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ABSTRACT

A two-layer model is used to ‘investigate the asymmetric motions
in the tropical atmosphere as small perturbations on a symmetric basic.
state which contains a vertical shear in the zoral wind, The physics
used to describe them ignore latent heat, but include parameterized
dissipation and non-geostrophic effects. The perturbed motion is treated
as stationary random process driven by forcing at lateral boundaries
located at 30°N and 30 S, The forcing motions are prescribed statistic-
ally in terms of spectra determined from 23 months of data at 30°N, and
with the assumption that the forcing at the two boundaries are statis-
tically independent but otherwise are statistically similar.

The mathematical problem is to express second moment statistics

of the internal motions in terms of the basic state parameters and the
boundary statistics. This can be resolved into two separate steps:
(1) to construct the response functions of the statistics from the fun-
damental solutions of the governing spectral equations, (2) to combine
the response functions with a closed set of statistical boundary condi-
tions.

The fundamental solutions are obtained numerically. Their prop-
erties are discussed with the aid of those obtained analytically in the
case of no dissipation and shear in the basic zonal current,

The variance of the horizontal velocity components decreases with
latitude, and are much larger at the uppper level, Variance of horizon-
tal divergence, variance of temperature, and the correlation betveen
velocity components at the two levels decrease markedly with latitude.

A weak equatorward eddy sensible heat flux, a strong equatorward wave
energy flux, and a poleward momentum flux are predicted., Comparison
with observed values show good quantitative agreement for temperature



variance and sensible heat flux, but only qualitative agreement for merid-
ional velocity variance and momentum flux, The results for the horizontal
divergence and correlation between velocities at the two levels are com-
patible with synoptic experience. Physical implications are discussed for
each statistic; in particular, as they bear upon earlier theoretical con-
clusions by Charney and by Eliassen and Palm,

A significant part of the meridional velocity variance in equatorial
region at the upper level arises from motions of periods close to 5 days
and wavelength of about 10,000 km, and westward phase propagation. These
are similar to the disturbances in the equatorial lower stratosphere recent-
ly discovered by Yanai and Maruyama,

The eddy kinetic energy balance consists of a gain from pressure
work on the boundaries, and losses to friction and conversions to eddy
available potential energy and zonal kinetic energy. The gain in eddy
available potential energy from this source is balanced by losses to radi-
ative cooling and conversion to zonal available potential energy.

This study demonstrates that consistently reasonable statistics of
the asymmetric motions can be obtained from a crude model that explicitly
incorporates empirical forcing, Thus it lends support to the idea that
lateral coupling between the low-latitude eddies and the mid-latitude
motions is significant for the existence of the former,
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1. Introduction

This study is a theoretical attempt to investigate the large
scale zonally asymmetric motions in the tropics. The data analysis
performed thus far are rather fragmentary, Starr and White (1954), Obasi
(1963) and Peixoto (1960). Those studies only indicate that asymmetric
motions have a progressively smaller role towards the equator in so far
as transporting momentum and heat is concerned. We have yet to determine
how far south the influence of eddies extends into thé tropics. We under-
stand very little about the energetics associated with the asymmetric
tropical motions. The available data is sparser than in higher latitudes,
but it has posed some interesting questions. Riehl (1954, 1963) noted
that the flow in the lower tropical troposphere is relatively steady,
whereas that at higher altitudes has considerably more variability and
day to day changes in the large-scale disturbances. Furthermore, the low
level systems in the Marshall Island region of the Western Pacific and
in the Caribbean Sea have often been found to move quite independently
of the upper level systems. This situation is quite different from what
is usually observed in middle latitudes. Such observations suggest that
the vertical scale of asymmetric motions in the tropics could be so small
that motions at one level exert very little influence upon the motions
at another level. Charney (1963) has applied a scaling argument to sub-
stantiate that possibility. He showed that on the basis of the generally
accepted typical length and velocity scales and static stability in the

tropics, the large scale motions there (in the absence of condensation)
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should be even more quasi-horizontal and horizontally nondivergent than
those in the middle latitudes. It follows that the vertical coupling
should be of only second order. Such large scale eddy motions must then
in the absence of condensation derive their energy either locally from
barotropic instability or through lateral coupling with the motions in
higher latitudes. This type of lateral coupling would be associated
with a significant cross-latitude flux of wave energy. This aspect of
the coupiing has been hinted at by Eliassen and Palm (1960) when they
made an analysis of stationary waves. They showed that these waves of
planetary scale in a realistic mean state have a cross-latitude momentum
flux in opposite direction to the wave energy flux. Should this also be
true for the transient waves, the presumed lateral coupling would supply
considerable wave energy into the tropics. How far equatorward such a
flux of wave energy can penetrate depends upon the rate of dissipation
the effect of the Coriolis parameter and the interaction with the mean

flow.

In view of the suggestive evidence mentioned above concerning the
plausibility of significant lateral coupling between the middlg and low
latitude circulation patterns, it is certainly of some interest to test
that concept quantitatively. This paper does so with a model tropics
that explicitly incorporates this mechanism. The role of local barotropic
instability as an energy source will be excluded by using a model contain-

ing no lateral shear in the basic current. Specifically, we shall examine.

the statistics of the circulation in a model tropics driven solely by

lateral forcing that is prescribed only statistically in terms of second




moment statistics. The latter will be deduced from actual data at SOON.

If the resulting asymmetrical motions in the model tropics have statis-
tical properties similar to those in the real tropics, we then will have
established quantitative evidence for lateral coupling as an important

energy source of their motions.

The dynamical design of the model is described in Section 2. Its
simplicity underlies the limited objective of this study. Yet it is pre-
cisely iﬁ virtue of the model's simplicity that a statistical analysis
is feasible and an unambiguous physical interpretation of the theoretical

results can be given,

Section 3 is an exposition of the stochastic aspect of the analysis.
It will be shown that the problem of deducing the second moment statistics
can be resolved into two separate steps. One is to determine the funda-

mental solutions which can in turn be combined to obtain the response func-

tions of the system. The other is to formulate and compute the statistical

boundary conditions. These results can then be combined to give unique

solutions for such statistics within the tropics.

Section 4 is devoted to the discussion of the statistical boundary
conditions. A crucial assumption is made here that the variable part of
the flow at 3008 is statistically independent but otherwise similar to

0 . . . . . i 0 -
that at 30 N; this is necessary since no sufficient data at 30 S is avail-
o
able. 1In this section we will see how the boundary statistics at 30 N
from data are computed and how they may be interpreted in terms of wave

motions in the east-west direction.



Section 5 shows the results for the first step of the analysis
outlined in Section 3. The fundamental solutions are solved analytically
for the special case of no dissipation and no shear in basic state, and
numerically for the general case. A brief discussion is given of the
manner in which the fundamental solutions are related to Rossby waves and

internal gravity waves.

Finally Section 6 presents the predicted second moment statistics
for the ﬁodel tropics. The following statistics are computed: variance
of each of the three velocity components, covariance between the horizontal
velocities at the upper and lower levels, variance of temperature, eddy
cross~-latitude fluxes of momentum, sensible heat and wave energy, and the
energy conversion terms., Wherever possible comparison between the theo-

retical statistics and the corresponding "observed” values will be made.



2. Description of the model tropics

The atmospheric model is designed for a rather limited objective.
As pointed out in the Introduction, it is_chosen for studying the statis-
tical properties of large scale asymmetric motions in the tropics in the
absence of condensation. Thus a dry model with hydrostatic approximation
is used. In particular we use a two-layer model. It is sometimes known
as a 23 &imensional model because it has only two degrees of freedom in
the vertical dimension for the horizontal velocity field, and one for the
thermal field and the vertical velocity field. The vertical coordinate
consists of five pressure levels: O, 250, 500, 750 and 1000 mb. The ho-
rizontal coordinates are those of a Mercator projection covering the
tropical region from 30% to BOON. The effects of the spherical geometry
of the earth are approximated by an equatorial ﬁ—plane representation.
In order to see precisely how an equatorial @—plane approximation is
introduced, let us start with the complete set of governing equations
for a dry hydrostatic atmospheric system in (X, ﬁ/ s 77 ) coordinates
where f is pressure and X and 7; are horizontal coordinates of any
conformal projection. (They are sometimes referred to as the "primitive"

equations in meteorology literature.)
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In particular, if a Mercator projection centered at the equator is used,
X , g and i would be related to longitude ) , latitude @ and

earth's radius Q@ as follows.
X =
4 = a Covo

20pine = 20 M7

/
( +M9 (2.2)

By "equatorial ﬂ -plane” approximation, we mean that the last two rela-

tions in (2.2) are approximated by

K= a
2N pab = 2127

(2.3)

We also assume that & vanishes at the top and bottom pressure
levels, This simplification, amounting to no net divergence in a vertical
column, eliminates the fast moving "external gravity" waves. Since we
are only interested in motions with a long time scale, this assumption

A

is reasonable,

A unique feature of the model is the use of statistical lateral
forcing at SOON and 3OOS° They are prescribed in terms of second moment
statistics. We consider the total circulation in the model tropics as
consisting of a time and zonally averaged state and a deviation from it,
which arises from the lateral forcing, The deviation component is assumed
to be governed by linearized form of the 'primitive" equations, It is

the purpose of this study to demonstrate that the statistical properties



of the resulting response, treated as a stochastic process, can be unique-

ly deduced.

The mathematical analysis will be made in terms of the meridional
velocity, U~ , at the 250- and 750-mb levels in the model tropics., The
lateral forcing will be given in terms of the statistics of < at these
levels at both 30°N and 30%S. This information at 30°N is obtained from
23 months (June 1963 to May 1965) of streamfunction data that covers north
of about 15o latitude of the northern hemisphere. Unfortunately there is
no similar data at 3OOS. We introduce instead the assumption that U
at 30°S is statistically independent of U at 30°N, but is otherwise
statistically identical to the latter., A detailed discussion on how to
formulate and compute the statistical boundary conditions is given in

Section 4.

Some type of dissipative mechanism must be incorporated, or else
the possibility of having resonance may render impossible the existence
of a statistically stationary state. We will use three simple types of
parameterised dissipation. Two are frictional; an internal friction at
the middle level and surface friction at the lower level. The former is
assumed to be proportional to the shear of the velocity perturbation and
the latter proportional to the velocity perturbation itself, The third
is a simple radiational cooling, proportional to the temperature pértur-

bation. Three empirical proportional constants must therefore be chosen,

We finally come to the problem of choosing a time and zonally

averaged basic state., The choice is made on the basis of published in-



formation about the mean state of the tropical atmosphere. Let us first
. . T.0® _

consider the static stability defined as = C) 5}? . It is generally

recognised that this quantity does not vary significantly from low to

middle latitudes. Table 1 shows the value cof this quantity for the atmo-

spheric layer, 750-250 mb, from several sources.

January July Average Source
.0545 .0472 .0508 U.S. (Gates, 1961)
.0493 U.S. standard atmosphere
.0515 West Indies (Jordan, 1958)

®

Table 1, = '@t —_— in deg mb-l .

- 2®
A value of .050 deg mb 1 is chosen for = L 2= in the model trop-

@ 2f

ics. The two-layer model to be developed in Section 3 contains intermnal

NV

gravity waves as one mode of oscillation. In the absence of rotation

and zonal current, their phase speed is given by

= S————2

5176 5

RT 2@ bo

m Sec

We next consider the choice of an averaged zonal velocity,.
Table 2 shows the zonal velocities obtained by Palmen (1663) and by

Obasi (1963) for the northern and southern hemispheres respectively.
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Pressure

mb 200 500 850
Latitude
30°N 20.0 10.0 2.0
20 10.0 3.0 -1.,0
10 0.0 -2.0 -4.0
0 -4,0 -2.5 -4.,0
Average 6.5 2.1 -1.8
o

30°S 29.6 11.2 2.2
20 17.8 5.6 -1.9
10 4.5 ~1.0 -3.5
0 0.4 -4.5 -3.3
Average 13.0 2.8 -3.2

Table 2. Zonal velocities in m sec_1

It should be pointed out that Palmen's values are based on Crutcher's
data (1959) which is considerably more abundant than that which was avail-
able to Obasi. The northern hemispheric values may therefore be more
reliable than the southern hemispheric values. In any case, within the
uncertainty margin of the two sets of values, we may say that the zonal
wind is by and large symmetrical about the equator. There is a vertical
as well as a horizontal shear. However, we will only incorporate the
vertical shear in our basic state, and choose uniform values of 8 m sec“1

and -2 m sec_l for the basic zonal current at the 250- and 750-mb levels,
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The omission of lateral shear gives some simplification in the analysis.
However it was omitted primarily to eliminate lateral shear as a source
of wave energy in the tropics and to focus attention on the amount of
energy that would appear in the absence of this source. The zonally
averaged geopotential and temperature fields are taken as in geostrophic

balance with the prescribed zonal wind.

The effect of a mean meridional circulation in the basic state
on the asymmetric motion will be disregarded. The reasons for this
simplification are that the present model is too crude to incorporate
these effects and the actual meridional circulation is not well deter-

mined.
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3. Formulation of an analysis for stochastic perturbations

Before we proceed to a mathematical formulation, it may be helpful
to have a brief discussion of exactly what we mean by stochastic motion
in our context. The concept of ensemble developed in studies of probab-
ility seems to be necessafy in this discussion. An ensemble may be
thought of as a collection of individual realisations of which we have
only paftial knowledge. Now let us imagine an infinite number of models
as the one described in Section 2, The fluid in each of these models is
subject to lateral forcings of same amplitude but randomly different
phase. (Precise discussion will be given in Section 4 about the terms,
"amplitude" and "phase'.) The circulation in each model is then a real-
isation. Because of the randomly different phase in the forcings, each
realisation is then naturally different from cthers in detail. But one
may suspect that since the "amplitude” of the forcings in the ensemble
are the same, there may be some properties common to all realisations,
Our problem is to deduce these properties which can be properly called

ensemble-average properties,

3.1 Perturbation spectral equations

We may make one definite statement about the realisations dis-
cussed above., It is that each realisation, however indeterministic it
may be, must not violate the known physical laws that describe the
dynamical and thermodynamical processes, Hence the stochastic process

must be governed by equations (2.1). Let us first write (2.1) with an
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equatorial P ~plane on a Mercator projection, i.e. with (2.3), in a non-
-/
dimensional form using (2_()_) , @ and ﬁ (=1000 mb) as time,

length and pressure units. We define:

’

]
20 a

(.u.', v’) («, v)

]!

¢

=2
20 4

_¢
('2_{2,::.)2

.&5
"

= F
40t a 3.1)

_ -er L0 3,
€ (zoa) 2 p ’«é‘

L

il

’ K Q
a 83 a?

