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Abstract

Convolutional Neural Networks (CNN) have shown
promising results for displacement estimation in Ultra-
Sound Elastography (USE). Many modifications have
been proposed to improve the displacement estimation
of CNNs for USE in the axial direction. However, the
lateral strain, which is essential in several downstream
tasks such as the inverse problem of elasticity imag-
ing, remains a challenge. The lateral strain estimation
is complicated since the motion and the sampling fre-
quency in this direction are substantially lower than
the axial one, and a lack of carrier signal in this di-
rection. In computer vision applications, the axial and
the lateral motions are independent. In contrast, the
tissue motion pattern in USE is governed by laws of
physics which link the axial and lateral displacements.
In this paper, inspired by Hooke’s law, we first propose
Physically Inspired ConsTraint for Unsupervised Reg-
ularized Elastography (PICTURE), where we impose
a constraint on the Effective Poisson’s ratio (EPR) to
improve the lateral strain estimation. In the next step,
we propose self-supervised PICTURE (sPICTURE) to
further enhance the strain image estimation. Extensive
experiments on simulation, experimental phantom and
in vivo data demonstrate that the proposed methods
estimate accurate axial and lateral strain maps.

1 Introduction

Ultrasound (US) imaging is a popular modality in
diagnosis and image-guided interventions thanks to its
portability, affordability, and non-invasiveness. Ultra-
sound Elastography (USE) is an imaging technique
that provides information about the stiffness of the tis-
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sue. An external or internal force is applied to com-
press the tissue, and US images before and after defor-
mation are analyzed to find the displacement map [1,2].
In free-hand palpation USE, the external force is a com-
pression applied by the operator using the probe. The
tissue mostly compresses in the axial direction while
expanding in the other two directions as well. The
axial and lateral strain maps, which are obtained by
taking derivatives of the displacements can be used
as a surrogate of elastic properties of tissues. USE
has been found clinically useful, especially when the
B-mode images do not clearly discern the target tis-
sue. As such, USE has been employed in different clin-
ical applications, including monitoring of thermal ab-
lation [3, 4], assessment of thyroid gland tumors [5],
and characterization of breast lesions [6]. Conven-
tional USE methods find the displacements using block
matching (window-based techniques) [2, 7–10] or opti-
mization strategy [11–15].

Deep learning methods have attracted growing at-
tention due to their ability to learn complex mappings.
Recently Convolutional Neural Networks (CNN) have
been employed for USE [16–22], ultrasound frame selec-
tion for USE [23], elasticity reconstruction [24], acous-
tic radiation force imaging [25], and echocardiogra-
phy motion estimation [26]. The architecture of the
networks was modified to adapt the network to USE
[27, 28]. MPWC-Net++, designed based on the well-
known PWC-Net architecture [29,30], was able to han-
dle radio-frequency (RF) data as inputs. The corre-
lation search range of PWC-Net was increased to en-
able the network to handle large image sizes, and the
downsampling scale of the feature extraction block of
the network was decreased from 4 to 2 to avoid loss of
high-frequency RF data [28] information. The weights
were made available online at code.sonography.ai.

Unsupervised training of USE network is another
avenue that has been followed to enhance the displace-
ment estimation in USE. Unsupervised training on real
ultrasound data prepares the trained model to extract
more suitable features from RF data [31–35]. Prior

1

ar
X

iv
:2

21
2.

08
74

0v
1 

 [
ee

ss
.I

V
] 

 1
6 

D
ec

 2
02

2

http://code.sonography.ai


knowledge of displacement map continuity is also uti-
lized in the forms of different regularization strategies.
In [33], a combination of first and second-order deriva-
tives of the displacements is employed as the regu-
larization, which has been found beneficial in the re-
cent optimization-based methods [13, 36]. Wei et al.
adapted MaskFlownet [37] to USE and trained the net-
work using an unsupervised method. They also per-
formed a detailed comparison of their network with
MPWC-Net++ [35].

