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Structured illumination imaging uses multiple images of an object having different phase shifts in the sinu-
soidally patterned illumination to obtain lateral superresolution in stationary specimens in microscopy. In our
recent work we have discussed a method to estimate these phase shifts a posteriori, allowing us to apply this
technique to non-stationary objects such as in vivo tissue. Here we show experimental verification of our ear-
lier simulations for phase shift estimation a posteriori. We estimated phase shifts in fluorescence microscopy
images for an object having unknown, random translational motion and used them to obtain an artifact-free
reconstruction having the expected superresolution. © 2010 Optical Society of America
OCIS codes: 100.3020, 100.6640, 050.5080, 170.0180, 070.0070, 110.4850.

1. INTRODUCTION

The resolution of an imaging system is limited by the im-
aging wavelength and numerical aperture. Structured il-
lumination imaging is a technique that has been applied
to obtain lateral superresolution in microscopy [1-5].
Other variations and applications of structured illumina-
tion have been discussed in several related publications
[6-16]. When a sinusoidal illumination is projected on an
object, the high-frequency components of the object in the
Fourier domain are aliased and shifted into the passband
of the imaging system. In order to de-alias and separate
these superresolution frequencies from the conventionally
accessible frequencies in the image, three or more such si-
nusoidally patterned images are taken with the phase of
the sinusoidal illumination shifted by distinct amounts in
each image; a system of equations is then solved to yield
the separated components, which are shifted to their ap-
propriate locations and combined. If illumination with a
sinusoidal fringe pattern only in one direction is used, it
allows superresolution only along the direction perpen-
dicular to the fringes in the sinusoidal illumination. So
the processing is repeated for images taken with sinu-
soidal illumination in different orientations to obtain su-
perresolution in all directions.

Precise and accurate knowledge of the phase shifts in
the sinusoidal illumination is necessary for further pro-
cessing of the images to obtain a superresolved image.
Therefore, most prior work has been restricted to station-
ary objects on anti-vibration stages used with expensive
and precise, pre-calibrated translation stages to introduce
the phase shifts. We are interested in extending the ap-
plication of this technique to moving, non-stationary ob-
jects such as living, in vivo tissue or objects in vibrating
environments. We are particularly interested in applying
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this technique to image the moving human retina in vivo.
Therefore, we have developed a technique to estimate
these phase shifts a posteriori and obtain superresolution
for a non-stationary object [17-20]. Here we provide ex-
perimental verification of our theory by demonstrating its
application to a test object having unknown, random
translational motion.

2. SUPERRESOLUTION WITH SINUSOIDAL
ILLUMINATION

We summarize here the concept of superresolution ob-
tained from imaging using a sinusoidal illumination.

A. Formation of Sinusoidally Patterned Image

Consider a sinusoidal illumination field, U;,(x,y)
=cos(27f,x+¢,), which has a spatial frequency of (f,,0)
and a phase shift of ¢,. The intensity of this sinusoidal
illumination is given by

1
I ,(x,y)= 5[1 +m cos(4mfx +2¢,)], (1)

which has a spatial frequency of (2f,,0) and a phase shift
of 2¢,. The modulation contrast, m, is assumed to be 1 for
most of our analysis. Let G, be the Fourier transform of
the intensity of the object and H; and H, be the optical
transfer functions (OTFs) of the illumination and imaging
paths, respectively, of the system. Adding noise, N, to G,,
the Fourier transform of such a sinusoidally patterned
image, the effective noisy image in the Fourier domain, as
visualized in Fig. 1, is given by [17,18,4]

© 2010 Optical Society of America
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Fig. 1. Visualization of sinusoidal grid patterned image in the
Fourier domain [17].
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If we ignore noise for the moment and assume N, (f.,f,)
=0, then Eq. (2) consists of three terms each containing
copies of the object’s Fourier transform: G,(f..f,), G,(fx
-2f,.f,) and G,(f,+2f,,f,). The term G,(f;,f,) is the same
as the object information present in a conventional image
taken with uniform illumination. But the two copies,
Golfe=2f5.1y) and Go(fi+2f,.f,), replicate the object’s Fou-
rier transform, translated by the spatial frequency of the
sinusoidal illumination. These copies effectively drag
those portions of the object’s Fourier transform, which
usually lie outside the passband of the system and are in-
accessible in a conventional image, into the passband of
the system. Therefore they are treated as the “superreso-
lution” components of our image.

B. Separation of Overlapping Superresolution and
Conventional Components

It is important to separate these overlapping terms from
this image in order to utilize the value of this superreso-
lution information. If they are treated as three unknowns,
three or more equations would be needed to solve for
them. Therefore we take N such sinusoidally illuminated
images of the same object, where N=3, and where the
phase of the sinusoidal illumination is shifted by distinct
amounts, 2¢,, where n=1,2,...N. Now this system of N
images is treated as a linear system of N equations, AX
=B, where
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This form is improved over that we proposed in [17] in or-
der to track the signal-to-noise ratio (SNR). We solve for
vector X by inverting matrix A using singular value de-
composition and pseudoinverse [21] and premultiplying it
to matrix B as X=A"1B. If there were noise in the image,
the singular value decomposition and pseudoinverse are
reasonably robust at handling noise. The separated com-
ponents of vector X may be used to obtain a superresolved
image. The first term

1
Icl(fx}fy) = EHI(O’O)HZ(ﬂ?fy)go(fx}fy)v (6)

contains the conventional unshifted object component.
Correspondingly the OTF affecting this component is
given by

1
0tf1(fx9fy) = EHI(O’O)HZ(f;cafy) . (7)

The terms H; and H, may be estimated by characterizing
the illumination and imaging paths of the system. In our
results we assume that we have an aberration-free sys-
tem and that H;="Hy. The second and third terms in vec-
tor X, containing the superresolution information, are
sub-pixel shifted in Fourier space to their appropriate lo-
cations to obtain the two superresolution image compo-
nents,

1
IcZ(fx?f;/) = ZmH1(2me)H2(fx + 2fmfy)go(fx7f;/) (8)

and



1772 J. Opt. Soc. Am. A/Vol. 27, No. 8/August 2010

1
IcS(fx’f;') = ZmHl(_ 2f050)H2(f;c - 2fo’fy)go(fx’fy) ’ 9)

keeping the two terms separate rather than combined as
in [18]. The OTF for I, is given by

mHl(zme)HZ(fx + 2fo:f;/)a (10)

] =

Otfz(fxafy) =

and the OTF, otfs, for 1.3 can be obtained by replacing 2f,
in Eq. (10) by -2f,.