20t

T

e
"

B
|

For simplicity we will now omit the prime superscript in the following

equations.,
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U U o4 mo . 2¢

=7 + U +v37 +6U—-—-—-af = -5; +7V+F

2V Y, 2V 2V _ ¢

st ax+'u'2}+wa;b_ 7_?14-#/;

2w Py oV _ (3.2)
—-———37) + S -r-————a? = 0

The range of the independent variables are

© & x & 2T

Yoeg ey 5 Y= LEEE) - s
°© & 4 &

-0 Lt L oo

)t = 1 is equal to 12 hours,
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The basic features of the two-layer model tropics are summarized

in Fig. 1.
Level Basic State
o GO =0
? 4
Ya / 91.—-——_“_"43425' _____ P ZZ“ ¢'
< v
- [7%) . ——
Va ~ | F;f’ ~a €
v “
«Q v. — ——
3/4 2 4-)»-—.-———-"‘).._3,\_??-____._.%“ ‘L‘)¢
2
! . Cd'ﬁ)
Y ° ~Y
7
> s.b.c. stands for statistical boundary conditions
Figure 1, Model tropics
The numerical values of the basic state are:
-l
- g m sec
R = = .ocagé
! 2o
— =1
&, = 2 ms3eC_ _.,002/8
2 a
— - _L - bond
a = F(«+ a,) (3.3)
N = --é—(.a_,- "“‘z)
- C 2 -
E = (__;__) = 4.6 x /0
2o
—— = e Af L ) d; 7 2
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The horizontal momentum equations are each written at levels 1

and 2. The vertical advection term in these equations is written using

L

- ._L -
the assumption (V) = 2 ( \f; + V‘) in the following way.
s
P=3

—
V (9w7 v2e)
: L4 2F 4

,.\
g

vy
<
"

"

S

i
2(‘;”%- V‘)wf{_

L

v, -

~
<&

Similarly

By using the boundary conditions ey =0 at ?: 0 and f::/ we write

the continuity equation as follows,

Loy Lo
6\)-1-—-27'1/, = 2V'Vz (3.4)
Fi
The thermodynamic equation is written at ﬁ = 4 by treating € at

this level as a given constant.

The linearized version of the resulting equations, in which «, ,

Y , A, , Y, and 55; , #z now denote the perturbation variables,

is;:
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_g% T2 g (28 av,)__aé, AR
L5+ () EE = —-S-g} - gu, + (% -Y)
3“-?._,_(“ D2 - (2 21;) - 295”?1,,;“ - au,
..g%»,(a-m.gl} = -%?—?ILZ+P'U; A

2uy , M | YU Voo _
5% T ox T 59 MY o

""*""x)(¢ 4)+ Ay (v+u) - 28 (L4+ 3% ?

c‘)}rzl. has been eliminated by using (3.4). The frictional and heat-

ing effects have been parameterized by linear laws:
RS - -
fi' = - /@ (v, -%)
',; [ =
E = pY-y)=- &PV,
K =

~J(%- %)

/5 represents a small-scale vertical exchange of horizontal momentum

between levels 1 and 2; (O(-IQ) represents a surface drag coefficient;

and r can be thought of as a very crude representation of radiative

cooling., The numerical values assigned to them were taken from Charney

(1959).

(3.5)
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-2
0,343 x 10

]

F
o« f
4

They correspond to decay times of 23, 6 and 39 days, respectively.

2.74 x 1072

0.206 x 10~ 2

The x-dependence in (3.5) can be represented by a Fourier series
expansion for each dependent variable, Thus, if the subscript ,( =1

or 2 represents the pressure level, we write

n=

q{@(x'?'t)= % *él(?,t;'n)umnx +/6£(7,t5%) Ao, M X

= AN
= OEQ l;;;: 0%:(?11:;71) £

(3.6)

where

44

L

N is the zonal wave number. In the same way we have

“uo= &géq/&-@i“
$ - o&{é@e"”}
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In order to formulate our statistical boundary value problem, we
must seek a spectral representation for the time variability of the six
random functions, iLLZ. P 1/2 and Jz , and their derivatives. A
mathematical theory exists which permits us to do so under a mild condi-
tion. A thorough exposition of it can be found in Yaglom (1962). It is
sometimes referred to as correlation theory, because it is developed
only for examining the second moments of stationary random functions.
According to this theory, if each of the six functions has a unique non-
negative definite auto-correlation function which is at least twice
differentiable with respect to the lag at zero lag, then each of then
and their time derivatives has a spectral representation. The spectral
representation is in the form of Fourier-Stieltjes integrals and their
inverse integrals. We postulate that this condition is valid for the
random functions in our model. In Yaglom's terminology, we define a
random point function éz’(dﬁ for each of the six stationary random

functions th) :

| = ot
;(;c)=/.e<r d7

. 'rz-ur -
Z(o_) - -,f,,.: -z'_i-;] = 3(t) dt
- - (3.7)

A7

in
—~
q
+
>
N
|
N
—~
Q
A
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The identification is:

g U,

=

k. 4

) )y L)
;Z: : L{Q 2 »Q. ) l?z ) C:l. y Sgl

The spectral form of the definition (3.6) is

‘l\<2 = &((:L - ¢ 6'12[

Since d Cf.(- ) = J CL* (o) and JS - 0‘) = JS*(O')

(where * denotes complex conjugate),

we obtain

*
’lCl(V) -—2,_—- [ 4\1’&) + AVL(-v)]

(3.8)

»*
[ dy, V¢ )J
T -t v - -
We substitute the Fourier series expansion (3.6) into (3.5) and
then take the Fourier-Stieltjes integral of the resulting equations
according to (3.7). The following equations result, governing the in-

crement JZZ of these six random point functions.
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@rand-ip)dU - i(AD-9)dV, + ipdU, = -mdP

Y dU + i(,dm_ﬂ.—;‘e)d\( - gdY, = - DdP

-ndP

(-2 -is) U, + i (AD+3) 4V, + ipdU; = 2
(3.9)
? JU + ,;(,a—mt—iu)AVZ - FJW. = - D"'Pz
2
- -iDdV, = o
ndU + mdU, -iDd) -iDdV,

-— . - N - - Y AP -JP
ZGﬂJL),‘&(zeD"A})Jw" :..A.7¢“/2 = (4 4.[)( 2 ;)
where

-— G‘
——'—}C = M+ T is the longitudinal phase speed relative to the
vertically averaged basic flow, and

D = -j‘!— is the latitudinal derivative operator at

} constant N and ¢ .

The six spectral equations in (3.9) can be.reduced to two coupled
equations by the relatively straightforward but algebraically involved
procedure described in Appendix A. The final perturbation spectral
equations governing GIVI and de_ are:

L'{d\/,} + Lz{dvz} = 0
(3.10)
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where L} (J: = 1,2,3,4) are second-order operators in 7 .

T

d d 2
L;'= afa-;;_+'%y2—:7~+ C}. +d;’?

Q"- » ‘6 ’ C}- and A} are functions of the parameters. o“/' and

ole are related to AU‘ , p‘ul , AE and o”:: as follows.

U, = M v} + M, {av]
AU = A,Auz + M, {alV,} + Mu{”“/z} (3.11)

AP = A dU + A U, + Ms{d\/,}

AP, = AU, + A AU, + M‘{M}

where A} (;::I, -~ 4) are functions of the parameters and are independ-

ent of ‘J' , and M (m= l)"-) é) are first order differential operators
"

in 7 .

3.2 Fundamental solutions

Equations (3.10) and the associated relations (3.11) have as de-

pendent variables the increments dZ of the six random point functions

Z . The boundary conditions at 7 = * Y are formally in terms

of 0“4/1"' which cannot be uniquely specified. 1In this sense our

problem is fundamentally different from the usual boundary value problem
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where the dependent variables and boundary conditions are deterministic
quantities. Nevertheless it will be shown that the formal properties

of (3.10) play an important role in determining the response of the model’
to statistically prescribed forcing. We therefore first consider the

derivation of the fundamental solutions which is based on the formal pro-

perties of (3.10). The manipulation of the resulting form of statistic-
ally indeterminate solutions to give determinate statistics will then be
considered in the following subsection, with the aid of the Wiener-Khintchin

theoren.

The operators l-i ( j,: 1,2,3,4) in (3.10) are second-order
differential operators, and are even operators with respect to 7 .
These facts imply that each of dbf and Jbé must have four independ-
ent solutions, two of which are even functions of 7 and two of which

are odd functions of #. . The solutions can therefore be written in

the following symbolic form,

> e

i
;_"_ & jz,;,( 4)

4

(3.12)

av,

where F% are constants of integration. Without loss of generality,

let us consider 4AG s W, N ’ /h]. as even solutions and 40} s

’

4&; s “&3 » )Z¢ as odd solutions. The constants of integration

are related as usual to the boundary values of the eight dependent solu-

tions and A%i’ .



-24-

The boundary relations are

fs 2‘/’:,% -42) ["zf”’ /) -4y, (@Y, +d!{.j
ﬁ. = 2(}‘24»:;,-%12“) [—)z“(dlﬁ +dV) + ar, (AV + d‘;i] (3.13)
s zoz;«g, ;z“%)[-k,*(dl{ﬁ“{.)+ag+(414f-414_‘>]

where subscript * again indicates functions evaluated at ‘;t = *+ Y

If we substitute (3.13) into (3.12) and rearrange the terms, we

would then be able to write the solutions in the following form

s s
v = Z det. \{}(;L)

(3.14)

W, = > i Vi
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where

da{z = A 24 + A Vz_
d°(3 = A . d -
- / (3.14a)
ole(,+ = d\é, de-
Al -1
V. = of (R, = n W) (o - )z“wz)
L. now Y G wo+ arm)
V, = 05 ()z,_ W " u) i (i
A3 & n =)
7 e ok (n, M, R (R, 0 ~ 2y, )
A "( W
V: = 05 ()Zw W, W /’13*) —'wz:_* W, + s 4)
v'oo= oe(naw-n wY (. 2 - A R)
2 2+ 1+ " -‘lf) 24 4 14 "X
7t = e (n )’ » 2
Vg_ = 0 z.,'bdl-f - "+ %4) (_ ““5_,,. ’ + 4‘);} 2)
73 = & W~ N y 2. N )
2 = 0 ()z#f 3+ 4t 3*) ()24* /ZB 3+ 4
A4 -}
2 = o.g ()lé.*w-;‘f - %f /23*) (’ %.’ &3 * m’;f k‘f)
. Ay Aq
The superscript J, of the solutions l{} and Vz are chosen
A
such that (/‘l and Vz’ are to satisfy (3.10) simultaneously,
’
and similarly for pairs where ‘7_ = 2,3,4, Furthermore it is easy to

Ag A
see from their definitions that VI} and V: are either equal to

0.0 or 0.5 at # = Y ;3 and because of their even or odd properties
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another condition for each of them can be specified at 7‘ 0 . The

boundary conditions for them are summarized in Table 3.

y=0 y=Y .

A AL AL LW

¢ # ¢ ¢

; y A v V
1 d/dy = 0 d/dy = 0 0.5 0.0
2 d/dy = O d/dy = O 0.0 0.5
3 0.0 0.0 0.5 0.0
4 0.0 0.0 0.0 0.5

Table 3.

Al Ag
The fundamental solutions \4} and Vz} can then be obtained by
solving the governing equations (3.10) four times using the four differ-

ent sets of boundary conditions summarized in Table 3.

The statistical properties of AV, and 0&\4 are now contained

A .
only in the dﬁfa_ , Whereas \i} are deterministic functions and

will be referred to as the fundamental solutions.

The general solutions for duﬂ_ and Ali' R ,(, = ', 2

associated with those for JVL in (2.14) are
&

JUL = Z 4&' ¢ (3.15)

3
U
o
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A Pl A ; A }‘ .
L{Q 5 }f are related tf) \i for each J’ in
the same way that d% and 0”1 are related to dlﬁ in

equations (3.11).

3.3 Response functions for second moment statistics

A theorem for stationary random functions known as Wiener-Khintchin
theorem will be applied in the following argument. It consists of a set

of interlocking equations relating the correlation function %(’CJ
of two stationary random functions F(¢) and Y(t) to the associated
random point functions Z(o’) and Wr) through a quantity known as

the spectral density functions § (d‘) . It is stated below for the

saké of reference. 7

(ASRE - 27,/ () 3 (t-) dit

(3.16)
-0t

() = L[
&0 [ gk

47 AW = ff () 4c

1('::) / g‘”(AZolW >

0‘2 and JW are related to z and 7z respectively by the

definitions (3.7). The symbol < > is an ensemble average operator.
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The first statement in (3.16) contains the ergodic hypothesis. The only
other assumption involved in this thecrem is that the correlation func-
tion is integrable, which is invariably true in all known physical situa- ‘
tions, Thus we postulate this mild condition for the statistical forcing

in this study.

For clarity let us consider a particular correlation function,
namely the zoﬁally averaged correlation function between 1{ (t, X) and
'Uz(t" x) . An overbar will represent an x-average., By direct sub-
‘stitution from the Fourier series representation (3.6) of Y and ‘U;_ s

[

we obtain

— _ = L (v) + Y () (3.17)
(vv ) = ; z['lP&& A2

The subscripts on 'L'O denote  § = e, 7 = ‘éz 3 14 :/J; R
= in the definition (3.16) of . The dependence of

1:A, Y e

and &ff on g, is not denoted explicitly. By the Wiener-Khintchin

theorem, we can write (3.16) when T'= 0 as:

{vv, > =

i "'5’.'/ [(df,d6;> +<J§,d§:>] . (3.18)

It will now be assumed, without further specification, that all

variances refer to x-averagcd expressions and the overbar will be omitted

for convenience,
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By using (3.8) we can rewrite (3.17) as

[ -}

(% = i L / LAVON > + (A\{'(’-»ﬁé(-»}
N>l -

It is clear that the integrand at negative value of O is equal to its
complex conjugate at positive value of ¢ . Because of this symmetry

in frequency (3.19) can be written as

(v = i—';f&{@v, d\/;;} | (3.20)

n=t -0

The reason for this symmetry is simple. It arises from our choice of
dealing with two-sided spectra, i.e. for both positive and negative fre-
quency. But as far as the covariance is concerned, there is no physical
difference between positive and negative frequency and thus contributions

from them are necessarily equal,

Substituting the general solutions for d\é in the form cf

(3.4), we obtain

= 0’(:/ Mz
o °° & e L, AM* *
Craz [ RzE P

: - (3.21)

(3.19)



-30-

A 3
That the %} are deterministiec functions makes possible the last

step which is critical in this analysis.

The JD(} are given by the boundary values of ‘“./L at
? = +Y , as defined in (3.14). By the third statement in (3.15),

each of the 16 <d°‘,‘l Jol:> can be expressed in the general form
z*
Ao £ =1,2,...,16, (3.21) thereby reduces to an expression of

the general form

<“’"’=> = / [ f Zé H i(;,m) éifv;n)] de (3.22)

n=/ t'l

R

The H T; play the role of the "response functions" (or "system
77

functions”) used in electrical systems. The square bracketed quantity is
the spectrum for the covariance of v and %, , and we see that it is

a superposition of the responses associated with the 16 "input" spectra

=K

Q for each wavenumber N . This is the statement for our linear

model of the geueral law that the "output” spectrum of a linear system

is equal to the system function times the input spectrum

(3.21) can be generalized to determine othexr variances and co~
variances in the model. Let f and 7( denote any pair of the six
. A - A L
variables ‘U"( s Ml and 45( and let Z"£ and W;“ denote
A A A -
the corresponding deterministic solutions V& ’ U"‘ and }z;'
£ £

as formulated in (3.14a) and the statement following (3.15)., Then the
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general form of covariance is

oo

i = %i/&[}fﬁ Zi W {ds; au:)}

omy

(3.23)
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4. Statistical boundary conditions

This section consists of three parts. The first part formulates
a closed set of statistical boundary conditions for the spectrgl equa-
tions (3.10) on the basis that only 1{ and 1£ at 30°N are known
for a sufficiently long period of time. The second part describes how
the boundary statistics are actually computed. The third part gives a

physical interpretation of the results obtained in this way.

