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Lateral superresolution using a posteriori phase
shift estimation for a moving object:
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Structured illumination imaging uses multiple images of an object having different phase shifts in the sinu-
soidally patterned illumination to obtain lateral superresolution in stationary specimens in microscopy. In our
recent work we have discussed a method to estimate these phase shifts a posteriori, allowing us to apply this
technique to non-stationary objects such as in vivo tissue. Here we show experimental verification of our ear-
lier simulations for phase shift estimation a posteriori. We estimated phase shifts in fluorescence microscopy
images for an object having unknown, random translational motion and used them to obtain an artifact-free
reconstruction having the expected superresolution. © 2010 Optical Society of America
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. INTRODUCTION
he resolution of an imaging system is limited by the im-
ging wavelength and numerical aperture. Structured il-
umination imaging is a technique that has been applied
o obtain lateral superresolution in microscopy [1–5].
ther variations and applications of structured illumina-

ion have been discussed in several related publications
6–16]. When a sinusoidal illumination is projected on an
bject, the high-frequency components of the object in the
ourier domain are aliased and shifted into the passband
f the imaging system. In order to de-alias and separate
hese superresolution frequencies from the conventionally
ccessible frequencies in the image, three or more such si-
usoidally patterned images are taken with the phase of
he sinusoidal illumination shifted by distinct amounts in
ach image; a system of equations is then solved to yield
he separated components, which are shifted to their ap-
ropriate locations and combined. If illumination with a
inusoidal fringe pattern only in one direction is used, it
llows superresolution only along the direction perpen-
icular to the fringes in the sinusoidal illumination. So
he processing is repeated for images taken with sinu-
oidal illumination in different orientations to obtain su-
erresolution in all directions.
Precise and accurate knowledge of the phase shifts in

he sinusoidal illumination is necessary for further pro-
essing of the images to obtain a superresolved image.
herefore, most prior work has been restricted to station-
ry objects on anti-vibration stages used with expensive
nd precise, pre-calibrated translation stages to introduce
he phase shifts. We are interested in extending the ap-
lication of this technique to moving, non-stationary ob-
ects such as living, in vivo tissue or objects in vibrating
nvironments. We are particularly interested in applying
1084-7529/10/081770-13/$15.00 © 2
his technique to image the moving human retina in vivo.
herefore, we have developed a technique to estimate

hese phase shifts a posteriori and obtain superresolution
or a non-stationary object [17–20]. Here we provide ex-
erimental verification of our theory by demonstrating its
pplication to a test object having unknown, random
ranslational motion.

. SUPERRESOLUTION WITH SINUSOIDAL
LLUMINATION
e summarize here the concept of superresolution ob-

ained from imaging using a sinusoidal illumination.

. Formation of Sinusoidally Patterned Image
onsider a sinusoidal illumination field, Us,n�x ,y�
cos�2�fox+�n�, which has a spatial frequency of �fo ,0�
nd a phase shift of �n. The intensity of this sinusoidal
llumination is given by

Is,n�x,y� =
1

2
�1 + m cos�4�fox + 2�n��, �1�

hich has a spatial frequency of �2fo ,0� and a phase shift
f 2�n. The modulation contrast, m, is assumed to be 1 for
ost of our analysis. Let Go be the Fourier transform of

he intensity of the object and H1 and H2 be the optical
ransfer functions (OTFs) of the illumination and imaging
aths, respectively, of the system. Adding noise, Nn, to Gn,
he Fourier transform of such a sinusoidally patterned
mage, the effective noisy image in the Fourier domain, as
isualized in Fig. 1, is given by [17,18,4]
010 Optical Society of America



I
=
c
−
a
t
G
r
s
t
u
a
t
l

B
C
I
t
l
t
t
i
p
a
i
=

T
d
v
c
t
t
r
p
i

c
C
g

T
t
r
t
t
s
c
n

a

F
F

Shroff et al. Vol. 27, No. 8 /August 2010 /J. Opt. Soc. Am. A 1771
Ĝn�fx,fy� = Gn�fx,fy� + Nn�fx,fy�

=
1

2
H1�0,0�H2�fx,fy�Go�fx,fy�

+
m

4
H1�2fo,0�ei2�nH2�fx,fy�Go�fx − 2fo,fy�

+
m

4
H1�− 2fo,0�e−i2�nH2�fx,fy�Go�fx + 2fo,fy�

+ Nn�fx,fy�. �2�

f we ignore noise for the moment and assume Nn�fx , fy�
0, then Eq. (2) consists of three terms each containing
opies of the object’s Fourier transform: Go�fx , fy�, Go�fx
2fo , fy� and Go�fx+2fo , fy�. The term Go�fx , fy� is the same
s the object information present in a conventional image
aken with uniform illumination. But the two copies,
o�fx−2fo , fy� and Go�fx+2fo , fy�, replicate the object’s Fou-
ier transform, translated by the spatial frequency of the
inusoidal illumination. These copies effectively drag
hose portions of the object’s Fourier transform, which
sually lie outside the passband of the system and are in-
ccessible in a conventional image, into the passband of
he system. Therefore they are treated as the “superreso-
ution” components of our image.

. Separation of Overlapping Superresolution and
onventional Components
t is important to separate these overlapping terms from
his image in order to utilize the value of this superreso-
ution information. If they are treated as three unknowns,
hree or more equations would be needed to solve for
hem. Therefore we take N such sinusoidally illuminated
mages of the same object, where N�3, and where the
hase of the sinusoidal illumination is shifted by distinct
mounts, 2�n, where n=1,2, . . .N. Now this system of N
mages is treated as a linear system of N equations, AX
B, where

ig. 1. Visualization of sinusoidal grid patterned image in the
ourier domain [17].
A = �
1 ei2�1 e−i2�1

1 ei2�2 e−i2�2

. . .

. . .

1 ei2�N e−i2�N

�
N�3

, �3�

X = �
1

2
H1�0,0�H2�fx,fy�Go�fx,fy�

1

4
mH1�2fo,0�H2�fx,fy�Go�fx − 2fo,fy�

1

4
mH1�− 2fo,0�H2�fx,fy�Go�fx + 2fo,fy�

�
3�1

,

�4�

B = �
Ĝ1�fx,fy�

Ĝ2�fx,fy�

.

.

