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ABSTRACT

A two-layer model is used to 'investigate the asymmetric motions

in the tropical atmosphere as small perturbations on a symmetric basic.

state which contains a vertical shear in the zonal wind. The physics

used to describe them ignore latent heat, but include parameterized

dissipation and non-geostrophic effects. The perturbed motion is treated

as stationary random process driven by forcing at lateral boundaries

located at 30 N and 30 S. The forcing motions are prescribed statistic-

ally in terms of spectra determined from 23 months of data at 300N, and

with the assumption that the forcing at the two boundaries are statis-

tically independent but otherwise are statistically similar.

The mathematical problem is to express second moment statistics

of the internal motions in terms of the basic state parameters and the

boundary statistics. This can be resolved into two separate steps:

(1) to construct the response functions of the statistics from the fun-

damental solutions of the governing spectral equations, (2) to combine

the response functions with a closed set of statistical boundary condi-

tions.

The fundamental solutions are obtained numerically. Their prop-

erties are discussed with the aid of those obtained analytically in the

case of no dissipation and shear in the basic zonal current.

The variance of the horizontal velocity components decreases with

latitude, and are much larger at the uppper level. Variance of horizon-

tal divergence, variance of temperature, and the correlation between

velocity components at the two levels decrease markedly with latitude.

A weak equatorward eddy sensible heat flux, a strong equatorward wave

energy flux, and a poleward momentum flux are predicted, Comparison

with observed values show good quantitative agreement for temperature



variance and sensible heat flux, but only qualitative agreement for merid-

ional velocity variance and momentum flux. The results for the horizontal

divergence and correlation between velocities at the two levels are com-

patible with synoptic experience. Physical implications are discussed for

each statistic; in particular, as they bear upon earlier theoretical con-

clusions by Charney and by Eliassen and Palm.

A significant part of the meridional velocity variance in equatorial

region at the upper level arises from motions of periods close to 5 days

and wavelength of about 10,000 km, and westward phase propagation. These

are similar to the disturbances in the equatorial lower stratosphere recent-

ly discovered by Yanai and Maruyama.

The eddy kinetic energy balance consists of a gain from pressure

work on the boundaries, and losses to friction and conversions to eddy

available potential energy and zonal kinetic energy. The gain in eddy

available potential energy from this source is balanced by losses to radi-

ative cooling and conversion to zonal available potential energy.

This study demonstrates that consistently reasonable statistics of

the asymmetric motions can be obtained from a crude model that explicitly

incorporates empirical forcing. Thus it lends support to the idea that

lateral coupling between the low-latitude eddies and the mid-latitude

motions is significant for the existence of the former.

Thesis Supervisor: Prof. Norman A. Phillips

Title Professor of Meteorology
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Four non-trivial statistical boundary

conditions.
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1. Introduction

This study is a theoretical attempt to investigate the large

scale zonally asymmetric motions in the tropics. The data analysis

performed thus far are rather fragmentary, Starr and White (1954), Obasi

(1963) and Peixoto (1960). Those studies only indicate that asymmetric

motions have a progressively smaller role towards the equator in so far

as transporting momentum and heat is concerned. We have yet to determine

how far south the influence of eddies extends into the tropics. We under-

stand very little about the energetics associated with the asymmetric

tropical motions. The available data is sparser than in higher latitudes,

but it has posed some interesting questions. Riehl (1954, 1963) noted

that the flow in the lower tropical troposphere is relatively steady,

whereas that at higher altitudes has considerably more variability and

day to day changes in the large-scale disturbances. Furthermore, the low

level systems in the Marshall Island region of the Western Pacific and

in the Caribbean Sea have often been found to move quite independently

of the upper level systems. This situation is quite different from what

is usually observed in middle latitudes. Such observations suggest that

the vertical scale of asymmetric motions in the tropics could be so small

that motions at one level exert very little influence upon the motions

at another level. Charney (1963) has applied a scaling argument to sub-

stantiate that possibility. He showed that on the basis of the generally

accepted typical length and velocity scales and static stability in the

tropics, the large scale motions there (in the absence of condensation)
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should be even more quasi-horizontal and horizontally nondivergent than

those in the middle latitudes. It follows that the vertical coupling

should be of only second order. Such large scale eddy motions must then

in the absence of condensation derive their energy either locally from

barotropic instability or through lateral coupling with the motions in

higher latitudes. This type of lateral coupling would be associated

with a significant cross-latitude flux of wave energy. This aspect of

the coupling has been hinted at by Eliassen and Palm (1960) when they

made an analysis of stationary waves. They showed that these waves of

planetary scale in a realistic mean state have a cross-latitude momentum

flux in opposite direction to the wave energy flux. Should this also be

true for the transient waves, the presumed lateral coupling would supply

considerable wave energy into the tropics. How far equatorward such a

flux of wave energy can penetrate depends upon the rate of dissipation

the effect of the Coriolis parameter and the interaction with the mean

flow.

In view of the suggestive evidence mentioned above concerning the

plausibility of significant lateral coupling between the middle and low

latitude circulation patterns, it is certainly of some interest to test

that concept quantitatively. This paper does so with a model tropics

that explicitly incorporates this mechanism. The role of local barotropic

instability as an energy source will be excluded by using a model contain-

ing no lateral shear in the basic current. Specifically, we shall examine.

the statistics of the circulation in a model tropics driven solely by

lateral forcing that is prescribed only statistically in terms of second
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moment statistics. The latter will be deduced from actual data at 300N.

If the resulting asymmetrical motions in the model tropics have statis-

tical properties similar to those in the real tropics, we then will have

established quantitative evidence for lateral coupling as an important

energy source of their motions.

The dynamical design of the model is described in Section 2. Its

simplicity underlies the limited objective of this study. Yet it is pre-

cisely in virtue of the model's simplicity that a statistical analysis

is feasible and an unambiguous physical interpretation of the theoretical

results can be given.

Section 3 is an exposition of the stochastic aspect of the analysis.

It will be shown that the problem of deducing the second moment statistics

can be resolved into two separate steps. One is to determine the funda-

mental solutions which can in turn be combined to obtain the response func-

tions of the system. The other is to formulate and compute the statistical

boundary conditions. These results can then be combined to give unique

solutions for such statistics within the tropics.

Section 4 is devoted to the discussion of the statistical boundary

conditions. A crucial assumption is made here that the variable part of

the flow at 300S is statistically independent but otherwise similar to

0 0

that at 30 N; this is necessary since no sufficient data at 30 S is avail-

0

able. In this section we will see how the boundary statistics at 30 N

from data are computed and how they may be interpreted in terms of wave

motions in the east-west direction.
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Section 5 shows the results for the first step of the analysis

outlined in Section 3. The fundamental solutions are solved analytically

for the special case of no dissipation and no shear in basic state, and

numerically for the general case. A brief discussion is given of the

manner in which the fundamental solutions are related to Rossby waves and

internal gravity waves.

Finally Section 6 presents the predicted second moment statistics

for the model tropics. The following statistics are computed: variance

of each of the three velocity components, covariance between the horizontal

velocities at the upper and lower levels, variance of temperature, eddy

cross-latitude fluxes of momentum, sensible heat and wave energy, and the

energy conversion terms. Wherever possible comparison between the theo-

retical statistics and the corresponding "observed" values will be made.
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2. Description of the model tropics

The atmospheric model is designed for a rather limited objective.

As pointed out in the Introduction, it is chosen for studying the statis-

tical properties of large scale asymmetric motions in the tropics in the

absence of condensation. Thus a dry model with hydrostatic approximation

is used. In particular we use a two-layer model. It is sometimes known

as a 2} dimensional model because it has only two degrees of freedom in

the vertical dimension for the horizontal velocity field, and one for the

thermal field and the vertical velocity field. The vertical coordinate

consists of five pressure levels: 0, 250, 500, 750 and 1000 mb. The ho-

rizontal coordinates are those of a Mercator projection covering the

tropical region from 30
0S to 30 N. The effects of the spherical geometry

of the earth are approximated by an equatorial f-plane representation.

In order to see precisely how an equatorial (3-plane approximation is

introduced, let us start with the complete set of governing equations

for a dry hydrostatic atmospheric system in (X , Y , 7 ) coordinates

where t is pressure and x and are horizontal coordinates of any

conformal projection. (They are sometimes referred to as the "primitive"

equations in meteorology literature.)
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av

--V +v2 (2- * 1D t i x

RT (2.1)

+

V, V iT~~
Df t ap

1c~

7,

where V horizontal velocity

C' horizontal del operator (at constant )

scale factor of the conformal projection

geopotential

temperature

potential temperature, ~=

earth's rotation vector

unit vector normal to isobaric surfaces

" velocity

rate of heating per unit mass

= 0.286 for dry air

latitude /- 2* = 224-

K = -
C

4r
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In particular, if a Mercator projection centered at the equator is used,

X ,a and would be related to longitude A ,latitude t and

earth's radius . as follows.

C-Cro 0(2.2)

By "equatorial -plane" approximation, we mean that the last two rela-

tions in (2.2) are approximated by

(2.3)

We also assume that &> vanishes at the top and bottom pressure

levels. This simplification, amounting to no net divergence in a vertical

column, eliminates the fast moving "external gravity" waves. Since we

are only interested in motions with a long time scale, this assumption

is reasonable.

A unique feature of the model is the use of statistical lateral

forcing at 300N and 300S. They are prescribed in terms of second moment

statistics. We consider the total circulation in the model tropics as

consisting of a time and zonally averaged state and a deviation from it,

which arises from the lateral forcing. The deviation component is assumed

to be governed by linearized form of the "primitive" equations. It is

the purpose of this study to demonstrate that the statistical properties
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of the resulting response, treated as a stochastic process, can be unique-

ly deduced.

The mathematical analysis will be made in terms of the meridional

velocity, If , at the 250- and 750-mb levels in the model tropics. The

lateral forcing will be given in terms of the statistics of 17 at these

levels at both 30 N and 30 S. This information at 30 N is obtained from

23 months (June 1963 to May 1965) of streamfunction data that covers north

of about 15 latitude of the northern hemisphere. Unfortunately there is

no similar data at 30 S. We introduce instead the assumption that V

at 300S is statistically independent of V7 at 30 N, but is otherwise

statistically identical to the latter. A detailed discussion on how to

formulate and compute the statistical boundary conditions is given in

Section 4.

Some type of dissipative mechanism must be incorporated, or else

the possibility of having resonance may render impossible the existence

of a statistically stationary state. We will use three simple types of

parameterised dissipation. Two are frictional; an internal friction at

the middle level and surface friction at the lower level. The former is

assumed to be proportional to the shear of the velocity perturbation and

the latter proportional to the velocity perturbation itself. The third

is a simple radiational cooling, proportional to the temperature pertur-

bation. Three empirical proportional constants must therefore be chosen.

We finally come to the problem of choosing a time and zonally

averaged basic state. The choice is made on the basis of published in-
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formation about the mean state of the tropical atmosphere. Let us first

consider the static stability defined as - . It is generally

recognised that this quantity does not vary significantly from low to

middle latitudes. Table 1 shows the value of this quantity for the atmo-

spheric layer, 750-250 mb, from several sources.

January July Average Source

.0545 .0472 .0508 U.S. (Gates, 1961)

.0493 U.S. standard atmosphere

.0515 West Indies (Jordan, 1958)

Table 1. - -- ----- in deg mb

@ af

A value of .050 deg mb is chosen for - in the model trop-

ics. The two-layer model to be developed in Section 3 contains internal

gravity waves as one mode of oscillation. In the absence of rotation

and zonal current, their phase speed is given by

-7RT ' -,

C = - - -- * = 60 a sec
0 @ =f 0

We next consider the choice of an averaged zonal velocity.

Table 2 shows the zonal velocities obtained by Palmen (1963) and by

Obasi (1963) for the northern and southern hemispheres respectively.
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-1
Table 2. Zonal velocities in m sec .

It should be pointed out that Palmen's values are based on Crutcher's

data (1959) which is considerably more abundant than that which was avail-

able to Obasi. The northern hemispheric values may therefore be more

reliable than the southern hemispheric values. In any case, within the

uncertainty margin of the two sets of values, we may say that the zonal

wind is by and large symmetrical about the equator. There is a vertical

as well as a horizontal shear. However, we will only incorporate the

vertical shear in our basic state, and choose uniform values of 8 m sec~

and -2 r sec~1 for the basic zonal current at the 250- and 750-mb levels.

Pressure

mb 200 500 850
Latitude

30ON 20.0 10.0 2.0

20 10.0 3.0 -1.0

10 0.0 -2.0 -4.0

0 -4.0 -2.5 -4.0

Average 6.5 2.1 -1.8

300S 29.6 11.2 2.2

20 17.8 5.6 -1.9

10 4.5 -1.0 -3.5

0 0.4 -4.5 -3.3

Average 13.0 2.8 -3.2
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The omission of lateral shear gives some simplification in the analysis.

However it was omitted primarily to eliminate lateral shear as a source

of wave energy in the tropics and to focus attention on the amount of

energy that would appear in the absence of this source. The zonally

averaged geopotential and temperature fields are taken as in geostrophic

balance with the prescribed zonal wind.