4.1 Formulation

For the moment let us assume that a long record of observations of
vV, and 1€ at both 30°N and 30°S is available., We first expand each
‘of these functions into Fourier series of longitude, truncated at a cer-

tain wavenumber PJ

| ) | .
y (t¥= 2 [ébltsn)mux + A (tin) i x

ns

‘ N .
‘U’:_(t,ﬂ = Z[ée_(tjn) Cronx + ;J;_(*'}“) Bon 7"‘}

n=

Z =1,2; subscript + stands for ? =Y

As shown'in (3.23), any second moment statistic in the model can be
uniquely determined if the statistical boundary conditions (s.b.c.) are
do* ‘
such that they enable {d,,(}. ot > » £=12,345 m=1,23,4
to be evaluated. According to the definition of “di in (3.14a),

the required s.b,c. for the governing spectral equations (3.10) are

(4.1)

e IS
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<d\4,t dv,: > ) L=,'2 5 ‘£=]'2 . They can be synthesized from

v * ¥
{AC, 4Gy > o Las dS0 % o LdC, 45, 5 =
<d$ AC* > , since A\Q is related to ACL and - ASL by
(5 20 31

AV JdC - "'dSL . By the Wiener-Khintchin theorem (3.16), the
| 8 '3
s.b.c. for each wavenumber N can therefore be constructed from all the

independent spectra

3 ¢
(1) Gkt) ) %n:) Ay o T L&D e 6k

These spectra can be obtained if 'l{é'} , and thus -G£+ and

/déi' as defined in (4.1), is available. But as pointed out in
Section 2, only observations for 12* are svailable in detail suffi-
cient for the Fourier expansion (4.1). The simplest and perhaps the
most reasonable way to overcome this handicap is to assume that 12_
is statistically independent of 'U}J , but is otherwise statistically
similar to the latter. This is just a working assumption’ &he first
part of the assumption is not unreasonable because there is unlikely to
be significant correlation between the baroclinic activities at the mid-

latitudes of the two hemispheres, which after all are primarily respon-
sible fpr the flows near BOON and QOOS. The second part of the assump-
tioﬂ is reasonable only to the extent that hemispheric symmetry is a
sufficiently good approximation. It cannot be rigorously justified,

since topological differences do exist between the two hemispheres.
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Much of the interhemispheric statistical difference presumably is ex-
pressed in seasonal fluctuations. Our detailed analysis, however, will
consider only periods between 3 days énd about 3 months. Therefore the
assumption of symmetry is not as weak as it appears. For consistency

the basic state must also be symmetric, as has already been assumed.

An approach commonly used in deducing the response of a linear
fluid system to localized excitation is the so-called "radiation"” argu-
ment, in which only those wave solutions are used which give energy
propagation away from the source to a sink at infinity. Our situation,
however, is more complicated — we cannot, for example, separate the
observations of Y at 7 = Y into a source function plus the
effect of a transmitted northward energy-propagating wave from f/: -Y
The simple analogue to our model is more like a box of water contained
between walls at ? = * Y , where two statistically similar but in-

dependent demons are oscillating the boundary walls.

Let us first consider the consequence of postulating statistically
independent forcings at ? = i’Y . If two stationary random func-
tions, f(ﬁ) and '7(t) with zero mean are statistically independent,

their correlation function will be identically zero:

R 2_/.5[;“ 7. f;l(f.,,v;.,;t) A%, dy,

"D

j”f_ F ()45 f .’?1(734%

-k

"

"

<§> <’?> (4.2)

(2

|
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E (3’,, e ’t) is the joint probability density for
St)=3%, '?(t‘)r- ¥, vhen t,-t, = fz(;'o) is the
probability density for (&)= ¥, and El ( -vlo) is the probability
density for ﬂ((t,,) = "o . By the ergodic assumption, we then have

’I(M(ﬂ = Ly = <§><‘Z> -0

Thus the assumption of statistically independent forcing at 9=fr is
formulated by

( %*("z £) 'Vf_(x-—S, t-z) > = O (4.3)

By assuming that 1&+ is statistically similar to 1&_ , We mean

<1L(x,t) 1%(*—5, t-7) > = (75_(,(, ) "{5,("'[/ t-t)>

for 211 & and T for £ =1,2 and % =1,2

With (4.1) this can be written as

+ - + ;
Woreies Yotn] 6 PBranss” Vrow o) 26

) [ﬁmwmf Qfﬁe-wtk-)] Lradoct [' 1%(1—)14(&-)* v?a-x c(i—»] pin b1

Thus, the assumption of symmetric forcing amounts to assuming

(4.4)

+Y = o+,
q@(w el Wta Nk w@ (L C@Ry (e A

“Weadte™ Yoty “Newis™ Yerews
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By the Wiener-Khintchin theorem, (4.3) and (4.4) can then be

e A + A8, 45> =°
Lae, 4k = {A5, A =e
<4€ dC > ﬁ(&)ﬁ(i«») a7
<d§£+ 4 S;€+ > ¢

A
SJuen ek “7

*® —_—
LAG, 45, > 'éé(u) ko 47

LASACE D> = Ly 04y T
-<d(‘ 4((1{ >+<4.§ lf > (;(C AL, >+<ﬂ(.§ 4S*>
L4C, a(s - <4s 44 D= (m 4SSN - 4, dct >

(4.5)

|

!

for  fet,2  ; K=t 2

/
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The statistical boundary conditions for (3.10) now reduce to

TRTSEE

together with the four real functions Fl' , F; , kK and F;
2
Fo= L4y [y = Ly L=l 2

i [£€+€++ dedr 21‘“{ }]1 “ -
f+if= Lay Ayl - A4y

’ - Ao
[§GI+G2+ * %»«;sz- * L(%m&r %11»622]

With the definition of dol;; in (3.14a), the <d&jdo(:>

appearing in (8.23) can then be written as

LS = L]
.<M°<J‘> = (1> = 2

Zd«x,é«f) = {do 4«f> = 2(F +iF) .7
‘U‘x*do( > Aot} Ao:¢> = 2(F -4iF)

Lty y = (At Ay = Ldety Aoy = (4«*.4&»-0
Lt 45 = (e, AT = Loty 45D = L, AN 2

U
O
)|
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Finally the general form of any covariance can be written upon substitu-

tion from (4.7) as

N ,
Gry= 2 [ 2 HGem Bem e

mer o 5 f’l
where
] 2 Ar.’t 4 3 " ;#
H' = &{Z w o+ 27 W
A

X
~
"
——
Na
)
=»
®x
+
N
I
=\
T x
l-_y_‘)

IW
"
PN
o
N
<>
"k
+
l\i;
PN
-‘.
’\‘)”A
>
£
+
N>
+
SN
e
g‘—“)
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4.2 Data analysis

The actual data used for computing the statistical boundary con-
ditions (4.6) is the streamfunction field analysed ¢' with the "balance’
equation” by the National Meteorological Center. [See Shuman,‘1957:]

The data is given in a stereogfaphic grid system which covers the north-
ern hemisphere north of about 15°N, twice daily at 00 and 12 GMT. Data
for the period June 1963 through April 1965 for the 200-mb and 850-mb

levels was made available to the writer by the National Center for Atmo-

spheric Research.

A linear interpolation scheme was used to obtain the value of QU
at every 5 degrees of longitude along 300N at each observation time,
These 72 values were then resolved into Fourier components in loagitude,
In view of the relatively sparse network over the major oceans, the
Fourier series was truncated after wavenumber 12. Q% is non-dimension-
alized as %' = 42/(2,{2_&") , S0 that the dimensionless meridional

’
_ 1 B‘PL . These Fourier coefficients for

2+ 7 Cea3¢ Dx

velocity is

’
L/i are readily related to those for 'l£+ : .
}A ’Ef(
A . .-~ t WX (4.9)
q{é*(t' x}_) = ) f’h“ ;M) Co—a%)f} /A ;M) Pass g
n=y

Each of the time series t;ﬁf and ;J}* was next modified by having
its time mean value removed. From now on, 12 and )Ef refer
Lr L+

to these zero time mean series.,
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There are four basic considerations ;n making spectral estimates
from discrete time series — aliasing, spectral smoothing, resolution,
and reliability requirements. The overriding objective in the actual
spectral analfsis in this study was to make a simple analysis that can
adequately avoid the difficulties associated with each of the.four con-

siderations. A brief discussion is now given for each of them separately.

Resolution and reliability requirements

Because of the nature of duf.stream funcfion data, we shall only
examine the spectra in the frequency range \G"é—'z' cycles per 12 hrs,
corresponding to a minimum period of 3 days. On the other hand we want
a fairly large number of frequency bands within this range so that we can
examine the variation of the response spectra. For a record length of 1351
data points 12 hours apart, these two requirements can be met only at the
price of having a minimum tolerable reliability. We therefore chose a
maximum lag equal to 1/10 of the record length. A rough guess of the re-

liability of the spectral estimate is [Blackman and Tukey, 1958] :

variance {spectrum estimate} maximum lag 1

2
l%verage ~{spectrum estimate}] record length

In other words, the standard deviation of each estimate is about one third
of its average value., If we assume the noise in the record as Gaussian, we
may arrive at a more detailed estimate of the spectral variability in terms
of the Chi-square distribution with 20 equivalent degrees of freedom. But

the rough estimate given above is sufficient for error estimation. With our
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choice of maximum lag, the spectral estimates are then calculated every

(270)_1 cycles per 12 hours and the resolution of the spectra is (135)—1

cycles per 12 hours,

Spectral smoothing

This is a necessary procedure because it can be shown that the
variability of a periodogram (raw estimate) does not decrease with in-
creased record length, 1In éeneral, the Hanning lag window is quite
sufficient for smoothing, and was therefore‘use&. But one additional
caution must be made for this data because its spectra must have a strong
component or line at the annual period. The smoothing procedure would
diffuse some of the energy of this peak to higher frequencies. To over-
come this a high-pass prefiltering was used. (The filter is described

in Appendix C).

Aliasing

This is not a significant problem here for two reasons. First
the high frequency components must be fairly weak in the streamfunction
data since the NMC analysis has already incorporated some ‘spatial smooth-
ing and considerations of time continuity. Secqndly the highest frequency
of the spectra that we are interested in is equal to 1/6 which is three
times sméller than the folding frequency, 0; = 1/2 cycles per 12 hours.
Nevertheless the filter that was used (Appendix C) was designed to filter
out 511 components of periods 1es§ than 1% days as well as periods longer

than 6 months,
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Analysis

A direct method was used to obtain periodograms from the prefiltered
time series. 'This method is based upon the fact that the spectrum of a .
time series may be expressed directly in terms of the series itself instead
of via its correlation function (ref. Blackman and Tukey, 1958, pp 87-88)
and it can be generalized for the cross spectrum of two time series.
It is generally recommended in text books (Bendat and Piersol, 1966) that

the periodogram should be only calculated at m discrete frequencies

% o s4

3 ™ L

where M = maximum lag number, L = record length = 10 m,
i = 1’ ey " .
Then according to the direct method, the raw estimate of the cross spec-

trum of two time series f(‘t) and "L(t) is given by

é (Ezé = Z,l:‘ (’ié":%é)(‘}%,ﬁ* ¢ 6_4-,0 (4.10)
h

t
where Atﬁ. and B"i are the (5k) h Fourier cosine and sine

. ' th .
coefficients of 'g , and ‘ﬂ:"i and 03#{ are the (5k) =~ Fourier

cosine and sine coefficients of )( .

A
A Hanning lag window is now used to smooth the é' obtained by

(4.10), and the results of hanning is
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sty 4 (). 1 ECD .

505 - 2[R+ B2)]

. , A ~ ' .
5 () - £[ B . )

Finally in order to compensate for the attenuation introduced by the pre-
filtering, the spectrum obtained by (4.11) is divided by the attenuation
factor to give the final spectra. These spectra are then used to compute

the statistical boundary conditions ff s f; , fg 5 /Z in (4.6).

4.3 Results and interpretation

A complete listing of the four statistical boundary conditions for
}
the frequency range lv} é 'Z“ cycles per 12 hours for each of the 12

wavenumbers is given in Appendix D. A simple interpretation for fi s

F: B f; and fi is now given in terms of the amplitudes and the

relative phase of the wave motions at 200-mb and 850-mb levels.

12 (4.12)
v, = mz T O Cosmn + g (B)4cnnx
=)
12 oo i‘yt o . (,G"t
= Z coonx g AC + /,{L«A\ ax & dS
" 1+ —o L
2 = .
"2 [H BT
- £ -4 L
'na._m z (d% 4d§b)‘+ £ (dcb*-tigb)
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* *
N - o - = S
Since d C}’(— o‘) = A Cl +( ) s dsﬁ*-( q') d 1+ (“-) , we

then can rewrite (4.12) as

(4.13)
A (d‘t' nx)

e
- > - . -‘. ﬂx"ft)
’U,;J- = & “—Z; (46&.“ d%),@ + a(i 4d§+)£

The first integrand in (4.13) represents an eastward traveling wave with

o a\E
an amplitude equal to ((/d%}*:‘» d%}/ > whereas the second

integrand represents a westward traveling wave with an amplitude equal

-L
to (</dc‘e*—£d§+/z>) ‘ . Since, for Z =1 and 2,
FO) = Ll = {HG= 457D ma
FEo = LIy, CAlD = (G0 idS@[*) s e tixet

two statistical boundary conditions f;' and f; for each wavenumber N
when evaluated at positive (negative) frequency can be interpfeted as the

square of the amplitude of a westward (eastward) traveling waQe at levels
1 and 2. These spectra at M = 2, 4, 5, 7 and 11 are plotted in Figs. 2
and 3, which show that there is much more energy associated with the wave
motions in the 200-mb level than in 850-mb, Most of the energy in ff
as well as in f; belong to the intermediate wavenumbers 5, 6, 7 and 8,
Furthermore, the spectra for low wavenumbers 1 to 4 have larger magnitude
at positive frequency than at negative frequency, and the opposite is

true for the higher wavenumber spectra. In other words, the waves of

o
low zonal wavenumbers at 30 N are moving relatively more westward than
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those of high wavenumbers. This is a well-known characteristic of the

Rossby waves.

f; and [i. can be interpreted as a measure of the‘relative
phase between an upper level wave and a similar wave at lower -level.
This is perhaps best illustrated with a simple example. Consider two
westward moving waves of different amplitude and phase but identical
frequency 6; and wave number N

v, = A‘c,n('nxd- aot+ 7(,).

= € (t) Cromx + ,J:(t),u'.\mx

= /d\z Coo (O\X + 0}15 + 7(;)

Ct) comnx 1+ A0 pin

where

| €, = A, Coo (GTH+X,)

/QJ!.(*) = - A An (a;'t+x£)

Then by using the definitions in (4.6), we obtain

14V, = A

R JAGS) = AL

P 2 INALS = AA, [l - L n KR

-
i

w
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Thus E/Fs is a measure of the relative phase of the two waves,

whereas F and F are their squared amplitudes. It should be
! 2

noted that the absolute phase of each wave has no effect on F' R Fz
F-; and F;,_ . This should be so because our statistical forcings

should not depend on the information about the absolute phase of 'U:“
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5. Determination of the fundamental solutions

We now return to the problem of determining the four pairs of
fundamental solutions which are to satisfy the same differentigl equa-
tions, (3.10), but have the four different sets of boundary conditions
summarized in Table 3. The differential operators l_. in (3.10)
have variable coefficients and have no simple relationships among them-
selves., It is virtually impossible to obtain the fundamental solutions
in analytic form. We shall therefore solve £hem numerically. But in
order to establish a complete picture of the fundamental solutions, we
must numerically integrate (3.10) for a sufficiently dense combination
of wavenumbers and frequencies. Otherwise certain combinations of "
and ¢ which give strong response might be overlooked. It is there-
fore a very practical matter that we require at least some broad notions
about how the fundamental solutions vary in the wavenumber-frequency -
domain, We might gain such information if we could find a special case
in which analytic solutions for (3.10) can be obtained. Not only could
they serve as a guide for making an adequate and efficient scanning over
the frequenéy scale, but also would shed considerable light on some in-
trinsic characteristics of the system. Fortunatély there exists such a
special cése, The discussion in this section therefore consists of two
parts. The first part is the analysis for this special case, which
reveals the conditions under which resonance could occur. The second
part describes the numerical scheme used to solvé for the fundamental

solutions in the general case.