ĜN�fx,fy�
�

N�1

. �5�

his form is improved over that we proposed in [17] in or-
er to track the signal-to-noise ratio (SNR). We solve for
ector X by inverting matrix A using singular value de-
omposition and pseudoinverse [21] and premultiplying it
o matrix B as X=A−1B. If there were noise in the image,
he singular value decomposition and pseudoinverse are
easonably robust at handling noise. The separated com-
onents of vector X may be used to obtain a superresolved
mage. The first term

Ic1�fx,fy� =
1

2
H1�0,0�H2�fx,fy�Go�fx,fy�, �6�

ontains the conventional unshifted object component.
orrespondingly the OTF affecting this component is
iven by

otf1�fx,fy� =
1

2
H1�0,0�H2�fx,fy�. �7�

he terms H1 and H2 may be estimated by characterizing
he illumination and imaging paths of the system. In our
esults we assume that we have an aberration-free sys-
em and that H1=H2. The second and third terms in vec-
or X, containing the superresolution information, are
ub-pixel shifted in Fourier space to their appropriate lo-
ations to obtain the two superresolution image compo-
ents,

Ic2�fx,fy� =
1

4
mH1�2fo,0�H2�fx + 2fo,fy�Go�fx,fy� �8�

nd
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Ic3�fx,fy� =
1

4
mH1�− 2fo,0�H2�fx − 2fo,fy�Go�fx,fy�, �9�

eeping the two terms separate rather than combined as
n [18]. The OTF for Ic2 is given by

otf2�fx,fy� =
1

4
mH1�2fo,0�H2�fx + 2fo,fy�, �10�

nd the OTF, otf3, for Ic3 can be obtained by replacing 2fo
n Eq. (10) by −2fo.

These superresolution components extend the pass-
and of the image in the Fourier domain in the direction
erpendicular to the fringes in the sinusoidal illumina-
ion. In order to obtain superresolution in all directions in
ourier space, this process is repeated with the sinusoidal

llumination rotated by, say, 60° and 120°. This gives us
imilar conventional image components, Ic4 and Ic7, hav-
ng effective OTFs given by otf4 and otf7, and superreso-
ution components, Ic5, Ic6, Ic8, and Ic9, having effective
TFs given by otf5, otf6, otf8, and otf9, respectively, for the
0° and 120° rotated sinusoidal illumination.
Usually three orientations of the sinusoidal illumina-

ion at 0°, 60°, and 120° cover most of the desired ex-
ended passband in the frequency domain. However, for
ower values of superresolution, such as 50% and less, as
epicted in Fig. 2, just two rotations 90° apart are enough
o cover most of the extent of the desired extended pass-
and, leaving only modest missing gaps (shown as dark
haded areas in Fig. 2). In the case of two rotations, we
ave six rather than nine image components. Before we
roceed with the combination of these component images,
e analyze their SNR.

. SNR Analysis
everal factors affect the SNR of the component images.
e have performed a similar SNR analysis in [18] and

iscussed several of these factors. Here we briefly discuss
hose and also further elaborate on the effect of random-
ess in phase shifts of the sinusoidal illumination. We
onsider the particular case of 4 sinusoidally patterned
mages, where the phase shifts in the sinusoidal illumina-
ion are given by 2�n=0, � /2, �, and 3� /2, and
xp�± i2�n�=1, ±i, −1, and �i. In Appendix A, Eq. (A4), we

ig. 2. Visualization of extension of OTF passband with struc-
ured illumination.
erive the power SNR for the noisy version of the conven-
ional component image, Îc1, as

SNRc1 =
1

�2 �H1�0,0�H2�fx,fy��2�o�fx,fy�, �11�

here �o= ��Go�fx , fy��2	 is the object power spectrum and
e assume statistically independent noise with variance,
2, in the four sinusoidally patterned images.
The SNR for the noisy version of the superresolution

omponent Îc2 derived in Eq. (A9) in Appendix A is

SNRc2 =
1

4�2 �mH1�2fo,0�H2�fx + 2fo,fy��2�o�fx,fy�.

�12�

he SNR for Îc3 is similar.
The amount of superresolution increases proportional

o the spatial frequency, 2fo, of the sinusoidal fringe illu-
ination. From Eqs. (11) and (12) we see that the SNR

ecreases as 2fo increases, since H1 decreases with in-
reasing spatial frequency and approaches zero as 2fo ap-
roaches the cutoff frequency of the OTF. Hence one
hould not expect a full 100% superresolution for this case
f incoherently imaging a grating onto the object. The il-
umination and imaging OTFs, H1 and H2, and the modu-
ation contrast, m, strongly influence the SNR for the su-
erresolution components and can reduce the signal in
he superresolution components significantly compared to
hat in the conventional component images.

The SNR is also affected by the number of sinusoidally
atterned images processed to obtain each component im-
ge. If Îc1 is obtained by combining N images, then

SNRc1�fx,fy� = �N/�4�2���H1�0,0�H2�fx,fy��2�o�fx,fy�.

�13�

or N=4 we obtain the SNR given by Eq. (11), and a
reater number of images improves the SNR of the recon-
tructed image.

In addition, the randomness in the phase shifts in the
inusoidal illumination affects the signal strength in
NRci. To illustrate this effect, consider four images hav-

ng phase shifts that are not well spaced in the 360° phase
pace: 2�n=0, � /4, � /2, and 3� /4 (covering only 2 quad-
ants in phase space, unlike the previous case, which cov-
red all 4 quadrants). For this case, the power SNR for
he noisy version of the first (conventional image) compo-
ent, derived optimally in Eq. (A13) in Appendix A, is 6.8
imes lower than the SNR obtained in the previous case of
ell-spaced phase-shifted images given in Eq. (11). The
NR for the noisy version of the superresolution compo-
ent Ic2 for the present case, optimally derived in Eq.
A18) in Appendix A, is 3.9 times less than that from the
revious case, Eq. (12), and similarly for Ic3. For this rea-
on it is advantageous to try to obtain images having
ell-spaced phase shifts in the sinusoidally patterned im-
ges to improve the SNR in the reconstruction. If it is not
ossible to influence the phase shifts, it is advantageous
o take a greater number of images to compensate for pos-
ibly clumped phase shifts to improve the SNR in the re-
onstructed image.
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We can write the generalized form for the SNR for the
omponent images as

SNRci = �i�otfi�fx,fy��2
�o

�Ni
, �14�

here �i is a constant that is influenced by the number of
inusoidally patterned images used, the randomness of
he phase shifts in the sinusoidally patterned images, as
ell as a contribution from the SVD and pseudoinverse.
ince we have not yet explored this factor in further de-
ail, we set �i
1 in our reconstructions. This factor may
e investigated in more depth in future.

