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Abstract—This paper presents the application of Model Predic-
tive Control (MPC) in high-performance drives. A wide variety of
machines have been considered: induction machines, synchronous
machines, linear motors, switched reluctance motors, and mul-
tiphase machines. The control of these machines has been done
by introducing minor and easy-to-understand modifications to
the basic predictive control concept, showing the high flexibility
and simplicity of the strategy. The second part of the paper is
dedicated to the performance comparison of MPC with classical
control techniques such as field-oriented control and direct torque
control. The comparison considers the dynamic behavior of the
drive and steady-state performance metrics such as inverter
losses, current distortion in the motor, and acoustic noise. The
main conclusion is that MPC is very competitive concerning
classic control methods by reducing the inverter losses and the
current distortion with comparable acoustic noise.

Index Terms—Predictive control, variable speed drives, electric
machine.

I. INTRODUCTION

With the advances of electromobility, the control of elec-
trical machines, a traditional research area, is now more
active than ever [1]–[3]. Applications of controlled electrical
motors in cars, trucks, buses, trains, scooters and bicycles are
intensively investigated [4]–[11]. Different types of motors are
being studied for these applications: Induction Machines (IM),
Permanent Magnet Synchronous Machines (PMSM), Switched
Reluctance Machines (SRM) to mention a few [5], [12]–[14].
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Today, the dominant strategy for the control of electrical
motors in electromobility is Field Oriented Control (FOC).
This technique was invented 50 years ago at a time where
microprocessors were not available [15], [16]. Using micro-
processors this technique constantly has been improved and
today is the standard for high performance drives.

The tremendous calculation power of modern micropro-
cessors available today has motivated the investigation of
different control techniques for high performance drives, with
Model Predictive Control (MPC) being one of them. MPC has
emerged as a very attractive alternative for drives applications,
because it adapts in a very natural way the discrete nature
of the controller (the microprocessor) to the load, which is a
system with a finite number of switching states generated by
the inverter. Using MPC it is not necessary to linearize the
equations of the machine, to design linear controllers and to
use Pulse Width Modulation (PWM) [17]–[21]. Several works
have been published, related to the use of MPC in electrical
drives [22]–[27].

This paper presents a review of recent and relevant MPC
strategies applied to different types of machines: induction mo-
tors, synchronous motors, switched reluctance motors, multi-
phase motors, and linear motors. This paper shows how MPC
is adapted to fulfill the particular restrictions presented by each
electric machine type.

Aiming to be accepted by the industry, MPC techniques
must demonstrate superior performance compared to existing
high-performance strategies: FOC and Direct Torque Control
(DTC). For doing so, the second part of this review paper
is dedicated to assessing the performance of these control
techniques. The main comparison criteria evaluate the dy-
namic behavior of electromagnetic torque. The assessment also
considers steady-state performance metrics such as switching
losses in the inverter, the ripple in the motor current, and the
motor’s acoustic noise, which is relevant for car applications.

The paper is organized as follows. Section II presents a
short review of the main model predictive control strategies.
Sections III, IV, and V present the main features related to the
application of MPC in switched reluctance, linear induction,
and multiphase machines, respectively. Section VI compares
a model predictive torque control (MPTC) strategy based
on Finite Control Set MPC (FCS-MPC) with the two most
important high-performance control strategies used in indus-
try, namely: FOC and DTC. The comparison evaluates the
steady-state and dynamic performance. Section VII compares
the technique called Model Predictive Pulse Pattern Control
(MP3C), [28]–[34] with standard control techniques, applied
in a high power (>1MW) drive, using a 3-level Neutral
Point Clamped (NPC) inverter. Section VIII compares the
model predictive current control with linear current control and
PWM for an electric car application, considering the losses of
the inverter and acoustic noise [35]. Section IX presents the
challenges and future works. Finally, section X presents the
conclusions.

II. PREDICTIVE CONTROL STRATEGIES FOR DRIVES

The predictive control method includes different sub-
branches, i.e., hysteresis-based control, trajectory-based con-

Deadbeat
voltage 

calculation

Flux 
controller

Speed 
controller

IM

SVM

Observer

Fig. 1: Deadbeat-based FOC method.

trol, deadbeat control, and MPC [36] [37]. The hysteresis
control theory, which is also known as bang-bang control
theory, was firstly introduced for predictive current control in
[38]. The trajectory control method is based on forcing the
variables of the system to track a predefined trajectory. Direct
self control [39] and direct mean torque [40] are the most
important methods in this category [41]. The combination of
the hysteresis-based control and the trajectory-based control
has become an independent family in the drive applications
known as the Direct Toque Control [42]. This method showed
that the predictive control is capable of the direct control
of the desired variables like the torque and the flux [41].
Except for the DTC strategy, today two successful categories
of the predictive control family in drive applications are
deadbeat control, and MPC. These two categories were widely
investigated for the drive applications during the last decade.
The MPC method has been applied by two approaches, i.e.,
Continuous Control Set MPC (CCS-MPC) and FCS-MPC.