5.1 Special case

Upon close examination of the four differential operators, L} s

we find that they reduce to remarkably simple forms when all the dissi-

pative coefficients and the basic shear vanish. Hence the special case
under consideration is a two-layer non-dissipative model with a baro-

tropic basic state. When of = (3 = ]’ =0 and | =0 , we find

3 2
L‘= - L“. (""-245)%‘ [.:{}-f(;;%-,o)z(_n"é_ﬂ?]*_ A#l
. (5.1)
L = _L = A3 d.l AL - A + -
2 37 ":;3'-;[3"1. o 7

The symmetry among the operators now enables us to combine the two

coupled equations in (3.10) (into two uncoupled equations:

,;'L: n [ 0F L 0t
(daz""'}f" !"f"“vz =0 (5.2)

o) ) [0 7] e

z (5.3)

Ciy

A;‘ /‘4‘ A’. Af. P
In this special case (l/' + Vz ) and (l{ - Vz, ) can clearly be
identified as the barotropic and the baroclinic ¢omponents respectively.

Knowing the separate boundary conditions of l{} and Vz‘;

. Ag
as summarized in Table 3, we can readily obtain them for V4+ y’ R
¢t T2

which are given in Table 4,
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" Barotropic component

y=0 y=Y
. AL AL i A Ag Ag A Al
J \c + b; V- V; Vi + v; vVii-V
1 d/dy = 0 d/dy = 0 0.5 0.5
2 d/dy = 0 d/dy = 0O 0.5 -0.5
3 0 0 0.5 0.5
4 0 1] 0.5 -0.5
Table 4.

The barotropic component is governed by (5.2) which has sinusoidal

solutions as follows,

y =1 2
3‘ ’

3{-‘-34

In terms of dimensional parameters,

g

YeSenance

A, A )
\/,44- V" = 3
Ai A, - L
AR

2l

m7 \*

PSR SI-Y

k3
o)t

Cov \)-—}-n‘ #

w‘/%———n" Y
i | T-K Y

ENE S

The barotropic component therefore becomes infinite whenever

Un
-

(5.5) is equivalent to

'(5.4)

(5.5)

(5.6)
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These frequencies can therefore be called resonant frequencies associated
with the barotropic mode. They correspond to barotropic Rossby waves in

a channel /}/ < Y . For each wavenumber =4 there are an infinite

number of barotropic resonant frequencies, and O—YGSona.nce is a mono-
tonically decreasing function of 'Ml . The upper and lower bounds

are @ (m= -"-") and ¢ (‘M=.“:¢0) respectively. The distribution of

these barotropic resonant modes is shown by the dashed curves in Fig. 4.

Baroclinic component

The baroclinic component is governed by (5.3). Its solutions are
known to be parabolic cylinder functions. Iet us first transform (5.3)

into a standard form by using a new independent variable Z defined
]
by } - (é—) ?
2 A}' A
Lt - v
(i{}; -(13 +f'))}'l,/ 2 } (5.8)
-/ X, Mg -
where fn= 2/ ('d T i G) (5.8a)

A = ¢ + niL
The two independent solutions of (5.8) are well-known and can be given
in terms of confluent hypergeometric function 'F’ (a, ‘), 7‘)

The even solution is:
A

"4y 1 ) o2
M(jp)" ,,("z'p*?i','zl.' z})
“The odd solution is: (5-9)

’)’YLI(33P) - 52- rE(—ZLP"'%;%)%}l)
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When the boundary conditions are incorporated, we obtain

b
\//‘_&‘l _ _(\’/‘z__"}t) - A m (};P) |
1 2 ' * r .
m (}+,F) (5.10)

N 'mnq 5 M)
"m"'c;m)

Hence the baroclinic component also becomes infinite whenever
T I . -
M (3,51) =c ox M (3 5T) =0
_-};‘
Since L2 ;¥ and 7; are positive quantities, this is equi-

valent to either of the two conditions

J

,E(zp+4 ) 2 2}4-) (5.11)

L5y =
’f:(—{-f'-#%-) -32-/ 2.;*) @

It should be noted that }+ only depends on the static stability and
the latitude of the northern boundary, whereas [T as shown in (5.8a)
is a cubic function of frequency. Hence the problem of determining the
baroclinic resénant frequencies for éach wavenumber consists of two
parts. We must first determine all values of [J' that satisfyy(s.ll).
Having done that we then solve for the three roots of (" associated
with each of those values of [7 . There is however no established

procedure whereby cne can determine all values of a parameter which makes
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a confluent hypergeometric function zero when the other parameter and
the variable are held fixed. ©Nor is there any existing mathematical
table of confluent hypergeometric function that covers the relevant
range of the parameters in this study. Fortunately it is possible to
devise a simple graphical method to determine the values of [! with

a sufficient accuracy. This method is based upon two general properties
of confluent hypergeometric function in regards to its zeros, and also
upon the relation between it and the error functionr. The rationalle
behind this graphical method is given in Appendix B. The resulting

baroclinic resonant frequencies are shown in Fig. 4 by the solid curves.

One distinct feature of Fig, 4 is that the resonant modes in this
special case fall into three groups. Only one grcup of them is bounded
within an upper and a lower bound, and are characterized by their small
frequency. They include all the barotropic medes and one third of the
baroclinic modes. These are barotropic and baroclinic Rossby waves
moving slowly westward with raspect to the basic current. The other two
groups of resonant modes are characterized by large positive and negative

- frequency. These are internal grévity-inertia waves which can travel

both eastward and westward at relatively high speed,

5.2 General case

We now consider the problem of getting the fundamental solutions
when the friction and cooling coefficients, and the basic shear are in-
corporated. As noted before we must resort to a numerical method to

solve the governing equations (3,10). Several attempts using different
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direct transformations of (3.10) into a finite-difference form gave poor
A
results; the numerical solutions for yz% and the associated solutions
o1 SF
for Qi and {z via (3.11) so obtained invariably did not match -
the prescribed boundary conditions in a reasonably smooth manner. Further-
more, when they were used to compute those second moment statistics repre-

senting energy conversions, large discrepancies in the total energy balance

existed at several grid points near ;; = 7, .

A more fundamental numerical scheme was therefore used., The unre-
duced spectral equations (3.8) were first written into a self-consistent
centered-difference form. These six first-order difference equations
were then reduced to two coupled second-order equations in exactly the
same way as the differential equations (3.8) were reduced to (3.10).

‘ . a0 a,
These two difference equations governing bc} and b;} together
with the boundary conditions constitute a system of simultaneous non-
homogeneous linear algebraic equafions for q&é at the points of
the finite-difference grid, This system was solved with the "Gauss elim-~

ination" method. This approach gave good results,

Fifty-one grid points, £. =1,2,..., 51, were used to cover the
o 45: "f
latitude zone from equator to 30 N. The variables 92 and fi
. s

are defined at the same grid points, whereas 22} are defined at points
midway between the points for the former. For clarity we omit temporarily
the symbol A  for the dependent variables as well as the superscript ;-
which distinguishes the four different sets of fundamental solutions, and
instead use a new superscript ‘i_ to denote the grid points. (The differ-

ence equations for the four sets of fundamental solutions are identical;
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it is only the four sets of boundary values in Table 5 which distinguish

them.) The finite difference notation is then

7‘ . (ha = (F-) =

V-é = %4 at ? = ('é") 4

VY, PR U, P et 4=t

The centered difference form of (3.9) is as follows.

£ . . oAk i_ _
(A-!-z-n_A_..,:lg)U' - .‘f‘%([,/i_,l/’é).,._.?ﬁ (t/ +l/ )+,¢,IBU 'nf:

- .
-5’-7£(U,€~U,£)+(A+7t.ﬂ.’£/3)4,|/' - {?Vz = -x

< £“z [ 29 £y _
_&f;(/ + («- zn_A-uc)U£+ ‘A(V V) L (4 +y")= nF;

(.12)

. -,z . w4 r + , 4 £
et L g S A ) iR

’ / 2

We then perform the steps equivalent to those in Appendix A to eliminate

£

£
92 and fz from (5.12). The resulting second-order difference

equations are the counterpart of (3.10) and apply at ‘{Q = 1 to 50.
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-ﬁ)""-, f‘ are functions of € , 4 , A , « ,
3

gy m 4 emd g

The boundary conditions giving VY at % =0 and ﬁ:S‘/ corres-

pond to those in Table 4 and are stated in Table 5.

= 1 2 3 4
o 2 2z 2 2

vV° . V A4 -V 4
o vz Vz 2 V2
2 - [ % 2 2 2

\{" = 0.5 0 0.5 0
(]

\4 = 0 0.5 0 0.5

Table 5.

(5.13) together with the boundary values in Table 5 can be put

into a vector form

() (m) _
A-V =F mel,z (5.14)

VA Ve mz=| ) even solutions

odd solutions
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A("‘\) i
is a 100 x 100 matrix whose elements consist of cee
[FPP VY 1 ? 2 ¢ ’

-\/ ‘'is a 100 x 2 matrix containing even (odd) fundamental solutions
WVArn, .

N e
o F

A,

(m) ' ,
is a 100 x 2 matrix containing the even (odd) bound-

ary conditions. Such a system can be easily solved with the Gauss elim-
ination method; the subroutine "GELB" at the MIT Computation Center was

used.

Finally we come to the problemﬁof scanning through the frequency
scale from 0 = -3 to 0 = +3% cycleé/lzﬁr, for each wavenumber,
The wave number range is v =1 to 12. In order to do so efficiently
we make use of Fig. 4 aé a guide, A very small frequency interval,
(2700)_1 cycles/12hrs;, was used in the neighborhood of the resonant
frequencies of the special case, and a larger frequency interval (as
large as (14)"1 cycles/12 hr) was used elsewhere. The small frequency
interval is 1/20 of the frequencx resolution in the input spectra. It
should be noted that the resonant frequencies in the special case treated
earlier have an accumulation point at @ = "71;1 = ~N .+ (.00322) as
the north-south wavenumber incregses in the Rossby modes. The small
frequency interval 8; = (2700)'-1 was small enough to sho; conclusively
that this fine structure was smeared out in the general case by friction
and baroclinicity. For purpose of comparison, the fundamental solutions
were also computed numerically for the special case for wavenumber N = 4
by simply setting o F , )/ and . equal to zero in the compu-

tation of fi and gﬁ in (5.13).
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Properties of the general fundamental solutions

In view of the complicated dependence of the response functions of
second moment statistics upon the fundamental solutions [;ee (3.211],

little would be gained from a close examination of the detailed structure

4 .
of each of the ‘é} . Therefore only one broad aspect of them will
AL A
be discussed, namely the latitudinal sum of \4$ * \Gf . These

quantities give a crude indication of the intensity of the integrated
response of the "quasi-barotropic"” and "quasi-baroclinic" components as

a function of wavenumber and frequency.

We compare, for . = 4, the numerical results for integrated
response with the barotropic and baroclinic resonant frequencies obtained
analytically for the special case. The even and odd "quasi-barotropic"

Ay A
integrated response components \/}-+ ¢ are shown separately
J ! 2 2
Z .

in two plots in Fig. 5. The solid curves are for the special case and
the broken curves are for the geﬁeral case. The short vertical arrows
along the frequency axes locate the resonant barotropic frequencies at
N = 4 determined analytically for the special case. Figure 6 does like-

Ag Ay
wise for the '"'quasi-baroclinic’ components Z 'V,}— V,_;I .

The numerical results in the special case are identical for
} = 1,2 and for j = 3,4 as in agreement with the analytic solutions
(5.4) and (5.10). Only one set of solid curves is therefore necessary

on each of the four diagrams in Figs. 6 and $.

We first note that the theoretically deduced arrows agree well

with the location of the corresponding numerically computed peaks of



|
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o~ ——— FREQUENCY cycles per 12 hrs.
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Fig. 5. §/ AR / , #30L2,3,4  are latitudinal sum of the absolute value

of the quasi-barotropic components of the fundamental solutions as a function
of frequency for wavenumber n = 4,
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Fig., 6, Z/ ‘?’: - ‘2."/ , }'"; 2,3,4 are latitudinal sum of the absolute value

of the quasi-baroclinic components of the fundamental solutions as a function
of frequency for wavenumber n = 4,
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the solid curves on both Figs. 5 and 6. All solid peaks shown corres-
pond to Rossby waves, except for the peak at T = 249 in Fig. 6. This
represents iﬁternal gravity wave ﬁf smallest positive @& at this wave-
number. The theoretical Rossby wave accumulation point at =--A4;Z =
-0.0129 also checks. The quantitative agreements just described provide
a welcome verification of the numerical method. (The behavior with j}
in the special case of the numerical values also agree well with the

theoretical barotropic solutions.)

The broken curves have only three broad but well resolved peaks
associated with the Rossby waves, and one peak associated with the said
internal gravity wave. Damping due to dissipation is clearly dominant
for those Rossby waves of high north-south wavenumbers located at very
low frequencies. It is noted that the Rossby-wave peaks are shifted to
smaller frequencies relative to their counterparts in the special case.
Furthermore while the barotropic and baroclinic peaks of the latter are
located at different frequencies, those broken peaks of the "quasi-baro-
tropic" and "quasi-baroclinic" coincide. This indicates that the basic
shear and the dissipative processes cause the previously separated baro-
tfopic and baroclinic components to interact with one another. As a
result the sum and difference of the velocities at the upper and lower
levels no longer represent the actual b;rotropic and baroclinic compo-
nents. The internal gravity wave peak in Fig. 6 has no corresponding
barotropic peak and the interaction should therefore be weak. . This may

account for the fact that there is hardly any shift of the broken peak

relative to the solid peak and that some new secondary maximum peaks
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appear in Fig. 5 near that frequency.

Finally it is of interest to examine how the fundamental solutions

vary in the wavenumber-frequency space. As an example, we show one even’

A Ay
solution of the '"quasi-baroclinic" component, 2 ] h< - V; }' , in

Fig. 7. The maximum has the same general pattern as the distribution éf
the resonant modes shown in Fig. 4. The most striking feature however

is the location of maximum response around N = 3 at frequencies cor-
responding to the lowest latitudinal wave numbef of the Rossby waves and
internal gravity waves. Even a small boundary forcihg at such values of.

"o and © could then excite considerable response.



o
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Fig. 7. Variation of 2 / v - Vz/ in the frequency-wavenumber domain,
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6. The predicted statistics of the model

With the statistical boundary conditions obtained in Section 4
and the fundamental solutions in Section 5, we now can compute any
variance or covariance by (4.8 ). Each of these statistics is-either
an e\./en or an odd function of latitude # , because the basic state
and the boundary forcings in the model are both symmetric with respect
to the equator. As shown in (3.23) each statistic is equal to an inte-
gral over frequency @ and a sum over wavenumber N of a quantity,
say X , which depends on 2 , g , 7 , the boundary spectra
and the t;asic state parameters. The decision has already been made to
consider only 7 = 1 to 12. The elementary frequency interval g
used in the boundary spectra is (270)“1 cycles per 12 hours and the
resolution is 2 5 . The frequency range we shall consider is
IU'[ £ "2'— , corresponding to a minimum period of 3 days. This
limitation on ¢ is imposed by the nature of the i:)oundary data, since
this consisted of streamfunction analyses which are essentially based

on the quasi-geostrophic theory.