. Multiframe Image Reconstruction
e use a multiframe weighted Wiener–Helstrom-like fil-

er [22,17,18] to appropriately combine these component
mages to obtain a reconstructed superresolved image,

Irec�x,y� = IFT��i=1

M

� Îci�fx,fy�

otfi�fx,fy�
�

SNRci

c + �
j=1

M

SNRcj�
 ,

�15�

here Îci is the noisy estimate of Ici after singular value
ecomposition and pseudoinverse, and c is a regulariza-
ion constant that may be varied subjectively to enhance
igher spatial frequencies �c	1� or to suppress the effect
f colored noise in the image �c
1�. c=1 is the minimum
ean-squared-error solution [22,23]. The SNR weighting

sed in this filter is given by Eq. (14). �o= ��Go�fx , fy��2	 is
he object power spectrum. The conventional image may
e used to estimate �o. We consider that the power spec-
rum of the conventional image is of the form �otf�2
A2�−2�+�N, where � is the radial spatial frequency co-

rdinate, A is a constant, � determines how fast the Fou-
ier transform of the object falls off, and �N is the power
pectrum of noise in the conventional image under consid-
ration, assumed to be white noise independent of spatial
requency. �o is obtained by fitting a curve of this form to
he average value of the power spectrum of the conven-
ional image and finding reasonable values to A, �, and

N. More details about such curve fitting and the nature
f this curve can be found in [24–27]. We estimated �o ap-
roximately from the average of the conventional image
omponents, Ic1, Ic4 and Ic7, obtained from different orien-
ations of the sinusoidal illumination. �Ni, the noise
ower spectrum, can be estimated approximately as the
verage in a region in a corner of the power spectrum of
ach component image, Îci. This region is chosen to lie
utside the OTF passband of the image, so it contains
nly noise. We discussed the effect of these factors and the
NR for each component image in more detail in [18].
Using Eq. (15) and Eq. (14) the multiframe filter is

mplemented as
Irec�x,y� = IFT��i=1

M � Îci�fx,fy�otfi
*�fx,fy��i

�o

�Ni

c + �
j=1

M

�j�otfj�fx,fy��2
�o

�Nj

�
 .

�16�

he processing developed in this section has no restric-
ion on the number of sinusoidally patterned images,
umber of component images, or randomness of the phase
hifts used in the sinusoidal pattern. Thus far we have as-
umed knowledge of these phase shifts, which is essential
or artifact-free processing.

. ESTIMATION OF PHASE-SHIFTS IN
INUSOIDALLY PATTERNED IMAGES

n structured illumination imaging, multiple sinusoidally
atterned images are taken with distinct phase shifts.
onventionally, for a stationary object, three images are

aken, each having 0°, 120°, and 240° phase shifts in the
inusoidal illumination. For a moving object or a vibrat-
ng system, it is not possible to introduce such pre-
efined, calibrated phase shifts. Therefore we consider
ost-processing techniques to estimate these phase shifts
posteriori.
One simple and common technique is to average the

mage along the direction of the sinusoidal fringe and
hen try to fit an ideal sinusoid to this averaged one. This
pproach is reasonable for low-frequency sinusoidal pat-
erns, but as the frequency of the sinusoid increases, its
ontrast decreases, and the accuracy of the phase shift es-
imate deteriorates substantially. Non-uniformities and
eatures of the object affect the intensity of the sinusoid
nd disrupt the accuracy of the phase shift estimate. For
inusoids of any orientation other than exactly horizontal
r exactly vertical, the averaging process requires inter-
olation of the value of the sinusoidal illumination, caus-
ng further inaccuracies, especially for high-frequency si-
usoids.
Another method is an iterative, optimization-based ap-

roach [28], where one begins with some preliminary
hase estimates and proceeds with the reconstruction of

using these estimates. Inaccuracies in the phase esti-
ates result in residual peaks of the other terms being in-

ompletely separated. This process must be repeated us-
ng new phase shift estimates (nudged randomly) until
he residual peaks are minimized. However, this is a
airly time-consuming and somewhat random process and
ould not work without reasonably accurate preliminary
stimates.

We use a Fourier domain technique [19,20,17] to esti-
ate this phase shift in the sinusoidal illumination. We

ompute the Fourier transform of the sinusoidally pat-
erned image. The value of Eq. (2) at �2fo ,0�, which is the
ocation of a peak arising from the spatial frequency of
he sinusoidal illumination, is given as
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Gn�2fo,0� =
1

2
H1�0,0�H2�2fo,0�Go�2fo,0�

+ ei2�n
m

4
H1�2fo,0�H2�2fo,0�Go�0,0�

+ e−i2�n
m

4
H1�− 2fo,0�H2�2fo,0�Go�4fo,0�

+ Nn�2fo,0�. �17�

he first term, �1/2�H1�0,0�H2�2fo ,0�Go�2fo ,0�, is
eighted by the object Fourier transform at �2fo ,0�, and

he third term, e−i2�n�m /4�H1�−2fo ,0�H2�2fo ,0�Go�4fo ,0�,
s weighted by the object’s Fourier transform at �4fo ,0�.
or a moderately valued spatial frequency of the sinusoid,
here fo / fc is neither too close to 0 nor 1, both Go�2fo ,0�, in

he first term, and Go�4fo ,0�, in the third term, lie at the
apering edge of the Fourier transform of an extended ob-
ect, making �Gg�2fo ,0��
Gg�0,0� and �Gg�4fo ,0��
Gg�0,0�.
he second term, ei2�n�m /4�H1�2fo ,0�H2�2fo ,0�Go�0,0�,
onsists of the object Fourier transform at the origin,
hich is the largest value of the Fourier transform of the
bject. In order to obtain a good superresolved image re-
onstruction we would want good SNR in the raw images.
his would imply that the fourth term, Nn�2fo ,0�, is also

ow. Hence in these conditions the most substantial con-
ribution to this equation comes from the second term,
nd comparatively the contributions from the first, third,
nd fourth terms are negligible. The object Fourier trans-
orm at the origin also happens to have zero phase. The
odulation contrast, m, seen in this term also has zero

hase. If we consider a well-corrected or aberration-free
ystem, then the OTFs, H1 and H2, have zero phase.
herefore the factor ei2�n, which arises from the phase of
he sinusoidal illumination, is the only phase component
n this term. Therefore, to a close approximation, the
hase of the term Gn�2fo ,0� is the phase of the sinusoidal
llumination, allowing us to estimate the phase as

2�̂n = tan−1� imag�Gn�2fo,0��

real�Gn�2fo,0�� � , �18�

here the arctangent is calculated in Matlab using the
tan2 function in which the resulting phase lies between
� and �. Equation (18) can also be applied to any gen-
ralized spatial frequency of sinusoidal illumination
2fox ,2foy� for a rotated fringe pattern.

For conditions of very high spatial frequency of the
inusoidal illumination, where fo / fc→1, the second term,
eighted by H1�2fo ,0�H2�2fo ,0�→0, also approaches zero.

n this case our assumption, that the second term has the
ost substantial contribution to Eq. (17) and that the

ontributions from the first, third, and fourth terms to
his equation are comparatively negligible, is no longer
alid. Therefore this method of phase shift estimation will
ot provide accurate results for very high spatial frequen-
ies of sinusoidal illumination.

Also, for conditions of very low spatial frequency of the
inusoidal illumination, where fo / fc→0, our assumptions
hat �Gg�2fo ,0��
Gg�0,0� and �Gg�4fo ,0��
Gg�0,0� are no
onger true. In that case the first and third term no longer
ave a negligible contribution to the equation. Hence, our
ethod of phase shift estimation will not provide accurate

esults for very low spatial frequencies of sinusoidal illu-
ination.
Also, if the object Fourier transform is significantly

trong at the spatial frequency of the sinusoidal illumina-
ion, then the value of the object Fourier transform at the
ocation of the peak of the sinusoidal illumination in fre-
uency domain might add some non-negligible contribu-
ion to the phase and introduce some error in the phase
hift estimate. This problem may be corrected by using
rior knowledge of the object Fourier transform, such as
btained from a conventional image of the object taken
ith uniform illumination. The value of the object Fourier

ransform at the location of the peak of the sinusoidal il-
umination could be subtracted from the value of the peak
n frequency domain of the sinusoidally patterned image
eing used to obtain the phase-shift estimates. For addi-
ional precision, iterative optimization-based techniques
s mentioned in [28] may be used with these phase shift
stimates as an initial starting point.