In classical methods, Babaniyi et al. [38] considered
plane stress and incompressibility assumptions to re-
fine the estimated displacement. Guo et al. first intro-
duced a refinement method that incorporated the in-
compressibility and plane strain assumptions in an iter-
ative approach [39] that substantially improved the lat-
eral strain. Other lateral strain imaging works mainly
focus on modifying the imaging technique to have a
higher resolution in lateral direction [40–42], and, as
such, cannot be applied to the already available US
data. The smoothness of the derivatives of the dis-
placements is the only prior knowledge of USE physics
used in previous unsupervised training. No deep learn-
ing work considers the physics of the compression of the
tissue into account. Also, no deep learning method has
focused on improving the quality of the lateral displace-
ment estimation, which is challenging but it is required
for elasticity [43] and Poisson’s ratio imaging [44].

In our preliminary work, we investigated the feasibil-
ity of improving the lateral displacement by employing
the prior knowledge of compression physics [45], where
we introduced Physically Inspired ConsTraint for Un-
supervised Regularized Elastography (PICTURE). In
this paper, the method is explained in more detail,
and new extensive experiments are performed to bet-
ter evaluate the effectiveness of the technique. We also
introduce self-supervision in USE and propose sPIC-
TURE, which further boosts the performance.

2 Method

2.1 Unsupervised Training

Let I1, I2 ∈ R3×W×H denote the pre- and post-
compression US data, respectively. The subscript 3
refers to three channels of RF data, the envelope of
RF data, and the imaginary part of the analytic signal
similar to [22]. The unsupervised cost function is com-
posed of data loss and smoothness regularization loss.
The data loss (LD) in unsupervised training can be ob-
tained by comparing I1 with the warped I2 (Î2) by the
displacement map W . The data loss can be written

as [34,46]:

LD = ||(I1 − Î2)||1(N×N) (1)

where ||.||1 denotes norm 1 (as suggested by [29, 30],
L2 norm is not suitable; therefore, a norm lower is em-
ployed), and a window of size N × N (here 3 × 3) is
considered around each sample to reduce the effect of
noise. For the regularization, we adopt the method
of [33,34] where the strains and their first-order deriva-
tives are employed. The strains can be obtained by
taking the derivative of displacement in direction (x)
with respect to the direction (y):

εxy =
∂Wx

∂y

x, y ∈ 1, 2, 3

(2)

we assumed that the subscripts 1, 2, and 3 denote ax-
ial, lateral, and out-of-plane directions, respectively.
By this assumption, ε11, ε22 and, (ε21 + ε12)/2 are
the axial, lateral and, shear strains, respectively. The
smoothness loss can be defined as:

LS = Ls1 + γLs2

Ls1 = ||ε11− < ε11 > ||1 + β||ε12||1 +
1

2
||ε21||1 +

1

2
β||ε22||1

Ls2 =

{
|| (

∂ε11
∂a

)||1 + β|| (
∂ε11
∂l

)||1+

0.5|| (
∂ε22
∂a

)||1 + 0.5β|| (
∂ε22
∂l

)||1
}

(3)

where LS is the total smoothness loss, < . > de-
notes averaging operation, and β depends on the ratio
of spatial distance between two samples in lateral to
the axial direction and it is set to 0.1 similar to [34].
Ls1 and Ls2 are the regularization of first- and second-
order derivatives of the displacements. γ is a hyper-
parameter that controls the weight of the second-order
derivatives smoothness loss.

2.2 Hooke’s Law and compression physics

Assuming that the tissue is linear elastic and
isotropic, the following two sections show the relation
between the lateral and axial displacements under uni-
form compressions.

2.2.1 Homogeneous Material

Hooke’s law can be formulated as [47]:
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ε11
ε22
ε33
2ε23
2ε13
2ε12

 = 1
E


1 −v −v 0 0 0
−v 1 −v 0 0 0
−v −v 1 0 0 0
0 0 0 2 + 2v 0 0
0 0 0 0 2 + 2v 0
0 0 0 0 0 2 + 2v




σ11
σ22
σ33
σ23
σ13
σ12


(4)

where E, σ, and v represent Young’s modulus, stress
tensors, and Poisson’s ratio, respectively. When there
is a compression of the material in one direction, there
is an expansion in the other direction, which depends
on the Poisson’s ratio of the material. In free-hand pal-
pation, it can be assumed that the external force is only
in the axial direction (uniaxial stress); therefore, other
stress components except σ11 can be ignored. This as-
sumption simplifies Eq 4 and leads to [47]:

ε11 =
σ11
E
, ε22 = −vσ11

E
, ε33 = −vσ11

E
(5)

which indicates that the lateral strain (ε22) can be di-
rectly obtained by the axial one (ε11) using −v × ε11.