The effect of a mean meridional circulation in the basic state

on the asymmetric motion will be disregarded. The reasons for this

simplification are that the present model is too crude to incorporate

these effects and the actual meridional circulation is not well deter-

mined.
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3. Formulation of an analysis for stochastic perturbations

Before we proceed to a mathematical formulation, it may be helpful

to have a brief discussion of exactly what we mean by stochastic motion

in our context. The concept of ensemble developed in studies of probab-

ility seems to be necessary in this discussion. An ensemble may be

thought of as a collection of individual realisations of which we have

only partial knowledge. Now let us imagine an infinite number of models

as the one described in Section 2. The fluid in each of these models is

subject to lateral forcings of same amplitude but randomly different

phase. (Precise discussion will be given in Section 4 about the terms,

"amplitude" and "phase".) The circulation in each model is then a real-

isation. Because of the randomly different phase in the forcings, each

realisation is then naturally different from others in detail. But one

may suspect that since the "amplitude" of the forcings in the ensemble

are the same, there may be some properties common to all realisations.

Our problem is to deduce these properties which can be properly called

ensemble-average properties.

3.1 Perturbation spectral equations

We may make one definite statement about the realisations dis-

cussed above. It is that each realisation, however indeterministic it

may be, must not violate the known physical laws that describe the

dynamical and thermodynamical processes. Hence the stochastic process

must be governed by equations (2.1). Let us first write (2.1) with an
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equatorial P -plane on a Mercator projection, i.e. with (2.3), in a non-

-1
dimensional form using (2Q}) , a and (=1000 mb) as time,

length and pressure units. We define:

CA>)

F F
Ff (3.1)

For simplicity we will now omit the prime superscript in the following

equations.
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+1IV--

+ CA.)

.?goJ

c~ e

The range of the independent variables are

o 4 x 4 27T

C-- 30,

O {

= 1 is equal to 12 hours.

+ IV +K

-~

(3.2)

" LL +

at
CAJ a Ak

ap -

DV

Lr
+

+
ax

#V D (51) = -a
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The basic features of the two-layer model tropics are summarized

in Fig. 1.

Level

V/4 4+

Basic State

;Z* 4

C4 = 0

0

s.b.c. stands for statistical boundary conditions

Figure 1. Model tropics

The numerical values of the basic state are:

.-- 8 r4 sec
-. = = .cAta
/ 20A

= -- 2 4 sc - , 002/$

(3.3)

-& = - Z .

4./ X /0

3/4

do

6



-16-

The horizontal momentum equations are each written at levels 1

and 2. The vertical advection term in these equations is written using

the assumption (VV + V in the following way.

Z4
bV OA V

=V

Similarly

(~V)

By using the boundary conditions C0= 0 at o and we write

the continuity equation as follows.

47'1 (3.4)

The thermodynamic equation is written at = } by treating L at

this level as a given constant.

The linearized version of the resulting equations, in which q,

"{, 4, ,t and ? , now denote the perturbation variables,

is:
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+4tf+ i),

2%

? I----

.- :::I + + II-c
a.x fFZ

- , ( tV7 % Lr)

+yliV2 + I,o A 2 .

= C

has been eliminated by using (3.4). The frictional and heat-

ing effects have been parameterized by

f.U

linear laws:

VI- V2.

-A 
( 

()

represents a small-scale vertical exchange of horizontal

between levels 1 and 2; (C' - p represents a surface drag coefficient;

and can be thought of as a very crude representation of radiative

cooling. The numerical values assigned to them were taken from Charney

(1959).

~AL1At j

V,* (+t 1

+ k-

+a

Alt I ~L'.

(3.5)

momentum

ax

+ 
V,

M7 +
ax = - ( qI2. - ,t )(v - Ir2')

_ 6

V2.



-18-

= 0.343 x 10

= 2.74 x 10-2

= 0.206 x 10-2

They correspond to decay times of 23, 6 and 39 days, respectively.

The x-dependence in (3.5) can be represented by a Fourier series

expansioi for each dependent variable. Thus, if the subscript / = 1

or 2 represents the pressure level, we write

(3.6)

where

'7 is the zonal wave number. In the same way we have

**_ ex

I. Le
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In order to formulate our statistical boundary value problem, we

must seek a spectral representation for the time variability of the six

random functions , and , and their derivatives. A

mathematical theory exists which permits us to do so under a mild condi-

tion. A thorough exposition of it can be found in Yaglom (1962). It is

sometimes referred to as correlation theory, because it is developed

only for examining the second moments of stationary random functions.

According to this theory, if each of the six functions has a unique non-

negative definite auto-correlation function which is at least twice

differentiable with respect to the lag at zero lag, then each of them

and their time derivatives has a spectral representation. The spectral

representation is in the form of Fourier-Stieltjes integrals and their

inverse integrals. We postulate that this condition is valid for the

random functions in our model. In Yaglom's terminology, we define a

random point function Z(T) for each of the six stationary random

functions Ot) :

-r-+.
00

,- -

.- 00
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The identification is:

K i }

z

Since

V P

cJ );
c~t' SJ

The spectral form of the definition (3.6) is

41V =C-- i d S

otC~o J CO and dIS~aL L .11

(where * denotes complex conjugate),

we obtain

L [d v + d1V~

(3.8)

We substitute the Fourier series expansion (3.6) into (3.5) and

then take the Fourier-Stieltjes integral of the resulting equations

according to (3.7). The following equations result, governing the in-

crement IZ of these six random point functions.
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= -DXdF

d4u, + i(4 -Ai I4~.~4'

2Cdl-22DA dj iA d 2

where

is the longitudinal phase speed relative to the

vertically averaged basic flow, and

is the latitudinal derivative operator at

constant 'n and Q- .

The six spectral equations in (3.9) can be reduced to two coupled

equations by the relatively straightforward but algebraically involved

procedure described in Appendix A. The final perturbation spectral

equations governing dV, and are:

Lav, + L j av 0
(3.10)

L,{d ) + L4N ]=o

(3M 9)

.- E'

A =

= (,d-ip ( dP2,-dP,)
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where L 1,2,3,4) are second-order operators in

L ~ dj + C'

4V are

rl and are functions

related to U2

of the parameters, V and

4P and as follows.

+~~ I2.tJV

Ald + V, +L2 M.Vl.vI

~~40 2. + tvi{4 1JV

where A i

ent of

in

( =, ---,4)

and

are functions of the parameters and are independ-

are first order differential operators

3.2 Fundamental solutions

Equations (3.10) and the associated relations (3.11) have as de-

pendent variables the increments d Z of the six random point functions

z The boundary conditions at ± Y are formally in terms

of V which cannot be uniquely specified. In this sense our
i

problem is fundamentally different from the usual boundary value problem

d U2.

~AU I

PI~

=A34 U,

(3.11)

M, liv,
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where the dependent variables and boundary conditions are deterministic

quantities. Nevertheless it will be shown that the formal properties

of (3.10) play an important role in determining the response of the model'

to statistically prescribed forcing. We therefore first consider the

derivation of the fundamental solutions which is based on the formal pro-

perties of (3.10). The manipulation of the resulting form of statistic-

ally indeterminate solutions to give determinate statistics will then be

considered in the following subsection, with the aid of the Wiener-Khintchin

theorem.

The operators ( = 1,2,3,4) in (3.10) are second-order

differential operators, and are even operators with respect to Y .

These facts imply that each of 4V and dV must have four independ-

ent solutions, two of which are even functions of and two of which

are odd functions of . The solutions can therefore be written in

the following symbolic form,

1 
(3.12)

where are constants of integration. Without loss of generality,

let us consider 4J , 'iJ , . A as even solutions and 4t3 ,
I L. 1 .7.A 3

4A as odd solutions. The constants of integration

are related as usual to the boundary values of the eight dependent solu-

tions and dV
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The boundary relations are

/ti 
2itf,,

} dV + + w (dV + V) (3.13)

P2. 2( A u 41 + l+14
A(V - v )- Ar (dv -AV

P (3 4r - 4Ar 4+ 1+ -- # 2+ 2-

where subscript + again indicates functions evaluated at =

If we substitute (3.13) into (3.12) and rearrange the terms, we

would then be able to write the solutions in the following form

V ~4 A

=21P d ae V(

(3.14)

4 =

dov =
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where

V + d

dv + v

dV dV (3.14a)

-

43

A A

suc tha S and y a re ostsy(.0 iutnosy
I3,ZL ( 4A.2 ,+ 44

and similarly for +5 =23 4. Frhroeiti ayt43j (-WA -U
A 4  ~

The susrotheir defni otions n an/ are chreqa o
. ta

V2 23
Aj A A

see fuerom t definiotions ha V n reete, eult

I 2,

0.0 or 0.5 at =Y ;and because of their even or odd properties
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another condition for each of them can be specified at 0 . The

boundary conditions for them are summarized in Table 3.

Table 3.

The fundamental solutions V and V can then be obtained by
I I

solving the governing equations (3.10) four times using the four differ-

ent sets of boundary conditions summarized in Table 3.

The statistical properties of 6 and are now contained

only in the whereas are deterministic functions and

will be referred to as the fundamental solutions.

The general solutions for Ut and A , = I,.

associated with those for 1V in (3.14) are

d. U- ~(3.15)

Pi 4
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the same way that

are related to

d( and VIP
x t

for each

are related to 4dV

equations (3.11).

3.3 Response functions for second moment statistics

A theorem for stationary random functions known as Wiener-Khintchin

theorem will be applied in the following argument. It consists of a set

of interlocking equations relating the correlation function Ct)

of two stationary random functions () and () to the associated

random point functions Z(a) and / ) through a quantity known as

the spectral density functions () . It is stated below for the

sake of reference.

77,

(3.16)

' dZ 4WW>

'e. V, e-) -- J e ict < z

61Z and 6tW are related to

definitions (3.7). The symbol4

.oW *>

and respectively by the

> is an ensemble average operator.

A Or
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The first statement in (3.16) contains the ergodic hypothesis. The only

other assumption involved in this theorem is that the correlation func-

tion is integrable, which is invariably true in all known physical situa-

tions. Thus we postulate this mild condition for the statistical forcing

in this study.

For clarity let us consider a particular correlation function,

namely the zonally averaged correlation function between lf t, X) and

if (t., X) . An overbar will represent an x-average. By direct sub-

stitution from the Fourier series representation (3.6) of V; and ,

we obtain

(3.17)

The subscripts on denote

in the definition (3.16) of . The dependence of

and on '1 is not denoted explicitly. By the Wiener-Khintchin

theorem, we can write (3.16) when T'. o as:

WO/ (3.18)

It will now be assumed, without further specification, that all

variances refer to x-averagcd expressions and the overbar will be omitted

for convenience.
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By using (3.8) we can rewrite (3.17) as

'i+ (3.19)

It is clear that the integrand at negative value of T is equal to its

complex conjugate at positive value of 5 . Because of this symmetry

in frequency (3.19) can be written as

(3.20)

The reason for this symmetry is simple. It arises from our choice of

dealing with two-sided spectra, i.e. for both positive and negative fre-

quency. But as far as the covariance is concerned, there is no physical

difference between positive and negative frequency and thus contributions

from them are necessarily equal.

Substituting the general solutions for dV in the form cf

(3.4), we obtain

-o .L 2

(3.21)
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That the > are deterministic functions makes possible the last

step which is critical in this analysis.

The

each of the

E* 4Oa

are given by the boundary values of of at

as defined in (3.14). By the third statement in (3.15),

16 1dc( do*> can be expressed in the general form

1,2, ...,16 , (3.21) thereby reduces to an expression of

the general form

7 I (Cr; 7 ) ] d o , (3.22)

The H (7 play the role of the "response functions" (or "system

functions") used in electrical systems. The square bracketed quantity is

the spectrum for the covariance of V and 'tZ , and we see that it is

a superposition of the responses associated with the 16 "input" spectra

for each wavenumber L . This is the statement for our linear

model of the geiieral law that the "output" spectrum of a linear system

is equal to the system function times the input spectrum

(3.21) can be generalized to determine other variances and co-

variances in the model. Let and denote any pair of the six

variables 17 , and and let and denote

the corresponding deterministic solutions V and

as formulated in (3.14a) and the statement following (3.15). Then the
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general form of covariance is

2- fW K4 <dot. }(.3
(3.23)
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4. Statistical boundary conditions

This section consists of three parts. The first part formulates

a closed set of statistical boundary conditions for the spectral equa-

tions (3.10) on the basis that only V and i/ at 30 N are known

for a sufficiently long period of time. The second part describes how

the boundary statistics are actually computed. The third part gives a

physical interpretation of the results obtained in this way.

4.1 Formulation

For the moment let us assume that a long record of observations of

1V and at both 300N and 300S is available. We first expand each

of these functions into Fourier series of longitude, truncated at a cer-

tain wavenumber N

N

Ir. I J-(4.1)

(-kD~ n)+

=1,2; subscript + stands for

As shown'in (3.23), any second moment statistic in the model can be

uniquely determined if the statistical boundary conditions (s.b.c.) are

such that they enable (de =1 3> ,1423.4 =, 2, 3,4

to be evaluated. According to the definition of dot in (3.14a),

the required s.b.c. for the governing spectral equations (3.10) are
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2 =V } V=>/, 2 - They can be synthesized from

ac JC*and

since 4V is related to IC and- IC by

. By the Wiener-Khintchin theorem (3.16), the
JL L 4

s.b.c. for each wavenumber ?L can therefore be constructed from all the

independent spectra

These spectra can be obtained if , and thus + and

as defined in (4.1), is available. But as pointed out in

Section 2, only observations for '.f are available in detail suffi-

cient for the Fourier expansion (4.1). The simplest and perhaps the

most reasonable way to overcome this handicap is to assume that 'l

is statistically independent of 'if ,but is otherwise statistically

similar to the latter. This is just a working assumption.' The first

part of the assumption is not unreasonable because there is unlikely to

be significant correlation between the baroclinic activities at the mid-

latitudes of the two hemispheres, which after all are primarily respon-

sible for the flows near 30 N and 30 S. The second part of the assump-

tion is reasonable only to the extent that hemispheric symmetry is a

sufficiently good approximation. It cannot be rigorously justified,

since topological differences do exist between the two hemispheres.
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Much of the interhemispheric statistical difference presumably is ex-

pressed in seasonal fluctuations. Our detailed analysis, however, will

consider only periods between 3 days and about 3 months. Therefore the

assumption of symmetry is not as weak as it appears. For consistency

the basic state must also be symmetric, as has already been assumed.

