significant (P value _>0.01). 
ah, anterior region of the head; ph, posterior region of the head; m, midpiece; t, tail. 
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coupled with a decrease in the rate (to -2.0 x 10 -9 cm2/s) on 

the midpiece (see Table II). 
Diffusion is completely arrested when sperm are treated 

with 5% glutaraldehyde at pH 7.4 for 1 h on ice before 

labeling. Furthermore, the fluorescein-labeled FabS are not 
measurably competed off by incubation with excess intact 
antibody (ascites fluid) after labeling. These two controls 
demonstrate that the results evaluate lateral diffusion of the 
membrane antigen rather than hopping of the Fab (51) by 
rapid association--dissociation at the surface. 

Discussion 

The observation that ESA 152 is present over the entire surface 
of ejaculated ram sperm, puts us in a position to extend the 
studies of Wolf and Voglmayr (59) to a membrane protein, 
and invites comparison with the work of Myles et al. (31) on 

a highly regionalized guinea pig sperm membrane protein, 
PT- 1. Our diffusion measurements show that, as was the case 
for the lipid analogue, C16di~ (59), ESA152 exhibits different 
diffusibility (both D and %R) between the morphologically 
distinct surface regions. The diffusion rates for ESA152 are 
in the range 1 0 - s - 1 0  -9 c m 2 / s .  Significant nondiffusing frac- 

tions were observed on all surface regions. On other cell types 
(for review see reference 35) membrane proteins show diffu- 
sion rates a l0 -t° cm:/s with significant immobile fractions, 
while lipids show diffusion rates of 1 0 - s - 1 0  -9 c m 2 / s  with 

complete diffusion. Fluid dynamic calculations of membrane 
protein diffusion do not predict immobile fractions and pre- 
dict lipid-like diffusion rates (36, 49, 50). Thus, in most cell 
plasma membranes, membrane protein diffusion is not lipid 

fluidity limited. In some cases, disruption of membrane cell 
contact by blebbing causes membrane proteins to diffuse at 
this limit and to diffuse completely (44, 60). Thus other 
factors, possibly interactions with cyto and/or exoskeletons, 
control membrane protein diffusion. ESAI52 is similar to 
PT-1 in that its diffusion rate is at or near this fluid dynamic 
limit. It is dissimilar in that it exhibits large nondiffusing 
fractions. Further characterization of this antigen and the 

nature of the epitope recognized may enable us to biochemi- 
cally distinguish the diffusible and nondiffusible fractions. 

The redistributions and alterations in diffusibility induced 
by intact ESAI52 are interesting for a number of reasons. 
Redistribution of antigen from the posterior head to the 
anterior head and/or midpiece is reminiscent of ligand-in- 
duced capping (41, 45). Two differences however, must be 
considered. First, this redistribution occurs in the presence of 
azide, while capping, in general, does not. Second, when the 
second antibody is monovalent the fluorescence redistribution 

occurs without first patching. Such is uncommon in capping 
phenomena. A notable exception to this is capping of the 
artificial lipopolysaccharide stearoyl dextran on T lympho- 
cytes (57). One can imagine several mechanisms that would 
lead to such redistribution in the absence of metabolic energy 
and patching, such as: a breakdown of an interregional barrier, 
lateral phase segregations induced by cross-linking of a gly- 
colipid or giycoprotein component, and cytoskeletal rear- 
rangements induced by cross-linking a surface receptor. This 
induced redistribution is probably most significant phenom- 
enologically, in that it demonstrates that a stage-specific sur- 
face component, potentially with a receptor role, can be 
redistributed upon interaction with a ligand. 

It is also interesting to note that unlike previously studied 
capping systems, where capping results in nearly complete 
immobilization of receptor (10, 54, 56), ESA 152 after redis- 
tribution from the posterior head diffuses more rapidly and 

completely on both the anterior region of the head and the 
midpiece. Evidently, in this case, redistribution does not 
require immobilization. 

These studies raise a number of questions about the ESA 152 
antigen, its diffusion, and regionalization which we are cur- 
rently pursuing: (a) Since ESA152 is present on the surface 
of mature spermatozoa, but wholly absent from testicular 

spermatozoa, it is reasonable to ask whether it is secreted by 
the epithelia of the epididymis, and inserted from the luminal 
fluid of the epididymis (9, 47, 48). (b) Does the mechanism 

of its appearance account for its relatively high hydrophobicity 
and lipid-like diffusion rates? (c) Do the diffusible and non- 
diffusible fractions represent structurally distinct populations 

of ESA 152? (d) Are there natural conditions that result in the 
redistribution of ESA152, such as hyperactivation, the acro- 
some reaction, or capacitation? (e) Do arrays of intramem- 
branous particles by virtue of particle proximity induce ani- 

sotropies in diffusion within a region or restrictions to diffu- 
sion between regions? ( f )  Does antibody-induced cross-link- 
ing or redistribution of ESA152 affect physical properties of 

the membrane such as the diffusion of lipid analogues or 
intramembranous particle distribution or physiological prop- 
erties of the sperm such as flagellar wave pattern or acrosomal 
fusion capacity? 

Underlying these questions about ESA 152 distribution and 
diffusion are two questions common to all membranes and 
membrane components: what is the physical basis for im- 
mobilization of a membrane component?; and, what is the 
physical relationship between mobile and immobile fractions? 
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