2.2.2 Inhomogeneous Materials

Tissues cannot be assumed to be homogeneous due
to the presence of irregularities and boundary regions;
therefore, the lateral strain cannot be directly obtained
by the axial one and Poisson’s ratio. In this condition,
the total strain (εxy) is obtained by adding the elastic
strain (exy) and eigenstrain (ε∗xy) [48]:

εxy = exy + ε∗xy (6)

Eigenstrain is added to consider the variation of to-
tal strain from the elastic one in the presence of in-
homogeneity. It is maximum on the inhomogeneity
boundaries and decays to zero further from the bound-
aries [48]. Although the lateral strain does not linearly
depend on the axial one anymore, they are still highly
correlated. Also, −ε22/ε11 does not obtain the Pois-
son’s ratio anymore and it is called Effective Poisson’s
ratio (EPR) [44]. In uniform regions far from inhomo-
geneities, EPR converges to Poisson’s ratio. For illus-
tration purpose, EPR and Poisson’s ratio of a finite ele-
ment simulation using ABAQUS software (Providence,
RI) is depicted in Fig. 1. It can be observed that
EPR is more dissimilar to Poisson’s ratio at the top
and bottom of the phantom and around the inclusion.
Poisson’s ratio and EPR under arbitrary deformation
have the range between 0.2 and 0.5 [49, 50]. Although
the exact value of EPR is not known, it has been used
as an approximation of Poisson’s ratio to characterize
tissues [44,50]. We propose to use this range as a prior

Figure 1: From left to right: the Poisson’s ratio, the
EPR, and their absolute difference for a simulated
phantom. The Poisson’s ratio and the EPR have the
same colorbar.

information to guide the network to refine the lateral
displacement. Guo et al. assumed tissue incompress-
ibility (Poisson’s ratio = 0.5) and plane strain (strain in
out-of-plane direction = 0) to refine the displacements.
However, Poisson’s ratio depends on the type of the
tissue (refer to [51,52] for Poisson’s ratio of breast and
liver). In this work, we do not make those assumptions,
and only a feasible range of Poisson’s ratio is enforced.

2.3 PICTURE

We propose to utilize the accepted range of EPR as
a prior information in the form of regularization. To
do that, we first need to calculate EPR (Ve) from the
estimated axial and lateral strains:

Ve =
− ˜ε22

S( ˜ε11)
(7)

where ˜ε22 and ˜ε11 are the lateral and axial strains ob-
tained from estimated displacements. The parameter S
denotes stop gradient operation, which is used to stop
backpropagation of the loss to the axial displacement
estimation. It is used to avoid the estimated axial dis-
placement being altered by the noisy lateral one. To
find out the EPR values outside the accepted range, a
mask (M) is defined using the minimum (Vemin) and
maximum (Vemax) allowed EPR values.

M(i, j) =

{
0 Vemin < Ve(i, j) < Vemax

1 otherwise

}
(8)

We assume the Vemin and Vemax values to be 0.1
and 0.6 (no noticeable change was observed by small
changes of these values) to have a small margin of er-
ror. In order to penalize the EPR values outside of the
accepted range, PICTURE loss is defined as:

Lvd =
∣∣∣∣M ⊗ ( ˜ε22 + V̄e × S( ˜ε11))

∣∣∣∣
2

(9)

where ⊗ is the Kronecker product to select EPR values
outside the accepted range, and V̄e is an estimate of
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true average EPR. It is obtained by averaging EPR
values that are inside the accepted range, which can
be formulated as:

V̄e =

∑
i,j(1−M(i,j))Ve(i, j)∑

i,j(1−M(i,j))
(10)

Eq 9 tries to constrain EPR to be inside the accepted
range.