An approach commonly used in deducing the response of a linear

fluid system to localized excitation is the so-called "radiation" argu-

ment, in which only those wave solutions are used which give energy

propagation away from the source to a sink at infinity. Our situation,

however, is more complicated - we cannot, for example, separate the

observations of V at Y into a source function plus the

effect of a transmitted northward energy-propagating wave from I = - .

The simple analogue to our model is more like a box of water contained

between walls at ±Y ,where two statistically similar but in-

dependent demons are oscillating the boundary walls.

Let us first consider the consequence of postulating statistically

independent forcings at . If two stationary random func-

tions, 160 and with zero mean are statistically independent,

their correlation function will be identically .zero:

400 b0

P4.2

(4.2)
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P is the

((tj I when

probability density for ml)v ,

joint probability density for

;t 't t

and

P (re)
is the

is the probability

density for t . By the ergodic assumption, we then have

Thus the assumption of statistically independent forcing at =2 is

formulated by

7f 'f X- 24(4.3)

By assuming that '1f is statistically similar to

<LT -Al) (x- <t6ct) -~

for all 4 and T for f = 1,2 and =1,2

With (4.1) this can be written as

T ornau tst assuming

Thus, the assumption of symmetric forcing amounts to assuming

(4.4)

W).

V - , we mean

= V -

( eo U-) Ofo (4-)
-t *1/) .

Va-) W(A-)

)+
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By the Wiener-Khintchin theorem, (4.3) and (4.4) can then be

written as

4k+

1( + 4+)

(4.5)

4+

ASdC

(t 4 All

( J(e

<,dStde.

for

<I.,AC

<4 ex-t 4 C- I *

"Z >+<6.4

<dS C>= <dS/O
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The statistical boundary conditions for (3.10) now reduce to

Kv 4V v
.&~ I-

> =0

together with the four real functions ,F and F

F = 1, /2>=

+- 2 +1

0 = v

L "C t-+

With the definition of in (3.14a), the z'4 bo(Z>

appearing in (3.23) can then be written as

I4dzI,
- <d/I2

14

' P

>

<4c4o(>=

<d4Ot3 d. ac>

(da4

2f+;F~2
(F' O

<4oa Aoa> ~4a (2 4{>

F.3

(4.6)

O=dvl

2 t+f2+ + i - / di.- ~zi-

(4.7)

K~44 =-0

fev* -9*

404, d * >8e;
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Finally the general form of any covariance can be written upon substitu-

tion from (4.7) as

(4.8)

it -

where

A A PA A1

z 4 , J4
#zw A A A 3A A + Z*A

Vy~3J

'1 4

H

H
,H3

= k

A

W

4 %

z
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4.2 Data analysis

The actual data used for computing the statistical boundary con-

ditions (4.6) is the streamfunction field analysed (// with the "balance'

equation" by the National Meteorological Center. [See Shuman, 1957.

The data is given in a stereographic grid system which covers the north-

ern hemisphere north of about 15 N, twice daily at 00 and 12 GMT. Data

for the period June 1963 through April 1965 for the 200-mb and 850-mb

levels was made available to the writer by the National Center for Atmo-

spheric Research.

A linear interpolation scheme was used to obtain the value of

0

at every 5 degrees of longitude along 30 N at each observation time.

These 72 values were then resolved into Fourier components in longitude.

In view of the relatively sparse network over the major oceans, the

Fourier series was truncated after wavenumber 12. is non-dimension-

alized as (2, ,so that the dimensionless meridional

velocity is r (Pi . These Fourier coefficients for

are readily related to those for ':

X t YL)C" ?Y - fin(4.9)

St J# i-*~

Each of the time series T and was next modified- by having

its time mean value removed. From now on, and refer

tt

to these zero time mean series.
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There are four basic considerations in making spectral estimates

from discrete time series - aliasing, spectral smoothing, resolution,

and reliability requirements. The overriding objective in the actual

spectral analysis in this study was to make a simple analysis that can

adequately avoid the difficulties associated with each of the four con-

siderations. A brief discussion is now given for each of them separately.

Resolution and reliability requirements

Because of the nature of our stream function data, we shall only

examine the spectra in the frequency range cycles per 12 hrs,

corresponding to a minimum period of 3 days. On the other hand we want

a fairly large number of frequency bands within this range so that we can

examine the variation of the response spectra. For a record length of 1351

data points 12 hours apart, these two requirements can be met only at the

price of having a minimum tolerable reliability. We therefore chose a

maximum lag equal to 1/10 of the record length. A rough guess of the re-

liability of the spectral estimate is Blackman and Tukey, 1958)

variance spectrum estimate maximum lag 1

average spectrum estimate record length

In other words, the standard deviation of each estimate is about one third

of its average value. If we assume the noise in the record as Gaussian, we

may arrive at a more detailed estimate of the spectral variability in terms

of the Chi-square distribution with 20 equivalent degrees of freedom. But

the rough estimate given above is sufficient for error estimation. With our
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choice of maximum lag, the spectral estimates are then calculated every

(270)~ cycles per 12 hours and the resolution of the spectra is (135)~1

cycles per 12 hours.

Spectral smoothing

This is a necessary procedure because it can be shown that the

variability of a periodogram (raw estimate) does not decrease with in-

creased record length. In general, the Hanning lag window is quite

sufficient for smoothing, and was therefore used. But one additional

caution must be made for this data because its spectra must have a strong

component or line at the annual period. The smoothing procedure would

diffuse some of the energy of this peak to higher frequencies. To over-

come this a high-pass prefiltering was used. (The filter is described

in Appendix C).

Aliasing

This is not a significant problem here for two reasons. First

the high frequency components must be fairly weak in the streamfunction

data since the NMC analysis has already incorporated some spatial smooth-

ing and considerations of time continuity. Secondly the highest frequency

of the spectra that we are interested in is equal to 1/6 which is three

times smaller than the folding frequency, 7 = 1/2 cycles per 12 hours.
C

Nevertheless the filter that was used (Appendix C) was designed to filter

out all components of periods less than 1} days as well as periods longer

than 6 months.
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Analysis

A direct method was used to obtain periodograms from the prefiltered

time series. This method is based upon the fact that the spectrum of a

time series may be expressed directly in terms of the series itself instead

of via its correlation function (ref. Blackman and Tukey, 1958, pp 87-88)

and it can be generalized for the cross spectrum of two time series.

It is generally recommended in text books (Bendat and Piersol, 1966) that

the periodogram should be only calculated at %t discrete frequencies

Scr 
-

lo

where t = maximum lag number,

= 1, ... . , .

L_ = record length = 10 11,

Then according to the direct method, the raw estimate of the cross spec-

trum of two time series (-t) and (t) is given by

(4.10)+(4 --; S )(a +

where A

coefficients of

cosine and sine

and '>

and

coefficients

are the (5k) Fourier cosine and sine

and are the (5k) th Fourier

Of.

A Hanning lag window is now used to smooth the i obtained by

(4.10), and the results of hanning is
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A S)11
A &-)

(4.11)

Finally in order to compensate for the attenuation introduced by the pre-

filtering, the spectrum obtained by (4.11) is divided by the attenuation

factor to give the final spectra. These spectra are then used to compute

the statistical boundary conditions , , , in (4.6).

4.3 Results and interpretation

A complete listing of the four statistical boundary conditions for

the frequency range JTI 4 cycles per 12 hours for each of the 12

wavenumbers is given in Appendix D. A simple interpretation for F ,

F F and F is now given in terms of the amplitudes and the

relative phase of the wave motions at 200-mb and 850-mb levels.

(4.12)

It

i2t

I-.t"

c-(~( i2

71X - 1-1



-44-

Since 4C (-c) ,- we

then can rewrite (4.12) as

C,. 4(4.13)

The first integrand in (4.13) represents an eastward traveling wave with

an amplitude equal to whereas the second

integrand represents a westward traveling wave with an amplitude equal

..

to 4d-d. Since, for 1=1 and 2,

= </4c;-.sds~/2~> and

f-. (>-) , the first

two statistical boundary conditions F and for each wavenumber 74,

when evaluated at positive (negative) frequency can be interpreted as the

square of the amplitude of a westward (eastward) traveling wave at levels

1 and 2. These spectra at L = 2, 4, 5, 7 and 11 are plotted in Figs. 2

and 3, which show that there is much more energy associated with the wave

motions in the 200-mb level than in 850-mb. Most of the energy in F

as well as in F belong to the intermediate wavenumbers 5, 6, 7 and 8.

Furthermore, the spectra for low wavenumbers 1 to 4 have larger magnitude

at positive frequency than at negative frequency, and the opposite is

true for the higher wavenumber spectra. In other words, the waves of

0
low zonal wavenuinbers at 30 N are moving relatively more westward than
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those of high wavenumbers. This is a well-known characteristic of the

Rossby waves.

and can be interpreted as a measure of the relative

phase between an upper level wave and a similar wave at lower -level.

This is perhaps best illustrated with a simple example. Consider two

westward moving waves of different amplitude and phase but identical

frequency O and wave number TIL

V4 A- CA-, (-sjc

+

- -V

LMco-a h Y. + Ampt Az*-

where

Then by using the definitions in (4.6), we obtain

F At

F <1V. VX> A

V = A , oe(Ox + (r;t + X'
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Thus 3 is a measure of the relative phase of the two waves,

whereas and are their squared amplitudes. It should be

noted that the absolute phase of each wave has no effect on F ,F

F and This should be so because our statistical forcings

should not depend on the information about the absolute phase of
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5. Determination of the fundamental solutions

We now return to the problem of determining the four pairs of

fundamental solutions which are to satisfy the same differential equa-

tions, (3.10), but have the four different sets of boundary conditions.

summarized in Table 3. The differential operators L. in (3.10)

have variable coefficients and have no simple relationships among them-

selves. It is virtually impossible to obtain the fundamental solutions

in analytic form. We shall therefore solve them numerically. But in

order to establish a complete picture of the fundamental solutions, we

must numerically integrate (3.10) for a sufficiently dense combination

of wavenumbers and frequencies. Otherwise certain combinations of 'V.

and ' which give strong response might be overlooked. It is there-

fore a very practical matter that we require at least some broad notions

about how the fundamental solutions vary in the wavenumber-frequency-

domain. We might gain such information if we could find a special case

in which analytic solutions for (3.10) can be obtained. Not only could

they serve as a guide for making an adequate and efficient.scanning over

the frequency scale, but also would shed considerable light on some in-

trinsic characteristics of the system. Fortunately there exists such a

special case. The discussion in this section therefore consists of two

parts. The first part is the analysis for this special case, which

reveals the conditions under which resonance could occur. The second

part describes the numerical scheme used to solve for the fundamental

solutions in the general case.
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5.1 Special case

Upon close examination of the four differential operators,

we find that they reduce to remarkably simple forms when all the dissi-

pative coefficients and the basic shear vanish. Hence the special case

under consideration is a two-layer non-dissipative model with a baro-

tropic basic state. When e 0 and A o , we find

3 J

(5.1)

I . 2.
ACL +A

The symmetry among the operators

coupled equations in (3.10) into

now enables us to combine the two

two uncoupled equations:

(5.2)

(5.3)

In this special case Vand can clearly be

identified as the barotropic and the baroclinic components respectively.

Knowing the separate boundary conditions of and V

as summarized in Table 3, we can readily obtain them for 4 + V 1  ,
I 2.

which are given in Table 4.

L = -L

OL %
A A

+

(4- 
+

IE A

=



-50-

Table 4.

Barotropic component

The barotropic component is governed by (5.2) which has sinusoidal

solutions as follows.

.A i A ,
V- +

I a 2

A4' A'
V+

c.~W

eV '*K7L (5.4)

The barotropic component therefore becomes infinite whenever

(C~~~)t~) I

+ I * .
(5.5)

)--)

In terms of dimensional parameters, (5.5) is equivalent to

2 .

"ht7r +

* IaV

=314

(5.6)

resonahce
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These frequencies can therefore be called resonant frequencies associated

with the barotropic mode. They correspond to barotropic Rossby waves in

a channel Y . For each wavenumber -7. there are an infinite

number of barotropic resonant frequencies, and T is a mono-Yeo ce

tonically decreasing function of . The upper and lower bounds

are 'Q (=i ±i) and T (M= .±e**) respectively. The distribution of

these barotropic resonant modes is shown by the dashed curves in Fig. 4.

Baroclinic component

The baroclinic component is governed by (5.3). Its solutions are

known to be parabolic cylinder functions. Let us first transform (5.3)

into a standard form by using a new independent variable defined

4

by

d2 +(5.8)

where P 2. 4 (5.8a)

,4 + '

The two independent solutions of (5.8) are well-known and can be given

in terms of confluent hypergeometric function F

The even solution is:

-The odd solution is: (5,9)

3
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When the boundary conditions are incorporated, we obtain

Al Al

1 2

A3  A 3
VI.-V2

A A

V V

Hence the baroclinic component also

or

Since + and ~ . are p~

x.m (~;P) (5.10)

77V( ~P)

becomes infinite whenever

ositive quantities, this is equi-

valent to either of the two conditions

F (r +y , .) = o
(5.11)

_ .06
2-

It should be noted that J* only depends on the static stability and

the latitude of the northern boundary, whereas P as shown in (5.8a)

is a cubic function of frequency. Hence the problem of determining the

baroclinic resonant frequencies for each wavenumber consists of two

parts. We must first determine all values of P that satisfy (5.11).