A. Deadbeat Control in Drive Applications

The idea of the deadbeat control is based on calculation and
application of the voltage vector that will move the operating
point of the motor exactly to the desired torque and the
flux [43]. The deadbeat method has been applied to drive
applications because of the capability of a very fast dynamic
response [44] and an accurate steady state response [43]. Fig. 1
shows a typical block diagram of the deadbeat control method
for motor drives in field coordinates. The following equation
shows the voltage reference calculation in deadbeat control of
the induction motor [45]:

v∗s =
σLs
Ts

(
i∗s − i

k
s

)
+Rσi

k
s +

kr
τr

(
jωτr − 1

)
ψkr . (1)

where τr = Lr
Rr

, kr = Lm
Lr

, Rσ = Rs + k2
rRr, σ = 1− L2

m

LsLr
,

and Ts is the sampling period.
Despite the mentioned advantages of this technique, it

shows a high sensitivity to different kinds of disturbances in
practice. Most of the studies about the deadbeat method during
the last decade are dedicated to robustness improvement. The
research on this issue can be categorized as follows:
• Disturbance estimation and cancellation.
• Controller bandwidth tuning.
• Online parameter identification.
• Prediction model robustness improvement.
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The disturbance estimators are used to estimate the general er-
rors produced by system’s the disturbances [46]. The estimated
disturbance should be subtracted by the control law, which is
the stator voltage reference. In [47], an ultra-local model is
used to observe the system’s disturbance. A combination of
disturbance and load observers is proposed as the parallel-
observer in [48].

Another technique to increase the deadbeat method’s ro-
bustness to reduce the controller bandwidth was introduced in
[44]. The bandwidth reduction of the controller is performed
by dividing the error by two [48]. Through this technique,
the tolerance of the parameters can be increased up to 200%
while decreasing the deadbeat controlled system’s dynamic
performance.

The adaptive online parameter identification has been
widely utilized to improve the robustness of the deadbeat
method [43]. A Model Reference Adaptive System (MRAS)
observer is used in [49] to adapt the speed and stator resistance
simultaneously. The results of this study showed that a 150%
uncertainty of the stator resistance is tolerated. However,
the drift error is a common problem among MRAS-based
observers. In [43], the estimation is performed one step ahead
to reduce the drift error.

The closed-loop Luenberger prediction model has been
introduced as the robust prediction model [50]. The feedback
gains are calculated based on the H∞ robust design. Though
this method increases the robustness, it is proved that the
method is not robust at near-zero speed region. In [51], [52], an
integrator is used in the control loop to reduce the sensitivity
and modify the dynamic response of the system.

Overall, the deadbeat control method is considered the faster
control method in the predictive control family. Consequently,
the sensitivity to parameters mismatch and estimation of
disturbances are the main issues to overcome about this control
method to achieve a high-performance motor drive controller.

B. Continuous Control Set MPC (CCS-MPC)

This control strategy was first introduced as the generalized
predictive control [53] and it is considered the basic form of
MPC. As shown in Fig. 2, this control method employs carrier-
based PWM such as Sinusoidal PWM (SPMW) or Space
Vector Modulation (SVM) and it is also referred to as Indirect
MPC [37].

This control method computes the voltage reference by
minimizing a given cost function, representing the tracking
error of the controlled variables. The cost function for current
control considering a prediction horizon of one step is defined
as below [54]:

g =
(
i∗sd − ik+1

sd

)2
+
(
i∗sq − ik+1

sq

)2
. (2)

Suppose both the constraints related to the feasibility region
in which the voltage vector belongs (input constraints) and
the current limits (state constraints) are not considered. In
that case, an unconstrained Quadratic Programming (QP) is
established, and the voltage vector can be easily obtained by

PMSM

abc

N

S

dq

Online QP
Solver

CCS-MPCC

PWM

Speed 
controller

MTPA

Fig. 2: CCS-MPC-based MPTC for PMSMs.

solving ∇g = 0. For instance, if a surface-mount PMSM is
utilized, the optimized voltage variables vksd and vksq are:

vksd =
Ls
Ts

(i∗sd − iksd) +Rsi
k
sd − Lsωkiksq, (3a)

vksq =
Ls
Ts

(i∗sq − iksq) +Rsi
k
sq + Lsω

kiksd + ωkψpm. (3b)

The studies in [54]–[56] show that the CCS-MPC results
in a low ripple for the torque and the current of the machine.
Also, the computational burden of this control method is low.
However, as shown in (3), the performance of the controller
would be deteriorated by the parameter variations (including
stator resistance, stator inductance, and permanent magnet flux
linkage) and nonlinearity. Thus, the sensitivity of the method
is high, similar to the deadbeat control strategy.

To overcome this issue, many approaches have been pro-
posed in the literature. For instance, as indicated in [37], the
robustness of the Indirect MPC is improved by penalizing the
control effort1 in the cost function allowing for less aggressive
control actions. In [54], a disturbance observer is applied to
reduce the sensitivity of the method. Besides, the rotor position
is eliminated from the prediction model in [56] to increase the
robustness of the sensorless motor drive.

