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ABSTRACT Gait is the locomotion attained through the movement of limbs and gait analysis examines

the patterns (normal/abnormal) depending on the gait cycle. It contributes to the development of various

applications in the medical, security, sports, and fitness domains to improve the overall outcome. Among

many available technologies, two emerging technologies that play a central role in modern day gait analysis

are: A) wearable sensors which provide a convenient, efficient, and inexpensive way to collect data and

B) Machine Learning Methods (MLMs) which enable high accuracy gait feature extraction for analysis.

Given their prominent roles, this paper presents a review of the latest trends in gait analysis using wearable

sensors and Machine Learning (ML). It explores the recent papers along with the publication details and

key parameters such as sampling rates, MLMs, wearable sensors, number of sensors, and their locations.

Furthermore, the paper provides recommendations for selecting a MLM, wearable sensor and its location

for a specific application. Finally, it suggests some future directions for gait analysis and its applications.

INDEX TERMS Gait analysis, machine learning, wearable sensors, survey, medical applications.

I. INTRODUCTION

Walking is a fundamental human activity that involves the

combined efforts of the muscles, brain and its nerves [1]. Gait

refers to cyclical locomotion achieved through walking. This

includes the movements of arms, legs, hip, feet, and limbs [2].

Generally, the gait of each person is unique depending on the

gait parameters such as gait phases, step length and muscle

force, etc., [3]. Therefore, it helps to understand the individ-

uality and liberty in humans. The analysis and characteriza-

tion of gait parameters is called gait analysis. Gait analysis

helps in investigating different musculoskeletal functions and
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approving it for publication was Lorenzo Mucchi .

gait parameters. Therefore, gait analysis supports numerous

applications in healthcare [4]–[8], security [9]–[11], sports

and fitness domains [12], [13]. For example, Hu et al. [4]

provide a vision-based solution for the Freezing of Gait (FoG)

detection. Similarly, [5], [6] and [8] are gait based assess-

ment solutions for Parkinson Disease (PD), cerebral palsy

and variety of chronic diseases progression, respectively. Gait

analysis requires data acquisition and extraction tools of the

gait features. For gait analysis and feature extraction, various

wearable and non-wearable solutions are proposed in the

literature. Non-wearable methods generally consist of vision-

based, environment-based, Radio Frequency (RF) based solu-

tions. In contrast, wearable technologies are composed of

accelerometer, gyroscope and force sensors, etc.
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TABLE 1. List of important acronyms.

Vision-based gait analysis use either a video camera [14],

[15], a thermal vision sensor [16], [17] or a depth camera

[18], [19]. Alternatively, the environment-based gait assess-

ment rely on floor-deployed pressure sensors [20], [21] and

infrared sensors [22], [23]. However, both such solutions

require a controlled research facility for the analysis that

limits their applicability in external/outdoor environments

[24]. RF-based solutions are made of radars [25], [26], other

microwave sensors [27] andWireless Fidelity (WiFi) beacons

[28], [29], and suffer from the complexity involved in instal-

lation. In contrast, wearable sensor solutions are cheap and

can be used outside controlled environments while the user

is performing daily activities naturally. Wearable sensors are

worn or attached to various parts of the body to monitor vitals

and gait parameters. Therefore, wearables are frequently con-

sidered as the the most suitable technology for the healthcare,

security, sports, and fitness applications [30]–[32]. In gait

analysis, accelerometers [33], [34], gyroscopes [35], Inertial

Measurement Units (IMUs) [36] and force sensors [37] are

widely used tomeasure gait characteristics [38]. For example,

Derawi et al. [33] measure the cycle length using a hip-

worn accelerometer for gait based authentication. Similarly,

a gyroscope attached to the trunk is used to monitor the

change in the trunk angle for fall detection in [35].

Different sensors enable collecting a lot of data for gait

analysis; then, the challenge is that data processing and learn-

ing algorithms are required to make decisions. For example,

the decision to stimulate the muscles based on irregular gait

for fall prevention. Threshold-based statistical solutions are

widely used for such processing. Additionally, it helps in

analyzing the effects of various independent gait variables on

dependent gait variables. Multivariate statistical techniques

such as Linear Discriminant Analysis (LDA) and Principle

Component Analysis (PCA) help in representing the gait data

for linear analysis [39]. Similarly, such methods reduce the

dimensionality of the data. However, these approaches often

generate a high number of false alarms during gait classifica-

tion. The statistical approaches produce less efficient results

when the nature of the problem is nonlinear or complex

[40]. One more drawback of employing statistical methods

for the gait analysis is their sensitivity to noisy data that

leads to performance degradation [41]. Therefore, the latest

research is moving towards Machine Learning (ML) because

of high accuracy in processing the gait parameters based on

application requirements [42].

