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Lateral Vibration of Axially Moving Wire

or Belt Form Materials*

by Tatsuo CHUBACHI**

Theoretical analysis was performed for the lateral vibration of an axially moving linear
material which is supported by pullies. The oscillation of this kind has some peculier
characters, by the effect of centrifugal force the oscillation degenerates to unstable character,
the modes of natural oscillation take a form of wave motion, the frequencies of free oscillation
deminish with increasing velocity and there occur self excited vibrations over the critical
speeds.

The boundary conditions in the analysis are assumed to be constant curvature at two points
of support ends. The method of solution is to simplify the characteristic equation and to unify
the unknown variables. The numerical calculation by the iterative method leads to the
solutions of frequency curves. Another method of analysis by the complex Fourier series
gives an approximate but clear perspective of the solution.

Introduction Fundamental Equation

The problem of oscillation of axially moving
material was partly treated by Watanabe™ and

Let the moving velocity », and taking the
coordinate & which is fixed to the space, the fun-

Shimoyama® for the case of flexible materials.
They found some important characters of the
oscillation.
interesting problems, for example, the modes of
oscillation are not independent of each other,
namely the energy of oscillation of each modes
has correlation and the energy flows in .or out
from the supporting points. The rate of energy
flow at one side may be expressed as follows for
the case of flexible materials.

1
rate of energy= Py X tension X [slope]?

Xmoving velocity
Furthermore, the energy of each modes are not
constant, it fluctuates at a rate of 2 cycles per 1
cycle of oscillation, the phenomena originates from
the wave motion of normal modes.

The present paper offers the solutions of
oscillation for the material with flexural rigidity
under the conditions of pully support and slope
free. Another solution for the boundary conditions
of slope fixed was shown in detail by the
author.(®®

* Recieved 15 th' Aug. 1956.
** Faculty of Engineering, TO6hoku University, Saku-
rakoji, Sendaishi.

But the oscillation contains more .

damental equation of lateral vibration may be
written as
2 2 4,
‘0A<%-p%> w—P%—FEIgg: =0 e (1)
where, 0, E, A, I & P are linear density, Young’s
modulus, cross-sectional area, moment of inertia
and tension of the moving material, respectively.
The boundary conditions at two ends of free
range may be expressed by the following equations,
if the material adhere closely to the: pullies and
the slopes are continuous at these points,
E=0:w=0, o*w/0E%2=—1/R }
§=1:w=0, 0*w/0&%= F1/R
where, R is radius of pullies, ! is the free length
of material. The expression of equation (2)

OO,
(@
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implies some appreximation, but the error may be
considered negligible in the limit of small oscilla-
tions.

We exchange the conditions (2) to the homo-
geneous form, o

E'_“O & E:l tw=0, BZW/a€2=0 ......... (3)

then by the principle of superposition, the complete
solution of equation (1) which satisfies the
conditions of equation (2) will.be given by the
sum of general solution of  equation (1)  which
satisfies the condition (3) and an arbitrary par-
ticular solution which satisfies (2).

First, we ask for the steady and time
independent solution of equation (1). Eliminating
the time derivatives‘ in equation (1) we have

G —pz) o9n  p 28

where, p=\/p/PA, q=‘/EI/,0
The equation (4) is same as that of lateral
buckling of a long beam under axial load, then
we can assume a virtual or equivalent axial load,

= PA’I)2—'P ..................... (6)

" Corresponding ‘to the critical load of buckling,i

there are critical speeds of moving materials.
Solutlons of equatxon (4) are

w=Cs1-n< 3 ) (n=1,2,3, Y eesen @

and the critical speeds may be given by the
relation

B=Vri—I2 =am, (n=1,2, ) ®)
where, r=ollg, Rmpllqeeeeeeeeeeees (9)
The two constants 7 and % are velocity coefficient
and tension coefficient respectively. Generally the
tension of moving material increases with the
speed and the critical speeds take higher . value
than those deduced from the tension at: rest,
because of the centrifugal force acting on the
material, and the tension P increases by the
amount .

P=P’+PA1)2 .................... (]_0)
where P’ is the tensile component of the force
transmitted from the pullies to the material.