Furthermore, when input and/or state constraints are con-
sidered for the MPC formulation [37], then either efficient
QP solvers can be employed (e.g., interior-point, active-set
methods [57]), or the unconstrained solution can be projected
onto the feasible set. In [58], a CCS-MPC strategy with input
and state constraints was introduced for MPTC in PMSMs, in
which an active-set algorithm to solve efficiently the associated
QP problem is implemented in a low-cost control platform.

C. Finite Control Set MPC (FCS-MPC)

The distinguishing point of this MPC approach is the
consideration of the finite nature of the power converter. Con-
sidering this feature, the FCS-MPC predicts the behaviour of
the variable to be controlled for a set of admissible switching
positions. The cost function should be examined for all feasible
voltage vectors, and the optimum switching state is the one
minimizing the cost function. For instance, if a traditional two-
level inverter is utilized and a prediction horizon of one step

1In CCS-MPC, the control effort stands for change in the voltage vector or
change in the modulation index. In the context of FCS-MPC, the control
effort concept refers to the switching effort and penalizes the number of
commutations of the power semiconductors.
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Fig. 3: FCS-MPC-based MPDT for IMs.

is considered, the cost function should be evaluated for the set
of possible voltage vectors [59]–[61].

The block diagram of the FCS-MPC method applied for
model predictive torque control is illustrated in Fig. 3. As
indicated above, the stator flux and electromagnetic torque of
the IM can be predicted by using [62]:

ψk+1
s = σLsi

k+1
s + krψ

k+1
r (4a)

T k+1
e =

3

2
ψk+1
s × ik+1

s (4b)

In (4), the future trajectories for the stator current ik+1
s and

rotor flux ψk+1
r are obtained from the following discrete-time

model: ik+1
s

ψk+1
r

=

1−TsRσσLs
Tskr
σLs

(
1
τr
−jωk

)
TsLm
τr

1−Ts
(

1
τr
−jωk

)

 iks
ψkr

+

 Ts
σLs

0

vks
(5)

The cost function for controlling the torque and stator flux
magnitude is:

gj =
(
T ∗e − T k+1

ej

)2
+ λΨ

(
Ψ∗s −Ψk+1

sj

)2
. (6)

Consequently, the cost function (6) should be computed for all
possible voltage vectors according to the FCS-MPC working
principle, where λΨ is the flux weighting factor. Then, the
inverter applies the voltage vector that minimizes the cost
function. This process is repeated each control interval Ts.

The advantages of the FCS-MPC can be summarized as
below [61]–[65]:
• It is straightforward to include nonlinearities, constraints,

and variables of different nature in the optimization problem.
• There is no need for a modulator which is useful when a

multi-level or a matrix converter is applied.
• The dynamic performance of the control method is faster

than the one obtained with FOC.
Despite the mentioned advantages, there are some draw-

backs with the FCS-MPC method. The first problem is the
weighting factor in the cost function which is the common
problem of all cost function based model predictive control
methods [66]. Generally, four techniques have been applied
for this problem.
• Finding the optimum weighting factors [67].
• Simplified FCS-MPC [68].

Predictive
model

Minimization
cost function

MPTC

8

Predictive
model

Minimization
cost function

MPCC

8

Torque to
current

Torque
Sharing

(b)(a) SRM SRM

Fig. 4: Block diagram for control algorithms in SRM drives
(a) Current reference generated with offline torque sharing
technique and MPCC for phase current tracking (b) MPTC.

• Decision making based methods [69].
• Sequential FCS-MPC [70].

The second drawback of the FCS-MPC is the high ripple
for the torque and the current. A promising solution to
mitigate these issues is the so-called modulated MPC strategy
introduced in [71], [72] for PMSMs. Similar to the modulated
MPC, a control strategy that manipulates the switching states
and their application times aiming to control the stator flux tra-
jectory is proposed in [73] to improve the overall performance
of IM-based drives.

The last problem of FCS-MPC is the high computational
burden when it is adapted for multilevel converter applications.
Voltage vector elimination has been utilized in [74] aiming
to reduce the number of possible vectors that should be
calculated.

III. APPLICATION OF FCS-MPC IN SWITCHED
RELUCTANCE MACHINE (SRM)

SRMs, magnet-free and double salient pole structure of-
fer a simpler construction and robust high-speed and high-
temperature operation [75], making them interesting for reli-
able fault-tolerant operation [76]. These features have found
a suitable position in applications such as vacuum cleaners,
jack hammers, compressors, and electric vehicle systems [77],
[78]. Although SRMs are candidates for high-performance
and safety-critical systems such as automotive traction or
aerospace [79], [80], in practice, they have not seen such
scenarios due to their inherent torque ripple and acoustic
noise [81].

Several design considerations have been proposed and com-
prehensively reviewed in [82]–[84]. However, torque control
is not as straightforward as it is in conventional AC drives.
The highly nonlinear torque-current-position relation requires
the definition of torque sharing rules that are mapped as phase
reference currents through lookup tables [85], in a similar way
as FOC. Some of these rules include Torque Sharing Functions
(TSFs) [86] or Radial Force Shaping (RFS) algorithms [87].
Nevertheless, the current tracking is a challenging task in such
a nonlinear machine. This high complexity has become an
interesting target for MPC to handle.