The first-order derivatives of Ve are also employed
to enforce the smoothness of EPR.

Lvs = ||∂Ve
∂a
||1 + β × ||∂Ve

∂l
||1 (11)

The final PICTURE loss can be written as:

LV = Lvd + λvs × Lvs (12)

where λvs is defined to weight the smoothness part.

2.4 Self-Supervised Learning

Self-supervised learning (SSL) is a technique that
has recently been applied to unsupervised optical flow
networks [53,54]. The basic procedure is that the input
images are fed to the network during the unsupervised
training, and the displacements are obtained during
the first pass. In the next step, the input images are
transformed to make them more challenging than be-
fore and the new displacement is obtained during the
second pass. In the last step, the differences between
the displacements of the first and second passes are
penalized:

LSSL = ||S(W )− W̃ ||1 (13)

where W is the estimated displacement in the first pass
(no transformation), W̃ is the obtained displacement
from the second pass (with transformed inputs), and
stop gradient (S) is used to avoid backpropagation into
the first pass. Substantial improvements were reported
for unsupervised training employing SSL using differ-
ent transformations. In [54], superpixels [55] of input
images were identified and the content of randomly se-
lected superpixels were replaced by pure noise. The
method outperformed other unsupervised methods in
different optical flow benchmarks. In [53], cropping,
affine, and other kinds of transformations were utilized.
SSL was also compared by data augmentation (instead
of SSL, the transformed images were considered as new
inputs). SSL outperformed data augmentation, which
indicated that SSL was not a simple synthetic data
generation like data augmentation.

In this paper, we employ two data transformations:
cropping and adding noise to specific regions. Crop-
ping may cause loss of information, especially in areas
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Figure 2: B-mode input image (a), cropped image (re-
sized for the purpose of visualization) (b) and, image
with added noise (the area of added noise is high-
lighted) (c).

where displacement is high. On those areas, estimat-
ing displacement is complex for the network since the
corresponding part of the first image might be outside
the cropped second image. We also add large Gaussian
noise to randomly selected circular regions. An exam-
ple of a transformed image is shown in Fig. 2. SSL can
guide the network to have a more reliable estimation
when there is a loss of information due to cropping or
noisy data.

2.5 Loss Function And Network Architecture

The loss function is composed of data loss (Eq 1),
smoothness loss (Eq 3), PICTURE loss (Eq 9), and
SSL regularization (Eq 13):

loss = LD + λsLS + λvLV︸ ︷︷ ︸
first pass

+ λslLSSL︸ ︷︷ ︸
second pass

(14)

where the hyper-parameters, λs, λv, and λsl are the
weights of smoothness regularization, PICTURE loss,
and SSL regularization, respectively. The SSL loss only
affects the second pass in which the input US data are
transformed, while the other losses affect the first pass.

We employed MPWC-Net++ [28] as the network.
This network has demonstrated promising results on
USE by increasing the search range of correlation lay-
ers and reducing the downsampling of PWC-Net-IRR
[30] feature extraction layers. The modification neces-
sitated training the network from scratch; therefore,
the FlyingChairsOcc dataset [30] with 23000 image
pairs was employed for the training. Refer to [28] for
more details about the architecture of this network.
The network’s weights are publicly available online at
code.sonography.ai.

The hyperparameters values used for the training of
unsupervised method and sPICTURE are given in the
Supplementary Materials. The networks are trained for
25 epochs, the learning rate is set to 5 × 10−6, which
is halved every 5 epochs.
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Figure 3: Axial (top row) and lateral (middle row) strains in a simulated phantom. Ground truth EPR (bottom
row), the absolute error, and the mean absolute error (MAE) shown for each method.

2.6 Datasets

2.6.1 Simulation data

A phantom is simulated using Field II [56, 57], and
the motion is obtained by the ABAQUS finite ele-
ment analysis software (Providence, RI). The phantom
contains an inclusion with Poisson’s ratio of 0.45 and
the Young’s modulus of 40 kPa. The background has
Poisson’s ratio of 0.35 and the Young’s modulus of 21
kPa. The Poisson’s ratio and EPR of this phantom are
shown in Fig. 1. Different Poisson’s ratios for back-
ground and the inclusion are chosen to investigate if it
is detectable by the networks. Compared to our recent
simulation dataset [27], the number of lines in FIELD
II is increased to 190, the number of active elements is
increased to 96, and the obtained US images are also
upsampled in the lateral direction by 2 to provide high
lateral resolution.