Having done that we then solve for the three roots of a' associated

with each of those values of P . There is however no established

procedure whereby one can determine all values of a parameter which makes

r+ L
4)
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a confluent hypergeometric function zero when the other parameter and

the variable are held fixed. Nor is there any existing mathematical

table of confluent hypergeometric function that covers the relevant

range of the parameters in this study. Fortunately it is possible to

devise a simple graphical method to determine the values of [7 with

a sufficient accuracy. This method is based upon two general properties

of confluent hypergeometric function in regards to its zeros, and also

upon the relation between it and the error function. The rationale

behind this graphical method is given in Appendix B. The resulting

baroclinic resonant frequencies are shown in Fig. 4 by the solid curves.

One distinct feature of Fig. 4 is that the resonant modes in this

special case fall into three groups. Only one grcup of them is bounded

within an upper and a lower bound, and are characterized by their small

frequency. They include all the barotropic modes and one third of the

baroclinic modes. These are barotropic and baroclinic Rossby waves

moving slowly westward with raspect to the basic current. The other two

groups of resonant modes are characterized by large positive and negative

frequency. These are internal gravity-inertia waves which can travel

both eastward and westward at relatively high speed.

5.2 General case

We now consider the problem of getting the fundamental solutions

when the friction and cooling coefficients, and the basic shear are in-

corporated. As noted before we must resort to a numerical method to

solve the governing equations (3.10). Several attempts using different
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direct transformations of (3.10) into a finite-difference form gave poor

results; the numerical solutions for V and the associated solutions

Aj Ai
for ( and via (3.11) so obtained invariably did not match-

the prescribed boundary conditions in a reasonably smooth manner. Further-

more, when they were used to compute those second moment statistics repre-

senting energy conversions, large discrepancies in the total energy balance

existed at several grid points near 7 .

A more fundamental numerical scheme was therefore used. The unre-

duced spectral equations (3.8) were first written into a self-consistent

centered-difference form. These six first-order difference equations

were then reduced to two coupled second-order equations in exactly the

same way as the differential equations (3.8) were reduced to (3.10).

These two difference equations governing and together

with the boundary conditions constitute a system of simultaneous non-

homogeneous linear algebraic equations for V; at the points of

the finite-difference grid. This system was solved with the "Gauss elim-

ination" method. This approach gave good results.

Fifty-one grid points, A = 1,2,..., 51, were used to cover the

latitude zone from equator to 30 N. The variables and

are defined at the same grid points, whereas are defined at points

midway between the points for the former. For clarity we omit temporarily

the symbol A for the dependent variables as well as the superscript .

which distinguishes the four different sets of fundamental solutions, and

instead use a new superscript k to denote the grid points. (The differ-

ence equations for the four sets of fundamental solutions are identical;
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it is only the four sets of boundary values in Table 5 which distinguish

them.) The finite difference notation is then

4 = (-I 4 (-1) 1*4

=v ciLt

Uk P -U, P a2-t -

The centered difference form of (3.9) is as follows.

;A) 2

A I;

I i 'j J/U 0U')+(4
I ~(p-P

-AU + (,d- 2nA-ia)L U tc.k v'+t(V. + )m-.

S 
A

(5.12)

kei
-. 4I (p- 2-)

We then perform the steps equivalent to those in Appendix A to eliminate

( and from (5.12). The resulting second-order difference

equations are the counterpart of (3.10) and apply at '. = 1 to 50.

A V 2 . )$ (t i t o . ,
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1k' *At 1 ~b IV

k 14- v

1~.
are functions of

and

The boundary conditions giving V at j = 0

pond to those in Table 4 and are stated in Table 5.

1 2 3 4

0.5 0 0.5 0

VsI

,0 0.5 0 0.5

Table 5.

(5,13) together with the boundary values in Table 5 can be put

into a vector form

2A.I

A.V (5.14)

even solutions

lt = 2 ) odd solutions

-1 At V3A-

(oA

(5.13)

,4 , .A

and ' = &/l corres-

4
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is a 100 x 100 matrix whose elements consist of -

V *is a 100 x 2 matrix containing even (odd) fundamental solutions

V v4- is a 100 x 2 matrix containing the even (odd) bound-

ary conditions. Such a system can be easily solved with the Gauss elim-

ination method; the subroutine "GELB" at the MIT Computation Center was

used.

Finally we come to the problem of scanning through the frequency

scale from T = - j to GT = +i cycles/12hr. for each wavenumber.

The wave number range is L = 1 to 12. In order to do so efficiently

we make use of Fig. 4 as a guide. A very small frequency interval,

(2700)_~ cycles/12hrs-, was used in the neighborhood of the resonant

frequencies of the special case, and a larger frequency interval (as

large as (14)~1 cycles/12 hr) was used elsewhere. The small frequency

interval is 1/20 of the frequency resolution in the input spectra. It

should be noted that the resonant frequencies in the special case treated

earlier have an accumulation point at q = --1AZ = --n -(.00322) as

the north-south wavenumber increases in the Rossby modes. The small

frequency interval = (2700) was small enough to show conclusively

that this fine structure was smeared out in the general case by friction

and baroclinicity. For purpose of comparison, the fundamental solutions

were also computed numerically for the special case for wavenumber ?t = 4

by simply setting oc , , r and A. equal to zero in the compu-

tation of and in (5.13).



-59-

Properties of the general fundamental solutions

In view of the complicated dependence of the response functions of

second moment statistics upon the fundamental solutions (see (3.21)] ,

little would be gained from a close examination of the detailed structure

of each of the . Therefore only one broad aspect of them will
t 

A 
be discussed, namely the latitudinal sum of .These

quantities give a crude indication of the intensity of the integrated

response of the "quasi-barotropic" and "quasi-baroclinic" components as

a function of wavenumber and frequency.

We compare, for *V = 4, the numerical results for integrated

response with the barotropic and baroclinic resonant frequencies obtained

analytically for the special case. The even and odd "quasi-barotropic"

integrated response components, V+V4 , are shown separately

in two plots in Fig. 5. The solid curves are for the special case and

the broken curves are for the general case. The short vertical arrows

along the frequency axes locate the resonant barotropic frequencies at

= 4 determined analytically for the special case. Figure 6 does like-

wise for the "quasi-baroclinic" components -

The numerical results in the special case are identical for

= 1,2 and for = 3,4 as in agreement with the analytic solutions

(5.4) and (5.10). Only one set of solid curves is therefore necessary

on each of the four diagrams in Figs. 6 and $.

We first note that the theoretically deduced arrows agree well

with the location of the corresponding numerically computed peaks of
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the solid curves on both Figs. 5 and 6. All solid peaks shown corres-

pond to Rossby waves, except for'the peak at '= ,2tj in Fig. 6. This

represents internal gravity wave of smallest positive G' at this wave-

number. The theoretical Rossby wave accumulation point at T = -4 A. =

-0.0129 also checks. The quantitative agreements just described provide

a welcome verification of the numerical method. (The behavior with

in the special case of the numerical values also agree well with the

theoretical barotropic solutions.)

The broken curves have only three broad but well resolved peaks

associated with the Rossby waves, and one peak associated with the said

internal gravity wave. Damping due to dissipation is clearly dominant

for those Rossby waves of high north-south wavenumbers located at very

low frequencies. It is noted that the Rossby-wave peaks are shifted to

smaller frequencies relative to their counterparts in the special case.

Furthermore while the barotropic and baroclinic peaks of the latter are

located at different frequencies, those broken peaks of the "quasi-baro-

tropic" and "quasi-baroclinic" coincide. This indicates that the basic

shear and the dissipative processes cause the previously separated baro-

tropic and baroclinic components to interact with one another. As a

result the sum and difference of the velocities at the upper and lower

levels no longer represent the actual barotropic and baroclinic compo-

nents. The internal gravity wave peak in Fig. 6 has no corresponding

barotropic peak and the interaction should therefore be weak.. This may

account for the fact that there is hardly any shift of the broken peak

relative to the solid peak and that some new secondary maximum peaks
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appear in Fig. 5 near that frequency.

Finally it is of interest to examine how the fundamental solutions

vary in the wavenumber-frequency space. As an example, we show one even

solution of the "quasi-baroclinic" component, A / A, in

Fig. 7. The maximum has the same general pattern as the distribution of

the resonant modes shown in Fig. 4. The most striking feature however

is the location of maximum response around M. = 3 at frequencies cor-

responding to the lowest latitudinal wave nnmber of the Rossby waves and

internal gravity waves. Even a small boundary forcing at such values of

*L and T could then excite considerable response.
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6. The predicted statistics of the model

With the statistical boundary conditions obtained in Section 4

and the fundamental solutions in Section 5, we now can compute any

variance or covariance by (4.8 ). Each of these statistics is either

an even or an odd function of latitude , because the basic state

and the boundary forcings in the model are both symmetric with respect

to the equator. As shown in (3.23) each statistic is equal to an inte-

gral over frequency 0 and a sum over wavenumber V. of a quantity,

say X , which depends on it , , , the boundary spectra

and the basic state parameters. The decision has already been made to

consider only ?t = 1 to 12. The elementary frequency interval S

used in the boundary spectra is (270) cycles per 12 hours and the

resolution is2 . The frequency range we shall consider is

corresponding to a minimum period of 3 days. This

limitation on Cr is imposed by the nature of the boundary data, since

this consisted of streamfunction analyses which are essentially based

on the quasi-geostrophic theory.

The model statistics will generally be presented simply as func-

tions of * However in several cases the dependence of the integrand-

summand "X" on IK and T' will also be displ-ayed. The integration

over 4' was performed by a trapezoidal sum, in which the frequency

interval employed was small enough (generally equal to S , in fact)

to adequately sample the detailed behaviour with g of the fundamental

solutions and of the boundary spectra. The contribution from those
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individual frequency intervals were then combined into 15 frequency bands

of width 1/90 = 3 g covering the range T= 0 to 1/6. These bands are

centered at T' = 1/180, 3/180,..., 29/180 cycles per 12 hours. They

are wide enough to insure meaningful spectral resolution and yet narrow

enough to show the distinct frequency dependence of the statistics.

-6.1 Horizontal velocity statistics

Fig. 8 shows the square root of , ) and as a

function of latitude, as well as the observed values at 4 latitudes for

the pressure levels 250 and 850 mbs. The latter were recently obtained

from 5 years of data by Mr. John Kidson of the Planetary Circulations

Project at Massachusetts Institute of Technology. The theoretical values

predict too large and too small in the equatorial

region. A larger value of the friction coefficient might reduce

this discrepancy. A more fundamental reason may be related to our choice

of uniform zonal winds -, and . The observed zonal wind shown

in Table 2 is actually more easterly at low latitudes than the values

used in the model. The analysis of Eliassen and Palm (1960) indicates

that the southward wave energy flux in planetary waves is easier to pro-

pagate across a westerly current than an easterly current. Thus much

of the excess <14'> at the equator in Fig. 8 might be reduced by

incorporating a realistic latitudinal shear in 4L . This point will

be returned to in the summarizing Section 7.

Fig. 9 shows the same plot for the square root of (4L >

Unfortunately, observational data for comparison is missing. The theo-
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retical values of 40 are greater than 1'> at both levels

throughout the model tropics. The values of appear to be

somewhat too large, but are not unreasonable except near 300N. This

locally large <A(l may also be related to the use of uniform

for the reason cited above. However by evidently overpredicting to some

extent the upper level velocity variance, the model computation demon-

strates that lateral coupling can easily account for much of the observed

eddy kinetic energy in low latitudes.

The theoretical results in Figs. 8 and 9 also predict one other

property of the asymmetrical motions. It is noted that both A4L >

and decrease monotonically with latitude. decreases

sharply from about (30 m sec )2 at 30ON to about (15 m sec~ ) at 20 N,

and then remains essentially constant to the equator. On the other hand,

Z., decreases only from about (10 m sec~ ) to about (9 m sec1 )2

0
at the equator, with a weak undulation near 20 N. These features suggest

that the variability of the two horizontal wind components at the lower

level decrease with latitude in about the same way, whereas that of (4

is quite different from that of gL. The former decreases by only

about 20%, and the latter by a factor of 4. In other words, the decrease

with latitude of eddy kinetic energy at the upper level in the model is

largely due to the decrease of 46 .

The extent of vertical coupling between the flows at the upper

and lower levels may be measured statistically in terms of the correla-

tion coefficient between and , and between and I!
t/
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and AV are shown in Fig. 10. They are generally small, less

than 0.4, specially in the equatorial region of the model. This is

quite consistent with the observations analysed by H. Riehl, which

Charney cites in his 1963 paper as supporting his scale analysis result.

A different aspect of the velocity variances can be examined from

a plot showing the contribution to their latitudinal sum from each wave-

number #TL and frequency band. This measure will indicate which are

the dominant modes of the flow averaged over the region. Such statistics

are shown in Figs. 11 and 12 for <LG) and <A 4 respectively.

(The corresponding plots for nd and are not presented

because their small magnitudes relative to t/ and (A4>

respectively make any physical interpretation of detailed structure

rather irrelevant.) Fig. 11 shows that most of the areal-integrated

variance of > is associated with wavenumbers 4 to 8 and in the

frequency bands corresponding to period of 10 to 40 days. This predic-

tion cannot be compared with the real tropical atmosphere because of

lack of data. However it does not appear to be contradicted by any

studies known to the writer. In Fig. 12 we also find overwhelming

dominance by the low frequency modes, although it should be noted that

the low wavenumbers in these low frequency bands are as significant as

the intermediate wavenumbers which are dominant in Fig. 11. This differ-
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ence in L dependence already suggests the horizontal non-divergent

character of the flow, since if is proportional to it in non-divergent

motion.

