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INTRODUCTION 

Many modern roof structures consist of a few widely spaced deep beams 
bridged by tongue-and-groove timber decking. Deep beams are inherently effi- 
cient in their use of material but are subject to the possibility of failure by 
lateral buckling. It is clear that the shear stiffness of the attached deck contributes 
to the stability of the beam-and-deck system, but presently available design 
formulas do not contain this effect. A few roof systems have failed by instability 
during erection before the decking was applied; this indicates that present design 
practice does rely upon the decking for stability, although the margin of safety 
in such designs cannot be estimated with precision. 

The problem of assessing the influence of deck stiffness upon system stability 
decomes particularly acute when decks of low shear stiffness are employed. 
For example, 2 in. wood decking employs two nails to attach each board to 
the support beam; there are no interconnections between boards. Shear rigidity 
of 2 in. decking is derived solely from the nail couples used for attachment 
whereas thicker wood decks are spiked together every 30 in. What effect does 
such a deck have upon the stability of the deep beams? The analysis presented 
herein will provide an answer to such questions. 

The effect of lateral restraints upon the stability of deep beams was investigat- 
ed to some extent by Flint (2) who considered the effects of elastic supports 
and an elastic restraint at an intermediate point on the span. Schmidt (6) gave 
a more rigorous treatment of the same problem. The effect of continuous torsion- 
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a1 restraint was analyzed by Taylor and Ojalvo (9). Haussler modeled standing 
seam roofing (3) by treating the tension flange as fixed against lateral displace- 
ment and elastically restrained against rotation. Continuous lateral support pro- 
vided by a roof deck has been the subject of recent experimental work at 
Cornell University (13) by Errera, Pincus, and Fisher. Their theoretical solutions 
are limited to the cases of axial load and constant moment. They include the 
effect of flexural stiffness of the corrugated sheet metal deck. This report ne- 
glects bending of the deck because wood systems are not so rigidly connected 
as to maintain a constant right angle between beam and deck. The effect of 
a continuous lateral support has also been previously studied by the writer 
(10) in a report which contained an unrealistic assumption, i.e., that the deck 
was attached along the centroidal axis of the beam. The present report extends 
those results (10) by permitting the line of deck attachment to be any distance 
from the centroidal axis. Jenkinson and the writer have verified experimentally 
(4) that the present results are realistic. In addition, this paper presents an 
improved variational derivation of the governing differential equations and 
boundary conditions. The chief virtue of this is that it automatically supplies 
the correct boundary conditions for each particular case of load and support, 
obviating the need for the special arguments that had to be adduced in Ref. 
10. 

THEORETICAL ANALYSIS 

Consider a system of deep beams whose top edges are bridged by a deck 
of low in-plane shear rigidity, such as a wood-frame floor or roof with a plank 
deck (Fig. 1). It is assumed that differential displacement of the deck planks 
is elastically restrained so that the deck behaves as a shear diaphragm with 
nonzero stiffness. Minimal attachment between beams and deck is assumed; 
the deck shall transmit only a lateral force to the beams. Furthermore, all beams 
are assumed to be equally loaded. 

If the system should buckle laterally, all beams would deform congruently 
and the deck would displace laterally by an amount, w D , in which w D is a 
function of coordinate x measured along the length of the beams (Fig. 1). The 
in-plane shear strain in the deck is 

dw 
D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . g deck = 

dx 
(1) 

The deck displacement can be expressed in terms of the lateral displacement, 
w, of the centroidal axis of the beam and the angle of twist, b, of the beam 
by matching displacements along the line of deck attachment: 

w 
D = w + c b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2) 

in which c = the distance from the centroidal axis of the beam to the line 
of deck attachment. 