These superresolution components extend the pass-
band of the image in the Fourier domain in the direction
perpendicular to the fringes in the sinusoidal illumina-
tion. In order to obtain superresolution in all directions in
Fourier space, this process is repeated with the sinusoidal
illumination rotated by, say, 60° and 120°. This gives us
similar conventional image components, I., and I,;, hav-
ing effective OTF's given by otf, and otf;, and superreso-
lution components, I 5, I, 1.3, and I.9, having effective
OTF's given by otfs, otfg, otfg, and otfy, respectively, for the
60° and 120° rotated sinusoidal illumination.

Usually three orientations of the sinusoidal illumina-
tion at 0°, 60°, and 120° cover most of the desired ex-
tended passband in the frequency domain. However, for
lower values of superresolution, such as 50% and less, as
depicted in Fig. 2, just two rotations 90° apart are enough
to cover most of the extent of the desired extended pass-
band, leaving only modest missing gaps (shown as dark
shaded areas in Fig. 2). In the case of two rotations, we
have six rather than nine image components. Before we
proceed with the combination of these component images,
we analyze their SNR.

C. SNR Analysis

Several factors affect the SNR of the component images.
We have performed a similar SNR analysis in [18] and
discussed several of these factors. Here we briefly discuss
those and also further elaborate on the effect of random-
ness in phase shifts of the sinusoidal illumination. We
consider the particular case of 4 sinusoidally patterned
images, where the phase shifts in the sinusoidal illumina-
tion are given by 2¢,=0, 7/2, m, and 37/2, and
exp(xi2¢,)=1, +i, -1, and *i. In Appendix A, Eq. (A4), we

- — = Conventional OTF

--------- Passband of extended
superresolved OTF

— Passband of OTF obtained
with 50% larger pupil

Fig. 2. Visualization of extension of OTF passband with struc-
tured illumination.
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derive the power SNR for the noisy version of the conven-
tional component image, fcl, as

1
SNRCI = ;|H1(07O)Hz(fx’fy)|2(bu(fxafy)} (11)

where ®,=(|G,(f,.f,)|?) is the object power spectrum and
we assume statistically independent noise with variance,
02, in the four sinusoidally patterned images.

The SNR for the noisy version of the superresolution

component I, derived in Eq. (A9) in Appendix A is

1
SNR.; = m|mH1(2fo,0)H2(fx + 25, f)PO,(ffy)-
(12)

The SNR for jcg is similar.

The amount of superresolution increases proportional
to the spatial frequency, 2f,, of the sinusoidal fringe illu-
mination. From Egs. (11) and (12) we see that the SNR
decreases as 2f, increases, since H; decreases with in-
creasing spatial frequency and approaches zero as 2f, ap-
proaches the cutoff frequency of the OTF. Hence one
should not expect a full 100% superresolution for this case
of incoherently imaging a grating onto the object. The il-
lumination and imaging OTF's, H; and H,, and the modu-
lation contrast, m, strongly influence the SNR for the su-
perresolution components and can reduce the signal in
the superresolution components significantly compared to
that in the conventional component images.

The SNR is also affected by the number of sinusoidally
patterned images processed to obtain each component im-

age. If jcl is obtained by combining N images, then

SNR.(foof,) = [NI40*)][H1(0,0) Haofo fy) PR (fo )
(13)

For N=4 we obtain the SNR given by Eq. (11), and a
greater number of images improves the SNR of the recon-
structed image.

In addition, the randomness in the phase shifts in the
sinusoidal illumination affects the signal strength in
SNR,;. To illustrate this effect, consider four images hav-
ing phase shifts that are not well spaced in the 360° phase
space: 2¢,=0, 7/4, w/2, and 37/4 (covering only 2 quad-
rants in phase space, unlike the previous case, which cov-
ered all 4 quadrants). For this case, the power SNR for
the noisy version of the first (conventional image) compo-
nent, derived optimally in Eq. (A13) in Appendix A, is 6.8
times lower than the SNR obtained in the previous case of
well-spaced phase-shifted images given in Eq. (11). The
SNR for the noisy version of the superresolution compo-
nent I, for the present case, optimally derived in Eq.
(A18) in Appendix A, is 3.9 times less than that from the
previous case, Eq. (12), and similarly for I 3. For this rea-
son it is advantageous to try to obtain images having
well-spaced phase shifts in the sinusoidally patterned im-
ages to improve the SNR in the reconstruction. If it is not
possible to influence the phase shifts, it is advantageous
to take a greater number of images to compensate for pos-
sibly clumped phase shifts to improve the SNR in the re-
constructed image.
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We can write the generalized form for the SNR for the
component images as

SNR,; = 77L|0tfl(fx,fy)| (14)

where 7; is a constant that is influenced by the number of
sinusoidally patterned images used, the randomness of
the phase shifts in the sinusoidally patterned images, as
well as a contribution from the SVD and pseudoinverse.
Since we have not yet explored this factor in further de-
tail, we set 7,~1 in our reconstructions. This factor may
be investigated in more depth in future.