An additional feature in Fig. 11 which calls for consideration,

is the narrow ridge extending towards the high frequency (around periods

of 5 days) and low wavenumber region. There is no counterpart of this

feature in Fig. 12. Yanai and Maruyama (1966) found rather regular

short period oscillations of wind direction between 2400 and 3000 in the

atmospheric-layer between 18.3 km and 21.3 km over the central equatorial

Pacific during March-July 1958. From vertical time section analyses

they found that the observed wind oscillation is an indication of large-

scale waves of period about 5 days propagating westward at a speed about

23 m sec 1, and hence of wavelength about 10,000 km. The ridge in

Fig. 11 mentioned above is also associated with disturbances of this

wavelength and period. Although there is no stratospheric region as

such in our model, its upper level might reflect some of the lower stra-

tospheric features of the real atmosphere. It is therefore of special

interest to determine the extent to which the motions associated with

the ridge in Fig. 11 are concentrated over the equatorial region. We

can readily do so by examining the ratio Z = ( ( Vj' at equator)/

(latitudinal average of (ia ), on a wavenumber-frequency-band

plot. The values of shown in Fig. 13 reach a maximum of about 2.2

at I- = 3 and 7 = 1/9 cycles per 12 hours.

To show the actual latitudinal dependence of these motions,
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for ot = 5 and <- = 19/180 is plotted in Fig. 14. We see

that this quantity drops by a factor of almost 5 from equator to 200N.

The latest report by Maruyama (1967) indicates that the observed waves

are generally confined equatorward of 20 N. Furthermore the ridge in

Fig. 11 evidently arises from the large values in the fundamental solu-

tions (see Figs. 5 and 6) at those positive frequencies which are in the

neighorhood of the internal and external Rossby waves of smallest lat-

itudinal wavenumber which can be defined in a barotropic current. We

may therefore conclude that the theoretical disturbances also have a

westward propagation. In view of all these theoretical features, the

dominant modes found at the equator of our model tropics appear to be

the counterpart of the real phenomena reported by Yanai and Maruyama.

If that is true, our computation suggests that such waves must occur

quite often or else they would not contribute a sizeable variance.

Furthermore since such waves in the model derive their energy from

lateral forcing, their counterparts in the atmosphere may also be

maintained in a similar manner.

Finally it is of some interest to examine the latitudinal depend-

ence of two more detailed properties of . Table 6 (i) shows

at 4 latitudes (0, 10, 20 and 30 N) how the total contribution from 12

wavenumbers varies with frequency. Table 6(ii) shows at 4 latitudes

how the total contribution from 15 frequency bands varies with wave-

number. As far as the frequency dependence is concerned, <t> in

the northern half of the model tropics has a maximum at period about

30 days and decreases monotonically with increasing frequency; whereas
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(180) 00N 10 0N 20 N 30 N
cycles per 12 hrs

1 19.4 6.8 22.0 8.0

3 18.6 20.2 28.8 15.1

5 8.3 27.0 26.1 12.9

7 6.5 22.6 22.5 9.5

9 3.1 4.9 5.9 7.6

11 4.4 3.8 2.7 6.1

13 1.7 1.4 1.1 4.0

15 3.4 2.6 1.2 4.0

17 .8 .6 .3 3.2
19 2.3 1.7 .6 3.0

21 1.9 1.3 .4 3.0

23 3.0 2.1 .6 2.9

25 2.8 2.0 .6 1.8
27 .5 .4 .2 1.8
29 .3 .2 .1 1.8

Zonal

Wavenumber
00N 10 N

0
20 N

0
30 N

1- t I 'I

.6

1.8

7.8

10.2

8.0

14.0

11.3

13.1

5.8

2.0

1.9

.7

.8

3.2

8.9

12.2

16.0

18.1

19.2

8.0

5.1

3.3

2.0

.6

.5

3.0

7.1

16.4

16.1

19.1

21.6

14.6

7.0

3.9

2.9

1.0

.4

1.8

3.7

6.0

9.8

16.6

14.5

10.6

9.3

5.5

4.2

2.4

4 4

Table 6. (i) summed over

at each frequency band

cycles per 12 hrs.

12 wavenumbers

of width 1/90

(ii) summed over 15 frequency

bands for each wavenumber.

(i)

(ii)
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in the southern half of the model tropics it has a secondary maximum at

periods about 5 days. The high frequency contributions to can

be identified with the large-scale waves discussed previously in compar-

ison with Yanai and Maruyama's observation. As far as the wavenumber

dependence is concerned, /V- at 30 N is mainly associated with

wavenumbers from 5 to 9, whereas at lower latitudes it has significant

contribution from more wavenumbers, particularly from the lower ones.

Each of the corresponding results for *4tL does not qualitatively

change with latitude and is therefore not presented. Most of the con-

tributions to <4s4> are associated with periods from 2 weeks to 40

days and with wavenumbers from 2 to 7. Observational values for these

aspects of the statistics are missing, and no comparison can thus be

made. However it should not be difficult to collect sufficient data

for computing such statistics. In order to check the frequency depend-

ence, we only need sufficiently long records of wind data at several

stations located at or near the 3 internal latitudes. For checking the

wavenumber dependence, on the other hand, we need good data coverage in

longitude along those latitudes.

6.2 Variance of W0 and temperature at the 500-'mb level

Fig. 15 shows the theoretical value of the square root of 4C)4'>

at the 500-mb level of the model as a function of latitude. It drops

from about 7 x 10~4 mb sec 1 at 30 N to about 2 x 10~4 mb sec1 at 200N

and then decreases gradually to 1 x 10~4 mb sec~1 at the equator. This

variation corresponds to a root mean square value of horizontal divergence
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-6 -6 -6 -1
at either level of 1.4 x 10 , 0.4 x 10 , and 0.2 x 10 sec . The

value at 30 N in the model is reasonable compared to the typical value

in middle latitudes. Unfortunately there is no observed value for the

tropical region. However the theoretical prediction of a decrease of

horizontal divergence by a factor of 5 from subtropics to the tropics

is again consistent with Charney's (1963) scale argument. The decrease

of the Coriolis parameter requires smaller horizontal pressure and tem-

perature gradients, and the approximately constant static stability is

consistant with this only if W0 decreases.

A small 4eo%> implies a small lr> in the absence of

local heating. Fig. 16 shows the latter as a function of latitude,

together with the observed values collected by Peixoto (1960). The

theoretical result does show a substantial decrease with latitude, and

is therefore compatible with the result for 4 6tm.> mentioned above.

The agreement between the observed value of e-T2.> and the theoretical

values is very good, and thus leads one to believe that the theoretical

value of CQ% should also be reasonably realistic. Since the var-

iance of temperature is proportional to the eddy available potential

energy, the theoretical result in Fig. 15 can then be interpreted as a

decrease of eddy available potential energy with lhtitude in the model

tropics. We may therefore expect only small energy conversions between

the eddy available potential energy and the kinetic energy.
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6.3 Cross-latitude eddy fluxes of sensible heat, wave energy, and

momentum

Fig. 17 shows ( where R is the gas

constant for dry air, as a function of latitude. This is the eddy con-

tribution to <VT> -at 500 mb, in virtue of the hydrostatic approx-

imation. The theoretical value is negative everywhere except near the

0 -l1
northern boundary, with a maximum magnitude of about 0.7 K m sec at

20 N. The observed values obtained by Kidson at M.I.T. and Peixoto (1960)

are shown by circles and crosses respectively. The agreement between the

theoretical and observed values is surprisingly good in view of the fact

that this quantity has 'a very small magnitude. A negative value of

'vT> ameans an equatorward flux of sensible heat by eddies which

in turn represents a countergradient heat flux since the basic temperature

gradient is poleward. Such a feature has also been reproduced in the

numerical experiment by Smagorinsky, Manabe and Holloway (1965). It should

be noted that a countergradient heat flux represents a rather severe con-

straint upon the-energetics of the asymmetric motions in the model. This

stems from the fact that it means a net conversion from eddy available

potential energy to zonal available potential energy. Since radiation

cooling is parameterized to destroy eddy available potential energy, it

follows that the latter must be maintained by a net conversion from eddy

kinetic energy. The latter in turn has to be replenished either by con-

version from zonal kinetic energy or by an inflow of wave energy into the

model tropics. All these aspects will be discussed in more detail later.



A J. KIDSON

X J. PEIXOTO

VT>N500mb

I I I

21.0

-8 &
17.5 14.0 10.5 7.0 3.5

LATITUDE DEGREES

Fig. 17. Poleward eddy sensible heat flux per unit mass at 500-mb level,

and observed values. /7*>

(M.i.T.)

(1960)

.8

.4

0

E

0

-.4

-<. 8

-1.2

31.5 28.0 24.5



-85-

Fig. 18 shows 1, 4 and (($ as functions of latitude.

These represent the poleward cross-latitude wave energy flux per unit

mass in the model tropics at the 250-mb and 750-mb levels. The theoret-

ical results are negative for both levels, increasing monotonically toward

zero at the equator. The magnitude of <1igg( > is much larger than

that of <144> * Such results imply a net equatorward flow of wave

0

energy across the boundaries at + 30 , primarily at the upper level.

Thus the pressure work done on the model tropics by the lateral forcing

0
at the two levels is equal to twice the value at 30 N, i.e. about 1600

3 -3
m sec . There are no observed values to compare with this, although

it is not at all unreasonable that this flux should be equatorward. Its

magnitude in the model may be somewhat too large, since *./, > has

been overpredicted. For the reason given in Section 6.1 we may expect

some changes in this flux if a realistic lateral shear is added to the

present basic current.

Fig. 19 shows the Reynolds stress terms <4C'U and t4,7

as functions of latitude. They are proportional to the poleward momentum

flux by eddies at the 250- and 750-mb levels. They are positive at both

levels, with <4t,/ much larger than A4 V> except in the

equatorial region where both decrease toward zero. The observed values

obtained by Kidson at M.I.T. and Starr and White (1952, 1954) are also

shown in Fig. 19. It is seen that while the theoretical result for

agrees quite well with the observed value, that for

is generally three times larger than the observed value.

The exceptionally large value near 300N is probably associated with the



21.0
.: 6

175 14.0 10.5

LATITUDE DEGREES

Fig. 18. Poleward wave energy flux per unit mass at 250-mb and 750-mb

levels. 'gv VC.> < , ,

40

1-240

C.)

-520

J-800
0

31.5 28.0 24.5 7.0 3,5

- - - I IS I I --- ey,-% --- I-----



o 0 J. KIDSON (M.I.T.)

A A STARR a WHITE (1952,1954)

<U, V1>

<U 2 v 2

Fig. 19. Poleward momentum flux per unit mass at 250-mb and 750-mb

levels. < , z

i050

125

100

75

50

25

31.5 28.0 24.5 21.0 17.5 14.0 10.5 7.0 3.5
e LATITUDE DEGREES



-88-

large value of in Fig. 9.

The general picture of equatorward wave energy flux, equatorward

sensible heat flux and poleward momentum flux which has emerged from

these calculations is consistent with the relation among these fluxes

in stationary (o 0) wave patterns which was deduced by Eliassen and

Palm [1960; see their equation (10.5) , especially when the larger ampli-

tudes in layer 1 of the model, with its positive A4. , are considered.

6.4 Energetics of the asymmetric motions in the model tropics

The energetics of the disturbances are expressed mathematically

by two equations, one describing the rate of change of eddy kinetic

energy and the other the rate of change of eddy available -potential

energy. They are derived from (3.5) and are as follows:

+__ 4 -% (~J(6.1)

(62= +

zrA (6.2)
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where

The ensemble (and x-) average of these equations does not have the terms

containing the time derivative and X -derivative:

2 6 4 (6.4)

Equations (6.3) and (6.4) have simple physical interpretation. The first

two terms in (6.3) represent the net conversion from zonal kinetic energy

and eddy available kinetic energy to eddy kinetic energy. The third term

is the convergence of the wave energy flux, sometimes known as pressure

work. The last term is the frictional dissipation. The first two terms

of (6.4) represent the net conversion from the zonal available potential

energy and eddy kinetic energy to eddy available potential energy. The

third term Is simply the destruction due to radiation. [A basic current
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varying with would introduce terms of the form -4r>V7

The numerical values of the four terms in (6.3) for our model

tropics are shown in Fig. 20. The results indicate that the only supply

of eddy kinetic energy in the model tropics is the pressure work, in

other words through the equatorward flux of wave energy from the lateral

boundaries. The other three terms are negative and hence represent sinks

of eddy kinetic energy. The largest sink is the frictional dissipation.

The conversion of eddy kinetic to eddy available potential energy is sub-

stantial between 130 and 250N,- whereas the conversion of eddy kinetic to

zonal kinetic energy is very small everywhere. Hence the asymmetric dis-

turbances in the model tropic have no internal source of eddy kinetic

energy. The inflow of wave energy is more than enough to compensate for

the frictional dissipation, with most of the residue converted to eddy

available potential energy.