The model statistics will generally be presented simply as func-~
tions of y . However in several cases the dependence of the integrand-
summand "X" on M and @ will also be displayed. The integration
over @ was performed by a trapezoidal sum, in which the frequency
interval employed was small enough (generally equal to S , in fact)
to adequately sample the detailed behaviour with @ of the fundamental

solutions and of the boundary spectra. The contribution from those
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individual frequency intervals were then combined into 15 frequency bands

of width 1/90 = 33 covering the range @ = © +to 1/6. These bands are
centered at ¢ = 1/180, 3/180,..., 29/180 cycles per 12 hours. They
are wide enough to insure meaningful spectral resolution and yet narrow

enough to show the distinct frequency dependence of the statistics.

- 6,1 Horizontal velocity statistics

F1g 8 shows the square root of <’U;"> and (‘U':'> as a
function of latitude, as well as the observed values at 4 latitudes for
the pressure levels 250 and 850 mbs, The latter were recently obtained
from 5 years of data by Mr., John Kidson of thé Planetary Circulations
Project at Massachusetts Institute of Technology. The theoretical values
predict too large 4{14‘}) and too small <:1&f>> in the equatorial
region. A larger value of the friction coefficient F might reduce
this discrepancy. A more fundamental reason may be related to our choice

of uniform zonal winds ’AL, and kﬂz . The observed zonal wind shown
in Table 2 is actually more easterly at low latitudes than the values
used in the model. The analysis of Eliassen and Palm (1960) indicates
that the southward wave energy flux in planetary waves is easier to pro-
pagate across a westefly current than an easterly current. Thus much
of the excess <1f,"> at the equator in Fig. 8 might be reduced by

incorporating a realistic latitudinal shear in ZZ This point will

e

be returned to in the summarizing Section 7.

Fig. 9 shows the same plot for the square root of (Mz > .

Unfortunately, observational data for comparison is missing., The theo-
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retical values of <(21?:> are greater than <<1f1;> at both levels
throughout the model tropics. The values of <{;g:_§>’ appear to be
somewhat too large, but are not unreasonable except near 300N. This
locally large <:4(}:> may also be related to the use of uniform

for the reason cited above. However by evidently overpredicting to some
extent the upper level velocity variance, the model computation demon-
strates that lateral coupling can easily account for much of the observed

eddy kinetic energy in low latitudes.

The theoretical results in Figs. 8 and 9 also predict one other
2
property of the asymmetrical motions. It is noted that both <:AL&:>
and <:szj> decrease monotonically with latitude <f£(z:> decreases
2 y . ]
-1.2 o -1,2 o
sharply from about (30 m sec ) at 30 N to about (15 m sec ~)" at 20 N,
and then remains essentially constant to the equator. On the other hand,
-1.2 -1.2
<:1§z:> decreases only from about (10 m sec 1) to about (9 m sec 1)
o
at the equator, with a weak undulation near 20 N. These features suggest
that the variability of the two horizontal wind components at the lower
level decrease with latitude in about the same way, whereas that of “«@£,
is quite different from that of d{' . The former decreases by only
about 20%, and the latter by a factor of 4. In other words, the decrease

with latitude of eddy kinetic energy at the upper level in the model is

largely due to the decrease of <u.,z> .

The extent of vertical coupling between the flows at the upper

and lower levels may be measured statistically in terms of the correla-

tion coefficient between 4, and A, , and between 7, and 1, .
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2 = Lu 4> V%>
7y (;{‘Cf§><fLLt:§)?i ) v (<:1Gz:><:1ﬁf>9y£

!
N
!

/Q“ and /n1r are shown in Fig. 10, They are generally smail, less
than 0,4, specially in the equatorial region of the model., This is
quite consistent with the observations analysed by H. Riehl, which

Charney cites in his 1963 paper as supporting his scale analysis result.

A different aspect of the velocity vériances can be examined from
a plot showing the contribution to their latitudinal sum from each wave-
number 7. and frequency band. This measure will indicate which are
the dominant modes of the fléw averéged over the region. Such statistics
are shown in Figs. 11 and 12 for {’Uj") and <M,"> respectively.
(The corresponding plots for <’U',_1> and <£—L1;> are not presented
because their small magnitudes relative to <1f,"> and <M,">
respectively make any physical interpretation of detailed structure
rather irrélevant.) Fig. 11 shows that most of the areal-integrated
variance of <f1ﬂ’:> is associated with wavenumbers 4 to 8 and in the
frequency bands corresponding to period of 10 to 40 days. This predic~
tion cannot be compared with the real tropical étmosphere because of
lack of data., However it does not appear to be contradicted by any
studies known to the writer. 1In Fig, 12 we also find overwhelming
dominance by the low frequency modes, although it should be noted that
the low wavenumbers in these low frequency bands are as significant as

the intermediate wavenumbers which are dominant in Fig., 11, This differ-
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ence in M dependence already suggests the horizontal non-divergent
character of the flow, since A is proportional to " in non-divergent

motion.

An additional feature in Fig. 11 which calls for consideration,
is the narrow ridge extending towards the high frequency (around periods
of 5 days) and low wavenumber region. There is no counterpart of this
feature in Fig. 12. Yanai and Maruyama (1966) found rather regular
short period oscillations of wind direction between 2400 and 300o in the
atmospheric-léyer between 18.3 km and 21.3 km over the central equatorial
Pacific during March-July 1958, From vertical time section analyses
they found that the observed wind oscillation is an indication of large-
scale waves of period about 5 dayé propagating westward at a speed about
23 m sec_l, and hence of wavelength about 10,000 km. The ridge in
Fig. 11 mentioned above is also associated with disturbances of this
wavelength and period. Although there is ﬁo stratospheric region as
such in our model, its upper level might reflect some of the lower stra-
tospheric features of the real atmosphere, It is therefore of special
interest to determine the extent to which the motions associated with
the ridge in Fig. 11 are concentrated over the equatorial region. We
can readily do so by examining the ratio x = ( <1);7'> at equator)/
(latitudinal average of 4:1ﬁ1:> ), on a wavenumber-frequency-band
plot. The values of JEL shown in Fig, 13 reach a maximum of about 2,2

at M. =3 and ¢ = 1/9 cycles per 12 hours.

To show the actual latitudinal dependence of these motions,

et o e e
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<:1ﬁz:> for M =5 and ¢ = 19/180 is plotted in Fig. 14. We sece
that this quantity drops by a factor of almost 5 from equator to 20°N°
The latest report by Maruyama (1967) indicates that the observed waves
are generally confined equatorward of ZOON° Furthermore the ridge in
Fig. 11 evidently arises from the large values in the fundamental soluQ
tions (see Figs. 5 and 6) at those positive frequencies which are in the
neighorhood of the internal and external Rossby waves of smallest lat-~
itudinal wavenumber which can be defined in a barotropic current. We
may therefore conclude that the theoretical disturbances also have a
westward propagation. In view of all these theoretical features, the
dominant modes found at the equator of our model tropics appear to be
the counterpért of the real phenomena reported by Yaﬂai and Maruyama,
If that is true, our computation suggests that such waves must occur
quite often or else they would not contribute a sizeable variance,
Furthermore since such waves in the model derive their energy from
lateral forcing, their counterparts in the atmosphere may also be

maintained in a similar manner,

Finally it ié of some interest to examine the latitudinal depend-
ence of two more detailed properties of <f1§z>> ". Table 6 (i) shows
at 4 latitudes (0, 10, 20 and 30°N) how the total contribution from 12
wavenumbers varies with frequency. Table 6(ii) shows at 4 latitudes
how the total contribution from 15 frequency bands varies with wave-~
number, As far as the frequency dependence is concerned, <‘U’,z> in
the northern half of the model tropics has a maximum at period about

30 days and decreases monotonically with increasing frequency; whereas
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in the southern half of the model tropics it has a secondary maximum at
periods about 5 days. The high frequency contributions to <f1ﬁz>' can
be identifiea with the large-scale waves discussed previously in compar-
ison with Yanai and Maruyama's observatioq° As far as the wavenumber
dependence is concerned, <f1ﬁ‘:> at 30°N is mainly associated with
wavenumbers from 5 to 9, whereas at lower latitudes it has significant
contribution from more wavenumbers, particularly from the lower ones.
Each of the corresponding results for <M,‘"> does not qualitatively
change with latitude and is therefore not presented. Most of the con-
tributions to <4«(,’> are associated with periods from 2 weeks to 40
days and with wavenumbers from 2 to 7, Observational values for these
aspects of the statistics are missing, and no comparison'can ﬁhus be
made., However it should not be difficult to collect sufficient daté
for computing such statistics. In order toicheck the frequency depend-
ence, we only need sufficiently long records of wind data at several
stations located at or near the 3 internal latitudes. For checking the
wavenumber dependence, on the other hand, we need good.data coverage in

longitude along those latitudes. .

6.2 Variance of & and temperature at the 500-mb level

Fig. 15 shows the theoreticai value of the square root of <f°°t>>
at the 500-mb level of the model as a function of latitude, It drops
from about 7 x 10-4 mb sec"1 at 30°N to about 2 x 10_4 mb sec-l at ZOON
and then decreases gradually to 1 x 10"4 mb sec"1 at the equator. This

variation corresponds to a root mean square value of horizontal divergence



410
-8
-6
) -4
-2
\
) ! : 1 M | ! ! 1 1 |
31.5 28.0 24.5 21,0 17.5 14.0 105 7.0 3.5 0

Fig, 15,

<——¢@9 LATITUDE DEGREES

Standard deviation of p-velocity w at 500-mb level,

V>

-09-



~81-~
at either level of 1.4 x 10_6, 0.4 x 10-6, and 0.2 x 10-'6 sec-l. The
value at BOON in the model is reasonable compared to the typical value
in middle latitudes, Unfortunately there is no observed value for the
tropical region. However the theoretical prediction of a decrease of
horizontal divergence by a factor of 5 from'subtropics to the tropics

is again consistent with Charney's (1963) scale argument. The decrease
of the Coriolis parameter requires smaller horizontal preséure and tem-
perature gradients, and the approximately constant static stability is

consistant with this only if &Y decreases.

A small <w"> implies a small (T"> in the absence of
local heating. ¥Fig. 16 shows the latter as a function of latitude,
together with the observed values collected by Peixoto (1960). Thé
tﬁeoretical result does show a substantial decrease with latitude, and
is therefore compatible with the result for <:ua‘:> mentioned above.
The agreement between the observed value of (—r?'> and the theoretical
values is very good, and thus leads one to believe that the theoretical
value of <:Cuz:> should also:be_reasonably realistic, Since the var-
iance of temperature is proportional to the eddy available potential
eﬁergy, the theoretical fesult in Fig. 15 can then be interpreted as a
decrease of eddy available potential energy with latitude in the model
tropics. We may therefore expect only small energy conversions between

the eddy available potential energy and the kinetic energy.
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6.3 Cross-latitude eddy fluxes of sensible heat, wave energy, and

moﬁentum
\ v+¥:
Fig. 17 shows R—""'“"'sz —-'—:,_—-"(qé-é)> where R is the gas

constant for dry air, as a function of latitude. This is the eddy con-

tribution to vT -at 500 mb, in virtue of the hydrostatic approx-'
2
. Toratl

~imation. The theoretical value is negative everywhere except near the
northern boundar&, with a maximum magnitude of about 0.7 °K m sec™! at
20°N. The observed values obtained by Kidson'at M,I.T. aﬁd Peixoto (1960)
are shown by circles and crosses respectively, The agreement betweeﬁ the
theoretical and observed values isisufprisingly good in view of the fact
that this quantity has 'a very small magnitude. A negative value of
<3r'f:> means an equatorward flux of sensible heat by eddies which
in turn represents a countergradient heat flux since the basic temperature
gradient is p&leward. Such a feature has also been reproduced in the
numerical experiment by Smagorinsky, Manabe and Hollowéy (1965). It should
be noted that a countergradient heat flux rgpresents a rather severe con-
straint ﬁpon the energetics of the asymmetric motions in the model. This
stems from the fact that it means a net conversion from eddy available
potential energy to zonal available potential energy. Since radiation
cooling is parameterized to destroy eddy available potential energy, it
follows that the latter must be maintained by a net conversion from eddy
kinetic energy. The latter in turn has to be replenished either by con-
version from zonal kinetic energy or by an inflow of wave energy into the

model tropics. All these aspects will be discussed in more detail later,
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Fig. 18 shows <'1f,c£,> and <1}£¢,§_> as functions of latitude,
These represent the poleward cross—latitude wave energy flux per unit
mass in the model tropics at the 250-mb vand 750-mb levels. The theorét—
ical results are negative for both levels, increasing monotonically toward
zero at the equator, The magnitude of <’U,‘q§ > is much laréer than
that of <’tfz $1_> . Such results imply a net equatorward flow of wav;e
energy across the boundaries at + 300, primarily at the upper level.
Thus the pressure work done on the model tropics by the lateral forcing
at the two levels is equai to twice the value at 30°N, i.e, about 1600
m3 Sec-s. There are no observed values to compare with this, although
it is not at all unreasonable that this flux should be equatorward. Its
magnitude in the model may be somewhat too large, since <1f,"> has
been overpredicted. For the reason given in Section 6.1 we may expect
some changes in this flux if a realistic lateral shear is added to the

present basic current.

Fig. 19 shows the Reynolds stress terms <&L,'U;> and <LL,_‘U’2_>
as functions of. latitude. They are proportional to the poleward momentum
flux by eddies at the 250- and 750;mb levels. They are positive at both
levels, with <(.L,‘V,> much larger than <£(,,’U'«._> except in the
equatorial region where both decrease toward zero. The observed values
obtained by Kidson at M.I.T. and Starr and White (1952, 1954) are also
shown in Fig, 19, It is seen that while the theoretical result for

<l,(z1f-,_> agrees quite well with the observed value, that for
(a,ov;) is generally three times larger than theA observed value,

The exceptionally large value near 30°N is probably associated with the
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large value of <“,"> in Fig. 9.

The general picture of equatorward wave energy flux, equatorward
sensible heat flux and poleward momentum flux which has emerged from
these calculations is consistent with the relation among these fluxes
in stationary (0" =o) wave patterns which was deduced by Eliassén and
Palm [1960; see their equation (10.52] , especially when the larger ampli-

-

tudes in layer 1 of the model, with its positive 4L , are considered.

6.4 Energetics of the asymmetric motions in the model tropics

The energetics of the disturbances are expressed mathematically
by two equations, one describing the rate of change of eddy kinetic
energy and the other the rate of change of eddy available .potential

energy. They are derived from (3.5) and are as follows:

2ek) = -[chen3k + (3R] o1

+ 2f (ara)ew - 2 (f-d)eo

- [52;(“:‘{7"’“2.4’;) + ?'%;‘(1{9,5 + e

- 2[0(Kzf(3,<, —vﬁ(“o“z."'"’;vzﬂ

_';—‘A ‘-'-'—;L—}-—A—.;.