1) MPC of SRM drives: There are two alternative imple-
mentations of MPC in SRM, as shown in Fig. 4. The first one,
in Fig. 4(a), emulates the FOC obtaining reference currents
from pre-calculated lookup tables. A Model Predictive Current
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(a) (b)

Fig. 5: Results for torque tracking at 1000 rpm of a four-phase
8/6 SRM using (a) TSF and MPCC (b) MPTC.

Control (MPCC) algorithm tracks the phase currents based on
the discrete machine flux equation as [88],

ψk+1
j = ψkj (ikj , θj) + Ts(v

k
j −Rjikj ), (7)

where vj , ij , Rj , Lj and ψj are the voltage, current, resistance,
and flux linkage of the phase j, respectively. Notice that
the dependence of the flux linkage on both the current and
electrical angle θj is highly nonlinear; therefore, the predictive
model usually relies either on approximated analytical equa-
tions or static maps [89]. In the latest, ψkj is obtained from the
static characteristics ψ(i, θ) as a lookup table. The predicted
ψk+1
j is used to obtain ik+1

j using a second lookup table
i(ψ, θ). In practice, this prediction uses on ψk+2

j for delay
compensation. Alternatively, Fig. 4(b) uses a MPTC approach,
which generates a switching pattern with the comparison of the
reference torque and the predicted torque from the predictive
model [90]. The main advantage is the online definition of
torque sharing laws. The torque T k+1

ej is predicted from the
phase torque T k+1

ej and ik+1
j as,

T k+1
e =

m∑
j=1

T k+1
ej

(
ik+1
j , θk+1

j

)
. (8)

2) Cost functions: The current tracking can be defined with
eq. (9a) [91]. As the SRMs commonly use asymmetric con-
verters, there are three possible switching states per phase. For
a four-phase SRM it means 34 = 81 possible combinations.
Assuming no more than two phases simultaneously active, it
is reduced to 9 possible states [88]. For the MPTC approach,
(9b) can be adopted [90], [92]. It is common to include a term
to penalize the phase currents to obtain the reference torque
with the minimum conduction losses [93]. The cost functions
in (9) evaluate the possible switching states to obtain the Sk+2

opt

that minimizes the error. Fig. 5 shows the phase currents,
phase torque and total torque for the algorithms shown in
Fig. 4. MPCC guarantees a proper current regulations with
minimum ripple, but the algorithm, in this case TSF, fails to
reduce torque ripple requiring additional improvement. MPTC,
contrarily, provides a smooth torque sharing with more diverse

current waveforms, thus evidencing the flexibility of MPCC.

gi =
(
i∗ − ijk+2

)2
, (9a)

gTe =
(
T ∗e − T k+2

ej

)2
+ σi

∑
ij . (9b)

3) Particular considerations and constrains: SRM control
usually rely on Finite Element Analysis (FEA) models to
obtain the static maps, which possibly makes the parameter
variations considerable. Solutions have been proposed like
online parameter estimation to compensate for variations in
the phase inductance and filtering techniques for measurement
inaccuracies [94]. MPC for SRM is still at an early stage, and
further work on secondary objectives such as acoustic noise
and fault-tolerance is still required.

IV. APPLICATION OF FCS-MPC IN LINEAR INDUCTION
MACHINE

Linear Induction Machines (LIMs) have many applications
such as reciprocating compressor, packing materials handling
and also it is used in subway systems in various coun-
tries such as the USA, Japan, and China [95]–[97]. Despite
comprehensive research of MPC for conventional rotating
machines presented in [95], [98], few works have focused
on MPC for LIM applications. Different MPC strategies have
been presented for LIM applications [98]–[106]. Some of
these strategies have focused on the reduction of thrust and
primary flux-linkage ripples, the decreasing distortion of the
primary current, achieving the Maximum Thrust Per Ampere
(MThPA), and eliminating the weighting factor from the cost
function.

In [99], both running and safety operation for the LIM
have been improved by applying Multistep Model Predictive
Control (MMPC). Meanwhile, the development of two or
three voltage vectors has been proposed in [100], [101] so
as to reduce the current ripples. In [100], the armature current
has been limited within a safe region by inserting a penalty
over-current factor in the designed cost function. Moreover,
an improved deadbeat control with an iterative algorithm is
proposed in [101] to solve the problem of current and voltage
constraints in the traditional DBC. In addition, the deadbeat
control has been improved by producing the maximum thrust
in the whole working condition [102]. Further, the FCS-MPC
is improved by adding the MThPA criteria with different
condition such as presented in [103]–[105]. Finally, some
researchers have developed the MPC without weighting factor
to reduce the time consumed like [98], [106].

In order to completely eliminate the weighting factors,
reduce the calculation process and improve the performance
of the LIM drive system, a new cost function is proposed in
[103]. The new cost function is based only on the primary flux-
linkage error. Extra improvement can be accomplished with
the proposed control approach by achieving MThPA criterion.
This method is called Finite-Set Model Predictive Direct Flux
Control (FS-MPDFC).