The numerical values of the three processes that constitute the

eddy available potential energy balance are shown in Fig. 21. Here we

find that its only positive source is the conversion from eddy kinetic

energy. There is a small loss due to radiation and a larger loss from

conversion to zonal available potential energy. The latter has a maximum

0

at about 20 N. This is a necessary consequence of the equatorward eddy

sensible heat flux found in subsection 6.3. This effect is sometimes.

dramatically referred to as a "refrigeration process," in the sense that

the warmer part of the atmosphere is being warmed up by the advection

of enthalpy by the motions. However the values in Figs. 20 and 21 show
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that the amount of energy involved is small and that the refrigeration

process is an inefficient one. As far as the asymmetric motions in the

model tropic are concerned, their energetics may be summarized schematic-

ally in Fig. 22. This is an incomplete description of the energetics of

Figure 22. Energetics of the model tropic

the model tropics because it does not include the energetics of the

zonally averaged circulation. But this is all the information that one

can deduce from this model as it stands.

Now let us compare the theoretical results described above with

the corresponding results obtained in other studies. Analysis of the

energetics of tropical motions is sketchy; the handicap arising from

the scattered data and the usual inability to determine the vertical
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velocity reliably. If we want to check our theoretical results, we may

however compare these with the computer-generated climatological data

based upon a presumably realistic general circulation model. The obvious

difficulty is that small-scale processes and condensation processes are

only crudely incorporated in the existing models. Thus a comparison

between the results from two crude models may not mean very much. The

most sophisticated general circulation model thus far is the one designed

by the Geophysical Fluid Dynamics Laboratory group under the direction

of J. Smagorinsky in Washington, D.C. In the paper by Manabe and

Smagorinsky (1967), the energetics for low latitudes in a dry and a wet

numerical model are presented. They found that the results in the two

cases were quite different. For example, while the conversion between

eddy kinetic energy and eddy available potential energy is very small in

the dry model, there is a strong conversion from the latter to the former

in the wet model. But they also found in the wet model an unrealistically

large conversion from zonal kinetic energy to eddy kinetic energy. They

nevertheless conclude that the conversion of eddy available potential

energy generated by the heat of condensation represents a realistic source

of eddy kinetic energy in the tropics of their wet model. If condensation

is indeed the main source of eddy kinetic energy in the real tropics, any

dry model such as this one would be inappropriate. It is however conceiv-

able that since precipitation tends to be concentrated along narrow

regions in the tropics (as suggested by satellite cloud pictures), the

release of latent heat by and large mainly affects the zonally averaged

motions and has only minor effects upon the asymmetric motions over the
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rest of the tiopics. The intensity of the large-scale tropical eddies

could then, as in the present model, depend upon the baroclinic activ-

ities in higher latitudes, and their presence in the tropics has only

a secondary effect upon the mean state.

As a conclusion to this presentation of the predicted energetics

it is important to emphasize again that the computed wave energy flux

was into the tropics from the boundaries. (This was true not only for

the ensemble average er > but was true at all q for all qu..)

This result is consistant with our braod approach that the tropical eddy

motions are primarily a response of the dynamically stable tropics to

the unstable baroclinic processes in higher latitudes. If the model

tropics had been dynamically unstable, on the other hand, statistical

boundary forcing of the type used here could have resulted in an outward

wave energy flux.
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7. Concluding remarks

The prominent features of the statistical properties of the lateral-

ly-driven stochastic motions in the model tropics have been summarized in

the Abstract. It was noted that the theoretical statistics are in general

compatible with our limited knowledge about the eddy motions in the trop-

ical atmosphere. In particular, the temperature variance and sensible

heat flux are in good agreement with the observed values. But on the other

hand, the variance of the meridional velocity and the poleward momentum

flux at the upper level are overpredicted. It was suggested in Section 6

that one plausible reason for getting unrealistic results is our neglect

of horizontal shear in the basic zonal currents in the model.

A.brief heuristic discussion is now given about the effects of a

basic horizontal shear in a simple case. Let us consider an inviscid,

incompressible, homogeneous layer on a p-plane between i .

A basic current M. is given, and the perturbations are then governed

by

(7.1)

where

AA-



-97-

Plane wave solutions exist for (7.1

'L 

0. Wt

4L UX, .~> g:43> - -0

The amplitude functions -and V are then governed by

A4V

where

4d 1

(7.2)

(7.3)(j) VO

A somewhat realistic wind profile is a parabolic type

i.e.
4> 0

d"-= ~

Let us consider a profile where 2.4 is smaller than . Then

becomes a positive constant. Then ( ) is positive when 44, ,

and are such that --

and is negative outside this range. It is clear from (7.3) that for

the region where C ) is positive, V has oscillatory-like

solutions, otherwise V has exponential-like scolutions. Oscillatory
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solutions mean cross-latitude wave propagation, and whether or not the

amplitude increases equaterward depends upon the variation of &j

with latitude. Exponential solutions imply reflection of wave by the

basic current. Since equation (7.3) has the form of the time.independent

Schroedinger equation describing the wave function of a particle moving

in a potential field, all the well-known conclusions about the behavior

of the wave function in the presence of a simple potential barrier, or

potential step-jump can be applied to the solution of V here. For

a more realistic basic current, such as a parabolic profile, we probably

have to use WKBJ solutions and long-wave approximation (Morse and Fash-

bach, 1953 pp. 1088-1095) in order to deduce the asymptotic properties

of the solutions. However we can make a heuristic statement about the

different effects of a parabolic basic current on forcing motions of

eastward or westward phase propagation. The following diagrams show a

schematic relative magnitude among , A , ,

Waves of eastward phase

propagation

Waves of westward phase

propagation

W J> 0

We can see that the condition for cross-latitude propagation

~A)

az~iZ
7~.

J<O0

A.

<A
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is in general more likely met by waves of westward phase propagation

than those of eastward propagation. For short latitudinal wavelength,

the amplitude V according to the WKBJ solution is then proportional

to G . The role of the basic current is then to permit only

waves of certain d4 and i combinations to propagate equatorward.

The variation of makes this screening for different waves occur

at different latitudes. As a result, one may expect a gradual variation

with latitude of the velocity variances.

Although firm conclusions cannot be made from these qualitative

arguments about effect on the statistical properties if a basic hori-

zontal shear is incorporated in our model, the results presented in

this thesis are encouraging enough to warrant further exploration.
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Appendix A

This appendix shows the procedure of reducing the six spectral

equations in (3.9) to two coupled equations in (3.10). We first elim-

inate 4 between the first and second equations of (3.9), 42
between the third and fourth equations, and -from the

first, third and sixth equations. The result, together with the fifth

equation of (3.9) is

Ni{f4

II4U4

+ N

+ NV44

* N3 1 }v

+ 3 ) IU 4

+.

+ pond dV,

+ rlvz=-

+ N44fVJ =,

.0VA~ .QIj'I=

The new symbols are

N3 I

Nir =(+- -i) -

(A. 1)
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/4 (ADit)J 1) +

We next eliminate d

(4-f+ ItA)

from the four equations in (A.1)

*Y (At'N + D~)~ [AV} + 0)jdV

q~(N- N7 {L
N4'7) 4UZ

+

t- + ~..~~tV, I - (,?\N,+ d ~i~V4

Finally we can eliminate 4( from the three equations in (A.2):

L2{a } -
(A. 3)

+ L~j~a~

1,2,3,4) are four second-order differential operators in :

= C U A L +

where a

defined as follows.

and are functions of the parameters

(A. 2)

. IL2- (4)(+A- a)

(4-27( - 2A.-i (atp))

'V6 - i 4)A -2-n) D - (P- it - 1A

+(AN t -[AVl=

id V



Define

3

A

Then we can write

013
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Define

= .4-. )L-A0(

=~J
f2

7 3f3
,x A A - 2 04)

+ 4 A.L-4-

Then we can write

A-i

[ +B.+

[ pf,+M (-q f.+)
< -Bp]

- 7A . ]

,[pp4:+

* 1+3
.[ py q

(A. 4

S82]

4
go- J. +eo it-L -.4- +A,

Oh,

r -kA A, C-

[p.* aB-/t+>

[ L&-
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Csi

c - (, 7,

Olt

B3 L)+-,()

+ 4)

6/3

O/4~

12.

tion of (A.2),

is given in terms of

0a M,;

d Vand dIV2 by the third equa-

+/L )

Al ... ~L-(?La~L(4-~8~)
(A. 5)

A7 
/

and the fourth equation of (A.1) then gives

d V,
d / in terms of 01

and 1. :

OL=A,UL 4 M+{] MAbIV)
(A. 6)

I = >

Finally we obtain 0/p and from the first and third equations

of (3.9):

(A.7)

On;q3'o

ML(D-

./ (B, - B.,'

+
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2F A3 4U + AdO + M2.I

A=JL (.4- 2 hk A"o)

M & 1 " (A. 8)

Equations (A.3) to (A.8) constitute the complete set of differential

equations and kinematic relations in our model. They are referred to

in (3.10) and (3.11) of Section 3.
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Appendix B

A graphical method is deviced to determine the values of P

that satisfy

either ) 2

(B. 1)

where ,F a z) is confluent hypergeometric function. This graph-

ical method is partly based upon two properties of this function concern-

ing the distribution of its zeros, which are stated as follows. (Ref.

Slater, 1960).

(1) for X , > ,Q >o

(2) F has A zeros when

X >0 <>0 -+7 ( where o ( I

According to the first property, (B.1) clearly cannot be satisfied if

r. The second property enables us to foretell the number

of values of r within a given range, < - , that

satisfy (B.1) for a given .

It is also known that, for any positive integer V&0 , we have

the relations:

r + 4
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(-I 

0

2A )
I )v =TF-M!

cm)2.

where

is the Hermite polynomial of degree lvk.

is the (, ).+ 1 )th

(tA)

derivative of the "error function". Therefore the zeros of (,)

coincide with those of ,and the zeros of

(tw~+i)

~c~)
coincide with those of -'6t, 4t, '2-

Fortunately the zeros of , 2, --- ,0can be found in

the mathematical table, Harvard, 23 (1952). We now make use of these

known zeros to device a graphical method to determine the first several

zeros of +L and of F (+) -

In particular, we use the zeros for 2 2,4, -- -, 20

the' former and those for %=,3,- , the latter.

in determining

(B. 2)

2.5r, le

i4p- Wft
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A family of curves are drawn in Fig. 23 linking the zeros of the

derivative of even orders of the "error function". These curves can be

thought of as the loci of the zeros of F ic) . This

interpretation is verified by the fact that the least positive zeros of

this function at thirteen values of c_ , obtained from Slater (1960),

fall onto the first curve. Each curve is drawn asymptotically towards

an upper bound at a negative integer, so that the property (2) cited

above concerning the number of zeros is not violated. Now suppose a

value of is given as represented by the dotted line. The zeros of

-- are then the intersecting points between the

dotted line and the family of curves. From the value of cl of those

points we can easily determine the, associated values of r . Fig. 24

is a similar plot for determining the values of / that make

4 equal to zero . i e

1 '0 7 .J ;,) equal tozr.is equal to 2.91

in our model tropics.
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Appendix C

A band-pass recursive filter is designed for filtering the discrete

time series of the spatial Fourier components of the streamfunction at

0
30 N discussed in Section 4. By filtering a time series recursively, we

mean that each output point of the filtered sequence is computed as a

weighted sum of the input points plus a weighted sum of previously computed

output points. This is an alternative technique to the usual digital con-

volution, and is found in most cases significantly more efficient than

the latter, Shanks (1967).

This recursive technique is based on the E -transform representa-

tion of the convolution operation on a discrete time series.

Y(z z (z) (C.1)

where

F (Z.) .o z.

They are the corresponding Z -transforms of the following sequences:

f * -X $ / I input series

filter weighting function

output series



-111-

Z can be thought of as a delay operator. We specifically consider

filters whose Z -transform is a rational function of Z . In other

words, FNZ) is expressible as a ratio of two polynomials in

A'z (z) 4 r.+4 + -. + 0^

The amplitude and phase response of the digital filter can be determined

by evaluating Fi4) at the unit circle in the Z -plane, i.e. at

/Z/ /-o , (Treitel and Robinson, 1964). Values of Z along the

unit circle correspond to values of real frequency. In particular,

Z +/.O 0-0 corresponds to zero frequency and Z -1.0 + - to

the Nyquist frequency C$ . Frequencies linearly distributed between

zero and CA. correspond to points linearly distributed on the upper

half of the unit circle. Hence we can control the behavior of the filter

by choosing the number and the location of the zeros and poles of F(z).

The time series in our study have a sampling interval of 12 hours,

and should have at least a strong annual component. Hence we need a

filter that can eliminate the components of a period shorter than 1 day

or longer than half a year. The simplest recursive filter that has such

properties is one that has two zeros, one at Z /-0 + ( 00 and the

other at Z = -/o + i 0-0 . In order to have as small attenuation

as possible for the intermediate components, we need add at least two

poles outside the unit circle on the real axis of the Z -plane. Such

a simple filter is used in this study. It is shown in Fig. 25.
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Figure 25. Z. -plane.

where

f(Z)

The ampli

-im

ud r1 C f +z the fte b. ZJ
Lude response of the filter can be computed by

I c404 (/- z)
1+ (,-eel)z - o, oez. Z

at // =/.0

A filtering operation introduces a phase change to the input series as

well as the amplitude attenuation given by (C.3). One way to insure zero

phase change is to filter the time series first with a time-forward opera-

tion and then to filter the subsequent series with a time-reversed opera-

tion. The recursion equation for time-forward filtering with a rational

filter specified by (C.2) is:

..
-/-0 1.o

Zero

Pole

P1

(C.3)

x _ O x.