TABLE 1 lists the important acronyms and TABLE 2

provides an overview of the target areas and limitations of

the existing reviews. Tao et al. [43] provide a detailed review

of the gait analysis and wearable sensors. Similarly, [24]

presents a review of gait analysis using wearable and non-

wearable systems. However, both studies are relatively old

(2012 and 2014) and do not include the Machine Learn-

ing Methods (MLMs). Likewise, [44] presents a system-

atic review of gait analysis and wearable sensors but is not

specific to ML. The studies [45], [46] provide reviews on

accelerometer-based gait analysis and inertial sensor-based

gait analysis, respectively. However, there are various other

wearable sensors such as gyroscope, pressure sensor, etc.,

which are not covered in such reviews. Reviews on gait based

recognition (identifying a person based on walking pattern)

are given in [47], [48]. However, these studies are specific to

the security applications of gait analysis and are not purely

based on wearable sensors and ML. The papers [49], [50] are

specific to deep learning approaches for security and health-

care using gait analysis. Similarly, a survey on gait analysis

limited to fall detection and fall prevention is presented in

[51]. A broader review of human gait analysis along with

approaches, applications, and ML is provided in [40].

In contrast to the above works, we present a survey specific

to wearable sensors combined with ML to highlight the latest
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trends in the domain of gait analysis. The reason for selecting

these technologies is their ability to develop environment-

independent and realistic applications. The overall contribu-

tions of this paper are listed as follows:

• It provides an overview of gait analysis and wearable

sensors for gait analysis.

• It provides a review of the latest research trends in gait

analysis using wearable sensors and ML. The review

includes an overview of selected papers, publication

details, MLMs, and key parameters of selected papers.

• It summarizes the key insights from the state of the art

research studies and identify gaps and opportunities to

further advance the research.

• It highlights the applications of gait analysis and rec-

ommends (based on analysis) the optimal (widely used)

MLM, wearable sensor, and its location for a specific

application.

• It presents the relationship between sample size and

application based on the analysis.

• It highlights the future research directions for the

researchers working in the domain of gait analysis.

The rest of the paper is organized as follows. Section II

explains the methodology for paper selection. Gait analysis

along with its applications are introduced in Section III.

Section IV describes the wearable sensors for gait analysis.

A comprehensive review of the selected papers is presented

in Section V. Finally, Section VI and Section VIII provide the

future directions and conclusion of the work, respectively.

II. METHOD

For the systematic review and analysis, the Preferred

Reporting Items for Systematic Reviews and Meta-Analyses

(PRISMA) method is used [52]. The paper selection method

based on PRISMA is illustrated in figure 1 and summarized

in what follows.

The PRISMA method is based on four steps as given

below:

1) Identification

2) Screening

3) Eligibility Checking

4) Selection

The identification process involves the recognition of arti-

cles for this systematic literature review. Therefore, we have

explored following scientific libraries: Google Scholar,

PubMed, IEEE Xplore, and Science Direct for paper iden-

tification and selection. Multiple data strings have been used

to search papers in different libraries as shown in TABLE 3.

The identification process using the above-mentioned

strings resulted in more than 5000 documents. During the

identification process, only the papers from 2015 onward

were considered as we aim to highlight the latest trends in

this domain. In the initial screening, a total of 754 papers

were shortlisted based on their title by 31st January, 2020. All

these papers were further processed based on their abstract,

conclusion, and language, reducing the number of papers to

272. In the eligibility check phase, these papers were down-

loaded and a critical selection criterion is performed based on

the full-text read. The parameters for eligibility check are:

• The published paper should be a journal article or a

conference paper;

• The published paper should deal with gait analysis;

• The published paper should include MLMs;

• The published paper should use wearable sensors for

data acquisition. Hence, all the vision-based papers were

removed;

• The paper should present a concrete methodology and

results.