X

N1

7 (Vi+ Vi)_(é' ¢z)

(6.2)

°
+2(¢-d)w — 2rA
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where

"ZL (‘“/z"' 'Ui,')

A
\

L (ay, + %)

Pa
n

. _dN\*

/4 = (4% 5%)
14( UI
.é_._l..g. a—)

°7

The ensemble (and x-) average of these equations does not have the terms

-

w = -3 (%

containing the time derivative and X-=—derivative:

o= 24 (“l+'“z)“> - 2<(‘é'¢z)"°> - %[2"{45 *('v;;lt}]
- 2 [udiye i - pldass o cunY)] oo

(6.4)

é = :2'_4-:&__ 7 <(rv;+ 1!',_)(9‘,~¢,)> + Z<(¢}$—4§)w> -EE <(r}f’4§_)z>

Equations (6.3) and (6.4) have simple physical interpretation. The first
two terms in (6.3) represent the net conversion from zonal.kinetic energy
and eddy available kinetic energy to eddy kinetic energy. The third term
is the convergence of the wave energy flux, sometimes known as pressure
work. The last term is the frictional dissipation. Thé first two terms
of (6.4) represent the net conversion from the zonal available potential

energy and eddy kinetic energy to eddy available potential energy. The

third term is simply the destruction due to radiation, [;A basic current
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varying with ? would introduce terms of the form —(u V>4—L5'-
4 . d7 .

The numerical values of the four terms in (6.3) for our model

tropics are shown in Fig. 20. The results indicate that the only supply

of eddy kinetic energy in the model tropics is the pressure work, in
other words through the equatorward flux of wave energy from the lateral
boundaries. Thelother three terms are negative and hence represent sinks
of eddy kinetic energy. The largest sink is the frictional dissipation,
The conversion of eddy kinetic to eddy available potential energy is sub-~
stantial between 13° and 25°N,-whereas the conversion of eddy kinetic to
zonal kinetic energy is very small éverywhere. Hence the asymmetric dis-
turbances in the model tropic have no internal source of eddy kinetic
energy. The inflow of wave energy is more than enougﬁ to compensate for
the frictional dissipation, with most of the residue converted to eddy

available potential energy.

The numerical values of the three processes that constitute the
eddy available potential energy balance are shown in Fig. 21, Here we
find that its only positive source is the conversion from eddy kinetic
energy. There is a small loss due to radiation and a larger loss from
conversion to zonal available potential energy. The latter has a maximum
at about ZOON. This is a necessary consequence of the equatorward eddy
sensible heat flux found in subsection 6.3. This effect is sometimes.
dramatically referred to as a "refrigeration process,” in the sense that
the warmer part of the atmosphere is being warmed up by the advection

of enthalpy by the motions. However the values in Figs. 20 and 21 show

s ——————————
[
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that the amount of energy involved is small and that the refrigeration
process is an inefficient one, As far as the asymmetric motions in the
model tropic are concerned, their energetics may be summarized schematic-

ally in Fig. 22. This is an incomplete description of the energetics of

Equatorward
flux of wave
energy
N /
T""
, -~ Frictional
K ™ K > . .
P4 £ - dissipation
? V%
? A ' : Radiational
. ! < \,
—? AZ ~ AE 7 loss

Figure 22. Energetics of the model tropic

the model tropics because it does not include the energetics of the
zonally averaged circulation., But this is all the information that one

can deduce from this model as it stands,

Now let us compare the theoretical results described above with

the corresponding results obtained in other studies. Analysis of the
energetics of tropical motions is sketchy; the handicap arising from

the scattered data and the usual inability to determine the vertical
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velocity reliably. If we want to check our theoretical results, we may
however compare these with the computer-generated climatological data
based upon a presumably realistic general circulation model. The obvious
difficulty is that small-scale processes and condensation processes are
only crudely incorporated in the existing models. Thus a comparison
betwéen the results from two crude models may not mean very much, The
most sophisticated general circulation model thus far is the one designed
by the Geophysical Fluid Dynamics Laboratory group under the direction

of J. Smagorinsky in Washington, D.C. 1In the paper by Manabe and
Smagorinsky (1967), the energetics for low latitudes in a dry and a wet
numerical model are presented. They found that the results in the two
cases were quite different. For example, while the conversion between
eddy kinetic energy and eddy available potential energy is very small in
the dry model, there is a strong conversion from the latter to the former
in the wet model, But they also found in the wet model an unrealistically
large conversion from zonal kinetic energy to eddy kinetic energy. They
nevertheless conclude that the conversion of eddy available potential
energy generated by the heat of condensation represents a'realistic source
of eddy kinetic energy iﬁ the tropics of their wet model. If condensation
is indeed the main source of eddy kinetic energy in the real f&opics, any
dry model such as this one would be inappropriate. It is however conceiv-
able that since precipitation tends to be concentrated along narrow
regions in the tropics (as suggested by satellite cloud pictures), the

release of latent heat by and large mainly affects the zonally averaged

motions and has only minor effects upon the asymmetric motions over the
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rest of the tropics. The intensity of the large-scale tropical eddies
could then, as in the present model, depend upon the baroclinic activ-
ities in higher latitudes, and their presence in the tropics has only

a secondary effect upon the mean state.

As a conclusion to this presentation of the predicted energetics
it ig important to emphasize again that the computed wave energy flux
was into Fhe tropics from the boundaries. (This was true not only for
the ensemble average <f1£rqé:> but was true at all ¢ for all 2¢v .)
This result-is consistant with our braod approach that the tropical eddy
motions are primarily a respogse of the dynamically stable tropics to
the unstable baroclinic processes in higher latitudes., If the model
tropics had been dynamically unstable, on the other hand, statistical
boundary forcing of tﬁe type used here could have resulted in an outward

wave energy flux.
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7. Concluding remarks

The prominent features of the statistical properties of the lateral-
ly-driven stochastic motions in the modél tropics have been supmarized in
the Abstract. It was noted that the theoretical statistics are in general
compatible with our limited knowlédge about the eddy motions in the trop-
ical atmosphere., 1In partiqular, the temperature variance and sensible
heat flux are in good agreement with the observed values, But on the other
hand, the variance of the meridional velocity and the poleward momentum
flux at the upper level are overpredicted. It was suggested in Section 6
that one plausible reason for getting unrealiétic results is our neglect

of horizontal shear in the basic zonal currents in the model,

A brief heuristic discussion is now given about the effects of a
basic horizontal shear in a simple case. lLet us consider an inviscid,
; o - , L
incompressible, homogeneous layer on a ﬁ plane between 7. S

A basic current M is given, and the perturbations are then governed

by
2V _
,_a__g__.'.—é—?— = 0 (7.1)
P) "jz_ U =
G “ax)(';a'g"g}“)* Bv =0
where
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Plane wave solutions exist for (7.1)

e éﬁ{ U L (fx-el)
ve Re { Ve

‘fi>o

i(fx-wt) e -

The amplitude functions ()‘ and b/ are then governed by

AV (7.2)

+ Gl V=0 ' Gy

where

A somewhat realistic wind profile is a parabolic type

i.e. ) ’

o= 4""&%" . ado ."‘>o

Let us consider a profile where 2.‘6' is smaller than F » Then B

. - [ %)
becomes a positive constant. Then G( is positive when «t -z
.

B B
and 2 are such that —— o =2

3 0oL (a i) L%z
and is negative outside this range. It is clear from (7.3) that for
the region where C*(;,) is positive, V has oscillatory-like

solutions, otherwise V has exponential-like solutions. Oscillatory
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solutions mean cross-latitude wave propégation, and whether or not the
amplitude increases equatcrward depends upon the variation of G‘( #)
with latitude.. Exponential solutions imply reflection of wave by the
basic current. Siﬂce equation (7.3) has the form of the time independent
Schroedinger equation describing the wave function of a particle moving
in a potential field, all the well-known conclusions about the behavior
of the wave function in the presence of a simple potential barrier, or
potential step—juﬁp can be applied to the solution of \/ here. For

a more realistic basic current, such as a parabolic profile, we probably
have to use WKBJ solutions and long-wave approximation (Morse and Fash-
bach, 1953 pp. 1088-1095) in order to deduce the asymptotic properties
of the solutions., However we can make a heuristic statement about the
different effects of a parabolic basic current on forcing motions of

eastward or westward phase propagation. The following diagrams show a

B — -
schematic relative magnitude among “7%3? s A s M= JEE .
Waves of eastward phase Waves of westward phase
propagation propagation
wo wlo
____________ w— — 2 — i - o m— —a | —— ———— — — o
& ~ ”.a/’
X '."& .\O - E
\ ° ,/'M*- ~. Jie v
\.\.————// ..Y \\./
~ .».._v..r_-l"
1

We can see that the condition for cross-latitude propagation

— o B
0(#—’& <7€z
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is in general more likely met by waves of westward phase propagation
than those of eastward propagation, For short latitudinal wavelength,

the amplitude 4 according to the WKBJ solution is then proportional
AL .

to C; * . The role of the basic current is then to permit only
waves of certain &9 and 7§ combinations to propagate equatorward,

The variation of .ZZQ;Q makes this screening for different waves occur
at different latitudes, As a result, one may expect a gradual variation

with latitude of the velocity variances.

Although firm conclusions cannot be made from these qualitative
arguments about effect on the statistical properties if a basic hori-
zontal shear is incorporated in our model, the results presented in

this thesis are encouraging enough to warrant further exploration.



-100~

Appendix A

This appendix shows the procedure of reducing the six spectral
equations in (3.9) to two coupled equations in (3.10). We first elim-
inate AR between the first and second equations of (3.9), ale

between the third and fourth equations, and (AB. - API) from the

first, third and sixth equations. The result, together with the fifth

equation of (3.9) is

N[au] + nfauf + Nofau] + pudve <o

NZ{AU,} + N,,{AU,,} + B dV.  + Ng{d\/z} =0
(A.1)

BdU + BdU ¥ REVE N1{‘W‘}‘°

mdl,  + ndy, - iDjav} - ipfdu} o

‘The new symbols are
D= d/d?
N, = (4+2nh-<p)D - g
vpD |
- [D(AD-7)+ "n(.d-t-'nA_-iF)]

U]

3]

"

(A-Z‘nj\_—-iot) D - ”’17

N,
N
N,
N, = i[D(J\.D+?) - «n(.d-m.;t-ioc)]



N, = 4 [(m—:rm -2n&)D - (A—if-mi)‘;]
N-, - L[,(A"'IMD -+ (A—i}’+‘h./l.)7]

= 2€nt - (,4—4:/)(4%2';:./[ -4 4(5’)

B,
B, (4-iP) (4 - 22 - i (4p)

Ve next oliminate L]  from the four equstions n (A1)
MN,.-M){dU,} # (w Ny + AN DAV} + (wx‘(w/lN,D){AVz} .0
(N, NJ{AUZ} v (aif+ LNID){A\/,} +(mN:+;N,b){sz}=o o
W(BB) AU, — (N HiBDY4V] -t BDIdU] =0

Finally.we can eliminate ‘(Uz from the three equations in (A.2):
L{w} + Lo} =
Lg{d\/c} + L,*{d\/z} =0

: L}_ (j_: 1,2,3,4) are four second-order differential operators in ; :

(A.3)

ol g e A
L}.-ajdy,_-f- ;?dy'*c;' +A,,77
where Cl;: , -6'; s c;: and A} are functions of the para..meters

defined as follows.



Then we can write

..——L—[f(.

= [{0
& =5 4t
_.a = -—L[z (}
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Define

B - if
f = arendod g = - and-ix

{z - -l 3, = :J\_ )
4‘8‘* = ph(4-4x) - 277 € 7“ = md(AEW

f;’ ~Ad+n A+ it % o+ mh-ix

Then we can write

e e 7,+8)-(8-8)4, _33(3—,{,‘3,2]

= [{ B BB

& = [ 5.(rB) - B (furB)]
ey e g B) ean)y -8008) .0
R A R ]

e [ 3P B

= A G e B
A - k[ CpB) "Bz]
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¢, = 7 (fi-8) - (B-8)4,
C, = {} V3 + B (8- 5,- ’25)

¢, =k ap *B(E-£)

'_ ¢, = -,}C;r(/;-%) +@—Bz);3
d = dy = ~f
0[1, = 0/4 = -—/“

5/(/2 is given in terms of a”{ and 4/14 by the third equa-
tion of (A.2),

AU, = MY ]+ M, fan ]

M= m 5 (Mv‘ +iED) . M,

- B)(a/\/uBD) (A.5)

and the fourth equation of (A.1) then gives U/

AV,  ama A
AU = AdU, + M[,;{V}+M/a/l/}

in terms of JU:. s

(A.6)

Al=-/ //‘43 ';% ).M-._..D

Finally we obtain de and sz

of (3.9):

AP = AU+ AU, + Mcf 4]
if

.

from the first and third equations

(A.7)

1)

A, = %{-(44—2.«1-4'@ > As
M= 4 (AD-4)
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AR = Ay dU, + AdU, + M V]
Au’ %(A—Za./{.-i‘“)
M, = %CJ\_D-}-?) (A.8)

Equations (A.3) to (A.8) constitute the complete set of differential

equations and kinematic relations in our model. They are referred to

in (3.10) and (3.11) of Section 3.
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Appendix B

A graphical method is deviced to determine the values of P

that satisfy

Lp,t o L
either ‘ﬁ(2r+4) 2’) 23"*

(B.1)

or IF

where 'F'l(a.,‘g’, 1«) is confluent hypergeometric function. This graph-
ical method is partly based upon two properties of this function concern-
ing the distribution of its zeros, which are stated as follows. (Ref.

Slater, 1960).

) IE(‘?){‘)Z) 21 for X >0 , 'é>o , a>o

2) 'ﬁ (_a-,‘c'a 1) has ﬁ zeros when

‘)C>O) 'ﬁ)o , a._,_%;.-z o where o(vL(l

According to the first property, (B.1l) clearly cannot be satisfied if

P > :'ZL . The second propérty enables us to foretell the number
of values of /7 within a given range, /: &< < -'é‘ , that
satisfy (B.1) for a given 2+ . |

It is also known that, for any positive integer #m , we have

the relations:
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Flns ) = o2 (4 He, @

2m#

| 2 ] - .
|E("MJ%; %} ) = (.z::‘“)p ("-'i) ,"/-2 (7) . (B.2)

(m)

_ g
He(p) = 1) Jzr < & )

HQM(}) is the Hermite polynomial of degree M

2
(™) ™ -
é(})ﬁ f?(—ﬁi;-,?'e %:) is the ( wm +1)th

()
derivative of the "error function". Therefore the zeros of é (;/)

2
coincide with those of ‘E (-—'M'Ji) ""{} ) , and the zeros of

(em+)) 3
é (3) coincide with those of tf: (-'m, =z, -%.- }z) .

(%)
Fortunately the zeros of é ) %: /,2,,20 can be found in

the mathematical table, Harvard, 23 (1952). We now make use of these

known zeros to device a graphical method to determine the first several

zeros of ,F, (—H‘d') 'i‘, "i'}:) and of lF; (';‘:P*'%" R %‘ ,%}:)

In particular, we use the zeros for é: 2, 4,’ v, 20 in determining

the former and those for i:l, 3,--*,!9 the latter.
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A family of curves are drawn in Fig. 23 linking the zeros of the
derivative of even orders of the "error function'. These curves can be
thought of as the loci of the zeros of 'F':(d) '%:) "i"}l) . This
interpretation is verified by the fact that the least positive zeros of
this function at thirteen values of @ , obtained from Slater (1960),
fall onto the first curve. Each curve is drawn asymptotically towards
an upper bound at a negative integer, so that the property (2) cited
above concerning the number of zeros is not violated. Now suppose a
value of Z,,,_ is given as represented by the dotted line. The zeros of

) 2
IFI (a) "'2'," "%,';.,. ) are then the intersecting points between the

dotted line and the family of curves. From the value of a of those
points we can easily determine the, associated values of 7’ . Fig, 24

is a similar plot for determining the values of /" that make
3 2
,,’7 ('-,l:/-'-!- <, "23“ , 'f';{,_) equal to zero, 5.,. is equal to 2.91

in our model tropics.