In addition, 1200 pairs of publicly available simu-
lated phantoms from [27] are employed for training and
70 pairs for quantitative evaluation of the compared
methods. These phantoms have a Poisson’s ratio of
0.49 and have one or two hard inclusions in different
locations. The Young’s modulus for the background
and inclusions are around 20 kPa and 45-60 kPa, re-
spectively.

2.6.2 Experimental phantom data

RF data is collected from a tissue-mimicking breast
phantom (Model 059, CIRS: Tissue Simulation &
Phantom Technology, Norfolk, VA) at Concordia Uni-
versity. It has Young’s modulus of 20 kpa and con-
tains several inclusions with the Young’s modulus of at
least 40 kPa. We employed an Alpinion E-Cube R12
research US machine (Bothell, WA, USA) for data col-
lection. The sampling frequency was 40 MHz and the
center frequency was 8 MHz. We made this data pub-
licly available online at code.sonography.ai in [34].

2200 frame pairs are employed for training of the
network. In order to avoid data leakage, different parts
of the phantom were imaged for evaluation and test.

2.6.3 in vivo data

Data were acquired from patients with liver cancer dur-
ing open-surgical RF thermal ablation at Johns Hop-
kins Hospital. A research Antares Siemens system by
a VF 10-5 linear array was used for data collection.
The sampling and center frequencies were 40 MHz and
6.67 MHz, respectively. The study was approved by
the institutional review board with the consent of all
patients. 500 RF frame pairs from after ablation were
selected for the training of the networks, and RF data
from 2 patients before ablations were employed for test
to prevent using similar data during the train and test

5
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Table 1: Quantitative results for 70 simulated phantoms. Mean and standard deviation (±) of the MAE of
displacements and SSIM of strains are reported. The pairs marked by asterisk are not statistically significant
(p-value>0.05, using Friedman test).

Axial Lateral
MAE (µm) SSIM (%) MAE (µm) SSIM (%)

SOUL 2.2±1.5 99.80±0.06 8.00±4.1∗ 97.70 ± 1.56∗

OVERWIND 2.2±1.5 99.80±0.07 9.40±4.6 93.48±4.10
Unsupervised 2.7±1.6∗ 99.43 ± 2.10 8.70±4.1 96.42±1.79
sPICTURE 2.7±1.7∗ 99.55 ± 1.80 8.00±3.8∗ 97.73 ±1.29∗

phases.

2.7 Quantitative Metrics

Mean Absolute Error (MAE) and Structural Simi-
larity Index Metric (SSIM) [58] are employed for sim-
ulation results where the ground truth is available.
For experimental phantoms, Contrast to Noise Ratio
(CNR), and Strain Ratio (SR) are reported [1]:

CNR =

√
2(sb − st)2
σb2 + σt2

, SR =
st
sb
, (15)

where sX , and σX are the mean and the standard devi-
ation of obtained strain in the target (subscript t) and
background (subscript b) windows. Assuming that the
target is stiffer than the background, lower SR repre-
sents a higher difference between the average of strain
in the target and background windows. In SR, the
mean values of strains are employed; therefore, it is
insensitive to the variance of strains. CNR combines
both the mean and variance of the target and back-
ground windows which can provide a good intuition of
the overall quality of the strain image.

3 Results

The evaluated methods are listed below:

• Second-Order Ultrasound Elastography (SOUL)
is an optimization-based method which employs
L2-norm and second-order regularization to have
smooth strain images with high target-background
contrast [13].

• Total Variation Regularization and Window-based
time delay estimation (OVERWIND) is a method
that incorporate windowing into the optimization
cost function [12].

• Unsupervised method (λv = 0 and λsl = 0 in Eq
14, similar to the unsupervised method in [34]).