Based on the dynamic model of the LIM, the error between
the reference thrust and the actual thrust ∆Fe = F ∗e −Fe can
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drive system.

be expressed by [105],

∆Fe =
3

2

π

τ

1

τlσ
‖ψ1‖‖ψ2‖

(
sin(θ12 + δψ1)− sin(θ12)

)
, (10)

where θ12 is the angle between the primary and secondary
flux-linkages. Notice that, from (10), the relation between
the thrust error and the incremental deviation of the thrust
angle, δψ1 is non-linear. Therefore, a PI controller is used to
generate the incremental variation of the thrust angle. Hence,
the reference primary flux-linkage can be calculated by,

ψ∗1α = ‖ψ∗1‖ cos(θΨ1 + δψ1) (11)
ψ∗1β = ‖ψ∗1‖ sin(θΨ1 + δψ1), (12)

where |ψ∗1 | is the amplitude of reference primary flux-linkage,
and θΨ1 the angle of the estimated primary flux linkage. In
order to guarantee the maximal thrust, the reference primary
flux-linkage |ψ∗1 | can be calculated based on [103].

The proposed cost function depends only upon ψαβ refer-
ence and predicted components as expressed by

g =
(
ψ∗1α − ψ1α,i

)2
+
(
ψ∗1β − ψ1β,i

)2
. (13)

The block diagram of the proposed FS-MPDFC strategy is
shown in Fig. 6. The final expression of the predicted primary
flux-linkage can be written as:

ψ1α,i(k + 1) = ψ1α(k) + Ts(u1α,i(k)−R1i1α(k)) (14)
ψ1β,i(k + 1) = ψ1β(k) + Ts(u1β,i(k)−R1i1β(k)). (15)

The proposed FS-MPDFC is tested under the thrust load of
100 N, linear speed of 6 m/s and sample time of 2·10−4s. The
responses of electromagnetic thrust, primary flux linkage, and
linear speed are shown in Fig. 7. It is observed that the FS-
MPDFC can achieve faster response with lower thrust ripple
compared to the other FS-MPDTC method mentioned in [103].

V. APPLICATION OF FCS-MPC IN MULTIPHASE MACHINE

Multiphase systems are those that have more than three
phases (n = 5, 6, 7, 9, 12, . . .) and could be of either induction
or synchronous type. The possibility to split the power into
more phases and its inherent fault-tolerance operation with no
extra hardware are the main advantages compared with tradi-
tional three-phase systems [107]. For that reasons, multiphase
systems are considered ideal for fault-tolerant and high-power
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Fig. 7: Responses of thrust, primary flux-linkage, and linear
speed for LIM based on FS-MPDFC.

applications such as electric propulsion and traction (i.e. ships
and electric vehicles) and generation systems (i.e. offshore
wind energy systems) [108]. Nevertheless, the additional de-
grees of freedom (typically named x − y planes) that exist
in multiphase systems also make them a good alternative for
various nontraditional purposes such as battery chargers for
electric vehicles or multimotor systems fed by a single power
converter [109].

The application of new control techniques for multiphase
systems has been undoubtedly one of the main research
topics that has caught the attention of the MPC community.
Therefore, much effort has been directed over the last decade
to improve the performance of traditional control schemes by
using MPC-based controllers. The application of FCS-MPC as
a MPCC for multiphase machines is presented below, taking
a 6-phase IM as an illustrative example.

A. Standard MPCC of Multiphase Machines

Fig. 8 shows the control structure of a 6-phase IM variable
speed drive using the standard Indirect Rotor Field-Oriented
Control (IRFOC) technique where the inner current control
loop is implemented with the standard MPCC. Then, the
stator current reference in the α−β plane (i∗s,αβ) is generated
from the outer speed control loop and from the d-axis current
reference (i∗sd). The MPCC uses the following discrete-time
model of the system to predict the future values of the 6-phase
IM’s currents im =

[
iTs,αβ i

T
s,xy i

T
r,αβ

]T
:

ik+1
m = Akikm +Bvks , (16)

where is,αβ =
[
isα isβ

]T
and is,xy =

[
isx isy

]T
denote

the stator current in the α−β and x−y planes, respectively.
The rotor current is defined accordingly ir,αβ =

[
irα irβ

]T
.

Matrices Ak and B depend on the 6-phase IM parameters
and the present value of both, the rotor speed ωk and the
sampling time Ts. The input stator voltages are denoted by
vs=

[
vTs,αβ v

T
s,xy

]T
. To provide delay compensation, a two-

step ahead prediction of the stator currents is=
[
iTs,αβ i

T
s,xy

]T
is typically performed. To this end, it is necessary to esti-
mate and predict the unmeasurable rotor currents at instant
k + 1 [110], [111].
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Fig. 8: Voltage space vectors and 64 switching states in α−β
and x− y planes and MPCC scheme for a 6-phase IM.
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Fig. 9: Experimental stator current responses presented
in [112] using (a) standard MPCC; (b) MPCC-VV; (c) M2PC;
(d) N-M2PC control methods. The same stator current refer-
ences are applied for all controllers (Reproduced from [112]).