The shear stiffness of the deck tends to stabilize the system because the 
deck must deform in shear during buckling. Attention will be restricted to one 
beam of the system and a strip of deck of width S, in which S is the beam 
spacing (Fig. 1). 
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Derivation of Total Energy.—Equilibrium of the system can be expressed by 
minimizing the total potential energy of the system, U. Each part of the system 
contributes to the total energy: 

U = U D + U 
B 

+ U 
L 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3) 

in which U 
D 

= the strain energy of the deck; U 
B 

= the strain energy of the 
beam; and U L = the potential energy of the external loads. Ordinarily, U is 
measured from the stress-free state as zero datum. In lateral stability problems, 

FIG. 1.—Basic Beam-and-Deck System Used for Analysis in Study 

FIG. 2.—Beam Strain Energy U B Measured from Prebuckled State as Datum 

FIG. 3.—Displacement of Cross Section During Buckling 
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however, it is more convenient to use the deflected state at the instant of 
incipient buckling as the datum and to work with the incremental displacements 
which occur at buckling rather than With the total displacement, The relationship 
of the total and incremental displacements is 

b T = b; vT = v 1 + v ; wT = w . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (4) 

in which unsubscripted v and w = the incremental displacements of the centroidal 
axis in the y and z directions, subscript T denotes total displacement, subscript 
1 denotes displacement at incipient buckling. Of course the only initial displace- 
ment is vertical. 

Strain Engergy of Beam.— The strain energy of the beam, UB, is the work 
done by the internal stresses during the incremental displacements (Fig. 2). 
This can be broken into two parts as suggested by the figure. The part labeled 
UB 2 is calculated as if the incremental strains were measured from a state 
of zero stress. Thus it is given by the usual formula from elementary strength 
of materials, i.e. 

. . . . . . . . . . . . .(5) 

in which EI 2 = lateral bending stiffness; and JG = torsional stiffness of beam. 
The part labeled UB 1 is the work done by the prebuckling stresses during 

buckling. It is calculated as if these stresses were constant during buckling. 
Thus 

. . . . . . . . . . . . . . . . . . . . . . (6) 

in which A = the cross-sectional area; = prebuckling stresses; and 
ex and g xy = incremental strains. To obtain these strains, the displacement 
functions of any point on the cross section are written in terms of the centroidal 
displacement by the usual elementary assumption that plane sections remain 
plane. Then (Fig. 3): 

. . . . . . . . . . . . . . . . . . . . . . . . . . .(7) 

The incremental strains are related to these displacements by 

. . . . . . . . . . . . . . . . . . . . . . .(8) 

in which products of derivatives of u — have been neglected. 
Substituting Eq. 7 into Eq. 8 gives 
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The prebuckling stresses are 
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. . . . .(9) 

in which M = the prebuckling bending moment about the z-axis; and I 1 = 
the principal moment of inertia. 

Now, combining Eqs. 6, 9, and 10, and noting that certain integrals vanish 
for a rectangular beam, UB 1 becomes 

. . . . . . . . . . . . . 

Potential Energy of Loads.-The potential energy of the loads is the negative 
of the work done by external forces during buckling. In this report the external 
forces are a downward force P at x = 0 and a downward distributed load, 
p. Both act at the top flange of the beam. Only simply supported beams and 
cantilevers will be considered. The origin will be placed as shown in Fig. 4. 
In each case the span from x = 0 to x = L will be considered so that for 
simply supported beams, the energy in that span is only half the total energy. 
In the simply supported case (1/2) P will be used as the force at the origin 
so as to get only one half the potential energy of force P. Thus 

. . . . . . . . . . . . .(12) 

in which P must be cut in half for simple beams. The subscript zero denotes 
evaluation at x = 0. 

Strain Energy of Deck.-Only the shear energy will be considered. Because 
there are no shear strains in the deck at the datum state of incipient buckling, 
the strain energy of the deck is simply 

. . . . . . . . . . . . . . . . . . . . . (13) 

in which GD = the in-plane shear stiffness (force per unit length of edge). 
Using Eq. 2 and integrating over z this becomes 

. . . . . . . . . . . . . . . . . . . . 

Total Energy.— Now note that the displacement, v, appears only in UB 1 and 
UL. Consider these terms separately. Relating p to M and integrating by parts: 

. . . . . . . . . . . . . . . . . . . . . . (10) 

(11) 

(14) 
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(15) . . . . . . . . . . . . . . . . . . . . 