Fig. 23. Loci of the zerog of confluent hypergeometric function, ,ﬁ(a, '[Z, ‘i’ ")
o zeros of (2m) ~ derivatives of the error function when a = -m, S



Fig.

24,

Loci of the zeros %ﬁ confluent hypergeometric function,
o zeros of (2m+l)

B (&, 32, T3)

derivatives of the error function when a

-1,

~bo/-



-110-

Appendix C

A band-pass recursive filter is designed for filtering the discrete
time series of the spatial Fourier components of the streamfunction at
30°N discussed in Section 4, By filtering a time series recursively, we
mean that each output point of the filtered sequence is computed as a

, weighted sum of the input points plus a weighted sum of previously computed
output points. This is an alternative technique.to the usual digital con-

volution, and is found in most cases significantly more efficient than

the latter, Shanks (1967).

This recursive technique is based on the Z -transform representa-

tion of the convolution operation on a discrete time series.
Y(z) = F(z) X(2) ©.1)

where

X (2)

F’(Z) = 'f°+f'2 4+ - {Nz”‘
WM
ERORL AN T h

"

M
Zy + X, 2 4+ e + ZMZ.

They are the corresponding Z -transforms of the followiug sequences:
{X. ) %X, y DT X u } input series

{ {o f, RS {N} filter weighting function
’

{7“ ?, ) ""7M+M}

output series
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Z can be thought of as a delay operator. We specifically consider
filters whose Z ~transform is a rational function of Z . In other

words, F(Z) is expressible as a ratio of two polynomials in .

Alz)  a,taqz + - ~a,z”
F(Z): B(Z) 'é,,-f—’é,Z*' e o %MZM

The amplitude and phase responsé of the digital filter can be determined
by evaluating F(z) at the unit circle in the 'Z -plane, i.e. at

/Z/ = /‘0 , (Treitel and Robinson, 1964)., Values of 2 along the
unit circle correspond to values of real frequency. In particular,
Z=lo+ £ 00 corresponds to zero frequency and Z z= =fio ¢ & 0°0 ’ to
the Nyquist frequency C'ON . Frequenciles linearly distributed between
zero and WN correspond to points linearly distributed on the upper

half of the unit circle. Hence we can control the behavior of the filter

by choosing the number and thé location of the zeros and poles of F(Z)-

The time series in our study have a sampling interval of 12 hours,
and should have at least a strong annual component, Hence we need a
filter that can eliminate the components of a period shorte.r than 1 day
or longer than half a year, The/simplest recursive filter that has such
properties is one that has two zeros, one at zZ = /'O + ¢ 00 and the
other at Z = «/ip + 400 . 1In order to have as small attenuation
as possible for the intermediate components, we need add at least two

poles outside the unit circle on the real axis of the Z -~plane. Such

a simple filter is used in this study. It is shown in Fig. 25.
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¥—O- o—x Zero e
-.PZ. ke "é PI Pole X
Figure 25, Z -plane,
_ where
F(z)= (/"’Z)(/'f‘Z) o, = —#'—
! F.
= o, (/I-2%) E"" (= oh)Z - “;0(12-_]
The amplitude response of the filter can be computed by
2
o, of, (/- z*) st Jz[ =)o (c.3)

I+ (,-04)Z — of,of, Z2°

A filtering operation introduces é phase change to the input series as
well as the amplitude attenilation given by (C.3). One way to insure zero
phase change is to filter the time series first with a time-forward opera-
tion and then to filter the subsequent series with a time-reversed opera-
tion. The recursion equation for time-forward filtering with a rational

filter specified by (C.2) is:



-113-

L |
7% =% (z"’-—. x’t-z * (9(2. ;‘L:-)%:-.-l * 791-2.) (C.4)

The corresponding equation for a time-reversed filtering is
= o, (' - + (L. L ‘
7% 17 Xn x,t“_ (,(L ,4')%“/ + 7411-2. (C.5)

The net effect of filtering a series first with (C.3) and then with (C.4)
Ais to introduce zero phase and an amplitude attenuation equal to the square
of (C.3). o{l and o(z used in the filter for this study are chosen

to be 0.938 and 0.917 respectively. The power response as a result of

our filtering procedure is shown in Fig. 26. It is seen that the attenua-
tion factor is about 0.7 between frequency range from 0.03 to 0.3, and

has a fairly sharp cut-off beyond these limits.




8-
6
a d
. . ;
s
2
] (] | (] ] (] 1 I W | l | ] 1 Lo gl
-3 1072 10" - 10°
CYCLE PER I2HRS

10
O —

Fig., 26, Power response of the prefiltering operation.
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Appendix D

This appendix gives a complete listing of the statistical boundary

conditions

Fy , J=1,2,3,4 for

é centered at @ in unit of S

T (.2204782
C.0C0279%

2

C.0201037
0.0I)0CT44

0002928
€.0C2337¢

’"ffﬁfﬁfﬁfT_“— STy

Ced032697
—;ng877“

0.C200577

__G.0Cl45C1
C.oC16961

Cnu» ].(3"569
QV~1U906
- L.2006955

BN RN (T
..w«(m' v ,E'W:LSWL 1}. S
{(.5C65c2¢

(.507%91C7T

022565

RS 3 S ¥

C.01l14066

TCL.2C15033 T T

0.0730G487

0908602

= 1 to 12 and each frequency interval

« §

T3

0.,0C01C23
0.0629H397

-1 .
(270) ~ cycles per 12 hrs.)

F
4

-0.000C1074
-0.250721153

ﬂ{rF0“732
« 2003822

-0.,0000342
N0.002064G

—“ﬁbﬁﬁﬁTZMN”"“""N'""GI0050654'

TT0.00C01761 T

J.020300C

0.0001907

C,IT2G593

C.CC30254

T C.0024065

G.0C17551

TTCLICIESAZ T

-Ce2019595

0-0(‘_2_10‘?4
C.0ll4a4lr

T G.ICCo84s

C.00306748

S G.00T1035

C.0C7(128

0. 0304164
£.073321

S CL.CAN2515 T
0.0)02986
0.0304677

C.0I07619

Ca.o0o0TTie T

0.000562¢C

0009072387 T
L. 0:0299138
0.0J038633

N.0316216

T G.JC54308
Un»u??"f

TT0L,I94531

v

—lq Lo .}j;)}?

C}ulél)/l
C.J16125

».,33196
.02373029

e tAsiage -

0.C2360647

TTeueYsenrz T

\. . )36210

2052246
0.0005092

0.00054649
C.OC01367
0.C000914

N.N005K5641

-C.nc2l12a61
-0.0012584

~0.00155C7

0.C701571 -0.0009912 0.7001566
002597 TN 003098 T T 0, 0002083
0.0902307 -0,02205C2 -0.0001819

0.023082258 5?6@00320 “0L.0073565™
0.CO01611 .C001765 -0.0000581
0.0001488 n SNN022257TT T T TTTTIE0L 0000591
 0.C002815 0.0001429 -0.N000219
CTRLGAC3698 T T T T TN I4TA T T T T T T T TTT0L000 64
 N.0903346 N.CCO1725 0.0000281
0,0001672 0.0C00741 -0.0000798"
0.090C651 0.0000673 -0.0000928
RSPt 1o} 1= 1- 2 s P aleke I L=To 2o B VS T o1ol B B C
0,0701730 ~0.0004402 -0.00012C5

T=0GNCOISCs T T T T =L 179

~0.0C0G312

u.oca%aaﬁ“
“‘“o 10004338 "

T0.0R075397

00003772
00602277

S0.003622
211223

S =CL.CC027T8
0.0714928

0.00%1621°
0.0080056¢6

T OTDQOP?42

2000968

___““_"—“—C.QGFGQQR"

-0.0006666

T TTTTT=0.0010812

-0.0007939

T T T T =DLO0T a5

0.00GC0C91

T -0.7005358"

-0.000395¢8

TTTTTTTTE000006008

-0.0024225

T T=0.2031514

-0.0041631

T =0.0075474

-0.0C63248
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T F, 2 Fg ¥,
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(continued for n = 2)
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0.02854C6 0.0093336 0.0138583 -0.0019466

__.30__C.C1516599 €..0055092 0.0037427.. —-0.,0€36233...
C.C07446G5 0.0624357 -0.0023857 -0.00023C8

e CLCCETGLS _______0.0025616. . _=0.0027714_____. ________0.,0020184 _
C.CC4140S6 - 0.0038088 -0.0025153 . -0,0000195

00042265 0.0044455____ . =0,0011213.____.____—0.,0000733 .
C.0067S41 0.0035654 —0.0004068 0.0025974

e £,C055C066 0.0018345 -0.0010825_ 0.0017815_.
C.C03656S 0.0011686 0.0001470 —-0.00044€2

e CeCC41E78 ____ __ _  0.,0019908 _  ____ 0.0017107 . _______ =0.,0001775
C.C03S144 0.0035542 -0.0003328 -0.0003774

. 40 ©,00€38S7. _ . 0.0039273_____  _ __—0.0030437. __ ___ __—=0.0016658 _
€.0110980 C.0023474 -0.0021707 -0.€021628
€.0125112 -~ GC.CCl2121 _ _ __ . =0.0002107 .  _=0.0020571._
C.CC836E9 €.0006875 -0.0002816 —0.00606952

e Ce€ACS23C 0 _C.0C07643. _  0.0017522 . . -0.0001754
C.017¢2¢€C 0.0013394 0.0044691 -0.0003745
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q F, E, Fg F
4 .

i C2C265C27 _____0.0065928._ ___ . _-0.,0061140 __ _______.=0.0041758
C.C41122¢ 0.0061277 -0.0070423 0.0063462
o 0a05115C2  0.0091279 .. -0.0020194 0.C158195
C.C465756 C.01485C4 . 0.0046830 0.C189143
__________ C.C318374______ ___ 0.0181053 . .. . 0.0015487.__. ._______0.0171652
-40 C.0292612 0.C095578 0.0035643 0.0079084
_________ C.070235¢ _ _____0.C043015__ ________ _0.,0126584 ____ _______0.C091326
C.1145262 0.C079371 0.0083256 0.0192855
—_—C.18C03828 ___  _0.0088797 =0.0184956 0.0212917
C.2242215 0.0076584 -0.0273076 0.0130152
,,,,,,,,,,,, Celd4€880 _ _ ____ ___0.0081648 . . . _=0.0052726..... . ___ . _0.0010992,
C.1034074 0.0165328 0.0109228 C.0262177
__________ €.1602087. . _0.C328021 . _0.0160446_ . __ . _0.0646010
C.1265G4¢C 0.C435115 0.0188892 0.0343503

C.1883C713 . .. £.0406865. .

. 040390947 __0.0026605.