• The PICTURE without SSL (λsl = 0 in Eq 14,
only used in ablation experiment).

• The proposed method named sPICTURE entails
both PICTURE and SSL losses (Eq 14).

It should be mentioned that for simulation results the
network for unsupervised method and sPICTURE is
trained on simulation data. For the experimental phan-
tom results, it is trained on the experimental phantom
dataset, and for in vivo results, it is trained on the
available in vivo dataset. We also tuned the hyper-
parameters of the optimization-based methods (SOUL
and OVERWIND) for each dataset separately to ensure
that the best results are obtained from those methods.

3.1 Simulation Results

The axial, lateral strains, and the EPR of the sim-
ulated phantom obtained by the compared methods
are illustrated in Fig. 3. All methods obtain high-
quality axial strains. The axial strain of the unsuper-
vised method and sPICTURE are quite similar since
PICTURE is only applied to the lateral displacement
and keep the axial one untouched. Comparing the lat-
eral strains (second row), sPICTURE reduces the noise
presented in the unsupervised method.

The mean and standard deviations of quantitative
metrics are reported for 70 simulated phantoms. Since
the ground truth is available, MAE of displacement and
SSIM of strain are reported for the axial and lateral
displacements and strains. SOUL and OVERWIND
have the lowest MAE error and highest SSIM in the
axial direction. sPICTURE performs similar to the
unsupervised method since PICTURE does not affect
the axial direction. In lateral displacement estima-
tion, sPICTURE reduces the lateral MAE of unsuper-
vised method from 25.0 to 7.9, a decrease of more than
three folds. It also outperforms the optimization-based
methods in terms of MAE, with SSIM values close to
those of SOUL.
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(1)

(2)

(3)

Figure 4: The experimental phantom lateral strains obtained by the evaluated methods. The target and background
windows for calculation of CNR and SR are marked in the B-mode images. The corresponding axial strains are
shown in the supplementary video. The samples 1, 2 and 3 are taken from different locations of the tissue-mimicking
breast phantom. Hard inclusions have lower absolute values than the background.

Figure 5: MAE of lateral displacements (left), and
SSIM of lateral strains (right) for different SNR val-
ues of simulation test data.

3.1.1 simulation results for different signal to
noise ratios (SNR)

Random Gaussian noise with different SNRs is added
to the test RF data to evaluate the robustness of the
compared method to noise. MAE of lateral displace-
ment and SSIM of lateral strain are plotted in Fig. 5.
It can be observed that sPICTURE has a low MAE
even for an SNR as low as 5 dB which demonstrates
the high robustness of this method.

3.1.2 simulation results for different compres-
sion

A phantom from simulation test data having different
applied compressions, resulting in different maximum

Figure 6: SSIM of lateral strains versus different max-
imum strains.

strains, is selected, and SSIM of lateral strain are illus-
trated in Fig. 6. By increasing the maximum strain,
the SSIM of all compared method decreased which is
expected. It should be noted that the graph shows that
sPICTURE has the highest SSIM among the compared
methods which is also robust to the variations of ap-
plied compression.

3.2 Experimental Phantom Results

The lateral strains of experimental phantom results
are shown in Fig 4 and the quantitative results are
reported in Table 2.

Unsupervised method has unacceptable results in

7



Table 2: Quantitative results of lateral strains for experimental phantoms and in vivo data. Mean and standard
deviation (±) of CNR (higher is better) and SR (lower is better) of lateral strains are reported. The pair marked
by asterisk is not statistically significant (p-value>0.05, using Friedman test).