For a cantilever or a simple beam, the boundary conditions associated with 
v are such that this expression vanishes. Therefore, all terms containing v cancel 
from the expression for total energy and the total energy is 

. . . . . . . . . . . . (16) 

Before proceeding further, a nondimensional notation is introduced. Let 

is a load parameter in which M max = the maximum 

moment produced by the load; is a deck stiffness parameter; 

is a depth-to-span ratio parameter and; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . (17) 

and let primes denote differentiation with respect to 5. Then the total potential 
energy can be written 

Variation of Total Energy.-A condition of neutral equilibrium during buckling 
is next imposed by requiring the first variation of U to vanish: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (19) 

After some integration by parts Eq. 19 can be written 

(18) 
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Because dw, dw ́ , and dy are independent and arbitrary, Eq. 20 implies all 
of the following (Eqs. 21 through 28). 

equations, the first of which immediately integrates to 
Differential Equations.-The two integrals in Eq. 20 yield two Euler-Lagrange 

. . . . . . . . . . . . . . . . . . . . . . . . . (20) 

in which C 1 and C 2 are integration constants, and the second of which is 

. . . . . . . . . . (22) 

The integrated terms in Eq. 20 produce boundary conditions. 

Boundary Conditions at x = 0 

(24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . (25) 

Boundary Conditions at x = 1 

(27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Remarks.--This theory neglects certain effects, most notably a second-order 
torsion effect and the effect of prebuckling vertical deflections, both of which 
tend to increase the buckling load. Concerning torsion, an extremely deep beam 
would behave in torsion more like a plate than a one-dimensional member. 
In this case the lateral bending stiffness, EI 2, contributes a second-order term 
to the torsional rigidity in addition to the usual St. Venant torsional stiffness. 

. . . . . . . . . . . . . . . . . (21) 

. . . . . . . . . . . . . (23) 

. . . . . . . . . . . . . (26) 

. . . . . . . . . . . . . . . . (28) 
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FIG. 4.—Span from Zero to L is: ( a ) Whole Cantilever; or ( b ) One-Half of Simple 
Beam, in which Case Only 1/2 P is Used as Force at Origin in Computing Total 
Energy of Half-System 

FIG. 5.—Case 1—Simply Supported Beam-and-Deck System Under Constant Moment 
(Ends are restrained against axial rotation) 

FIG. 6.—Case 2—Simply Supported Beam-and-Deck System (Uniform load is applied 
through deck attached at top flange. Ends are restrained against axial rotation) 
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For a simple beam under constant moment, e.g., this effect raises the buckling 
load by the factor Ö 1 + (fp2/2). The effect of prebuckling vertical deflections 
is to increase the buckling load by factor Ö I 1 /( I 1 - I 2) , in which I, is the 
larger moment of inertia of the cross section. This increase should not be relied 
upon if the beams have an initial camber, as is common in wood construction. 

STABILITY CRITERIA FOR PARTICULAR CASES 

Five cases are considered: (1) Pure bending and simple support; (2) uniform 
load and simple support; (3) end-loaded cantilever; (4) uniformly loaded canti- 
lever; and (5) concentrated center load and simple support. In Case 1 the differen- 
tial equations have constant coefficients and a closed form solution is obtained. 
In the other four cases the differential equations have variable coefficients 
and a power series solution is employed. The essential details are outlined for 
Case 2. Solutions for Cases 3, 4, and 5 are similar to Case 2 and only the 
results are presented. 

In every case, the results presented herein reduce to previously known solu- 
tions (9), when the deck stiffness is taken to be zero. 