D. Multiframe Image Reconstruction

We use a multiframe weighted Wiener—Helstrom-like fil-
ter [22,17,18] to appropriately combine these component
images to obtain a reconstructed superresolved image,

M
ct(fx:f;/) SNRci
I =IFT
rec(x’y) ;1 tﬁ(f;c,f;,) M ’
c+ > SNR,
j=1

(15)

where jci is the noisy estimate of I, after singular value
decomposition and pseudoinverse, and c is a regulariza-
tion constant that may be varied subjectively to enhance
higher spatial frequencies (¢c<1) or to suppress the effect
of colored noise in the image (¢>1). ¢=1 is the minimum
mean-squared-error solution [22,23]. The SNR weighting
used in this filter is given by Eq. (14). ®,=(|G,(f,.f,)?) is
the object power spectrum. The conventional image may
be used to estimate ®,. We consider that the power spec-
trum of the conventional image is of the form |otf|?
X A2p~224+ dy, where p is the radial spatial frequency co-
ordinate, A is a constant, « determines how fast the Fou-
rier transform of the object falls off, and ®y is the power
spectrum of noise in the conventional image under consid-
eration, assumed to be white noise independent of spatial
frequency. @, is obtained by fitting a curve of this form to
the average value of the power spectrum of the conven-
tional image and finding reasonable values to A, «, and
®yp. More details about such curve fitting and the nature
of this curve can be found in [24-27]. We estimated ®, ap-
proximately from the average of the conventional image
components, 1.1, I.4 and 1.7, obtained from different orien-
tations of the sinusoidal illumination. ®,;, the noise
power spectrum, can be estimated approximately as the
average in a region in a corner of the power spectrum of

each component image, I;. This region is chosen to lie
outside the OTF passband of the image, so it contains
only noise. We discussed the effect of these factors and the
SNR for each component image in more detail in [18].

Using Eq. (15) and Eq. (14) the multiframe filter is
implemented as
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M cz(fx’fy Otf (fx’fy) 7]L
Io.(x,y) =IFT E —
c+ E mlotf,(fx,m\

cI)N i

cDNJ
(16)

The processing developed in this section has no restric-
tion on the number of sinusoidally patterned images,
number of component images, or randomness of the phase
shifts used in the sinusoidal pattern. Thus far we have as-
sumed knowledge of these phase shifts, which is essential
for artifact-free processing.

3. ESTIMATION OF PHASE-SHIFTS IN
SINUSOIDALLY PATTERNED IMAGES

In structured illumination imaging, multiple sinusoidally
patterned images are taken with distinct phase shifts.
Conventionally, for a stationary object, three images are
taken, each having 0°, 120°, and 240° phase shifts in the
sinusoidal illumination. For a moving object or a vibrat-
ing system, it is not possible to introduce such pre-
defined, calibrated phase shifts. Therefore we consider
post-processing techniques to estimate these phase shifts
a posteriori.

One simple and common technique is to average the
image along the direction of the sinusoidal fringe and
then try to fit an ideal sinusoid to this averaged one. This
approach is reasonable for low-frequency sinusoidal pat-
terns, but as the frequency of the sinusoid increases, its
contrast decreases, and the accuracy of the phase shift es-
timate deteriorates substantially. Non-uniformities and
features of the object affect the intensity of the sinusoid
and disrupt the accuracy of the phase shift estimate. For
sinusoids of any orientation other than exactly horizontal
or exactly vertical, the averaging process requires inter-
polation of the value of the sinusoidal illumination, caus-
ing further inaccuracies, especially for high-frequency si-
nusoids.

Another method is an iterative, optimization-based ap-
proach [28], where one begins with some preliminary
phase estimates and proceeds with the reconstruction of
X using these estimates. Inaccuracies in the phase esti-
mates result in residual peaks of the other terms being in-
completely separated. This process must be repeated us-
ing new phase shift estimates (nudged randomly) until
the residual peaks are minimized. However, this is a
fairly time-consuming and somewhat random process and
would not work without reasonably accurate preliminary
estimates.

We use a Fourier domain technique [19,20,17] to esti-
mate this phase shift in the sinusoidal illumination. We
compute the Fourier transform of the sinusoidally pat-
terned image. The value of Eq. (2) at (2f,,0), which is the
location of a peak arising from the spatial frequency of
the sinusoidal illumination, is given as
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1
gn(2fo’ 0) = EHI(O, O)HZ(zfo’ 0)90(2fo, 0)
m
+ ezZ‘PnzHl(zfovO)H2(2fo70)g0(0;0)

I (- 2, OVHA(21,,0)G,(41,,0)

+N,(2f;,0). (17)

The first term, (1/2)H1(0,0)Hs(2f,,0)G,(2f,,0), is
weighted by the object Fourier transform at (2f,,0), and
the third term, e 2¢n(m/4)H,(-2f,,0)Hs(2f,,0)G,(4f,,0),
is weighted by the object’s Fourier transform at (4f,,0).
For a moderately valued spatial frequency of the sinusoid,
where f,/f. is neither too close to 0 nor 1, both G,(2f,,0), in
the first term, and G,(4f,,0), in the third term, lie at the
tapering edge of the Fourier transform of an extended ob-
ject, making |G,(2f,,0)|<G,(0,0) and |G,(4f,,0)|<G,(0,0).
The second term, e?®n(m/4)H(2f,,0)Hs(2f,,0)G,(0,0),
consists of the object Fourier transform at the origin,
which is the largest value of the Fourier transform of the
object. In order to obtain a good superresolved image re-
construction we would want good SNR in the raw images.
This would imply that the fourth term, N, (2f,,0), is also
low. Hence in these conditions the most substantial con-
tribution to this equation comes from the second term,
and comparatively the contributions from the first, third,
and fourth terms are negligible. The object Fourier trans-
form at the origin also happens to have zero phase. The
modulation contrast, m, seen in this term also has zero
phase. If we consider a well-corrected or aberration-free
system, then the OTFs, H; and H,, have zero phase.
Therefore the factor e’2¢n, which arises from the phase of
the sinusoidal illumination, is the only phase component
in this term. Therefore, to a close approximation, the
phase of the term G,(2f,,0) is the phase of the sinusoidal
illumination, allowing us to estimate the phase as

v - o] B9, 0] .
oo =) el G(2f,,00] |

where the arctangent is calculated in Matlab using the
atan2 function in which the resulting phase lies between
—m and 7. Equation (18) can also be applied to any gen-
eralized spatial frequency of sinusoidal illumination
(2fox»2f,y) for a rotated fringe pattern.