Phantom 1 Phantom 2 Phantom 3 In vivo 1 In vivo 2
CNR SR CNR SR CNR SR CNR SR CNR SR

SOUL 11.01±4.52 0.483±0.038 3.63±1.20 0.676±0.081∗ 2.33±0.81 0.327±0.140 3.25±1.07 0.428±0.137 1.26± 0.843 1.110±0.124
OVERWIND 7.21±1.91 0.456±0.057 2.35±0.68 0.676±0.092∗ 3.38±1.45 0.285±0.155 1.92±0.96 0.584±0.150 0.84±0.61 1.048±0.202

Unsupervised 2.31±0.30 0.454±0.061 1.02±0.30 0.530±0.105 0.26±0.18 0.677±0.743 0.24±0.18 0.905±0.159 0.50±0.36 1.125 ± 0.437
sPICTURE 11.20±2.18 0.511±0.059 9.14±2.80 0.527±0.044 7.07±1.76 0.278±0.065 7.80±2.01 0.242±0.066 4.34±1.39 0.640±0.075

Figure 7: The histograms of the EPR of different meth-
ods for phantom 3. sPICTURE has limited the EPR
to the feasible range for USE.

(1)

(2)

(3)

Figure 8: Ablation experiment results. In (3), the in-
clusion is not visible in B-mode image and arrows show
that SSL improves the estimation in boundary regions.
The samples 1, 2 and 3 are taken from different loca-
tions of the tissue-mimicking breast phantom.

Figure 9: Normalized axial strain versus the corre-
sponding lateral strain. The region where the sam-
ples of the methods lie for experimental phantom 2 are
specified. The regions are obtained from convex hull
of strain samples. EPR equals to 0.1 and 0.6 are high-
lighted by the dashed lines.

which the inclusions are not visually detectable while
it provides high-quality axial strain images (the axial
strain images are shown in the Supplementary Materi-
als) comparable to optimization-based methods. This
is an important observation since this shows that the
unsupervised loss (composed of data and smoothness
losses), which has been used widely in computer vision
optical flow estimation, is not a suitable loss in USE.

sPICTURE provides high-quality lateral strain im-
ages and performs the best in terms of quantitative
results among the compared methods. By compar-
ing the unsupervised and sPICTURE results, it can
be seen how the added PICTURE regularization and
the SSL lead to the improvement of the obtained strain
images. The added regularizations convert the unreli-
able and noisy lateral strains obtained by unsupervised
method to the high-quality strain images. It should be
mentioned that sPICTURE and unsupervised methods
are both trained using the same data and weights for
smoothness regularization. Furthermore, sPICTURE

8



Figure 10: The in vivo lateral strains obtained by the evaluated methods. The target and background windows
for calculation of CNR and SR are marked in the B-mode images. The corresponding axial strains are given in the
Supplementary Materials.

Figure 11: Lateral strains of OVERWIND and sPIC-
TURE after applying the method of Guo et al. [39] to
real phantom data (1).

obtains substantially higher quality lateral strain im-
ages than the compared optimization-based methods
(both visually and quantitatively).

To further analyze the results, the histograms of the
EPR of phantom data 3 are depicted in Fig. 7. As
mentioned earlier, EPR range is similar to the Pois-
son’s ratio range (0.2 to 0.5, excluding the boundary
regions). In PICTURE loss, we penalize EPR values
outside the 0.1-0.6 range. The histogram of EPR of
unsupervised method covers a wide range of positive
and negative values which indicates that many lateral
strain values obtained by this method are incorrect.
The histogram of the EPR values of OVERWIND and
SOUL are more limited than unsupervised method, but
they contain values that are negative or higher than 0.8
which is not possible in the phantom. sPICTURE has
a more limited range of EPR values but still has some
values outside the specified range. The reason is that
the proposed PICTURE regularization is only applied
during the training phase. Although the proposed PIC-
TURE regularization reduces the range of EPR values,

it does not guarantee that all the values fall into the
specified range in test time.

3.2.1 Ablation Experiment

In order to investigate the impact of PICTURE loss
and SSL separately, an ablation experiment is con-
ducted. Fig. 8 shows the visual comparison of unsu-
pervised method (without PICTURE and SSL), PIC-
TURE (without SSL), and sPICTURE. It is visually
clear that both PICTURE and SSL contribute to the
improvements obtained by sPICTURE. Without PIC-
TURE, unsupervised method provides noisy and im-
practical lateral strain images. PICTURE substan-
tially improves the lateral strain image quality and SSL
further boosts the quality of the lateral strain image.
For instance, in sample (1), the inclusion location can
be detected more accurately in sPICTURE compared
to PICTURE. Also, the estimation in boundary regions
is improved in sPICTURE since it is trained to deal
with cropping with SSL. It should be mentioned that
SSL without PICTURE was also tested, but it per-
formed inferior to PICTURE.