The cost function (17) is used to define the desired behavior,
i.e. the stator current tracking. For a 6-phase IM, the cost
function is evaluated 49 times, and then, the Voltage Source
Inverter (VSI) switching state (Sk+2

opt ) for the stator voltage
vector that minimizes the cost function is selected and applied
to the 6-phase IM by means of the VSI during the next sample
time.

g =
∥∥i∗k+2
sαβ − i

k+2
sαβ

∥∥2

2
+ λxy

∥∥i∗k+2
sxy − i

k+2
sxy

∥∥2

2
. (17)

The tuning of the weighting factor (λxy) is a heuristic pro-
cedure providing trade-off between the variables of inter-
est [113]. Other examples of cost functions for multiphase
machines include reduction of common-mode voltages, torque
ripple minimization and VSI switching losses [114], [115].

B. Particular Considerations and Constraints

The standard MPCC is an alternative to the inner PI current
controller used in typical FOC schemes. The latter technique
is one of the most used control structures for multiphase
machines. Compared to the standard PI current controller,
MPCC provides faster current tracking and wider current
control bandwidth at the expense of a higher computational

TABLE I: Control algorithms comparison

FOC DTC MPTC

Tuned Param. 6 4 3

Exter. Control PI PI PI

Inner Control 2 PI 2 Hys. Contr. Pred. Contr.

Flux Angle Yes Yes No

Coordinate Transf. Yes No No

PWM Yes No No

Constraints inclusion Difficult Difficult Easy

Control Complex. High High Low

Computational Burden 8 µs 8 µs 12 µs

cost, worse x − y current control, and higher current ripple.
An open issue is the simultaneous control of primary α − β
flux/torque production plane and secondary x − y machine
losses plane. Many variations of the standard PCC have been
proposed for this problem. Fig. 9 summarizes the experimental
results for some of the most recent variations of the MPCC
method, namely the MPCC with Virtual Vector (MPCC-VV)
[116], Modulated Model Predictive Control (M2PC) [117]
and a novel variation named N-M2PC [112]. The most recent
reviews of PCC structures with different cost functions for 5-
phase IM and 6-phase IM are available in [118] and [119],
respectively.

VI. GENERAL ASSESSMENT OF FCS-MPC WITH HIGH
PERFORMANCE CONTROL STRATEGIES

From the theoretical point of view [120]–[122], the com-
parison of FOC, DTC and MPTC (see the Fig. 2 in paper
part I) is summarized in Table I, including the required tuned
parameters, external loop controller, inner loop controller,
system control, etc. In this section, these methods are studied
comparatively by using experimental tests.

A. Evaluation Criteria

1) Switching frequency: Unlike the FOC method, where
the carrier frequency fc of the PWM imposes the switching
frequency as fsw = fc/2, the DTC and MPTC strategies
perform variable switching frequency. Thus, to ensure a fair

TABLE II: Parameters of the IM

Parameter Value

dc-link voltage Vdc 582 V

Stator resistance Rs 2.68 Ω

Rotor resistance Rr 2.13 Ω

Mutual inductance Lm 275.1 mH

Stator inductance Ls 283.4 mH

Rotor inductance Lr 283.4 mH

Nominal Speed ωnom 2772 rpm

Nominal Torque Tnom 7.5 Nm

Rotational inertia J 0.005 kg/m2
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Fig. 10: Experimental results: steady-state performance under
three control algorithms. (a) FOC; (b) DTC; and (c) MPTC.

comparison, the goal is to establish an average switching
frequency equal to the one obtained using FOC. To this end,
the DTC’s switching frequency is taken as a reference to adjust
the sampling frequency used in the MPTC and the PWM’s
carrier frequency employed in the FOC.

2) Steady-state performance: The Standard Deviation (SD)
is used in this work to quantify the torque ripple. Besides, the
current Total Harmonic Distortion (THD) is used to compare
the performance of the tested control methods.

3) Dynamic performance: In this work, the time for the
electromagnetic torque to reach the reference is used to
evaluate all control algorithms’ dynamic performance.
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Fig. 11: Experimental results: dynamic torque response under
three control algorithms.

B. Performance Evaluation

The IM test bench consists of two 2.2 kW squirrel-cage
IM. The load machine is controlled by a 3.0 kW Danfoss VLT
FC302 inverter to provide load torque, and the main machine is
driven by a 14 kVA servostar600 inverter. The parameter of the
IM are summarized in Table II. A self-made 1.4 GHz real-time
computer system, Embedded PC104, is used for the control
system of the inverter, with 16 kHz sampling frequency. All
methods are carried out experimentally on the same test bench
and using the same speed PI controller with 8 rad/s bandwidth.

To demonstrate the steady-state performance of all meth-
ods, the first comparative experiment is tested at full speed
(2772 rpm) with a full load torque (7.5 Nm), as shown in
Fig. 10. It should be noted that we have done a lot of
experiments to tune the relevant parameters to achieve the
optimal performance of each method. The measured THD of
FOC, DTC and PTC are 3.2%, 4.0%, and 3.6%, respectively.
It is clear that FOC algorithm achieves the best current
performance at this operating point. FOC and PTC achieve
smaller torque ripples, which are 0.8 Nm and 0.9 Nm, and the
SD of torque are 0.1473 and 0.1852, respectively. DTC has
slightly bigger ripples of 1.2 Nm, and the SD is 0.2227.