For conditions of very high spatial frequency of the
sinusoidal illumination, where f,/f.— 1, the second term,
weighted by H(2f,,0)Hs(2f,,0)— 0, also approaches zero.
In this case our assumption, that the second term has the
most substantial contribution to Eq. (17) and that the
contributions from the first, third, and fourth terms to
this equation are comparatively negligible, is no longer
valid. Therefore this method of phase shift estimation will
not provide accurate results for very high spatial frequen-
cies of sinusoidal illumination.

Also, for conditions of very low spatial frequency of the
sinusoidal illumination, where f,/f,— 0, our assumptions
that |G,(2f,,0)|<G,(0,0) and [G.(4f,,0)|<G,(0,0) are no
longer true. In that case the first and third term no longer
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have a negligible contribution to the equation. Hence, our
method of phase shift estimation will not provide accurate
results for very low spatial frequencies of sinusoidal illu-
mination.

Also, if the object Fourier transform is significantly
strong at the spatial frequency of the sinusoidal illumina-
tion, then the value of the object Fourier transform at the
location of the peak of the sinusoidal illumination in fre-
quency domain might add some non-negligible contribu-
tion to the phase and introduce some error in the phase
shift estimate. This problem may be corrected by using
prior knowledge of the object Fourier transform, such as
obtained from a conventional image of the object taken
with uniform illumination. The value of the object Fourier
transform at the location of the peak of the sinusoidal il-
lumination could be subtracted from the value of the peak
in frequency domain of the sinusoidally patterned image
being used to obtain the phase-shift estimates. For addi-
tional precision, iterative optimization-based techniques
as mentioned in [28] may be used with these phase shift
estimates as an initial starting point.

Most of the above issues related to conditions for valid-
ity of this phase shift estimation technique are dealt with
in more depth using simulations in [19,20,17].

4. EXPERIMENTAL RESULTS

A. Data Collection and Processing

We have taken images of a high-resolution USAF bar tar-
get as a specimen object on a Zeiss fluorescence micro-
scope. We applied some ink from a fluorescent marker pen
to the bar target to make it fluoresce. We used a 0.3 NA,
10X objective and a fluoroscein isothiocyanate (FITC) fil-
ter cube (excitation ~470 nm and emission ~520 nm). We
introduced an additional stop in the light path to reduce
the effective NA of the objective to ~0.067 and the reso-
lution to ~3.9 um. Then several groups of bars on the
USAF bar target were unresolved and could be used to
verify superresolution later in our experiment.

We first took a conventional fluorescence image of the
object with uniform illumination, a portion of which is
shown in Fig. 3(a). We labeled this figure for bars belong-
ing to groups (7,6) to (8,4) that will be referred to in the
following discussion. The Fourier transform of the con-
ventional image is shown in Fig. 4(a). All Fourier trans-
form images shown in this paper have been stretched to
display dim details. It can be seen that the finest discern-
ible bars in the conventional image belong to the (7,6)
group of the USAF bar target, having a spacing of
228 lp/mm (i.e. 4.4 pum).

We assumed a perfect, unaberrated system and used a
resolution of ~3.7 um (the calculated 3.9 um with a
+5% allowance for possible error in the numerical aper-
ture and wavelength) to obtain an approximate, ideal
OTF of the imaging path. We used this OTF to deconvolve
the conventional image using a Weiner filter to obtain the
image shown in Fig. 3(b) and its Fourier transform in Fig.
4(b). We used fairly aggressive deconvolution, with ¢
=0.1, to ensure that high-frequency information is not
missed, at the expense of some colored noise. One could be
less aggressive and use a larger value of ¢. This would re-
duce the colored noise in the reconstruction at the cost of



Shroff et al.

(7.6) T
b

(a)

o

(©
Fig. 3.
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slightly poorer resolution. This figure shows that the fin-
est visible bars in the deconvolved conventional image be-
long to the group (8,1) of the USAF bar target having a
spacing of 256 lp/mm (i.e., 3.9 um). This implies that the
256 lp/mm bars, lying close to the resolution limit, were
probably present in the conventional image, but did not
have strong enough contrast to be visible until after the
aggressive deconvolution. This verifies that 3.9 um is
within the resolution limit of our system. Bars with finer
spacing than this were still not visible since deconvolu-
tion does not increase the resolution of the system, and

(©) (d)

Fig. 4. Stretched Fourier transform of (a) conventional image,
(b) deconvolved conventional image, (c) sinusoidal grid patterned
image, (d) deconvolved noise-reduced conventional image.
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these spatial frequencies continue to be absent in the de-
convolved conventional image. This is also seen in the
Fourier domain Fig. 4(b), which does not show any in-
crease in the extent of the Fourier domain of the decon-
volved image.

We then inserted in the illumination path a sinusoidal
grid having a spatial frequency at ~47% of the cutoff fre-
quency of the imaging system, and we imaged the object
with this sinusoidal illumination pattern. One such sinu-
soidally patterned image is shown in Fig. 3(c) and its Fou-
rier transform in Fig. 4(c), which shows distinct peaks, la-
beled by white arrows, arising from the spatial frequency
of the sinusoidal grid pattern in the illumination. We took
a set of 20 such sinusoidally patterned images, where the
object was moved in each image by translating the object
stage of the microscope by random, unknown amounts.