Most of the above issues related to conditions for valid-
ty of this phase shift estimation technique are dealt with
n more depth using simulations in [19,20,17].

. EXPERIMENTAL RESULTS
. Data Collection and Processing
e have taken images of a high-resolution USAF bar tar-

et as a specimen object on a Zeiss fluorescence micro-
cope. We applied some ink from a fluorescent marker pen
o the bar target to make it fluoresce. We used a 0.3 NA,
0� objective and a fluoroscein isothiocyanate (FITC) fil-
er cube (excitation 
470 nm and emission 
520 nm). We
ntroduced an additional stop in the light path to reduce
he effective NA of the objective to 
0.067 and the reso-
ution to 
3.9 �m. Then several groups of bars on the
SAF bar target were unresolved and could be used to

erify superresolution later in our experiment.
We first took a conventional fluorescence image of the

bject with uniform illumination, a portion of which is
hown in Fig. 3(a). We labeled this figure for bars belong-
ng to groups (7,6) to (8,4) that will be referred to in the
ollowing discussion. The Fourier transform of the con-
entional image is shown in Fig. 4(a). All Fourier trans-
orm images shown in this paper have been stretched to
isplay dim details. It can be seen that the finest discern-
ble bars in the conventional image belong to the (7,6)
roup of the USAF bar target, having a spacing of
28 lp/mm (i.e. 4.4 �m).
We assumed a perfect, unaberrated system and used a

esolution of 
3.7 �m (the calculated 3.9 �m with a
5% allowance for possible error in the numerical aper-
ure and wavelength) to obtain an approximate, ideal
TF of the imaging path. We used this OTF to deconvolve

he conventional image using a Weiner filter to obtain the
mage shown in Fig. 3(b) and its Fourier transform in Fig.
(b). We used fairly aggressive deconvolution, with c
0.1, to ensure that high-frequency information is not
issed, at the expense of some colored noise. One could be

ess aggressive and use a larger value of c. This would re-
uce the colored noise in the reconstruction at the cost of
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lightly poorer resolution. This figure shows that the fin-
st visible bars in the deconvolved conventional image be-
ong to the group (8,1) of the USAF bar target having a
pacing of 256 lp/mm (i.e., 3.9 �m). This implies that the
56 lp/mm bars, lying close to the resolution limit, were
robably present in the conventional image, but did not
ave strong enough contrast to be visible until after the
ggressive deconvolution. This verifies that 3.9 �m is
ithin the resolution limit of our system. Bars with finer

pacing than this were still not visible since deconvolu-
ion does not increase the resolution of the system, and

ig. 4. Stretched Fourier transform of (a) conventional image,
b) deconvolved conventional image, (c) sinusoidal grid patterned
mage, (d) deconvolved noise-reduced conventional image.

ig. 3. (a) Conventional image, (b) deconvolved conventional im
onventional image.
hese spatial frequencies continue to be absent in the de-
onvolved conventional image. This is also seen in the
ourier domain Fig. 4(b), which does not show any in-
rease in the extent of the Fourier domain of the decon-
olved image.

We then inserted in the illumination path a sinusoidal
rid having a spatial frequency at 
47% of the cutoff fre-
uency of the imaging system, and we imaged the object
ith this sinusoidal illumination pattern. One such sinu-

oidally patterned image is shown in Fig. 3(c) and its Fou-
ier transform in Fig. 4(c), which shows distinct peaks, la-
eled by white arrows, arising from the spatial frequency
f the sinusoidal grid pattern in the illumination. We took
set of 20 such sinusoidally patterned images, where the

bject was moved in each image by translating the object
tage of the microscope by random, unknown amounts.

In our theoretical discussion in Section 2 above, we
ook three such sets of sinusoidally patterned images with
hree rotations of the sinusoidal pattern, each spaced 60°
part. Here, we are aiming at only 
47% superresolution,
nd it was therefore enough to take two sets of grid ori-
ntations, rotated 90° apart, to cover most of the Fourier
pace in the superresolved reconstruction without miss-
ng gaps in the extended passband. This holds true for
ny object, not just for the USAF bar target. So we ro-
ated the grid by 90° and took another set of 20 images in
his orientation. We processed each set of images for each
rientation separately.

We first used these images to verify the resolution of
ur system. Using the bars on the USAF bar target as ref-
rence, the fringe spacing in the image domain is
7.8 �m. From the grid peaks in the Fourier domain, we

stimated the grid frequency in the 256�256 pixel Fou-
ier transform of each sinusoidally patterned image to be
20.3 pixels. This implies that the calculated resolution

f the system, 3.9 �m, is 
41 pixels in frequency domain.
e obtained another rough estimate of the extent of the

) sinusoidal grid patterned image, (d) deconvolved noise-reduced
age, (c
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assband of the system by summing 20 sinusoidally pat-
erned images having random phase shifts, thereby boost-
ng the SNR of the summed image. In the Fourier trans-
orm of this sum, the diagonal streaks from the object can
e seen all the way to about 41 pixels in the Fourier do-
ain. This gives us a lower bound on the cutoff frequency

f the system because the high spatial frequencies just be-
ore the cutoff of the OTF might be drowned in noise,
aking them not visible. This verifies that the calculated

imit of the system (
41 pixels in the Fourier domain and
.9 �m in the image domain) is reasonably accurate.
Further, the finest group (8,1) seen in the deconvolved

mage, having a spacing of 3.9 �m, translates to
40.7 pixels in frequency domain, validating that the

0.7 pixels are within the cutoff of the system. However if
he cutoff frequency of the system were as close as the cal-
ulated value of 41 pixels, it would require tremendously
igh SNR for this group of bars to be visible. But they are
learly visible even in the deconvolution of a single image,
uggesting that the actual cutoff is slightly greater than
1 pixels.
To further pinpoint the cutoff of the system, we decon-

olved the conventional image using different OTFs as-
uming slightly different cutoff frequencies. If the as-
umed OTF cutoff is too small, then one risks discarding
seful signal at the edge of the passband. If the cutoff is
oo large, then one might include and enhance noise out-
ide the passband. The correct cutoff frequency gives bal-
nced results for the best resolution and the least noise.
n the processing for our experiment, the best visual re-
ults were obtained for a cutoff frequency of 43 pixels,
bout 5% greater than our calculated cutoff frequency of
41 pixels. This seemed to be within plausible experi-
ental error, so henceforth we assume 43 pixels is the

utoff frequency, which is equivalent to 
3.7 �m reso-
ution in image space.