To represent. these relations with a simplified
expression, we put
P=PyfHOAVE e (11)
where P, is the tension at rest and # is the
coefficient of tension increase. Generally the value
of @ is limited as 1>6>0.
Using equation (11), we write
pz=p02+0vz, Br=Fkol - Greeeeess (12)
then the velocity coefficient corresponding to the
critical speeds may be given by the equation (8),
_that . is

2
m:\/ zfjﬁkz.., ................... (13)

The values of # are nearly equal to unity,
and the critical speeds vanish to infinity, so long
as the tension of pully is controlled constant.
Otherwise, there is a tendency that the value of ¢
increases near the first critical speed.

Characteristic Equation and Frequency
Curves

Denoting by the equation (5); " the equation of
motion may be written,
; 2 2 :
R
we put S
w(E, 1) =eftdgtt oo (15)
where, 4 and ¢ are unknown constants. Substi-
tuting equation (15) into equation (14) we have
the following relation between A and f.
(= D=2 +4°2*
Rewriting this equation
AD*+ (BP—r?) (Zl)2+2rh(,2l)—h220} - (16)
where h=puitlq

The parameter / represents the nondimension-
al frequency of free oscillation and when % is a
complex number, its real part corresponds to
frequency dand the imaginary part corresponds to
the coefficient of divergence or convergence. The
other parameter Al represents wave form and it
will be determinded by the equation (16) and the
boundary. conditions. )

The first of equation (16) is a biquadratic
equation with respect to (A/) and there are four
values of (Al) corresponding to one value of 4
in a free mode of oscillation, and the four roots
of equation (16) may be expressed in terms of
the three unknown parameters So, s; & Ss, because
it lacks in the term of the third order.

Ail=(so—s1)/2, Azl = (so-Fs1)/2 }
Agl=(—s0—52)/2, Asl=(—s0+52)/2
Comparing this with the equation(16), we get the
following relations among parameters being drived
from the relation of roots and coefficients of the
biquadratic equation.
2802+312'“I‘822:4<72—k2>
Solse2—5:%) =87k
(s0®—51%) (80" —55%) = —16h?

On the other hand; the general solution of
equation (1) may be written in the form of follo-
wing equation.

w (g, t) [Cle”*l‘f—}- Czez'\zg + Csei'\3€+ C4€I>“€] e””‘

..................... (19)
where, C;, Cs,-+---are constants.

The right of equation (19) is a complex func-
tion and the conjugate function also exists as a
solution, so we can take the real or imaginary
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part of equation (19) as a solution in practice.’
Substituting equation (19) into the homogeneous
boundary conditions of equation(3) and eliminating

Cy, Cyy oeen in a form of determinant, we get the
following equation with respect to A1, Az, - .
1 1 1 1 |
212 222 232 242
giMal giral giral gihd | T (20)
PRI RIS R KPS W
expanding,

(112_222> (242__132> {ei()\1+«\2)l+ei()\4+)\3)l}
+ AP — 25 (A=A (Pt oy i Nadr}
+ (23_232} (222__242) {ez‘()\1+>\3)l+ei()t2+)\4)l} =0
..................... (21)

using equation (17) and operating calculation,

$1—3S3 z _ ‘31“}'32 2 S1—S82
( 2 >{S°z < 2 >}°°S( 2 )
Sitsa\f o (S1=8) Sihsy
+< 2 >{S° < 2 >}°°S< 2 )

+8023182 COS Sp=0 “rrervereiiiiiii (22)

This is the characteristic equation for the
vibration of moving materials, under the condition
of constant curvature at two ends. In equation
(22) the parameters s, and s, take real value for
the steady free oscillations, but s; takes real
value only for the high speed region near the
critical speed and takes imaginary value for the
low speed region. Putting s;=+is,/, and denoting
equation (22) for the low speed region,

200’2 _ .2 M)z} s :91_,. . Sz
{So (5,/%—3, )+( p sinh 5 sin

14
+25¢%sy's* (cosh%—cosfzl —Co8 so> =00 (23)

Next, in equation (18), taking the square of
the second, and addi‘ng the product of the first and
the third, : '

(2807 —312—55%) (5ot —s5:255%) = 647252
Combining this with the third of equations (18) and
eliminating A%, we have