3.2.2 Experimental Results after applying lat-
eral displacement refinement

Lateral displacement refinement of Guo et al. [39] is ap-
plied using the initial displacement obtained by OVER-
WIND and sPICTURE. It can be observed that this
method further improves the lateral displacement esti-
mation, and the initial displacement obtained by sPIC-
TURE provides a high-quality initial value for this
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method.

3.3 In vivo Results

The in vivo lateral strains of two patients with liver
cancer are depicted in Fig. 10, quantitative results
are reported in Table 2, and their corresponding ax-
ial strains are given in the Supplementary Materials.
The tumors are more visually detectable in sPICTURE
compared to the other methods. Also, quantitative re-
sults denote that sPICTURE has the highest CNR and
lowest SR values among the compared methods, which
confirms the visual analysis.

4 Discussion

In this paper, a physically inspired regularization to
improve the lateral displacement estimation has been
proposed. It confines the range of EPR by employing
the high-quality axial strain and the known range of
EPR values. One limitation of the proposed method is
that PICTURE similar to any other form of regulariza-
tions is only applied during the training. Even though
it limits the range of EPR values in the test time, it
does not guarantee that all EPR values be within that
range. We observed only a few samples lie outside of
the defined range and fixing them during the test time
inspired by known operators [59] can be an area of fu-
ture works.

It should be mentioned that PICTURE can also
have statistical interpretation. The lateral displace-
ment prediction can be viewed as the estimation of a
parameter from under sampled and heavily smoothed
observations. The conventional methods estimate this
parameter in a maximum likelihood (ML) manner
without any prior information (only smoothness is con-
sidered). However, PICTURE can be viewed as max-
imum a posteriori (MAP) estimate in which the prior
information from compression physics is utilized to find
the parameters. Therefore, more reliable lateral dis-
placement can be estimated compared to the conven-
tional methods. To clarify this, the graph of lateral
versus axial strains is depicted in Fig. 9. PICTURE
enforced the strain samples to lie within v = 0.6 and
v = 0.1. The areas where the samples of unsupervised
method and sPICTURE lie for experimental phantom
data 2 are illustrated in the figure. It can be observed
that most of the strain samples of sPICTURE lie within
the correct range. sPICTURE moved the lateral sam-
ple values to the area of the prior knowledge.

Self-supervision was another regularization that has
been used in this work. SSL can prepare the model
to deal with corrupted data. In this paper, we applied

cropping and added noise. Cropping helps the model
deal with boundary regions where finding the corre-
spondence between pre and post-compression images
is difficult. Adding noise can also be useful in some
scenarios for instance when there is a loss of signal due
to high attenuation or there is a cyst where clutter is
stronger than the true signal. Applying other forms
of transformation such as acoustic noise (reverberation
and multiple scattering), inducing decorrelation, and
downsampling can be an area of future works.

In this paper, the performance of lateral displace-
ment refinement method of [39] using initial value from
sPICTURE and OVERWIND is also investigated. This
method is considered as a post-processing method that
relies on the initial displacements. We showed that
high-quality lateral displacement of sPICTURE can be
considered as a good initial value for this method and
improves the results of this refinement method.

Complexity of the training is another issue that
should be discussed. We utilized two parallel NVIDIA
A100 GPUs with 40 GB of memory each. Even with
this size of memory, the maximum batch size that we
could train the network was 8. The main reason is
that the image sizes are usually large to preserve high-
frequency RF data contents and the memory usage is
also doubled by the second pass introduced required in
SSL. Only the training phase is memory intensive, and
inference can be performed with only 5 GB of memory
in 140 ms (for an US data of size 2048 × 256) similar
to MPWC-Net++.

5 Conclusion

In this paper, we proposed PICTURE to improve
the lateral strain images in USE using physically
inspired priors. We further improved the method
in sPICTURE by adding the self-supervision to the
method. The effectiveness of the proposed method is
validated using simulation, experimental phantom, and
in vivo data.
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