Now we proceed with processing each set of these sinu-
oidally patterned images for superresolution. The con-
entional image was used as a reference to register, to
ub-pixel accuracy [29], each set of sinusoidal grid pat-
erned images where the object was moving. Once regis-
ered, the object was aligned in all the sinusoidally pat-
erned images, and the phase of the sinusoidal pattern
ffectively shifted over the object. This phase shift in each
mage was estimated using Eq. (18) from the aforemen-
ioned peaks in the Fourier domain of the sinusoidally
atterned images (arising from the Fourier transform of
he sinusoid), which are labeled with white arrows in Fig.
(c). We used upsampled versions [29,19] of the Fourier
ransforms of the images in the phase shift estimation to
mprove its accuracy (with an upsampling factor of 37
sed here). These phase shift estimates were used to con-
truct the matrix A using Eq. (3), and the Fourier trans-
orms of the 20 images were used to form B using Eq. (5).
hese were used to solve for vector X on a pixel-by-pixel
asis using X=A−1B. This was repeated for the image set
here the grid was rotated by 90°. We used the separated

erms to obtain all component images, Îci. The corre-
ponding OTFs, otfi, are obtained by using the ideal OTF
n Eqs. (7) and (10).

The two conventional components, obtained from the
wo sets of data taken with two orientations of the sinu-
oidal illumination, each contain a great deal of noise re-
uction due to the effective averaging of all the grid im-
ges in the singular value decomposition and
seudoinverse. We used these two conventional compo-
ent images and averaged them to obtain a further noise-
educed conventional image. This noise-reduced conven-
ional image would make a fairer comparison with the
uperresolution images that have undergone similar av-
raging. The noise-reduced conventional image was de-
onvolved using a Weiner filter with a regularization con-
tant c=0.1 to obtain the deconvolved noise-reduced
onventional image and its Fourier transform shown in
ig. 3(d) and Fig. 4(d), respectively. The image does show
ignificant reduction in the contrast of colored noise and
mprovement in SNR, but it shows no greater resolution
han the conventional deconvolved image. Here, too, the
nest visible bars still belong to the group (8,1) of the
SAF bar target having a spacing of 256 lp/mm (i.e.,
.9 �m). Here also, the Fourier domain does not show
ny increase in the extent of the recovered Fourier trans-
orm.

We also employed the component images, Îci, and cor-
esponding OTFs, otfi, in Eq. (16), with c=0.1, and �i=1,
o produce a superresolved image. As in the conventional
mage deconvolution, this value of c improved the con-
rast and visibility of the bars in our reconstruction, al-
hough at a cost of increase in colored noise. This gave us
he reconstructed image and its Fourier transform with
pproximately 47% superresolution shown in Fig. 5(a)
nd Fig. 6(a), respectively. Here the finest visible set of
ars belongs to the group (8,4) of the USAF high-
esolution bar target having a line spacing of 362 lp/mm
i.e., 2.8 �m). This was substantially outside the reso-
ution limits of the deconvolved, noise-reduced, conven-
ional image. The Fourier domain also shows an increase
n the extent of its non-zero spatial frequencies. The di-
gonally oriented streaks in the Fourier domain that are
haracteristic of the bar target can be seen to extend be-
ond the extent of the conventional OTF. This image is
he experimental verification of superresolution.

When the Fourier transform of this superresolved im-
ge is stretched and displayed as in Fig. 6(a), it is possible
o see that there are some residual peaks in the Fourier
omain, labeled by two white arrows, visible from the
emnants of one orientation of the sinusoidal illumination
n the Fourier domain of the reconstructed superresolved
mage. Such residual peaks may arise for several reasons.
ne possibility is imperfections in the phase shift esti-
ates. This could arise due to the slight overlap of the

treaks from the object’s Fourier transform with the
eaks from the Fourier transform of the sinusoidal grid
atterned illumination. The residual peaks could also
rise if the illumination in the grid-patterned image was
on-uniform or varied between images. Another cause
ould be that there were several images in the set having
imilar phase shifts. We plot all the phase shifts in our 20
mages for both orientations in Fig. 7. There does not ap-
ear to be any significantly unusual difference in the
pread in the phase shifts for the images in the two ori-
ntations. The figure also contains phase shift estimates
btained later in the experiment for fewer images in each
et. We are not yet certain as to the exact reason for this
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esidue in this orientation, but the residual peaks appear
o be dim enough in magnitude as to not produce disturb-
ng artifacts in the image.

Considering the size of the finest bars visible in this re-
onstruction �362 lp/mm� and the resolution of our con-
entional system �256 lp/mm�, we can verify that the res-
lution in the reconstructed image is enhanced by at least
1%. We could not verify 47% superresolution as we
ould require bars having spacing close to 400 lp/mm in
ur object, whereas the next set of bars on the USAF bar
arget was 406 lp/mm which, at 49.6% superresolution,
as outside the expected theoretical 47% superresolution.

. Minimizing Data Collection
he above superresolved reconstruction used two sets of
0 sinusoidal grid-patterned images in each set, with the

ig. 5. (a)–(e) show the 
47% superresolved image obtained us
mages in each orientation with random phase shifts in the sinus
ith phase shifts well spaced over 360°.
inusoidal illumination rotated by 90° in one set with re-
pect to the other. This means that a total of 40 images
ent into the production of a single superresolved image.
he effects of using sets of 12, 6, 4, and 3 images for each
rientation of the sinusoidal illumination are shown in
igs. 5(b)–5(e) and their Fourier transforms in Figs.
(b)–6(e), respectively. We again use a regularization con-
tant of c=0.1 for all of these reconstructions.

The reconstruction that used 12�2=24 images in all,
ig. 5(b), still shows all the groups of bars up to group

8,4) of the USAF high-resolution bar target having a line
pacing of 362 lp/mm (i.e., 2.8 �m), and has image qual-
ty comparable to Fig. 5(a). The reconstruction that used
�2=12 images in all, Fig. 5(c), also shows that all the
roups of bars up to group (8,4) of the USAF high-
esolution bar target having a line spacing of 362 lp/mm

o sets of (a) 20, (b) 12, (c) 6, (d) 4, (e) 3 sinusoidal grid patterned
llumination. (f)–(h) used two sets of (f) 6, (g) 4, and (h) 3 images
ing tw
oidal i
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i.e., 2.8 �m) are still discernible, although the colored
oise in the image has significantly increased and the

8,4) group is barely discernible. The Fourier domain
hows that residual peaks, labeled by white arrows, have
ncreased compared to the case of using a larger number
f images and now are visible for both orientations of the
inusoidal illumination. In the reconstruction that used
�2=8 images in all, Fig. 5(d), the resolution appears to
e only slightly better than the conventional recon-
tructed image. None of the bars beyond the convention-
lly visible (8,1) group are discernible here. The residual
eaks in the Fourier domain are still distinctly visible and

ig. 6. (a)–(e) show the stretched Fourier transform of a
47%
uperresolved image obtained using two sets of (a) 20, (b) 12, (c)
, (d) 4, (e) 3 sinusoidal grid patterned images in each orientation
ith random phase shifts in the sinusoidal illumination. (f)–(h)
sed two sets of (f) 6, (g) 4, and (h) 3 images with phase shifts
ell spaced over 360°.
he SNR in the extended “superresolved” areas beyond
he conventional OTF in the Fourier domain appears to
e poor. The same holds for the case of the reconstruction
hat used 3�2=6 images in all, shown in Fig. 5(e) and its
ourier transform Fig. 6(e). No bars beyond the conven-
ionally visible (8,1) group are visible and any resolution
nhancement is indistinct.