In our theoretical discussion in Section 2 above, we
took three such sets of sinusoidally patterned images with
three rotations of the sinusoidal pattern, each spaced 60°
apart. Here, we are aiming at only ~47% superresolution,
and it was therefore enough to take two sets of grid ori-
entations, rotated 90° apart, to cover most of the Fourier
space in the superresolved reconstruction without miss-
ing gaps in the extended passband. This holds true for
any object, not just for the USAF bar target. So we ro-
tated the grid by 90° and took another set of 20 images in
this orientation. We processed each set of images for each
orientation separately.

We first used these images to verify the resolution of
our system. Using the bars on the USAF bar target as ref-
erence, the fringe spacing in the image domain is
~7.8 um. From the grid peaks in the Fourier domain, we
estimated the grid frequency in the 256 X 256 pixel Fou-
rier transform of each sinusoidally patterned image to be
~20.3 pixels. This implies that the calculated resolution
of the system, 3.9 um, is ~41 pixels in frequency domain.
We obtained another rough estimate of the extent of the
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passband of the system by summing 20 sinusoidally pat-
terned images having random phase shifts, thereby boost-
ing the SNR of the summed image. In the Fourier trans-
form of this sum, the diagonal streaks from the object can
be seen all the way to about 41 pixels in the Fourier do-
main. This gives us a lower bound on the cutoff frequency
of the system because the high spatial frequencies just be-
fore the cutoff of the OTF might be drowned in noise,
making them not visible. This verifies that the calculated
limit of the system (~41 pixels in the Fourier domain and
3.9 um in the image domain) is reasonably accurate.

Further, the finest group (8,1) seen in the deconvolved
image, having a spacing of 3.9 um, translates to
~40.7 pixels in frequency domain, validating that the
40.7 pixels are within the cutoff of the system. However if
the cutoff frequency of the system were as close as the cal-
culated value of 41 pixels, it would require tremendously
high SNR for this group of bars to be visible. But they are
clearly visible even in the deconvolution of a single image,
suggesting that the actual cutoff is slightly greater than
41 pixels.

To further pinpoint the cutoff of the system, we decon-
volved the conventional image using different OTF's as-
suming slightly different cutoff frequencies. If the as-
sumed OTF cutoff is too small, then one risks discarding
useful signal at the edge of the passband. If the cutoff is
too large, then one might include and enhance noise out-
side the passband. The correct cutoff frequency gives bal-
anced results for the best resolution and the least noise.
In the processing for our experiment, the best visual re-
sults were obtained for a cutoff frequency of 43 pixels,
about 5% greater than our calculated cutoff frequency of
~41 pixels. This seemed to be within plausible experi-
mental error, so henceforth we assume 43 pixels is the
cutoff frequency, which is equivalent to ~3.7 um reso-
lution in image space.

Now we proceed with processing each set of these sinu-
soidally patterned images for superresolution. The con-
ventional image was used as a reference to register, to
sub-pixel accuracy [29], each set of sinusoidal grid pat-
terned images where the object was moving. Once regis-
tered, the object was aligned in all the sinusoidally pat-
terned images, and the phase of the sinusoidal pattern
effectively shifted over the object. This phase shift in each
image was estimated using Eq. (18) from the aforemen-
tioned peaks in the Fourier domain of the sinusoidally
patterned images (arising from the Fourier transform of
the sinusoid), which are labeled with white arrows in Fig.
4(c). We used upsampled versions [29,19] of the Fourier
transforms of the images in the phase shift estimation to
improve its accuracy (with an upsampling factor of 37
used here). These phase shift estimates were used to con-
struct the matrix A using Eq. (3), and the Fourier trans-
forms of the 20 images were used to form B using Eq. (5).
These were used to solve for vector X on a pixel-by-pixel
basis using X=A"1B. This was repeated for the image set
where the grid was rotated by 90°. We used the separated

terms to obtain all component images, jci. The corre-
sponding OTFs, otf;, are obtained by using the ideal OTF
in Eqgs. (7) and (10).

The two conventional components, obtained from the
two sets of data taken with two orientations of the sinu-
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soidal illumination, each contain a great deal of noise re-
duction due to the effective averaging of all the grid im-
ages in the singular value decomposition and
pseudoinverse. We used these two conventional compo-
nent images and averaged them to obtain a further noise-
reduced conventional image. This noise-reduced conven-
tional image would make a fairer comparison with the
superresolution images that have undergone similar av-
eraging. The noise-reduced conventional image was de-
convolved using a Weiner filter with a regularization con-
stant ¢=0.1 to obtain the deconvolved noise-reduced
conventional image and its Fourier transform shown in
Fig. 3(d) and Fig. 4(d), respectively. The image does show
significant reduction in the contrast of colored noise and
improvement in SNR, but it shows no greater resolution
than the conventional deconvolved image. Here, too, the
finest visible bars still belong to the group (8,1) of the
USAF bar target having a spacing of 256 lp/mm (i.e.,
3.9 um). Here also, the Fourier domain does not show
any increase in the extent of the recovered Fourier trans-
form.

We also employed the component images, fci, and cor-
responding OTFs, otf;, in Eq. (16), with ¢=0.1, and 7,=1,
to produce a superresolved image. As in the conventional
image deconvolution, this value of ¢ improved the con-
trast and visibility of the bars in our reconstruction, al-
though at a cost of increase in colored noise. This gave us
the reconstructed image and its Fourier transform with
approximately 47% superresolution shown in Fig. 5(a)
and Fig. 6(a), respectively. Here the finest visible set of
bars belongs to the group (8,4) of the USAF high-
resolution bar target having a line spacing of 362 lp/mm
(i.e., 2.8 um). This was substantially outside the reso-
lution limits of the deconvolved, noise-reduced, conven-
tional image. The Fourier domain also shows an increase
in the extent of its non-zero spatial frequencies. The di-
agonally oriented streaks in the Fourier domain that are
characteristic of the bar target can be seen to extend be-
yond the extent of the conventional OTF. This image is
the experimental verification of superresolution.