Finally, after performing the above-mentioned steps and

removing 21 duplicate papers, we were left with 33 papers

which have been selected for this review. However, it is

important to provide an overview of gait andwearables before

reviewing the selected papers. Therefore, the next two sec-

tions provide the details of gait and wearables.

III. GAIT ANALYSIS

Gait is the periodic movement of hands and feet [53]. Differ-

ent gait patterns are distinguished by differences in velocity,

limb movements, force, and ground contact duration. Gait

analysis is the study of gait (for example human) using visual

assessment, and instruments such as cameras and sensors

[54]. It accesses the walking condition of an individual that

is beneficial for designing various applications in medical,

security, sports, and fitness domain [55]–[59]. The overall

gait is divided into several phases that result in defining the

walking pattern. It is important to understand the function-

ality of each stage to identify the changes in normal gait

precisely. Therefore, section III-A presents an overview of

the gait phases.

A. GAIT PHASES

A gait cycle is defined as the duration between the consecu-

tive strikes of the same foot during human locomotion. The

overall gait cycle is divided into two major phases, as shown

in Figure 2:

1) Stance Phase: In this phase (Figure 2(1)), the foot

remains in contact with the ground. This phase con-

tributes to the 62% of the gait cycle [60]. The Stance

phase is further divided into 5 phases.

• Initial Contact

• Loading Response

• Mid Stance

• Terminal Stance

• Pre-Swing

2) Swing Phase: In this phase (Figure 2(2)), the foot

remains in the swing position without the contact of

ground. This phase contributes to 38% of gait cycle.

The swing phase is subdivided in three phases.

• Initial Swing

• Mid Swing

• Terminal Swing
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Initial Contact:

In this phase, the heel strikes the ground and initiate the

joint loading response pattern. The initial contact makes 0-

3% of the overall gait cycle.

Loading Response:

This phase covers 3-12% of the gait cycle that includes

the flat foot placement on the ground. It allows flexion in

the knee for shock absorption. This phase starts after the

initial contact and remains until the opposite foot is raised for

the swing.

Mid Stance:

In this phase, the shank moves forward to support the

forward foot propulsion. It constitutes a 12-31% portion of

the gait cycle. The mid stance phase starts from the lifting

of the opposite foot and continues until the bodyweight is

aligned to the forefoot.

Terminal Stance:

It makes 31-50% of the overall gait cycle and starts with the

rise of the heel from the ground. It lasts until the opposite foot

strikes the ground. This is the final phase in which the single-

limb supports the movement. Also, the bodyweight moves

ahead of the forefoot in this phase.

Pre-Swing:

It is the final sub-phase of the stance that consists of 50-

62% of the overall gait cycle. This phase acts as a transition

between the stance and swing phase. It starts with the initial

contact of the opposite limb and remains until the toe-off of

the first foot.

Initial Swing:

Initial swing is the first stage of the swing phase that

covers 62-75% of the gait cycle [60]. It starts with the rise

of the foot from the ground and lasts until the swing foot

is opposite to the stance foot. It causes a flexion in the

knee and ankle, causing the clearance of the foot over the

ground.

Mid Swing:

The mid-swing covers 75-85% of the gait cycle. During

this phase, the thigh reaches its maximum advancement by

continuing the limb advancements. This phase starts after the

initial swing phase and remains until the hip and knee flexion

postures become equal.

Terminal Swing:

The final phase of the gait cycle makes 85-100% of the

overall cycle. This phase completes the limb advancement

through knee extension. At the end of this phase, the foot goes

in the state of initial contact.

Each phase follows a unique sequence of motion to reach

the motion objective. Therefore, these phases facilitate the

design of various applications in the domain of medical,

sports, and security. An overview of different gait patterns

useful for the specific applications is presented in TABLE 4

[24] and a tree diagram of the sub-categories of gait based

applications is presented in Figure 3. Gait phases in one

cycle are determined by algorithms mostly for generating a

user-specific gait template. This is specifically important in

wearables designed for the elderly. The biggest challenges

TABLE 3. Strings used in search engines of academic literature databases.

in gait template generation is the adaptability of algorithms

when gait speed changes. That is why it is recommended that

at least 3 different algorithms are used when generating such

template (third as a fallback algorithm) [61]. The splasticity

of algorithms used is mostly affected by the wearer’s age.