At the same time, when evaluating the error between
the observed load reference value (7.5 Nm) and the torque
fluctuation average value, only the FOC algorithm achieves a
zero torque tracking error, which is due to the use of internal
current PI controllers and the modulator. However, more PI
parameters need to be tuned for a cascaded control structure.

Dynamic performance is one of the important indicators for
evaluating various algorithms. Therefore, the torque dynamics
of all methods are compared in the second test under the step-
change load torque (from 0 Nm to 7.5 Nm), as shown in
Fig. 11. From this picture, we can see that FOC algorithm
takes a long time (2 ms) to reach the torque reference,
because the inner current loop with limited bandwidth will
limit the dynamics of the outer speed loop and the use of
modulator will cause a delay. On the contrary, DTC and
MPTC exhibit a shorter dynamic process (0.5 ms) because they
have theoretically unlimited bandwidth. However, the primary
disadvantage of the direct control method is that the selected
voltage vector will be kept throughout the control interval,
which possibly results in higher torque ripple.

To evaluate the dynamic performance over the entire speed
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Fig. 12: Experimental results: reversal performance under
three control algorithms. (a) FOC; (b) DTC; (c) MPTC.

range, the final comparative experiment demonstrates a full
speed reverse test. Fig. 12 shows the results of rotating speed,
electromagnetic torque, and stator current of all methods,
respectively. As can be seen from the figure, all methods have
achieved very similar results. While, FOC shows better current
performance, which is the benefit of using the independent
inner current PI controller. In the MPTC algorithm, the cost
function considers the prediction errors of torque and flux.
Therefore, the weighting factor determines the electromagnetic
torque performance and the quality of magnetic flux. In
summary, all methods in the comparison result can achieve
acceptable control performance throughout the entire speed
range.

Finally, the performance comparison of the tested control
strategies in terms of switching frequency, current THD, torque
SD, among other indexes, is summarized in Table III. As
shown, the FOC algorithm’s steady-state performance is better
since, for similar switching frequencies, the current THD
and torque ripple are slightly lower. However, in terms of
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Speed &
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OUTER CONTROL LOOPS

Fig. 13: MP3C scheme based on optimized pulse patterns.

the dynamic performance, the FOC algorithm takes a longer
settling time for torque transients when compared to MPTC
and DTC strategies. Besides, MPTC can achieve dynamic
responses like the DTC while keeping better steady-state
performance.

VII. ASSESSMENT OF MPC IN A HIGH POWER DRIVE

A. MP3C Control Strategy

The block diagram of the MP3C strategy is depicted in
Fig. 13. This controller combines the modulator and inner
control loop in one computational stage using the receding
horizon control policy [28]–[34]. From this perspective, for a
given input trajectory, an internal model of the drive system
allows predicting the system’s output trajectory over a predic-
tion horizon. An optimization stage minimizes the stator flux
error by manipulating the time-instant of the optimal switching
transitions derived from Optimum Pulse Patterns (OPP) [123].

B. Experimental Results

Experimental results for a medium-voltage NPC inverter
(dc-link voltage is set to Vdc = 4.84 kV) driving a 3.3 kV
IM rated at 1140 kVA are summarized in this review paper
(further details can be found in [33]).

Torque steps from 85% to 35% rated torque are shown in
Fig. 14. MP3C achieves the same torque settling time as DTC
[124], [125], which is below 1 ms. This feature is due to the
insertion of additional switching transitions into the switching
pattern in case of large stator flux errors [30].

C. Assessment and Comparison with FOC-SVM

To quantify the user benefits of the MP3C strategy in
relation to the standard FOC with space vector modulation
(SVM), a comprehensive simulation work of an idealized

TABLE III: Comparative analysis of experiments

FOC DTC MPTC

Switching Freq. 4 kHz 4 kHz 3.92 kHz

Current THD 3.2% 4.0% 3.6%

Torque SD 0.1473 0.2227 0.1852

Dynamics 2 ms 0.5 ms 0.5 ms
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variable speed drive system was done in [33]. The harmonic
performance of MP3C with that of FOC-SVM is compared
in Fig. 15. As shown, up to 50% lower current distortions
or up to 40% lower switching frequency can be obtained by
using MP3C. A third alternative is to reduce both the switching
frequency and the current distortions. An example of this
approach is addressed by the diagonal arrow in Fig. 15. Here,
MP3C reduces the switching frequency by 20% and the current
TDD by 35%.

As can be concluded from the above analysis, the perfor-
mance of the drive system can be optimized by adequately
reducing the iron and copper losses in the IM and the switching
losses in the power converter. Also, low current distortions
imply low ripple of the electromagnetic torque, which leads
to lower mechanical stress. This feature allows improving
the reliability and also enables increasing the maintenance
intervals to reduce the operational costs of the drive system.