When the Fourier transform of this superresolved im-
age is stretched and displayed as in Fig. 6(a), it is possible
to see that there are some residual peaks in the Fourier
domain, labeled by two white arrows, visible from the
remnants of one orientation of the sinusoidal illumination
in the Fourier domain of the reconstructed superresolved
image. Such residual peaks may arise for several reasons.
One possibility is imperfections in the phase shift esti-
mates. This could arise due to the slight overlap of the
streaks from the object’s Fourier transform with the
peaks from the Fourier transform of the sinusoidal grid
patterned illumination. The residual peaks could also
arise if the illumination in the grid-patterned image was
non-uniform or varied between images. Another cause
could be that there were several images in the set having
similar phase shifts. We plot all the phase shifts in our 20
images for both orientations in Fig. 7. There does not ap-
pear to be any significantly unusual difference in the
spread in the phase shifts for the images in the two ori-
entations. The figure also contains phase shift estimates
obtained later in the experiment for fewer images in each
set. We are not yet certain as to the exact reason for this
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Fig. 5. (a)-(e) show the ~47% superresolved image obtained using two sets of (a) 20, (b) 12, (¢) 6, (d) 4, (e) 3 sinusoidal grid patterned
images in each orientation with random phase shifts in the sinusoidal illumination. (f)—(h) used two sets of (f) 6, (g) 4, and (h) 3 images

with phase shifts well spaced over 360°.

residue in this orientation, but the residual peaks appear
to be dim enough in magnitude as to not produce disturb-
ing artifacts in the image.

Considering the size of the finest bars visible in this re-
construction (362 lp/mm) and the resolution of our con-
ventional system (256 Ip/mm), we can verify that the res-
olution in the reconstructed image is enhanced by at least
41%. We could not verify 47% superresolution as we
would require bars having spacing close to 400 lp/mm in
our object, whereas the next set of bars on the USAF bar
target was 406 lp/mm which, at 49.6% superresolution,
was outside the expected theoretical 47% superresolution.

B. Minimizing Data Collection
The above superresolved reconstruction used two sets of
20 sinusoidal grid-patterned images in each set, with the

sinusoidal illumination rotated by 90° in one set with re-
spect to the other. This means that a total of 40 images
went into the production of a single superresolved image.
The effects of using sets of 12, 6, 4, and 3 images for each
orientation of the sinusoidal illumination are shown in
Figs. 5(b)-5(e) and their Fourier transforms in Figs.
6(b)-6(e), respectively. We again use a regularization con-
stant of ¢=0.1 for all of these reconstructions.

The reconstruction that used 12X2=24 images in all,
Fig. 5(b), still shows all the groups of bars up to group
(8,4) of the USAF high-resolution bar target having a line
spacing of 362 lp/mm (i.e., 2.8 um), and has image qual-
ity comparable to Fig. 5(a). The reconstruction that used
6X2=12 images in all, Fig. 5(c), also shows that all the
groups of bars up to group (8,4) of the USAF high-
resolution bar target having a line spacing of 362 Ip/mm
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Fig. 6. (a)—(e) show the stretched Fourier transform of a ~47%
superresolved image obtained using two sets of (a) 20, (b) 12, (c)
6, (d) 4, (e) 3 sinusoidal grid patterned images in each orientation
with random phase shifts in the sinusoidal illumination. (f)—(h)
used two sets of (f) 6, (g) 4, and (h) 3 images with phase shifts
well spaced over 360°.

(i.e., 2.8 um) are still discernible, although the colored
noise in the image has significantly increased and the
(8,4) group is barely discernible. The Fourier domain
shows that residual peaks, labeled by white arrows, have
increased compared to the case of using a larger number
of images and now are visible for both orientations of the
sinusoidal illumination. In the reconstruction that used
4 X 2=8 images in all, Fig. 5(d), the resolution appears to
be only slightly better than the conventional recon-
structed image. None of the bars beyond the convention-
ally visible (8,1) group are discernible here. The residual
peaks in the Fourier domain are still distinctly visible and
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Fig. 7. Phase shift estimates for sinusoidally patterned images
with random phase shifts having 20, 12, 6, 4, and 3 images in
each set and 2 orientations for each set.

the SNR in the extended “superresolved” areas beyond
the conventional OTF in the Fourier domain appears to
be poor. The same holds for the case of the reconstruction
that used 3 X 2=6 images in all, shown in Fig. 5(e) and its
Fourier transform Fig. 6(e). No bars beyond the conven-
tionally visible (8,1) group are visible and any resolution
enhancement is indistinct.

Thus, although technically the minimum required
number of images for each orientation is 3, in practice the
number needed for useful superresolution depends on
several factors. It primarily depends on the SNR of the
conventional imaging system. Low SNR and low light lev-
els require a greater number of images. Similarly greater
amounts of superresolution, for which the OTF factor will
be low, will lower the SNR for the superresolved spatial
frequencies, requiring a greater number of images. If we
had used a lower-spatial-frequency grid pattern, say, at
25% of the cutoff frequency, we would expect less super-
resolution (i.e., 25%). In this case the contrast of the sinu-
soidal pattern would be higher and hence the SNR in the
grid patterned image would also be higher, and one would
need fewer images for the 25% superresolution than
needed to obtain close to 50%.