Case 1—Pure Bending and Simple Support.— In Fig. 5 the length of the beam 
is 2 L and the ends x = ±  L  are restrained from rotating about the x-axis. 
For the case of pure bending, the loads, p and p, are zero. The internal moment, 
M, is constant and equal to the applied external moment. Therefore in this 
case 

(29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Boundary Conditions.— Let the subscript zero denote evaluation at x = 0 
and subscript one denote evaluation at x = 1. There are three geometric boundary 
conditions 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (30) 

(31) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (32) 

and three natural boundary conditions. Because dw o ¹ 0, Eq. 23 requires that 

. . . . . . . . . . . . . . . . . . . . . . . (33) 

Because dy o ¹ 0, Eq. 25 requires that 

. . . . . . . . . . . . . . . . . . . . . . . (34) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (35) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

and because dw ́  1 ¹ 0, Eq. 27 requires that 

Differential Equations.-Differentiate Equation 21, evaluate it at x = 0, and 
apply Eq. 33 to find that C 1 = 0. Then evaluate Eq. 21 at x = 1 and apply 
Eqs. 31, 32, and 35 to find that C, = 0. Thus Eqs. 21 and 22 reduce to 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (36) 
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Eliminating y between Eqs. 36 and 37 yields 
.......................... (37) 

....................... (38) 

whose solution is 

FIG. 7.—Buckling Coefficients for Case 2 

FIG. 8.—Case 3—Cantilever Beam-and-Deck System (End load P is applied through 
deck attached to top flange) 
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. . . . . . . . . . . . . . . . . . . . . . . . . . (39) 

. . . . . . . . . . . . . . . . . . . . . . . 

Because w is even in x by symmetry, C 3 = 0. From Eqs. 35 and 39 

FIG. 9.—Buckling Coefficients for Case 3 

FIG. 10.—Case 4—Cantilever Beam-and-Deck System (Uniformly distributed load p 
is applied through deck attached to top flange) 

(40) 
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Solving for q from Eqs. 40 and 41 yields the buckling criterion for this case: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (41) 

. . . . . . . . . . . . . . . . . . . . . 

in which the positive sign is taken when the deck is attached to the compression 
flange of the beam and vice versa. This agrees with the result obtained by 
Errera, Pincus, and Fisher (1). 

Case 2—Uniform Load and Simple Support (see Fig. 6).— Again L is the half 
length as in Case 1. 

. . . . . . . . . . . . . . . . . . . . . . (43) 

Boundary Conditions.— The boundary conditions are the same as in Case 1. 
Differential Equations.— The differential equations (Eqs. 21 and 22) reduce 

(45) 

. . . . . . . . . . . . . . . (46) 

to 

. . . . . . . . . . . . . . . . . . . . . . . . 

Power Series Solution.— Assume w and y have series expansions even in x: 

in which Amn, Bmn, Cmn, and Dmn are functions of t and f. Here a o and 
bo are integration constants and the boundary conditions given by Eqs. 31 and 
32 remain to be satisfied. 

Substituting Eq. 47 into Eqs. 45 and 46 and equating coefficients of a o q m 

x 2 n and of bo q m x 2 n yields recursion relations and initial values by which one 
can generate the four arrays Amn, Bmn, Cmn, and Dmn from prescribed values 
of t and f. Finally, the two remaining boundary conditions, Eqs. 31 and 32, 
are applied and the integration constants, ao and bo are required to be indeter- 
minate. This yields 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (44) 

. . . . . . . . . . . . (47) 

(42) 
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. . . . . (48) 

as the stability criterion for this case. The critical value of q is obtained by 

FIG. 12.—Case 5—Simply Supported Beam-and-Deck System with Concentrated 
Load P applied at Midspan Through Deck Attached at Top Flange (Ends are restrained 
against axial rotation) 

trial from Eq. 48 for prescribed t and f, with the aid of a digital computer. 
The results of such a calculation are shown in Fig. 7. 

FIG. 11.—Buckling Coefficients for Case 4 



JULY 1973 

Buckling 
parameter, q 

(3) 

1404 

TABLE 1.—Typical Effect of Deck Shear Stiffness on Buckling Loada 

Increase in 
elastic buckling 

load, as a 
percentage 

(4) 

ST7 

1.8 
2.9 

7.9 

28.0 

Deck material 
(1) 

— 
60 

340 

1,450 

None 
2 in. wood 

1/2 in. plywood 

3 in. wood 

aThe beam used 

In-plane shear stiffness, 
GD, in pounds per inchb 

(millinewtons per meter) 
(2) 

0 
400 

3 ,000 
(525) 

20,000 
(3,500) 

(70) 

for this example is 30 ft long, 18 in. deep and 5-1/8 in. wide. 
bAssumed values. Exact values would depend on details of deck construction. See 

Ref. 11 for example. 