(25 —5:12—55%) (s0*—5:25,%)

(s> —51%) ($32—s0%)

To unify the parameters, we exchange the
variables taking the relation of the Ist of equations
(18) into consideration and using the nondimen-
sional parameters a« & §.

sif=8"2=F—0—a, s?=—0+a
st =240, B=ri—pe ) }
Substituting this into (24), we have
AB**—a0 _ B
40*—a® ‘
from which we get the relation between « and ¢,
namely

=4k% eeii.n. (24)

a=275/\/ kz_—g’ .................. (26)
Using the third of equations (18) and (25) we haves

Furthermore, we transform the characteristic
equation of (23) to make it easier for the iterative
calculation, because the original form is not
convenient for the purpose of numerical analysis.

s? —250%s,'$2 F'

R RV YT

e S / s/ 3&] J
E [coth 2 €oSs So / sinh 9 cos 9

The function F in these equations generally takes
a value nearly equal to unity for the low speed
region. And for higher speeds, we rewrite this
using s; instead of s,’, we have
fan 52— 208 F 1
2 af+2e*—2t | (29)
F= [cot‘l—— cos so/tanﬂ- cos s ] I
2 2 2
The boundary of application of equations (28)

and (29) may be given by putting s;=0 in equ-
ations (18) & (24), the results are

so2= (ri— 4R+ 7V 8K+ ) ]2

822‘—7302C4k2+2802)/4 <k2+302) """"" (30)

h:So‘/ Sa245,2 /4
By the use of equations (25) through (29) and by
the iterative method, we get numerical solution of
free oscillation. The process of iteration is as
follows : First, we assume the value of ¢ for the
given values of » and % and calculate o« by the
equation (26). Calculating s; or s,/, s, and s, from
the equations (25) and substituting them into the
right side of equations (28) or (29), we have tan
(s2/2) and then s;. Comparing the value of s, with
the foregoing value and correcting the assumption
of the value of ¢ by the interpolation of s, we
repeat the iteration.

20
15 k' _
§ 0=2 \ : \\
110 = = \\\
g 0 1:\\ ST
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12 / ko = U/ po -
Fig. 2 Fundamental frequencies
The method of calculation shows comparatively

rapid convergence except in the high speed region.
Fig. 2 shows the frequencies of the fundamentel
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mode of oscillation for the cases of #=0 and =1 flexible material. : ‘
and for many values of the initial tension coeffi- ‘The results of calculation for the combination
cient k. The broken lines of ky=oco in the figure %o=3, 10 and #=0, 1 are shown in Fig. 3, 4,5 and
represents the frequencies for the case of perfectly 6. In these figures the broken lines of g=0
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Fig. 5 Frequency curves (ko=3,00=1DLT22077208

130 -
< : 120 —
1104
150 100
..... K=100=1
[—— 90— \\\\ —, —3
o 80 —
=100 S P
D S 0F Ind Ty
R NS DN
S B0~ =
8) > Qfld \“\\\ \‘\\
g S 50F e )
NS 50 g e
£ Eu =
ThoT K ;:r& B
0 T —
N“‘N
-8 W == =
£ 5 |
525 10r
10 '

QQO}\U»] 5 i 1 kO 1
SRS 0 25 65 75 10 126 15
v r=uljg —

Fig. 4 Frequency curves (ko=10, 8=0) Fig. 6 Frequency curves (k0=10, 6=1)
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correspond to the fundamental frequencies for the

case of no flexural rigidity and may be expressed

by the following equation.

ko *_Q,_ﬂ;i................,.(gl)
VEkE+07
The curves in the upper half of the figures
represent the frequencies in nondimensional ex-
pression and the lower half represent the coeffi-

- cients of divergence andfor convergence. The full
lines represent the frequencies of steady oscilla-
tions and the broken lines in the region of »>»
for the case of #=0 correspond to the frequencies
and the coefficient of divergence and/or conver-
gence of periodic or aperiodic oscillations. The
chain line represents the boundary of s,2<°0, the
character of frequency curves is bordered by the
line and the most of unstable oscillations exist
in the lower part from this line.