Further, as discussed in the SNR analysis section, the
number of images required in each orientation for useful
superresolution depends on the randomness of the phase
shifts and, in this case, the motion of the object. If the im-
ages in each set have well-spaced phase shifts covering
the entire 360° phase space, then fewer images will be
needed to obtain discernible superresolution. If several
images in a set have similar phase shifts, more images
will be needed to add diversity. We plot the estimated
phase shifts (along the angular axis) in our 20, 12, 6, 4,
and 3 image sets (along the radial axis) for both orienta-
tions of the sinusoidal grid (plotted with asterisks and
open circles) in Fig. 7. The plots show that the estimated
phase shifts in the images for the case of sets of 6, 4, and
3 images are somewhat clumped in phase. We repeated
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Fig. 8. Phase shift estimates for sinusoidally patterned images
with phase shifts spread over 360° having 6, 4, and 3 images in
each set and 2 orientations for each set.

the reconstruction for the case of 6, 4, and 3 image sets,
with images that were chosen to have phase shifts some-
what better spaced in the 360° phase space (shown in Fig.
8). The reconstructed images are shown in Figs. 5(f)-(h)
and the corresponding Fourier transforms are shown in
Figs. 6(f)-6(h). We see a marked improvement in both the
SNR and the effective visible resolution of the reconstruc-
tions. Here we can see that all the images show an im-
provement in resolution and all the bars up to group (8,4)
of the USAF high-resolution bar target having a line spac-
ing of 362 lp/mm (i.e., 2.8 um) can now be resolved for
the case of sets of 6, 4, as well as 3 images. Thus the di-
versity of phase shifts is very important in deciding the
SNR of the superresolved reconstruction. For the case of
random phase shifts one cannot guarantee well-spaced
phase shifts, so it is prudent to take more than just three
or four exposures with random phase shifts.

Thus the number of sinusoidally patterned images re-
quired to obtain a single superresolved image varies sig-
nificantly depending on the imaging system, the illumina-
tion setup, and the application.

5. CONCLUSIONS

In this paper we have discussed a method to estimate the
phase shifts in the sinusoidal illumination a posteriori, al-
lowing us to apply the technique of structured illumina-
tion imaging to non-stationary objects such as in vivo tis-
sue. We have verified the phase shift estimation
technique experimentally. We estimated phase shifts in
fluorescence microscopy images for a fluorescent USAF
bar target having unknown, random translational motion
and used them to obtain an artifact-free reconstruction
having over 40% superresolution as expected. The object
motion effectively introduces the required phase shifts in
the sinusoidal illumination. The object in these images
can be aligned to sub-pixel accuracy in post-processing by
using a conventional image of the object as a reference.
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The phase of the sinusoidal illumination can be estimated
a posteriori as demonstrated in this paper using a Fourier
domain approach. This approach is more accurate for
moderate spatial frequencies than for very high or very
low spatial frequencies of the sinusoidal illumination.
These phase-shift estimates may be further refined if
used as initial estimates to iterative optimization-based
algorithms if further accuracy in phase-shift estimation is
desired. We assumed 7;=1 in our reconstructions in this
paper, but in the future we would like to estimate it from
the distribution of phase values. We demonstrated the re-
construction of a superresolved image with negligible ar-
tifacts in the image when a reasonable number of images
were used. The minimum number of images needed to ob-
tain a single image with significant superresolution de-
pends on the superresolution factor, the SNR, the ran-
domness of the phase shifts, the contrast of the sinusoid,
and the aberrations of the imaging and illumination sys-
tems. Greater amounts of superresolution, such as ap-
proaching 100%, would require a more customized illumi-
nation setup with a laser source producing higher
contrast sinusoidal fringe illumination, three orientations
of the sinusoidal illumination to cover the entire area of
the extended OTF, and possibly a greater number of sinu-
soidally patterned images. The phase shift estimation al-
gorithm should work on high-spatial-frequency sinusoidal
illumination as long as it does not exceed about 90% of the
diffraction limited cutoff or contain excessive noise.

Sinusoidally patterned illumination imaging can thus
be applied to image objects having random and unknown
translational motion to obtain superresolution. It would
be advisable to take more than the minimum number of
images for such randomly moving objects to ensure good
SNR in the reconstruction. There is also some work per-
taining to non-linear structured illumination [3,30],
where the illumination excites a non-linear emission
based on the saturated or stimulated emission of the fluo-
rophore material producing spatial frequencies that are
higher harmonics of the original sinusoidal illumination
and lie beyond the illumination OTF. Such illumination
could provide even greater amounts of superresolution.
Our algorithms would have to be modified to adapt to
such imaging techniques. Our approach and algorithms
can also be used for axial optical sectioning in the pres-
ence of unknown phase shifts. We discuss this application
in a future publication. This broadens the scope of its ap-
plication to new areas such as in vivo imaging and imag-
ing in vibration and motion-prone environments.

APPENDIX A

This appendix contains derivations for the SNR analysis
shown in Subsection 2.C.

First we consider four sinusoidally patterned images
having phase shifts in the sinusoidal illumination, 2¢,
=0, 7/2, m, and 37/2, and exp(xi2¢,)=1, +i, -1, and Fi.
Using Eq. (2) we obtain their four respective image Fou-
rier transforms Gy, Gy, Gs, and G,. The closed-form value
for the noisy version of the conventional component im-
age, 1,1, is given as
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. 1. . . .
Icl(fx’fy) = Z[gl(fx’f;/) + g2(fx’fy) + gS(fx’fy) + g4(fx,f5y)]
1 1
§H1(070)H2(fx’fy)go(fxafy) + Z[Nl(fxvfy)

+N2(fxrf;/) +N3(fx?fy) +N4(fx’f;/)]- (A]-)

The signal power spectrum in this image component is
2>

[H1(0,0) Ho(fro )@y Fisfy) (A2)

1
q)Sl(fx’f:y) = < ‘ EHI(O’O)HZ(fx’fy)go(fxafy)

1
4

where ®,=(|G,(f+.f,)|?) is the object power spectrum. The
OTF for this image component is given by Eq. (7). The
noise power spectrum is