Thus, although technically the minimum required
umber of images for each orientation is 3, in practice the
umber needed for useful superresolution depends on
everal factors. It primarily depends on the SNR of the
onventional imaging system. Low SNR and low light lev-
ls require a greater number of images. Similarly greater
mounts of superresolution, for which the OTF factor will
e low, will lower the SNR for the superresolved spatial
requencies, requiring a greater number of images. If we
ad used a lower-spatial-frequency grid pattern, say, at
5% of the cutoff frequency, we would expect less super-
esolution (i.e., 25%). In this case the contrast of the sinu-
oidal pattern would be higher and hence the SNR in the
rid patterned image would also be higher, and one would
eed fewer images for the 25% superresolution than
eeded to obtain close to 50%.
Further, as discussed in the SNR analysis section, the

umber of images required in each orientation for useful
uperresolution depends on the randomness of the phase
hifts and, in this case, the motion of the object. If the im-
ges in each set have well-spaced phase shifts covering
he entire 360° phase space, then fewer images will be
eeded to obtain discernible superresolution. If several

mages in a set have similar phase shifts, more images
ill be needed to add diversity. We plot the estimated
hase shifts (along the angular axis) in our 20, 12, 6, 4,
nd 3 image sets (along the radial axis) for both orienta-
ions of the sinusoidal grid (plotted with asterisks and
pen circles) in Fig. 7. The plots show that the estimated
hase shifts in the images for the case of sets of 6, 4, and
images are somewhat clumped in phase. We repeated

ig. 7. Phase shift estimates for sinusoidally patterned images
ith random phase shifts having 20, 12, 6, 4, and 3 images in
ach set and 2 orientations for each set.



t
w
w
8
a
F
S
t
p
o
i
t
v
S
r
p
o

q
n
t

5
I
p
l
t
s
t
fl
b
a
h
m
t
c
u

T
a
d
m
l
T
u
a
d
p
t
c
t
w
t
p
d
a
t
p
n
c
o
t
s
g
i
d

b
t
b
i
S
t
w
b
r
h
a
c
O
s
c
e
i
p
i

A
T
s

h
=
U
r
f
a

F
w
e

Shroff et al. Vol. 27, No. 8 /August 2010 /J. Opt. Soc. Am. A 1779
he reconstruction for the case of 6, 4, and 3 image sets,
ith images that were chosen to have phase shifts some-
hat better spaced in the 360° phase space (shown in Fig.
). The reconstructed images are shown in Figs. 5(f)–(h)
nd the corresponding Fourier transforms are shown in
igs. 6(f)–6(h). We see a marked improvement in both the
NR and the effective visible resolution of the reconstruc-
ions. Here we can see that all the images show an im-
rovement in resolution and all the bars up to group (8,4)
f the USAF high-resolution bar target having a line spac-
ng of 362 lp/mm (i.e., 2.8 �m) can now be resolved for
he case of sets of 6, 4, as well as 3 images. Thus the di-
ersity of phase shifts is very important in deciding the
NR of the superresolved reconstruction. For the case of
andom phase shifts one cannot guarantee well-spaced
hase shifts, so it is prudent to take more than just three
r four exposures with random phase shifts.

Thus the number of sinusoidally patterned images re-
uired to obtain a single superresolved image varies sig-
ificantly depending on the imaging system, the illumina-
ion setup, and the application.

. CONCLUSIONS
n this paper we have discussed a method to estimate the
hase shifts in the sinusoidal illumination a posteriori, al-
owing us to apply the technique of structured illumina-
ion imaging to non-stationary objects such as in vivo tis-
ue. We have verified the phase shift estimation
echnique experimentally. We estimated phase shifts in
uorescence microscopy images for a fluorescent USAF
ar target having unknown, random translational motion
nd used them to obtain an artifact-free reconstruction
aving over 40% superresolution as expected. The object
otion effectively introduces the required phase shifts in

he sinusoidal illumination. The object in these images
an be aligned to sub-pixel accuracy in post-processing by
sing a conventional image of the object as a reference.

ig. 8. Phase shift estimates for sinusoidally patterned images
ith phase shifts spread over 360° having 6, 4, and 3 images in
ach set and 2 orientations for each set.
he phase of the sinusoidal illumination can be estimated
posteriori as demonstrated in this paper using a Fourier
omain approach. This approach is more accurate for
oderate spatial frequencies than for very high or very

ow spatial frequencies of the sinusoidal illumination.
hese phase-shift estimates may be further refined if
sed as initial estimates to iterative optimization-based
lgorithms if further accuracy in phase-shift estimation is
esired. We assumed �i=1 in our reconstructions in this
aper, but in the future we would like to estimate it from
he distribution of phase values. We demonstrated the re-
onstruction of a superresolved image with negligible ar-
ifacts in the image when a reasonable number of images
ere used. The minimum number of images needed to ob-

ain a single image with significant superresolution de-
ends on the superresolution factor, the SNR, the ran-
omness of the phase shifts, the contrast of the sinusoid,
nd the aberrations of the imaging and illumination sys-
ems. Greater amounts of superresolution, such as ap-
roaching 100%, would require a more customized illumi-
ation setup with a laser source producing higher
ontrast sinusoidal fringe illumination, three orientations
f the sinusoidal illumination to cover the entire area of
he extended OTF, and possibly a greater number of sinu-
oidally patterned images. The phase shift estimation al-
orithm should work on high-spatial-frequency sinusoidal
llumination as long as it does not exceed about 90% of the
iffraction limited cutoff or contain excessive noise.
Sinusoidally patterned illumination imaging can thus

e applied to image objects having random and unknown
ranslational motion to obtain superresolution. It would
e advisable to take more than the minimum number of
mages for such randomly moving objects to ensure good
NR in the reconstruction. There is also some work per-
aining to non-linear structured illumination [3,30],
here the illumination excites a non-linear emission
ased on the saturated or stimulated emission of the fluo-
ophore material producing spatial frequencies that are
igher harmonics of the original sinusoidal illumination
nd lie beyond the illumination OTF. Such illumination
ould provide even greater amounts of superresolution.
ur algorithms would have to be modified to adapt to

uch imaging techniques. Our approach and algorithms
an also be used for axial optical sectioning in the pres-
nce of unknown phase shifts. We discuss this application
n a future publication. This broadens the scope of its ap-
lication to new areas such as in vivo imaging and imag-
ng in vibration and motion-prone environments.