(/- Z) (/*'z)
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0( x -2 --4 (C. 4)

The corresponding equation for a time-reversed filtering is

The net effect of filtering a series first with (C.3) and then with (C.4)

is to introduce zero phase and an amplitude attenuation equal to the square

of (C.3). 04 and O(, used in the filter for this study are chosen

to be 0.938 and 0.917 respectively. The power response as a result of

our filtering procedure is shown in Fig. 26. It is seen that the attenua-

tion factor is about 0.7 between frequency range from 0.03 to 0.3, and

has a fairly sharp cut-off beyond these limits.
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Appendix D

This appendix gives a complete listing of the statistical boundary

conditions F , j = 1,2,3,4 for n =1 to 12 and each frequency interval

centered at ' in unit of ( $ = (270)1 cycles per 12 hrs.)

n= 1

- F F2 F3 F4

L, .3;304082 0.0)01037 . .OCO103 -0.0001074

C..00279. ._279 0.O00744 0.0020397 -0.0001153

~, . ~DL 2 9 - 0. 0~~ri3 47 ~ ~ ~.~c r ~ ~ -0 00 0 0342

C.0C0)3378 0.0000577 0.0000822 0.000649

C.CG 2 11 D.0900602 0-----O-------02~ ~~ ~654

-40 C.3D32697 0.C00157 1 -0.0000912 0.0001566

C.308228 0.0002597 ~ -0.007-9---~-~~~~~--0032083
_ 0.0C145C1 0.0002307 -0.00)05C2 -0.0001819

C.2 16901 0.0001618 0 0 20

C . D 16,,)6 9 0.0C)0 16 11 0.C001765 -0.0r,'00581

C. C10906 .0.0001438 --- ----- 00591-

C.3006955 0.C002815 0.0001429 -0.0000219

C'. 00 73 7C 0 .0 00 3698 1?001414

.C5 110 C n.0903346 0.0001725 0.0000281

L.D C 05C 2C 0.000 1672 0.OC OO'.1 -00 o-799

-30 C.&C09107 0.000C661 0. 00)673 -0.0000928

C 15 3 -0 33 .0 1395

C.CC22565 0.0001730 -0.0034402 0. 012C5
. C2118 0 .0 3 176C. C24666 003C0

C . L%' 14 6 6 0 00300C 0.0019017 -0.0C00312
____- i)Q~l 4~U~~ .03332 ~~000301~

.~C-3 C5 4 0.0103321 0.0005226 0.0000566

C.C 24-65 Ow .C1--2515 0.000043 -- -. 000924

G rC17551 - 0.0)029306 0.0000392 0.0000968

C-0C.10542 0.0-004677.
-20 _0.0007619 0.0005649 -0.0006666

0.0 C 21059 0.00 7716 0. 001367 3' 0.00C 812
C.L344I( 0.0005621: 0.0000914 -0.0007939

0.307251 000~33 -7 7 2 0004 2

C: 37551F - 0.03096138 0.0006641 0.000096

C .00C,7 13 5 O.O',)C8633 0.0002277 -* - 00'5'3 68
C.3 C 18 0.0016216 -0.0021267 -0.03958

0.C19595 4 S.0071 9 0.006249 0 0006r8

0.00207 4 0.0037319 -0.001584 -0.0024229O.XC94431 0.C0005620 - 0.00014 -30.0007939

-10 .0332 uC 3 0 6 47 -0.01C7 -0,0041631
C. 3 C4 7 1 0 .0 56 -162 -C .0 0 7 -0 .0'00 3587

C. 4 121 5~3562 .D ?77e~.0 -D.0075474

0.3161299 0.0336210 0.00114928 -0.0063248
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(continued for n = 1)

F F2 F3 F 4

G.0 132542 0 .0) 12310 0 .0027236 -0.0011264

C .0 1,591 17 9 .0 L19242 0 .00 19562 0.3027613

~T7 ~CT227 ~ 07049163 ~ 0195I2-----0;569

C.3763931 0.0109705 -0.0023230 0.0144665

C.T~736--- - T17144 - ~1292734

C.1108156 0.0184C36 -0.C265523 00016354

~T C7~T33 8 ~ U.C13322 C .006485 0000 485

+1 .. )018902 0.C0)02374 -0.0-Y)3255

0 __Th 1-CT0 5 9 697 0 F 0037 2 28 -0 _0-C3 93 81

C D'5 9 8 3 C .0L24657 0:0198476 0.0148831,

0921t--------- 125664 -00207233 0.1TT901

i.,.b426 71 U.C)151743 O.13638 0;0056084

i 2f~7 7C 1067 IC .0182
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(continued for n = 2)
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(continued for n = 3)
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(continued for n = 4)
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-40 C.C243439 0.0143822 -0.0009274 0.0148078

I~C C..C249d6---- D--f.0057125 -O.0004962 D.0.067662

C.C249878 0.0039050 -0.0049753 0.0048514

0 .C 7629 E - -. 0045726- -0,0029754 .. 0100062

C.1355381 0.0053843 -0.0013482 0.0118121
C..O87082S------ D-l. 0087893 -0 .0052765 A0. 002761.4

C.03082 8 0.0126498 -0.0023352 0.0028479

CA..C 38 4435 D.0122202 20 .004A3217.------D. 010 7611.

C.C406526 C.0101582 -0.0089329 -O.C012331

- ~ C CIh356840 .D1.31.492. ~ -0. 0009053 .0 ..00.62C7

3o -30 C.C885033 0.0148288 0.0048210 0.0203178

------C.0550193 ---- .~0095847 -D0.0003341 .0.0165121

0.0736259 0.0111930 -0.0202120 -0.0036263

----- C.A1 36 8210 ~ D.. C1 84012 rD .0 379383 ~ - .0182655

C.1191524 0.0235547 -0.0313388 -0.0095q31

______C.0135234.__ __0, 0 341637 -__0.03 165/88 0.0172015

0.0397552 0.0322722 -0.0238074 0.0182219

~C.0C3678~0.0299771 -0.0 124328 0..0189098

C.C587998 0.0440400 -0.0092948 0.0326375

~0.CJ3A321 ~ C.C379568 D.0167~L97-------0,0170203

-20 C.1678267 0.02'7511 0.0173573 -0.0364711

S 0.359 5 9 __.C362075 -0 . 2t2.790 -0.0885667

C.3911456 0.0229782 -0.0444310 -0.0709843

C. 3388 30 .02 28 445 -0 .0 333265 D_._02628 5

C.3478497 0.0375847 -0.0291001 0.1037113

10.407566-8- .0333632 0 *.0404493 - - 0. 07.27577
C.7654624 C.030C668 0.1237147 0.0283211

C,154462 __ 0 .91L10985 0.0928584 -0 .006 897L

C.7734C53 0.0137428 0.0813832 -0.0496479

~C.64i3-7124 -0.0299270 D.0913689 0.0820154

-10 C.6356115 0.0451526 0.0262291 -0.C150215

-------- C.365625C 0C .0462096 0.00-49834-- -*. 0.0833547.L

C.2007492 0.0307602 0.0462347 0.0528743

C.5015937 0.0270970 0.0482947 0.0208591



-124-

(continued for n = 5)

F F2  F3 F4

C.8-385475 0.0700216 -0.0130792 0.1368354
C.7696544 0.1183457 -. 0-2772 DD2484761

C.4220358 0.0824041 0.0224367 0.1689794

.912867 0 .33192. .0.076890L 0 .70 1150

1.1209822 0.0891245 0.2623639 0.1017241
-1_ C963453 _ .CO73417 0.0249295 .0402264

+1 C.C23964C 0.0025831 -0.0039951 0.0061762
C. 576141 0.0281751 -0.0511133 . .065362C

C.527431 0.0854334 0.1243434 0.0021087

,L635464C ~ 0. 1357263 -- 0 .2458115 . 9.0473770

1.3987188 0.2454424 0.5393121 0.1621848
1.EGC1847 0.3_219408. 0.7151770 D..2073480L
1.016572C 0.2032601 0.4086496 0.1582634
C.5077 49 0.1091276 0.2018693 .1070156
C.5512758 0.1225431 0.2429723 0.0479210

C 1O C.4357473 0.1C35607 0.1638955 .0.0237797
0.3426399 0.C669826 0.0163822 0.0703627
C.2747215 0.0339868 -f .04 6599 0.-6232e0-
C.1665533 0.0165723 -0.0053561 0.0288788
C.121CC93 0.0224168 0.037321,7 -0.032268 L
C.C869139 0.0217311 0.0287401 0.0254537

S-XQ13C.C5724C7 . 193_ 0 .011204 2 0.0172487
0.C676133 0.0048751 0.005878-0 0.0065413
C.C787068 0.00A3400 ____20 .- 060244- -0O.0091903-

0.0672625 0.0110836 0.0135647 -0.0060843
~c 20 C.C5646625 0._0247363 0.029.6498.0...CA13

C.0767633 0.0275783 0.0368776 0.0035785
.C 191LC S--------.126868 .01959 160 .0Al697

C.C376275 0.C046866 0.0027725 0.0009695
---Q00-41 -._ 0 6.-0622 76 0-00 21855 0..003 7104-

C.C080000 0.C042002 0.0024190 0.0030816
C*08Q200013 966----- D,~0001'75------ .. 024861-

0.G130509 0.0026932 0.0034034 0.0022763
C0C2.57154 ------. 0076877 ~ D .0129790 #020021095
0.0285406 0.0093336 0.0138583 -0.0019466

-0- 30C.C151699 ,C..0055092 -__ Q.0031427L - 0.C39233
C.C074495 0.0024397 -0.0023857 -0.00023C8
CoCC67619 O..0025616 -. 0027714 D.0-0208A
C.C041409 0.0038088 -0.0025153 -0.0000195

v-Q422.5-- .-0044455- - .00 11213.. -- 0,0000733
0.0067941 0.0035654 -0.0004068 0.0025974
C C_0___6. 00183A 5 -0..00,10825- .. 0017B15
C.C039969 0.0011686 0.0001470 -0.00044E2 -

---- CQ.C41778 D..00 19908 - -. 00-1710- -0.000 1775

0.0039144 0.0035542 -0.0003328 -0.0003774
40 C .00 63F97 0.39273 -0 .00 30 437 -Q-.0016658

C.0110980 0.0023474 -0.0021707 -0.C021628
C .0 12_5 112 0 .CC12121 -0 .0002107 -0.0020571
C.CC83S89 0.0006875 -0.0002816 -0.0006952
C.. C 1CC23C.007643 ___ 0.0017522 -0.0001754
0.01762EC 0.0013394 0.0044691 -0.0003745



-125-

n= 6

F F3  F
4

.C265C27-----------06065928 -0 40047758
0.0411226 0.0061277 -0.0070423 0.0063462
0_.C5115-C2 ___ 0.0091279 -0.0020194 ___- 0. C158195
C.C465756 0.0148504 0.0046830 0.C189143

-----C .C 318374 D-----0. 01810 53 0 .0015487- 0.D171652
-40 C.0292912 0.0095578 0.0035643 0.0079084

- -. 0102396 C0. 0 43015 D .012658 4 .0. C0091326
C.1145262 0.C079371 0.0083256 0.0192955

~ C .18 C38 00 88797 -0.0 184956- DL.0 212917
C.234i2215 0.0076584 -0.0273076 0.0130152
C..1446880 D ~f. 0081648 ~ -0 .0052726 D2000 10 992
0.1034074 0.0165328 0.0109228 0.0262177

~C..1602087 13.03280 0.0 160446 Dfl.0646010
C.126594C 0.C435115 0.0188892 0.0343503

______0.1883073 t.0406865. 0.0390947. .0026605,
-30 C.2784092 0.0312033 0.0430982 0.0249048

- 0.2 28C 92. D0.0192215 D 0.00 44120----- l0.122116
C.2229003 0.0079516 -0.0099405 -0.0051695
C .2031320 0. 0041387 _DAODT148 . 0.0120 789
C.C783628 0.0068214 0.0074408 0.008818C

__ C.3-_2614 .0253849. . -. 008676 . 0.0082584
C.C90256C 0.0487523 -0.0426806 0.0293,628

0 .C6 9 36 7 7 C..060 381 1 -D.0184714 . .0230652
0.C535250 0.0553414 0.0218584 -0.0015075

- 0607961 .0444233
-20 C.32432E5 0.0467491 0.0071631 0.0214214'
___ 421941 -__0.036.3648 - .529 l0931

0.968815% 0.0429324 -0.0350471 0.1350352
1.2648954 007592510249
1.1115322 0.0894457 -0.0126041 0.2714956

1-3114614 0.1086173 0.2255651 0.1982314i.301 3A~~ .073't35.......20 .019 7 .~__0.06L114005

1.169915? 0.0543474 0.1308363 0.1023808
-- ------(.E831CC7--- --.- ,C-.0C624085 --0.0435905 0..0 7

-10 C.15963 0.0989878 0.0060781 0.2504660
1.1475 --- 0.196992 0.2522603- 0.3100058
1.547E617 0.2695131 0.5057089 C.35363C6
1.1615067 C.2027737 0.4021185 0.211637



-126-

(continued for n = 6)

F1  F2 F3 ~ 4

C.7772461 0.1393059 0.3088899 0.0576237
1.245F744 0.1691735 0.3202408 -.-- 0.2 392810

1.9816494 0.2282059 0.3376560 0.5315983
2.0139761Q..2235129 -0.3992167 . - ..-0-.A306557

2.33951CC 0.2042565 0.6102957 0.1338025
C.20 826E.6 0Q_0151314 0.0A69014 0.0164465

+1 C.2401466 0.0057429 0.0280566 0.0222496

3..03955_75 0.0715601 0.3650544 .. 2613319
1.1143465 0.0332383 0.1322417 0.1123749
0.7481701 0.0364724 0.1086796 .0-._0159403