1 1
(DNl(fx’f;/) = E[UZZ\H + 0-]2\72 + 0-12\73 + 0]2V4] = ZO’Z, (A3)

where o?y, is the noise variance in each image, k
=1,2,...4. Here we assume that the four images contain
statistically independent noise realizations having identi-
cal variances, 2. Using Eqs. (A2) and (A3) the power
SNR for this image component is

Og(ffy) 1 )
SNRcl = q)—Nl = ?|H1(0’0)H2(fx7fy)| (Do(fx’fy)-

(A4)
The noisy version of the superresolution component I, is
[G1(Foty) = Gl )] = ilGa(fty) = Gafify)]
=mH1(2f,, 0 Ho(forfy) Go (i = 2f0rfy) + [N1(Fiofy)
= Ns(fofy)]1 = ilNo(foofy) = Nyl fy)]- (A5)

Sub-pixel shifting this term in frequency space (by multi-
plying by a linear phase in the Fourier domain) and di-
viding by 4 for averaging, we obtain

. 1 1
Lo(foty) = ZmHl(zfoaO)HZ(f;c + 2(0,1)Go(fufy) + Z{[Nl(fx

+ 2fo’fy) - N3(fx + 2fo’f;/)] - l[N2(fx + 2fo5f;/)
- N4(fx + mef;/)]} . (AG)

The signal power spectrum for this component image is

given by
2>

1
= 1_6|mH1(2fm0)H2(fx + 2fo>f;/)|2q)o(fx’fy) . (A7)

1
¢)S2(fx’fy) = < ‘ ZmHl(zfo’O)H2(fx + zfo:f;/)go(fxaf;/)

The OTF affecting it is given by Eq. (10). The noise power
spectrum for I 2 18
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1 1
Do (finfy) = E(01’\,21 +ON+ Ohy + O = Zaz, (A8)

where 0'1'\,% is the variance for the noise realizations shifted
in frequency space to (f;—2f;,f,). We again assume statis-
tical independence and identical variances, o2, for the
noise realizations. Therefore, the SNR for this image com-
ponent is

Dgo(fify)
SNR,, = Z82wly]
Dp

1
m|mHl(2fo’ 0)H2(fx + zfo’f;/)|2q)o(fx’fy) .
(A9)

The SNR for I .3 can be derived in a similar manner by
replacing i by —i and 2f, by —2f, in the above equation.
Similarly we derive the closed form SNR for image com-
ponents obtained for sinusoidally patterned images where
2¢,=0, 7/4, 7/2, and 37/4, exp(i2¢,)=1, (1i)/\2, i,
and (—lii)/\rE. The Fourier transforms of these images

are given by Ql, Qg, Q?,, and Q4. For this case, the noisy ver-
sion of the first component can be obtained optimally in
closed form as

1+\/§

. . . 1
Icl(ﬂmf_‘y) = (2\—”§> [gl(fxa}g/) + g4(fx’f;/)] - 2\_/§[g2(fx’fy)

+Gs(fufy)]

1+ \/5
Hl(oyo)H2(fx’f;/)go(fxrf;/)+ ﬁ [Nl(fx’fy)

\Y

DN |

1
+N4(fx7fy)] - E[NZ(fmfy) +N3(fx7fy)]' (Alo)
\

The signal power spectrum in this component is
2>

[H1(0,0)Hofor f,) P, (Frsfy).- (A11)

1
EHI(Or O)HZ(fxafy)go(fx:fy)

(I)Sl(fx?fy) = <

1
4

The noise power spectrum is

1+42\? . 1\
Dyl =| —= | (o +ox) +| —=| (oxe+ TNs)
N1 y 2\/5 N1 N4 Z\rE N2 N3
\’/§+1
=% =176, (A12)
v

where, as before, aNk2 is the noise variance in the image,
k=1,2,...4, and we assume statistically independent
noise realizations in the four images with identical vari-
ances, o2. Therefore the power SNR for this image com-
ponent is
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T @y, 6.807
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(A13)

which is 6.8 times less than for the case of equally spaced
phase shifts given by Eq. (A4).

The noisy version of the superresolution component I,
for the present case can be optimally computed as

(0.04 +i0.5)G; (fof,) + (0.3 = 0.4)Gs(F . 1)

+(0.1-i0.5)Gs(fonf,) + (- 0.4 +i0.3)G4(F.0 f,)

1
= ZmH1(2fo’0)H2(f‘x’f&)go(f;c - zfmfy)

+(0.04 +0.5)N, (£ ;) + (0.3 = i0.HN,(F,of,)
+(0.1-i0.5)N3(forf,) + (= 0.4 +i0.3)N(Fof).-
(A14)

As before, sub-pixel shifting this term in frequency space
(by multiplying by a linear phase in the Fourier domain),
we obtain

. 1
Ic2(fx5fy) = ZmHl(Zfo’O)H2(fx + Zfo,f;/)go(fxyf;/)

+(0.04 +i0.5)N+(f, + 2f,..1,)
+(0.3 = i0.4)Ny(f, + 2f,.f,)
+(0.1-i0.5)N3(f, + 2f,.f,)
+(= 0.4 +i0.3)N,(f, + 2f,.f,). (A15)

The signal power spectrum for this image component is

2

1
(DSZ(fx,fy) = ZmH1(2fmo)H2(fx + 2fu,f;')gn(fx,f;/)

1
= E|mHl(2fo’0)H2(fx + 2f0’6)|2q)0(fx7fy) .

(A16)
Its noise power spectrum is
Dro(finf) = (0.04 +70.5)%0)7, + (0.3 - i0.4) %05
+(0.1-i0.5)%07% + (- 0.4 +i0.3)%0}%, = 09802,
(A17)

where U]’\,zi and o2 are as defined before. Its power SNR is
given as

Dgolffy)

N2

SNR,, =

=I5 Ol + 2 )P0 Fof)-

(A18)

which is 3.9 times less than for the case of equally spaced
phase shifts given by Eq. (A9).
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