-30 (C.z78406%2 0.C312033 0.0430982 0.0249048
~~~~~~~~~ C.2168C%2 _ . 0.0192215 .. ... ._0.0044120. _________0.0122116.
€.22290C3 C.0C79516 ~0.00939405 -0.0051665

e €02031326. . . C.0C41387 _ _________0.,0007148___ _ __ _____. 0.0120789.
C.C783628 0.0068214 0.0074408 0.008818C

e C.C582674  __ 0.0253849.._ . _—=0.,0086764 _____________0.0082584
C.C3025¢C 0.0487523 —-0.0426806 " 0.0293628°

e 000693647 Ce0603811 . -~0.0184714__ __ _ ____.__0.02306452
C.C5352%0 0.0553414 0.0218584 -0.0015075
00 CO0TSOL . . . 0.0444233 _ ___ -0.0017947_______ __...__0.,0111405
-20 (.322432¢5 0.0467461 0.0071631 0.0214214"
R C,€42€547 -.0+G363648. .2 0a0512495 . 0.0196371.
C.G6881¢%¢ 0.0429324 -0.0350471 0.1350352
102648954 . ..0.,0759251 -0..1249153____ ___ ___{ 0.2637072.
1.111£2322 0.0894457 —0.0126041 0.2714956

e Lo 1ALTSS5 o 001069942 . 0.1647555. ... 04254CC5S
«2114€14 0.1086173 0.2255651 0.1982314

e ——302001434 _ 0.0784635 . -0.1937513  ____  0.0639901
) 1.1699152 0.0543474 0.1308368 0.1023808
.- Ca€831CCY. . . C,C624085 e 000435905 . ____0.1872057
-10 (C.E5566GSS 6.6989878 0.0060781 0.25045660
e e VESETNS . 0.1945665. .. _0.2522603. .. _ . ___.0.3100058.
1.£47CE¢€T 0.,2695131 0.5057089 G.35363C6
1.16156G67 C.2027737 0.4021185 0.2115637
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(continued for n = 6)

T Fy , F, F, F,
C.7772461 0.1393059 0.3088899 0.0576237
e 2458744 01691735 0.3202408 __________0.2392810
1.58164594 0.2282059 0.3376560 0.53159¢3
e 24C139T€Y___ ____0.2235729. . ______0.3992167 . 0.4306557
Z2.33951¢C¢C 0.2042565 0.6102957 0.1338025
=1_.C.2082686 ____ ______0.0151314_ __ ______ 0.0469014 . __. . 0.0164465.
+1 C.2401466 0.0057429 0.0280566 0.0222496
. ___.3.C35855715_______0.0715601 = .0.3650544 ___ . ______0.2613319

1.11434€5 0.0332383 0.1322417 0.1123749
_..Ce74817CL ______ _0.0364724 _ _ _ _0,1086796 _________0.,0359403 .

C.78175¢4 0.0759984 0.1953527 -C.0101903
e Ce?545481 . 0.1154040 . . 0.2751064.  ___ . 0.,0014541
(.€2G32¢€¢ 0.1033760 , 0.2432886 -0.0012274

. 8.292048S ______0.0629914 . 0.1081805 __ . 0.0004958
C.11CS€73 0.04235756 . 0.0239855 0.0067082
..o _C.1075€€¢3_ __ _____C.(0398049 . 0.0255194 .. ___ __=0.0271239 .
0.C86GE26 0.0325929 0.0118524 -0.0331332
C.C87517¢ 0.02529¢68_ _ _  _=0.0038373 -0.0155707_.
€.0723433 0.0218764 0.0138919 -0.0114356
e GCa.C€42728  __ ___0.0152408_________0.0276999 ___ ______=0C.0063024 _
C.C865856 .6+0204741 " 0.0265329 -0.0153212
e Ce1752225 ____ 0.0376804____ . 0.0502018_________ _-0.0331316 |
C.2447453 0.0385899 : 0.0715528 ~C.0250172
. L.13C433C_ - 0.0194554__ .  0.0290027_ -0.0064820
C.C2767C4 0.0076479 : . =0.0005995 —-0.002¢€455
.20 _0.075%73235__________0.0248409 __ _______ ~0.0375187__________=0.0030516 .
G«1142357 0.0426863 ‘ 0.0626265 0.0038398
e .BWCO1BEST_ 0.0238620_ . 0.0275810___ | 0.CC79383 .
C.C3032¢8 0.0042658 0.0003073 0.0075835
o C.Ca4251€ _____ _0.,0030917 0.0031646 . 0.0091956
C.C247154 : 0.0016411 0.0010150 0.005£567
_________ C.004S8S911_______ _0.0030633__. _ ____=-0,0016154 __________ 0,0011346.
C.C183405 0.0060599 0.0020475 -0.0024749
... GC.C38157C . __0.0C67811. .. _________ 0.0103739__________=C.0060004
C.C397441 0.0C888656 0.0167685 —-0.0026218
30 _C.C31C738 0.01078C4. 0.0160195 0.0001157..
C.C23¢2¢4 0.C072162 ) 0.0077987 -0.0034140
. CeC1G42€) 0.0021973 . 0.0020139_____  ___ _—-0.0040323
C.0119¢€36 0.0008447 0.0009183 -=0.0010704
_________ C.C095518 _ ~ . C.0011666 _______ _=0.0000762 ________~ _0.0005919
C.C182535 0.0C24923 0.0023655 —-0.0005947
e LeC215655 C.0068749 . 0.0095678. ________ -0.0015202
C.01G6€5C0 0.0083913 0.0111886 0.0015508
e GeC135276 . _0.0053281 . _0.0053045 . ___0.0042221
0.01794¢¢ 0.0052377 0.0066501 0.0015308
.40 C.C33454S . _.0.0057003 __ ___ ... _0.0116605 __ ____ _-0.C02C1%4
C.C3¢64256 0.C027831 0.6078202 -0.002C086
—L.C2¢873C_______ _€C.0009743 _ _  _____0.0028779 . __ ______=0.0017341
C.C182435 0.0010590 0.0009859 -0.0007999

_6.01341¢S _  _ __0.0010969  ___  _=0.0009093___ ______ 0.0001027
G.C0614°1 0.0018917 -0.0006172 -C.0001767
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n==17
q Fl Fz F3 1?4
e Q40586633 ~0.0194300 . 0.0121118 _ _ . __D.0272297 .
C.052C657 0.0132943 0.0123987 C.0157399
LWL 2013 . 0.0033786. 0.0088199 . ___ 020044746
C.2265313 0.0045383 0.0070982 0.0223880
e B020C284CC __ _ _____0.0114611 . __ . _~0.0008488  ___ . 0.03625%6.
-40 (.,1480084 0.0173619 ~0.0246916 0.C315787
e 001790206 . 0.022626) . _=0.0265029 . .- . _0.0308433
C.1312224 0.0233786 0.0084636 0.0164105
— L£.152C115 . 0.0355343 . 0.0350211 0.03865017.
C.271184¢6 0.0493C31 C.0468402 0.086346S
e 0w28€TA3) L _0a033469T. . ___0.0447294 . _0.,06741725
C.1828774 0.0223124 0.0402100 0.0419902

.- L02285136

e L0 0455797

(.2328418 C.0668710 0.0447089 0.1267235

e L 04522716 _0.0604861. ______  0.105G649 . __ . 0.C828877.
-30 C.4549€¢28 0.0506403 0.1388073 0.007858¢C
e G0 263167E C.0351125 .. . ... 0.0535835_ _________-0.0087241
‘ C.11630¢1 0.C267858 -0.0265326 0.0174738

(01862350 __.0.0452152 ___ _—0.0239503___ _ _____0.04590863 _
C.17E8S775S 0.0632146 0.0278973 " 0.0670763

e £a245C)€S 0.0656532 __  0.0359494 0.1081684
C.2878624 0.0807026 0.0382241. 0.1505927

i€ 09669215 0.0828552 .. 00836889 ________0.C865143
C.574C21¢ 0.067651% 0.1372854 ~-0.0035158

e -.C0€581036. . 0.CG93280 ~-0.1588538 . __ . 0.0848305.
=20 (.5624(CC2 0.1093342 0.0802062 0.1817364
e La2844578 _0.0536584 . -0.0182806 0.096029¢
€.2927373 0.081749) C.1076651 -0.0201015

. € 81323621 e 2041697949 . 0.2325616. . . __ . =0.,0029368 _
C.t528947 G.1282028 0.0769014 0.088541¢C

e 1 4 (528755 .- 0.0362819. ... .. .0.0446289. _ ——--0+04€3391.
1.2828321 0.0459481 0.1434829 0.0245138

o L a8378224 _ C.CT7C0966 . __ —.D.0930498. . . 0.1137202 .
C.7387532 0.0485985 0.0987975 0.0985436

. 1.20190€2 . __0.0444887 . 0.2083670 ... ___0.0662721.
-10 1.(354¢SCC 0.0561335 0.2043563 0.0777647
e - Ce42678SC . _C.041867C . _. - .0.0982620 e 040450527
C.577C216 0.0428518 0.1527494 -0.0601476
Z2.148C2¢3 0.05118C1 0.2544917 0.1801680

020415110 _0.C835963 .
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(continued for n = 7)

L'} Fl F2 . . F3 A E4

1.6448915 0.0498216 C.1960620 0.1073765

e heCYP2377_ ____0.0693412 ________ 0.1620961 __ _______0.0382862
C.$5878¢6 0.0767619 0.1745026 0,1006715
.. _C.c€CT27C__ . Q.0599111_ . _0.152341L _____ . .._0.0923854
1.196907C 0.0501162 0.1552721 . 0.0194765

=1 _C.C851113 _ ____ G.C006073________ 0.0043065_ __ . 0,C033812 .
+1 C.C2334%¢ 0.0150497 0.0180267 -0.£029377

e Ce2042¢%2 ... _0e2219651 . _0.2130496____ .. ___—-0.C782616. .
C.10143C3 0.G853345 0.0525925 -0.0359550

. Ca4732520_ ... 06«0458933__ 01005726 _ . _ . ___ . L«C341453
€.5136727 0.C781372 0.2294168 0.1021178

_— .C.7663682  __0.1135876 ___ 02595173 ___ _____0.1248584__
C.4€473¢8 0.0913163 0.1644203 0.102084¢

. 02552526 __0.0495580____ . _0.06115C6. __________0.0455528 _
Ce12C07¢8 0.0452466 0.0375302 —0.0154665

.10 0.1591523 0.0483161_ . 0.0598003._________=0.,0359555 _
C.2384517 0.0342529 0.0646855 -0.0172313

. C.e1392581 . 0.0229374___ . 0.0360002 _________ 0.0086133 _
€.C515358 0.0179711 0.0130272 0.0185360

... fG.C88€S25 ___ _0.0253401___ ________0,0281257 ____ _______0.0150427 .

C.17671¢4 0.041Q124 0.0657061 -0.0119427

. _._.0.20654%1 ___ 0.0342645_ .. _0.0658423 ________ =0.0354341 _
€.109C174. 0.0168576 0.0311104 -0.0132996

e LeC4353¢C2 ______0.0106102_ 0.0135814 0.0086241 _
C.145C5¢6¢ 0.6118540 0.0345826 : 0.00107872
.20 C.3014423_______ ___€C.02007C2____._ ______ 0.0735685__ ________=C.C190458
C.2225¢CC 0.0254155 0.0817641 - -0.0168473

... €C.21C51€2___________ 0.0213508 _ _________0.0580632___________0.0075809 _
C.C85C456 0.0117913 . 0.0243228 0.0114291

0.0382500 - 0.0152702 0.0133504 0.0068325 .
€.C38573C C.C277515 0.0236102 0.0001886
. CeC464773_______ C.0203364___________0,0200411 . . __=0.0012273
c.C5Cs7Ce 0.0071350 0.00941454, 0.0012312
o £.C25C054 _ _________£.0129965 __________0.,0086222.__________0.0060435
0.C12812¢ 0.0202282 0.0092407 -0.0005976

30 0.0l40123 __ 0.0120742 0.0048812 -0.€0217536
C.C628875 _ 0.0044900 0.0086877 : 0.0009430

.- 0.1080485__ . _0.0050533____________0.0140627_ __ .. ______0.0037550__
C.C61575¢ C.0G57985 0.0077760 ~ 0.0026395

. C.C17S264 __________0.0038016 .. ____0.0021258 . =0.0014204 .
(.C118845 0.0017647 0.0022605 -0.0022041

e 0L0041CT o 0.0026035_________0.0029129 -0.0008023.
€C.C054265 €. 0055024 0.0011283 -0.000174%

e CoCOT745€0 040063071 _ _______—=0.0018067 .  ________ . C.CC13576. .
C.C132655 0.0040890 -0.0013325 0.0038781
40 C.C2194%7__ . _ ___ ___C.0025183_ _ __ . . =0.,0013270.  _______ _0D.0060004
€.C21805¢0 0.0021859 -0.0008622 0.CC59651
e CWC1E1577 040021550 0.0020999  _ _0.0041066%
C.C10C426 0.0021535 €.0012509 0.6023924

0.C07212S_ .. 0.0017180 . _ ____.=-0,0014393 _ _ __ . _._0.,0017328
C.C0B0GTS C.0008839 . =0.0006257 0.C001033
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F F ]
T 1 2 3 Far.

¢“nm____0;2355535“wﬂﬁ_______Di0205O16W“_“~_MNMN*QJOBIDJDBMW,m“wwmw__D.D§96809

€.2216068 C.C205779 _ €.0193934 : 0.04348C5

. C4CSC15&C.______ C.0204543 .. C0.0067494 - 0.024210C4
C.CT1784¢ 0.0553105 0.0285969 0.0468886
. €.191020)}. . . __0.0894931 __________0.0606329 .. _______C.C809788
-40 €.2189173 C.C464719 0.0442231 0.045442C
041026032 _____0.008669l. . ________0.,0135008 __ _____ ___ 0.0135527
C.3638167 0.0356537 0.0935294 0.0346182

e G0 €CEE4ST C.0697933 . 0.1741471. : 0.0377383.
«3277815 0.C0693765 0.0881960 0.0195362-
0405481060 C.Cél3%47 . _ . __ =0,0122269 . ___ 0.0384013
C.1151258 C.0619487 —C.0336249 0.0481103

e C.l34S2E5 . _0.0607735 . _.=0.0526467 ... . ____0.0152316
C.142E8112 0.0612752 -0.0780436 0.0102715

e CaWZY6BSSE . _0.0764570 . 0.0401680 . 0.0154624
-30 C.51£4C03 0.0654853 0.1880691 : -0.0091901
e C.E6681765_  ______.__0.10206087. . ._.._._0.1478367 ____ .. 0.07S1018
C.712€5¢5 0.1314245 0.1145273 0.2088377

e Ge5961181 . 0.1221508 _ ___ ____ 0.1363717.__________0.,1651063
C.5426¢€12 0.0883489 0.1353600 C.1162262

e £.260606S. _ 0.0797793 . 0,1269933 0.€83587¢6
C.1922%6¢17 0.0444340 0.074873% 0.0275203

. CaZ116CE4 . _0.0274969____ ... .0.0228868._ _______ _=0.0143275
C.2143¢€%5 0.048171C 0.0176416 -0.0635817,

e €e3500728 .. 0.0758812 . .0.0982503 ___.______ (€.C10597S
-20 C,53C15C3 0.C843937 0.1557092 0.103614G
. €e2517222 . 0.0561348 _  _ ____ _0.0917557. ________ 0.0422757
C.2201¢¢%1 €.0386209 0.0753483 ~0.0046684

o 0.4345732___ . .0.031685C __.. . 0.,08%4806._____ . __ . _0.0248801
C.5539731 0.0218657 0.0420440 -0.0304131

e Ca128€586_ . ... .____0.0168131. . _ _ .. _.0.0149947 ____ ___=0.0864431
C.83¢4411 0.0233147 -0.0103121 -0.086285¢
. CeB243971 . C,0429626 . . .._.0.0107587 . -—0.095€1lél
C.6014397 0.0436641 0.0839818 -0.0363991
. Ca5S73824 ... _..__0.C281692_ __ .. . ..0.0998399 ______ . 0.0454435
-10 C.7643C%8 £.0210926 G.0972136 0.0568316
o L €7656C5 o _Ca(242619 .. . __0.059635%8 ... . 0.019¢£413
C.4S73674 0.0523353 £.0138882 -—0.G637015

C.44€5486 0.0869087 0.0826631 -0.0883543
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(continued for n = 8)

T F 4 F, Fso - Ty
C.42883¢1 0.C8C8036 . 0.1484967 -0.0221214
. C.€4S738C_ . 0.0813593 __ . 0.1741014 _________=0.0990432
1.05921128 0.1087932 0.2303588 -0.2278222
o 1e206S22CS. 041275672 _ . 0.2940799 _ _______=0,2050316
1.1542225 0.2054413 0.4128666 -0.1716098
-1 C.C442503 ___ _ €.0139962 . 0.0210399. - —0.0116129
41 C.Cla66S6 0.0073223 0.0074667 ~0.0053013
. C.1711746 . 0.1325335 _ ____ 0.0851780 ________ ~-0,0928475
C.C84282¢ 0.0707695 0.0228238 -0.0624451
.. 03511247 _6.0722458______ _ _0.,0110934 _________€.C731499
€.5136310 . 0.0951463 0.0387750 0.15712C¢
. 0.35005%S _ _ ____ 0.1255599 . 0.1240833 __________ 0.0559161
Ce3626552 0.1268770 0.1670024 -0.0418960
o Ge4183351  __ 0.0756536______ 0.0754166 . _____- —C.C243591
C.2682852 . 0.0431881 -0.0062150 0.,0081947
10 C.z49S934€ . 0.0376942 _ _ __ _0.0159496 __ _______0,0020122 -
Ce2447612 0.05164590 0.0565263 -0.€3055¢€3
e £.2050046 0.€638159 0.0555087__  —0.06%772C
C.101C417 0.0574376 0.0325901 -0.0531427
_0.02116€6_________0.0516889 __ _ _ _0.0186088 ________~0.0145796
C.04261¢9 0.0340282 - 0.0221411 ~-0.C122384,
. C.C64CS45 ____ 0.0198620  ______0.0213370_ ____ . ___=0,017315¢
C.C441581 0.0129448 0.007C885 -0.0061684
0.043€GE5 . 0.0207582___. 0.0019025 0.0208735.
C.C6652€4 0.0370398 0.0078448 C.0268542
20 €.1229862_ . _0,0347669 ___________0,0331493 _________0.,0178022
C.1647573 0.0328743 0.0581214 0.0295816
o Ca10265C6 . Ga0373116__ . _0.0489312 . 0,0269189
C.C2c6S513 - 0.0365711 0.0334101 0.0060298
. G.C2113¢6 0.0250992_ 0.,0251270_________=0.0037312 .
C.C264121 G.0179706 0.0163295 0.0016546
.. CeC243213 0.0186164____ . 0,0103082__ _  __ _____1 0,0105G¢62
b C.C1S7454 0.0099578 0.0030695 0.0021077
__ C.C1892€4_ ____ 0.0033767_ . _____=-0.0007920 . _=0.0020957_
0.C224741 0.0046783 -0.0028097 0.0029712
_30__0.C19R842) _ 0e0D047526 ____ —0.0045033 ___ 0.0014954.
C.Cl66620 0.0022479 ~0.0018224 0.0010835
o CeCl6CCT4 ________0.0014867 __ ______=0.0007726___.__.____=0,0000162
(.G158241 0.0025406 -0.0003878 -0.0034613
. C.Cle&l222 0.0032478__________ 0.0043837.________ =0,0018311
0.C165650 €. 0050288 0.0083092 0.0012484
. C.G12S7C1_ 0.0051804________ 0.0053669 0.0020165.
C.Cl2E7¢€C 0.0023782 0.0013245 0.0018441
o CaC153725 _____0.0014390____ . _0,0023334 _________ _0.0010064
: C.0183644 0.0032406 0.0063887 0.0007221
40 C.C23CC47_____0.C048448 ___ _ __ 0.0093925 ___  _  0.002971¢
' C.C156715 0.0042358 0.0067734 0.0029668
. 0.013C840  _ 0,0026626_________ 0.0040555 _______ _____0.0010842_
€.0189874 - C.0021083 0.0038831 0.001146¢C
00143137 ___ 0.0025656_ __  _____0.0006239 -0.0015329

€C.C107421 0.C040603 -0.0015958 ~0.0C61270
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