By the movement of material all the frequ-
encies of free oscillations decrease with the
increasing velocity in a similar manner like the
beam oscillation under the axial thrust. The
values of & coresponding to the unsteady motion
are pure imaginary or complex conjugates and the
devergent and convergent oscillations with same
values of coefficients coexist on the same line.
The values of coefficients of divergence become
considerable order and wehement vibrations are
expected in these regions. The aperiodic divergent
or convergent motions existsts in the region from
an odd number of critical speed to the next even.
Over the first critical speed the steady oscillations
vanish one by one, degenerate to unstable oscilla-
tions and the unstable modes increase rapidly
with increasing velocity.

h=m—=

Method of Solution by the
Cemplex Fourier Series

The aforesaid method of solution by the use
of characteristic equation is exact and we can
have voluntary precision values of higher modes,
but on the other hand, we may have no direct
inspection by this method. The following method
is ‘an approximation, but offers comparatevely
precise solution, and is suitable for the practical
purpose.

In equation (14) we put

w(f’ t) =u)(5)e”’” .................. (32>
rewriting, using the notation of equations (7) &
(16), the fundamental equation may be written.

2
<h'—7‘l‘d—€‘>w kzl2 aE? +l4 f ...... (33)
where B=chih oo (30
We expand w(§) into Fourier series of £ with

Bulletin of JSME

half wave length I, taking into account the boun-
dary conditions (3).
. WM
w(&) =3 Cusin
™ !
Substituting this into the equation (33)

3 CulW 2= (r2—F) mim?+mtr*] sin 1”.7}5
m

— 3 Cu2h'vmir cos m7l'rg =0
m

In the interior of the boundaries we use the
following relations.
mrg dn . mné
cos .= 5% sin g,
—m?) !

! n 77(%2
(m=tn: odd)
n§

Z Cm[h’z"(rz——kz)m27r2+m4ﬂ‘] sinﬂl_ -

By this relation

T
< 2 >2h 7 sin ! =0
(m=tn : odd)
Deviding by 8h'r and separating each term of m

by the Fourier Analysis
Cagnt X Com g™ =0, (mtn : 0dd) -(36)

where
D =[h'2— (rz-kz)m2ﬂ2+m4ﬂ4] J£:7/ 34 NRTEITE 37D
We elliminate Cn from these equations, then
we have the following equation in a form of
determinant
241 4-1
¢ 1 Mlz 0 Z;—? Q e
1-2 3-2 5-2
g P iy 0 nig
2-3 4-3
0 o232 03
1-4 3-4 5.4
12—42 0 3242 Ps 52—g2
The values of ¢, on the diagonal are proportional
to m* and take large value compared with the
other terms, and as the determinant converges
rapidly, an approximate calculation with respect
to a few columns and rows of this determinant
gives comparatively precise results for lower modes.
The results of numerical calculations of high order
approximation almost perfectly coincide with those
of the exact solution.
Next, we express the wave form by this way,
we can write

T2 G

:Q...(gg)

where R represents the real part of the function.
Rewriting
w(&, H=RC[X(E)+iY (&) ]e*
=ALX (&) sin(t+0) +Y (&) cos (ut+5)]
..................... (39)

where, C, A, § are arbitrary constants, The real
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Fig. 7 Space wave functions (ko=3; 0=1)
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Fig. 8 Space wave functions (k0=10, 8=1)

and imaginary parts of the space wave function
may be calculated from the equation (36) and take
the following form

X®&= 1:41 sin—*> +a3 sm——g ...... :l

Y= [dz s1n2—"+a4 sm@‘g ------ ]
Figs. 7 and 8 show the wave function. As is seen
in the figures, the real and-imaginary parts are
of similar form to the Ist and 2nd of sine curve,
and the ratio of the latter to the former gains
with the increasing velocity and the distinct mode
of wave motion comes to appear.

-+ (40)

Conclusion

It may be mentioned as a conclusion that this
oscillation has a similar character like a long beam
under axial compression. Also the oscillation of a
pipe line containing flowing liquid has quite
similar character, and there is a study of Long®
for the case of two- ends simply supported. His
analysis shows a similar results for the fundamen-
tal mode.

The author wishes to express his thanks to
Yoshiaki Yamamoto for his sincere cooperation to
the calculations. -
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