PPENDIX A
his appendix contains derivations for the SNR analysis
hown in Subsection 2.C.

First we consider four sinusoidally patterned images
aving phase shifts in the sinusoidal illumination, 2�n
0, � /2, �, and 3� /2, and exp�± i2�n�=1, ±i, −1, and �i.
sing Eq. (2) we obtain their four respective image Fou-

ier transforms Ĝ1, Ĝ2, Ĝ3, and Ĝ4. The closed-form value
or the noisy version of the conventional component im-
ge, I , is given as
c1
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Îc1�fx,fy� =
1

4
�Ĝ1�fx,fy� + Ĝ2�fx,fy� + Ĝ3�fx,fy� + Ĝ4�fx,fy��

=
1

2
H1�0,0�H2�fx,fy�Go�fx,fy� +

1

4
�N1�fx,fy�

+ N2�fx,fy� + N3�fx,fy� + N4�fx,fy��. �A1�

he signal power spectrum in this image component is

�S1�fx,fy� =��1

2
H1�0,0�H2�fx,fy�Go�fx,fy��2�

=
1

4
�H1�0,0�H2�fx,fy��2�o�fx,fy�, �A2�

here �o= ��Go�fx , fy��2	 is the object power spectrum. The
TF for this image component is given by Eq. (7). The
oise power spectrum is

�N1�fx,fy� =
1

16
��N1

2 + �N2
2 + �N3

2 + �N4
2 � =

1

4
�2, �A3�

here �2
Nk is the noise variance in each image, k

1,2, . . .4. Here we assume that the four images contain
tatistically independent noise realizations having identi-
al variances, �2. Using Eqs. (A2) and (A3) the power
NR for this image component is

SNRc1 =
�S1�fx,fy�

�N1
=

1

�2 �H1�0,0�H2�fx,fy��2�o�fx,fy�.

�A4�

he noisy version of the superresolution component Ic2 is

�G1�fx,fy� − G3�fx,fy�� − i�G2�fx,fy� − G4�fx,fy��

= mH1�2fo,0�H2�fx,fy�Go�fx − 2fo,fy� + �N1�fx,fy�

− N3�fx,fy�� − i�N2�fx,fy� − N4�fx,fy��. �A5�

ub-pixel shifting this term in frequency space (by multi-
lying by a linear phase in the Fourier domain) and di-
iding by 4 for averaging, we obtain

Îc2�fx,fy� =
1

4
mH1�2fo,0�H2�fx + 2fo,fy�Go�fx,fy� +

1

4
��N1�fx

+ 2fo,fy� − N3�fx + 2fo,fy�� − i�N2�fx + 2fo,fy�

− N4�fx + 2fo,fy���. �A6�

he signal power spectrum for this component image is
iven by

�S2�fx,fy� =��1

4
mH1�2fo,0�H2�fx + 2fo,fy�Go�fx,fy��2�

=
1

16
�mH1�2fo,0�H2�fx + 2fo,fy��2�o�fx,fy�. �A7�

he OTF affecting it is given by Eq. (10). The noise power
pectrum for Î is
c2
�N2�fx,fy� =
1

16
��N1�2 + �N2�2 + �N3�2 + �N4�2 � =

1

4
�2, �A8�

here �Ni�2 is the variance for the noise realizations shifted
n frequency space to �fx−2fo , fy�. We again assume statis-
ical independence and identical variances, �2, for the
oise realizations. Therefore, the SNR for this image com-
onent is

SNRc2 =
�S2�fx,fy�

�N2

=
1

4�2 �mH1�2fo,0�H2�fx + 2fo,fy��2�o�fx,fy�.

�A9�

The SNR for Îc3 can be derived in a similar manner by
eplacing i by �i and 2fo by �2fo in the above equation.
imilarly we derive the closed form SNR for image com-
onents obtained for sinusoidally patterned images where
�n=0, � /4, � /2, and 3� /4, exp�± i2�n�=1, �1± i� /�2, ±i,
nd �−1± i� /�2. The Fourier transforms of these images
re given by Ĝ1, Ĝ2, Ĝ3, and Ĝ4. For this case, the noisy ver-
ion of the first component can be obtained optimally in
losed form as

Îc1�fx,fy� = �1 + �2

2�2
��Ĝ1�fx,fy� + Ĝ4�fx,fy�� −

1

2�2
�Ĝ2�fx,fy�

+ Ĝ3�fx,fy��

=
1

2
H1�0,0�H2�fx,fy�Go�fx,fy� + �1 + �2

2�2
��N1�fx,fy�

+ N4�fx,fy�� −
1

2�2
�N2�fx,fy� + N3�fx,fy��. �A10�

he signal power spectrum in this component is

�S1�fx,fy� =��1

2
H1�0,0�H2�fx,fy�Go�fx,fy��2�

=
1

4
�H1�0,0�H2�fx,fy��2�o�fx,fy�. �A11�

he noise power spectrum is

�N1�fx,fy� = �1 + �2

2�2
�2

��N1
2 + �N4

2 � + � 1

2�2
�2

��N2
2 + �N3

2 �

=
�2 + 1

�2
�2 = 1.7�2, �A12�

here, as before, �Nk
2 is the noise variance in the image,

=1,2, . . .4, and we assume statistically independent
oise realizations in the four images with identical vari-
nces, �2. Therefore the power SNR for this image com-
onent is
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SNRc1 =
�S1�fx,fy�

�N1
=

1

6.8�2 �H1�0,0�H2�fx,fy��2�o�fx,fy�,

�A13�

hich is 6.8 times less than for the case of equally spaced
hase shifts given by Eq. (A4).
The noisy version of the superresolution component Ic2

or the present case can be optimally computed as

�0.04 + i0.5�Ĝ1�fx,fy� + �0.3 − i0.4�Ĝ2�fx,fy�

+ �0.1 − i0.5�Ĝ3�fx,fy� + �− 0.4 + i0.3�Ĝ4�fx,fy�

=
1

4
mH1�2fo,0�H2�fx,fy�Go�fx − 2fo,fy�

+ �0.04 + i0.5�N1�fx,fy� + �0.3 − i0.4�N2�fx,fy�

+ �0.1 − i0.5�N3�fx,fy� + �− 0.4 + i0.3�N4�fx,fy�.

�A14�

s before, sub-pixel shifting this term in frequency space
by multiplying by a linear phase in the Fourier domain),
e obtain

Îc2�fx,fy� =
1

4
mH1�2fo,0�H2�fx + 2fo,fy�Go�fx,fy�

+ �0.04 + i0.5�N1�fx + 2fo,fy�

+ �0.3 − i0.4�N2�fx + 2fo,fy�

+ �0.1 − i0.5�N3�fx + 2fo,fy�

+ �− 0.4 + i0.3�N4�fx + 2fo,fy�. �A15�

he signal power spectrum for this image component is

�S2�fx,fy� =��1

4
mH1�2fo,0�H2�fx + 2fo,fy�Go�fx,fy��2�

=
1

16
�mH1�2fo,0�H2�fx + 2fo,fy��2�o�fx,fy�.