FIG. 13.—Buckling Coefficients for Case 5 



ST7 LATERAL STABILITY 1405 

Case 3—End-Loaded Cantilever (see Fig. 8).— Here L is the total length of 
the beam and P is the end load. The maximum moment is PL and thus 

(49) 

Critical values of P can be obtained from the eigenvalues of q: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

(50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Values of the buckling coefficient, 8, are presented in Fig. 9. 
Case 4—Uniformly Loaded Cantilever (see Fig. 10).— Again L is the length 

of the cantilever. Critical values of the distributed load, p, can be obtained 
from 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (51) 

and values of the buckling coefficient, 8, are presented in Fig. 11. 
Case 5—concentrated Center Load and Simple Support (see Fig. 12).— Again 

L is the half length as in Case 1. Critical values of the center load P can 
be obtained from 

(52) ............................. 

and values of the buckling coefficient, 8, are presented in Fig. 13. 

RESULTS 

Example.-The main results of this report are in Eq. 42 and Figs. 7, 9, 11, 
and 13, which present the buckling coefficient, 8, in terms of the deck stiffness 
parameter, t, and depth-span parameter f. Their use is illustrated by an example. 

Suppose a large building is to have timber beams spanning 30 ft (approx 
9.1 m) and spaced every 10 ft (approx 2.0 m). The required beam cross section 
has been calculated to be 18 in. (460 mm) deep by 5-1/8 in. (130 mm) wide 
for a condition of uniform load. The design is to be checked for stability. 
The accepted procedure (8) is to check the slenderness factor which is defined 
as 

“slenderness factor” . . . . . . . . . . . . . . . . . . . . (53) 

in which I, = the effective length (1.92 times span length for uniform load, 
simple support, and no deck). If Cs exceeds 10, the allowable stress must be 
reduced for slenderness. 

In this example, the slenderness factor is 

. . . . . . . . . . . . . . . . . . . . . . (54) 
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greater than 10, indicating that the system is unsafe if it cannot rely upon 
deck stiffness for stability (8). Assume, for rectangular wood beams, that 

(55) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (56) 

Then Fig. 7 may be used with L = 180 in., (approx 4.6 m) f = 0.1, and 
various deck stiffnesses to yield the results shown in Table 1. It is seen that 
even the relatively soft 2 in. deck is capable of providing a significant increase 
in the buckling load, although it is far less stiff than plywood or internailed 
decks, whose great stiffness effectively prevents elastic buckling as a mode 
of failure. 

E = 1.8 × 106 psi (approx 12 GN/m 2 ) . . . . . . . . . . . . . . . . . . . 

4 

Remarks 
Meaning of f = 0 Curve.— Parameter f has been referred to as a depth-to-span 

ratio parameter because its numerator contains c, the distance from the centroidal 
axis to the line of deck attachment, and the deck is ordinarily attached to 
the top flange of the beam. Thus in practical terms, c is the half depth. Note 
that negative values of f denote a deck attached to the bottom flange. The 
curve for f = 0 can only be interpreted as a deck attached at the centroidal 
axis because a zero depth would be meaningless; the curve is useful for interpola- 
tion purposes. 

Cantilevers.— Note that cantilevers with a deck on top are laterally supported 
along the tension flange, and that such restraint does far less to prevent lateral 
buckling than when the compression flange is supported. Thus the curves for 
positive f lie below those for negative f in Cases 3 and 4. Whenever the 
tension flange is supported, the curves in every case approach a horizontal 
asymptote as the deck stiffness approaches infinity. This limit is the buckling 
load of a beam whose tension flange is hinged to a rigid deck. 