In an effort to quantify these benefits, detailed simulations
of a 3.3 kV drive system with a 10.3 MW IM were carried
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abc

N

S
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Fig. 17: Multistep model predictive current control for elec-
trical car applications, [35].

out (further details in [33]). The trade-off between the inverter
losses and the harmonic losses of the machine is shown in
Fig. 16 when varying the switching frequency at nominal
speed and load. It is clear from the results that MP3C achieves
a superior performance in terms of losses. As indicated by the
arrow in Fig. 16, MP3C at fsw=150 Hz achieves a total loss
reduction of 25 kW with respect to SVM at fsw=250 Hz. This
loss reduction can have a significant impact on both the capital
expenditure as well as the operating costs of the system. For
instance, by considering an electricity price of 80e per MWh,
the operational cost of the whole drive system can be reduced
by 21ke per year, [33].

VIII. ASSESSMENT OF MPC FOR ELECTRIC VEHICLES
APPLICATION

The implementation of predictive control for a multi-step
prediction, or also known as long-horizon prediction, has been
proposed as a control strategy in power electronics, [126]. The
main characteristics of this method is its ability to work with
lower switching frequency, reducing the losses of the inverter
in comparison with PWM [127]–[129]. This last characteristic
has allowed it to position itself as an attractive strategy for
electromobility applications, where energy efficiency is essen-
tial, [35]. Sphere decoding allows one to solve the underlying
integer optimization problem in a computationally efficient
way, [130], [131].

The proposed multi-step strategy with sphere decoding in
[35] is shown in Fig. 17. The proposed method was imple-
mented in a two-level VSI feeding a Interior-PMSM which is
a typical electrical drive system for electrical car. In this work
the cost function used is,

g =
t+N∑
k=t

(1− λu)
∥∥∆ik+1

dq

∥∥2

2
+ λu

∥∥∆uk
∥∥2

2
, (18)

where the control objectives are the direct and quadrature
machine currents along with the change in the three-phase
switching positions to minimize the commutations.

The efficiency in the use of energy is crucial today. This
becomes even more important in electromobility applications
where the available energy is limited, as is the case with
an electric car. Fig. 18 shows the performance of multistep
strategy, where it can be seen that it is possible to reduce the
losses in the converter for the same harmonic distortion.
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TABLE IV: Measurements showing the total inverter losses
difference ∆P = 100× (PMPC − PFOC)/PFOC.

Speed (rpm)

Load Torque (Nm) 1000 2000 3000 4000

10 -26% -14% -13% -14%

20 -20% -9% -9% -13%

30 -16% -6% -7% -12%

40 -10% -5% -6% -11%

50 -7% -4% -6% -10%

Fig. 18: Inverter switching losses versus THD, reproduced
from [35]. Here, fs refers to the sampling frequency.

Table IV shows a comparison between the inverter losses
generated by MPC and FOC in a wide operating range, that
it is a summary of the Fig. 8 of [35]. FOC method always
generates greater losses in the inverter. Around nominal speed
and nominal torque this difference is smaller, however in other
operating points this difference is very significant.

Another important requirement for a control scheme in
an electromobility application is to reduce the vibrations it
generates. In [35] it is shown that the acoustic noise generated
by MPC is comparable to linear controller with PWM.

IX. CHALLENGES AND FUTURE WORK

Until now, MPC has shown that it can be applied in a
variety of electrical machines using commercially available
microprocessors. And that it works well. The main challenge
for MPC is to be adopted by the industry and to achieve this
goal it must demonstrate that it offers some advantages in
relation to linear control with Pulse Width Modulation (PWM),
which is the standard solution. What the industry demands
from the control strategy is:
• Ease of application.
• An increase in inverter efficiency.
• Reduction in the distortion of the current supplied to the

motor.
• Control of acoustic noise, very important in electric cars.

• Robust behavior against parameter mismatch.
• Be implemented with standard microprocessors.
• Applicability to a wide range of converter systems, in-

cluding grid-connected converters as well as inverter drive
systems.

All these aspects must be addressed in future research. In
addition, future work should make a very careful comparison
with Field Oriented Control, using linear controllers and PWM
and where possible, to demonstrate that it can achieve better
results. The comparison must be made independently for each
application, converter and motor type. A good result on a drive
with a 10 kW induction machine will not necessarily be the
best on a 10 MW synchronous machine.

X. CONCLUSIONS

The results presented in this paper show that MPC can
be adapted to control a wide variety of electrical machines,
maintaining the simplicity of the basic control strategy. Par-
ticular restrictions and conditions associated with the different
types of machines can be easily included by introducing minor
changes in the cost functions. Speed, torque, and flux are well
controlled in all applications.

A general assessment of the dynamic behavior of the con-
trolled machine shows that model predictive control reaches
better results than two well-established high-performance
strategies, namely Field Oriented Control and Direct Torque
Control.

A more specific assessment in a high-power machine driven
by a 3-level neutral point clamped inverter shows that the
strategy known as Model Predictive Pulse Pattern Control
has superior performance, reducing the inverter losses and
the distortion in the motor current when compared with the
classical solutions.

Another specific assessment for electric cars shows that
multi-step model predictive current control has an outstand-
ing behavior generating less current distortion in the motor,
reducing the inverter losses, with a comparable acoustic noise,
compared to classical linear control.

As the main conclusion, it can be affirmed that Model
Predictive Control emerges as a brilliant and competitive
alternative to high-performance strategies for the control of
electrical machines.
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