C.7817564 0.0759984 0.1953527 -C.0101903
C.7545481 0.1154040 0 .2751064 00 5100 1494 1
C.6203286 0.1033760 0.2432886 -0.0012274

0.2920489 0.0629914- 0.108180 5 --0-.-Q00-4958
0.11C9673 0.0423576 0.0239855 0.0067083

10 C.1075863 C.0398049 0Z0255194- - ----D.0271239
0.C869826 0.0325929 0.0118524 -0.0331332

C .C8751 76 0.0252968 Q.D018373 -0,01557

C.0723433 0.0218764 0.0138919 -0.0114356
0.0642728 0.0152408 0..2699 -0.Q63024-
C.C865856 0.0204741 0.0265329 -0.0153212

C.1752225 0.,0.376804 .0 50 30 41 -AX0331316
C.2447453 0.0385899 0.0715528 -0.C250172
- ~C.._3C33C, 009.55A~ ~ 0.C290027- -0 .0064320
C.C2767C4 0.0076479 -0.0005995 -0.0026455

20 O.0 757335 0.0248409 .D .0375187-- .0030516
0.1142357 0.0426863 0.0626265 0.0038398
Q--------0. C.61&9-2 .0258 10.0---------- 09383
C.C303268 0.0042658 0.0003073 0.0075835
CC4A256 0.00309.17 __0.0D3140.0091956 -

C.C247154 0.0016411 0.0010150 0.0056567
C .004991tl----. Q. 030633 -0.016154 0-~.0 .0011346.
C.0183405 0.0060599 0.0020475 -0.0024749
0 .0 381 1570 -- 00671.L. ------.. 010 3.739--------C0AD0.6000A.
C.C397441 0.0C88866 0.0167685 -0.0026218

-- 30 -- 0C.* 31073C0,0l80A 0.0160195 -0.0001157
C.C236264 0.0072162 0.0077987 -0.0034140

C C LSZ21-------0.1002 21973 ~ 9...0020139 Q-0.0040323
C.0119639 0.0008447 0.0009183 -0.0010704

~~~ .0095518.. -C. 0011666 -~x0.000 0 762 .. 0 0 05919
C.C182535 0.0024923 0.0023655 -0.0005947

CC21,9 559 0. 00 68749 0 .0095678 -0 .0015302
C.01969C0 0.0083913 0.0111886 0.0015508
0l013321E 0. 0053281 ~ 0.0053045....D-..~ .0042221
0.0179466 0.0052377 0.0066501 0.0015308

40 C.C334949 0.0057003 0.0116605 -0.0Q2C194
C.C364256 0.0027831 0.0078202 -0.0020086
C .C268730 C.0009743 0.0028779 0.0017341

C.C182435 0.0010590 0.0009859 -0.0007999
0.0134199 0.0010969 -0.009093 0.0001027
C.006145l 0.0018917 -0.0006172 -0.0001767



-127-

n=7

F F2 F F -.

0...Q58633 ---------- 0.0194300 0 .0121118, D . 07229 7
C.052C657 0.0132943 0.0123987 C.0157399
C. 1112713 0.0033786 0 .0088199 . 0.0044746
C.2265313 0.0045383 0.0070982 0.0223880
.20284CC 0.0114611 .008488--- -. D362596.

-40 C.148C0E4 0.0173619 -0.0246916 0.C315787

0.1313224 0.0233786 0.0084636 0.0164105

C.2711849 0.0493C31 0.0468402 0.086346;
0.2567731 . ~ ~ 0361 ~.479~ 007)'
C.1828774 0.0223124 0.0402100 0.0419902
C.2285139D.0415110
C.2328418 0.0668710 0.0447089 0,12S7235~C.A 22 16-D..Q 022661 D.0.2 5029 D..C83088433

-30 C./iA9628 0.0506403 0.1388073 0.0078580.~C.26 1678~ .0355343 0 .08310086507

C.1163061 0.0267858 -0.0265326 0.017498C~~f363T~.D.- 03367D.045254~-.22940 ~ .D's063l2

C.178;77'; 0.0632146 0.0278973 0.0670763
_____ c.2AQL6. __~C.04569797 D~~ 203451104 =0.0835963

0.387E624 0.0807026 0.0382247. 0.1505927
S.A52271 0 .06024861 0 .0886889 .0 -088877

-30C.4496 0.0676516 0.1372854 -0.0035158
.265836 0 . C9932 2 0 .0158538 -0- O848305

-20 C.5624CC2 0.1093342 0.0802062 0.1817394
-_ 1.82390 5D6.-4 -0.018 2806 .096029

C.1927373 0.0817496 0.1076651 -0.0201015
C-21Mt21 -0.1697949 - .2325616 -- 0CC293684-
C.E528940 0.1282028 0.0769014 0.0885415

-20 .C528755 0.103219 0.0446289- 0.0 739
1.2828321 0.0459481. 0.1434829 0.0249138
.C f33 8224_C.0700966 0.0930498 0.1137202
0.739753? 0.0485985 0.0987975 0.0985436
1. 20 190 62---- - 0.0444887 0 .208 3670- -- 0.0662721

-10 1.C3549CC 0.0561335 0.2043563 0.0777647
C. 4267 C0-.0418670 - 0.0982620 0.0450527

C.977C216 0.0428518 0.1527494 .0.0901476
2.148C2,3 0.0511801 0.2544917 0.1801680



-128-

(continued for n = 7)

F F2  F3  4

1.8448915 0.0498216 0.1960620 0.1073765
.C172377 _0.0693412 _ 0.1620961 0-_--3-82862

C.%587866 0.0767619 0.1745026 0.1006715
C.96C727C - .0599 11 0.1523411 0.0923854

1.1969070 0.0501162 0.1552721 0.0194765
-1 _C.C851113 0.C006073 0.0043065 803312

+1 C.C233456 0.0150497 0.0180267 -0.C029377
C.3C42 C2 0.2219651 0.213C496 -0.C82616
0.10143C3 0.0853345 0.0525925 -0.0359550
C.4732520 0.0458933 0.1005726 C.C3A1453

C.9139737 C.C781372 0.2294168 0.1021178
C.7963682 0.1135876 0.2595173 0-.128584

C.4647368 0.0913163 0.1644203 0.1020846
-- _0.252526 .0495580 - 0.0611506- --- -0--. 55528 -

C.12O768 0.0452496 0.0375302 -0.0154665
10 0 .159 1523 _0.048316~ 0.0 590030.59555

C.2384517 0.0342529 0.0646855 -0.0172313

C.l139?51 - 0.0229.3.74 - 0.03600D0.00 86133~
C.C515358 0.0179711 0.0130272 0.0185360
C .C.8893 9 0.0253401 0 -.23257 .0 150A27
0.1767164 0.0410124 0..0657061 -0.0119427
0.2065451 0 .0342 6 45 0.05843 -0354341

C.109C174 0.0168576 0.0311104 --. 0132999

C..CA532 0.0106102-.135.814 GO E..0086241
C.145C566 0.0118540 0.0345826 0.0010783

20 _ .30 14L423 _ _.0 0072 ..0135685 .C19458

C.32296CC 0.0254155 0.0817641 -0.0168473
-C.21C51.82 ----- 0.0213508 D.503 .0189

C.C85C456 0.0117913 0.0243228 0.0114291
0._0 382_50 0 0-oJ 10 ____ -- 0 3353 4- Q00 68325.-
C.C389730 0.0277515 0.0236102 0.0001886
C.C464773 . .02033 0 D2DO~l1 0.DO72273
C.C5C97C8 0.0071350 0.0094144 0.0012312
_C.C29C054-- .0129965 Q.0-86222 . 0060435
0.0128128 0.0202282 0.0092407 -0.0005976

30 0 .0 140 123,. 0-120742 -- - .00 48812 -0. C027536
C.C628879 0.0044900 0.0086877 0.0009430

*- 0 . 10804&5 0.0 05 533 0 .0140 62L.. 0.0037590_
C.C615756 C.0657985 0.0077760 0.0026395

-C-0.179 20 4------0 . 00 380 16 0 .0 021258 - -- 02001I420 4
C.C118845 0.0017647 0.0022605 -0.0022041

__0.00417C7 ~ 0.CL2635 0.0029129 ~0.0008023
C.C054396 0.0055024 0.0011283 -0.0001749

.7E0.0063071 0.0018067 C.CC13576
C.C132655 0.0040890 -0.0013325 0.0038781

40 _C .219457 -. 0025188 -0 .0013270 D.0060004

C.0218050 0.0021859 -0.0008622 0.CC59651
C.C 161577 70.0021550 0.0020999 0.00A106

C.CI0C'426 0.0021536 0.0012509 0.0023924

0.C072129 0.0017180 -0.0014393 0.0017328
C.0080678 0.0008839 -- 0.0006257 0.C001033



-129-

n~8

F F2 F3 F A

.0...2356.3 5 --- .---. 0205016 .. 0 .0.37D708.. -- __D.D496809

C.2?19090 C.C205779 -0.0193934 0.04348C5

.C9C15-C -C.0204.543 2.006749A ____----.-0-.0 2A2104

C.C717846 0.0553105 0.0295969 0.0468886

C.1910301 D. 0894931. - 7

-40 C.2189173 C.C464779 0.044331 0.045442C

Iob .10 3932 0k08669t L0.150.------.152

C.3638167 0.0356537 0.0935294 0.0346182

__C .66664c3 _06_93

____t __ 069-79,33---- 17414-7 ------ - .037_738 3

0.3277575 0.0693765 0.0881960 0.0195362

-- 0.C545 100 D.0613947 0122269 0.0384Q13

C.1151258 0.0619487 -0.0336249 0.0481103

------- C .. 1349255.~ D.0607735 . -0.0526467. .0.0152316

C.1425712 0.0612762 -0.0780436 0.0102715

~C.. 2968 99& 6 0. 076.4570 -- 0001600.0542

-30 C.5164003 0.0954853 0.1880691 -0.0091901

C.71265f5 0.1314245 0.1145273 0,2088377

CQ.5961181 0.1221508 ~ .167h ~ -- O.1616

C .54 26612 0.0883489 0.1353600 0.1162262

C_ _9_ 6_0.079773 0. 1269933 --- 0 -.C835876

C.1922967 0.0444340 0.0748736 0.0275203

S2 027496 0.0228868-00147275

0.2143655 0.0481710 0.0176416 -0.0635317

20 C.350078 a0758812 ~0 .0982503 ..C.05979

-20 C..53C15C3 0.C843937 0.1557092 0.1039140

C351722 ~.D056134.8 .0.0917557. 0 .0422757

C.3301651 0.0386209 0.0753483 -0.0046684

0 .4s345732 0 . C319850 0 .0854806 .A ~.248801,

C.5539731 0.0218657 0.0420440 -0.0304131

C. 7286586 D .0168L3] - 0.0149947 -0.0884431

C.5364411 0.0233147 -0.0103121 -0.0862858

C_2-43931 _ C. 0429626 ~ ~ 0,0107587 -- .0
9 5

-EI61

C.6014397 0.0436941 0.0839818 -0.0363991

C.597382 .C281692 -- 0.0998399 0.045435

-10 C.7643058 0.0210926 0.0972136 0.0568316

-- C.67656C5 C'.0242619--- 0 .0596358 0.0 196413

C.4973974 0.0523353 0.0138832 --0.0637015

C.4465489 0.0869087 0.0826631 -0.0883343



-130-

(continued for n = 8)

F2  F 3 F

C.4288361 0.C808036, 0.1484967 -0.0321214

C.(49738C 0.0813593 0.1741014-

1.C593138 0.1087932 0.2303588 -0.2278222

I .20922C9-0.1279672 _0 .29.400 799_ -02050316

1.1542225 0.2054413 0.4128666 -0.1716098
-1 C .C44 250 3 C. 0139962 _0 .0 210 399 -0z~..t19 12 9

+1 C.C146696 0.0073223 0.0074667 -0.0053013

-- C . 1711746 -0.1325335 0.0891780 -0*0928475

0.0842826 0.0707695 0.0228238 -0.0624451

0.3511247 0.0722458 0.0110934 C.0731499

C.5136310 0.0951493 0.0387750 0.1571206

0. 3500 599 0.1255599 -0.1240838 0Q55161

C.3626552 0.1268770 0.1670024 -0.0418960

-0 .4183351 0.0756536 0.0754i66 .C.CA3591

C.2982892 0.0431881 -0.0062150 0.0081947

10 C.2499346 0.0376942 0 .0159 496 .0002 22-

C.2447612 0.0516450 0.0565263 -0.C3055E3

C.2050046 0.C638199 0.0555087 -0.06937ZC
C.101CG417 0.0574376 0.0325901 -0.0531427

0.02116E6 0.0516889 0.0186088 ilA.lA596.

G.0436169 0.0340282 0.0221411 -0.0122384

C.C64CSA 5 0.18600 .0213370 -0.0-AL73136

C.0'441581 0.0129448 0.007C885 -0.0061684

C- 4369 8 5 _t.00 7582 0O 2190 5 -0Z 8735-

0.0666264 0.0370398 0.0078448 C.0268542

20 C.1229862 0.0347669 ,331493 D 018022
C.1647573 0.0328743 0.0581214 0.0295819

C.10265C 36 ,3 D.31 .0 --0A89312 0-*L269189
C.C3%9613 0.0365711 0.0334101 0.0060398

0C. C-t3 A._0250 992- __ _0.2-5127- -7U.__-O_ 373-12
C.C264131 0.0179706 0.0163295 0.0016949
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(continued for n = 10)
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