�A16�

ts noise power spectrum is

�N2�fx,fy� = �0.04 + i0.5�2�N1�2 + �0.3 − i0.4�2�N2�2

+ �0.1 − i0.5�2�N3�2 + �− 0.4 + i0.3�2�N4�2 = 0.98�2,

�A17�

here �Ni�2 and �2 are as defined before. Its power SNR is
iven as

SNRc2 =
�S2�fx,fy�

�N2

=
1

15.7�2 �mH1�2fo,0�H2�fx + 2fo,fy��2�o�fx,fy�.

�A18�

hich is 3.9 times less than for the case of equally spaced
hase shifts given by Eq. (A9).
EFERENCES
1. M. Gustaffson, “Surpassing the lateral resolution limit by a

factor of two using structured illumination microscopy,” J.
Microsc. 198, 82–87 (2000).

2. M. Gustafsson, “Extended-resolution reconstruction of
structured illumination microscopy data,” in Computa-
tional Optical Sensing and Imaging Topical Meetings on
CD-ROM, Technical Digest (Optical Society of America,
2005), paper JMA2.

3. M. Gustafsson, L. Shao, D. A. Agard, and J. W. Sedat,
“Fluorescence microscopy without resolution limit,” in
Biophotonics/Optical Interconnects and VLSI Photonics/
WBM Microcavities, 2004 Digest of the LEOS Summer
Topical Meetings (IEEE, 2004), Vol.2, pp. 28–30.

4. R. Heintzmann and C. Cremer, “Laterally modulated exci-
tation microscopy: Improvement of resolution by using a
diffraction grating,” Proc. SPIE 3568, 185–196 (1999).

5. M. Gustafsson, “Extended resolution fluorescence micros-
copy,” Curr. Opin. Struct. Biol. 9, 627–634 (1999).

6. W. Lukosz, “Optical systems with resolving powers exceed-
ing the classical limits II,” J. Opt. Soc. Am. 57, 932–941
(1967).

7. D. Mendlovic, A. W. Lohmann, N. Konforti, I. Kiryuschev,
and Z. Zalevsky, “One-dimensional superresolution optical
system for temporally restricted objects,” Appl. Opt. 36,
2353–2359 (1997).

8. E. Sabo, Z. Zalevsky, D. Mendlovic, N. Konforti, and I. Kiry-
uschev, “Superresolution optical system using three fixed
generalized gratings: experimental results,” J. Opt. Soc.
Am. A 18, 514–520 (2001).

9. A. Shemer, Z. Zalevsky, D. Mendlovic, N. Konforti, and E.
Marom, “Time multiplexing superresolution based on inter-
ference grating projection,” Appl. Opt. 41, 7397–7404
(2002).

0. S. W. Hell and J. Wichmann, “Breaking the diffraction res-
olution limit by stimulated emission: stimulated-emission-
depletion fluorescence microscopy,” Opt. Lett. 19, 780–
782(1994).

1. X. Chen and S. R. J. Brueck, “Imaging interferometric li-
thography: approaching the resolution limits of optics,”
Opt. Lett. 24, 124–126 (1999).

2. C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, “Imaging
interferometric microscopy,” Opt. Lett. 28, 1424–1426
(2003).

3. V. Mico, Z. Zalevsky, and J. García, “Superresolution optical
system by common-path interferometry,” Opt. Express 14,
5168–5177 (2006).

4. G. E. Cragg and P. T. C. So, “Lateral resolution enhance-
ment with standing evanescent waves,” Opt. Lett. 25,
46–48 (2000).

5. E. Chung, D. Kim, and P. T. So, “Extended resolution wide-
field optical imaging: objective-launched standing-wave to-
tal internal reflection fluorescence microscopy,” Opt. Lett.
31, 945–947 (2006).

6. T. Wilson and C. J. R. Sheppard, Theory and Practice of
Scanning Optical Microscopy (Academic, 1983).

7. S. A. Shroff, J. R. Fienup, and D. R. Williams, “Phase-shift
estimation in sinusoidally illuminated images for lateral
superresolution,” J. Opt. Soc. Am. A 26, 413–424 (2009).

8. S. A. Shroff, J. R. Fienup, and D. R. Williams, “OTF com-
pensation in structured illumination superresolution im-
ages,” Proc. SPIE 7094, 709402-1–11 (2008).

9. S. A. Shroff, J. R. Fienup, and D. R. Williams, “Phase shift
estimation in structured illumination imaging for lateral
resolution enhancement,” in Signal Recovery and Synthe-
sis, Topical Meetings on CD-ROM, OSA Technical Digest
(CD) (Optical Society of America, 2007), paper SMA2.

0. S. A. Shroff, J. R. Fienup, and D. R. Williams, “Estimation
of phase shifts in structured illumination for high reso-
lution imaging,” in Frontiers in Optics, OSA Technical Di-
gest (CD) (Optical Society of America, 2007), paper FMH4.

1. G. Strang, Linear Algebra and Its Applications (Thomson
Learning, Inc., 1998).

2. L. P. Yaroslavsky and H. J. Caulfield, “Deconvolution of



2

2

2

2

2

2

2

3

1782 J. Opt. Soc. Am. A/Vol. 27, No. 8 /August 2010 Shroff et al.
multiple images of the same object,” Appl. Opt. 33, 2157–
2162 (1994).

3. C. W. Helstrom, “Image restoration by the method of least
squares,” J. Opt. Soc. Am. 57, 297–303 (1967).

4. D. J. Tolhurst, Y. Tadmore, and T. Chao, “Amplitude spectra
of natural images,” Ophthalmic Physiol. Opt. 12, 229–232
(1992).

5. A. van der Schaaf and J. H. van Hateren, “Modelling the
power spectra of natural images: statistics and informa-
tion,” Vision Res. 36, 2759–2770 (1996).

6. D. R. Gerwe, M. Jain, B. Calef, and C. Luna, “Regulariza-
tion for nonlinear image restoration using a prior on the ob-
ject power spectrum,” in Proc. SPIE 5896, 1–15 (2005).

7. S. T. Thurman and J. R. Fienup, “Wiener reconstruction of
undersampled imagery,” J. Opt. Soc. Am. A 26, 283–288
(2009).

8. L. H. Schaefer, D. Schuster, and J. Schaffer, “Structured il-
lumination microscopy: artefact analysis and reduction uti-
lizing a parameter optimization approach,” J. Microsc. 216,
165–174 (2004).

9. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Effi-
cient subpixel image registration algorithms,” Opt. Lett. 33,
156–158 (2008).

0. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated
patterned excitation microscopy—a concept for optical res-
olution improvement,” J. Opt. Soc. Am. A 19, 1599–1609
(2002).