SUMMARY AND CONCLUSlONS 

The effect of attached decking upon the lateral stability of beams has been 
analyzed by a variational approach which includes the deck as a shear-resisting 
element in the beam-and-deck system. Design curves or formula are presented 
for five cases of loading and support. Because stability does not often govern 
design except when overly restrictive rule-of-thumb limits are imposed, it was 
not deemed necessary to analyze a large variety of cases. It is hoped that 
this work will provide enough information to facilitate the safe design of light- 
weight economical structures. 

ACKNOWLEDGMENT 

The writer is indebted to E. G. Lovell of the University of Wisconsin, Depart- 
ment of Engineering Mechanics, for the essential ideas used in developing the 
expression for total energy. 



ST7 LATERAL STABILITY 1407 

APPENDIX I.—REFERENCES 

1. Errera, S. J., Pincus, G., and Fisher, G. P., “Columns and Beams Braced by Dia- 
phragms,” Journal of the Structural Division, ASCE, Vol. 93, No. ST1, Proc. Paper 
5103, Feb., 1967, pp. 295-318. 

2. Flint, A. R., “The Influence of Restraints on the Stability of Beams,” The Structural 
Engineer, Vol. 29, No. 9, Sept., 1951, England, pp. 235-246. 

3. Haussler, R. W., “Strength of Elastically Stabilized Beams,” Journal of the Structural 
Division, ASCE, Vol. 90, No. ST3, Proc. Paper 3951, June, 1964, pp. 219-264. 

4. Jenkinson, P. W., and Zahn, J. J., “Lateral Stability of a Beam and Deck Structure,” 
Journal of the Structural Division, ASCE, Vol. 98, No. ST3, Proc. Paper 8786, Mar., 

5. Pincus, G., and Fisher, G. P., “Behavior of Diaphragm-Braced Columns and Beams,” 
Journal of the Structural Division, ASCE, Vol. 92, No. ST2, Proc. Paper 4792, Apr., 

6. Schmidt, L. C., “Restraints Against Elastic Lateral Buckling,” Journal of the Engineer- 
ing Mechanics Division, ASCE, Vol. 91, No. EM6, Proc. Paper 4561, Dec., 1965, 

7. Taylor, A. C., Jr., and Ojalvo, M., “Torsional Restraint of Lateral Buckling,” Journal 
of the Structural Division, ASCE, Vol. 92, No. ST2, Proc. Paper 4776, Apr., 1966, 

8. Timber Construction Manual, American Institute of Timber Construction, John Wiley 
and Sons, Inc., New York, N.Y., 1966, pp. 4-159-4-162. 

9. Timoshenko, S. P., and Gere, J. M., “Lateral Buckling of Beams,” Theory of Elastic 
Stability, McGraw-Hill Book Co., New York, N.Y., 1961. 

10. Zahn, J. J., “Lateral Stability of Deep Beams with Shear-Beam Support,” United 
States Forest Service Research Paper, FPL 43, Forest Products Laboratory, Madison, 
Wisc., Oct., 1965. 

11. Zahn, J. J., “Shear Stiffness of Two-Inch Wood Decks for Roof Systems,” United 
States Forest Service Research Paper FPL 155, Forest Products Laboratory, Madison, 
Wisc., 1972. 

1972, pp. 599-609. 

1966, pp. 323-350. 

pp. 1-10. 

pp. 115-129. 

APPENDIX II.—NOTATION 

The following symbols are used in this paper: 

Amn, Bmn, Cmn, Dmn = series coefficients; 
a o, b o; C 1, C 2 = integration constants; 

c = distance from centroidal axis to line of deck attachment, 

EI 2 = lateral bending stiffness, in pound-inches squared (new- 
in inches (meters); 

tons-meters squared); 
ex = incremental strain in beam due to buckling; 
GD = in-plane shear stiffness of deck, in pounds per inch (new- 

tons per meter); 
JG = torsional stiffness, in pound-inches squared (newtons- 

meters squared); 
L = length of cantilever or half-length of simple beam, in 

inches (meters); 
M = internal bending moment about z-axis, in inch-pounds 

(newtons-meters); 
P = concentrated load at origin, pounds (newtons); 
p = uniform load, in pounds per inch (newtons per meter); 
S = beam spacing, in inches (meters); 



1408 JULY 1973 ST7 