Young adults (aged 20-30) have more consistent walking pat-

tern and gait symmetry while individuals older than 50 have

shown to exhibit left-right gait asymmetry and lack of gait

consistency. It is also hard for the algorithms used to detect

phase transitions [62].

Correct gait phase detection is important especially inmed-

ical applications (both temporal and spatial gait parameters)

because they allow disease and/or traumatic event assessment

and provide data for physical therapy for treatment optimiza-

tion. Gait analysis in wearables are used for example with
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FIGURE 1. PRISMA flow diagram for paper selection.

FIGURE 2. Gait phases in a normal gait cycle. (a) Stance phase; (b) Swing phase [43].

stroke patients or patients with underlying neurodegenerative

disease (such as Multiple Sclerosis (MS)). For MS gait cycle-

based control of Functional Electrical Stimulators (FES) for

drop foot compensation is the main application. In more

general cases, spatial gait parameter such as stride length can

be used to detect a fall [63].

As mentioned in Section I, we are only considering the gait

analysis techniques based on wearable sensors. Therefore,

VOLUME 8, 2020 167837
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Section IV provides an overview of the wearable sensors used

for gait analysis.

TABLE 4. Gait parameters and applications.

IV. WEARABLE SENSORS FOR GAIT ANALYSIS

There exist various technologies for gait human analy-

sis such as marker and marker-less vision-based technolo-

gies, radio emission and reflection based technologies for

mobility (localization beacons) and motion speed (Doppler

radar) assessment, and wearable motion sensors. Vision-

based sensors require an infrastructure setup for analysis

[24]. Therefore, this solution is intrusive for Activities of

Daily Life (ADL) monitoring and gait support scenarios.

Besides, the setup required for vision-based motion analysis

is expensive. Radio emission sensors lack precision for high

resolution gait analysis and also require supporting infras-

tructure. Thus, we shall only consider wearable (motion)

sensors in this review because of practical use aspects. The

history of wearable sensors starts in the 15th century with the

development of watches. But, the actual rise in this domain

begins in the 19th century. For example, a wearable camera

was developed in 1907 for pigeon photography. Similarly,

Galvanic Skin Response (GSR) was invented before world

war II to detect the lie using pulse rate and blood pressure.

After that, numerous wearable sensors were developed, such

as accelerometer, gyroscope and force sensors, etc. Generally

speaking, wearable sensors are lightweight, cheap, and can be

used to collect the data without disturbing the daily life activ-

ities [64]. The same sensors are widely integrated into hand-

held and smartphone devices, making possible smartphone-

based human motion assessment. The overall specifications

of widely used wearable sensors (as shown in Figure 4) in

gait analysis are presented in the following:

A. ACCELEROMETER

Wearable accelerometers used today are virtually exclu-

sively based on triaxial Micro-Electro-Mechanical Systems

(MEMS) relying on capacitance change measurements [65].

Typical resolution of accelerometers of wearable devices is

14-16 bits and the full scale acceleration is 20-160 m/s2.

Among the other MEMSmotion sensors accelerometers have

the lowest energy consumption of some tens of microwatts

in average. Due to the fact that accelerometer also measures

the gravity it can be well used for the absolute orientation

detection and Zero velocity UPDate (ZUPD) of gait phasing

[66]. From the other side, linear displacement calculation

requires double integration of the accelerometer output sig-

nal. Physical sensor nonlinearities cause a bias error that

will quickly accumulate without appropriate compensation of

ZUPD or other methods and is the main obstacle of precise

dead reckoning motion tracking. Finite sampling rate also

causes motion measurement errors proportional to the speed

and duration of fast movements. Fortunately, modern wear-

able MEMS acccelerometers provide sampling rate of up to

1 kHz that is exceeding the measurement rate used by the

majority of gait analysis experimenting researchers.

B. GYROSCOPE

A gyroscope is also a triaxial MEMS device measuring the

angular velocity of an object, i.e. body part [67]. A gyroscope

works on the Coriolis principle in which the angular momen-

tum is measured based on the linear motion [68]. Typical

resolution and sampling rate of modern gyroscopes is similar

to accelerometers, maximum angular speed is around 1000-

2000 degrees per second; energy consumption is an order of

magnitude higher. Gyroscope sensors can be placed on dif-

ferent parts of the human body such as foot, ankle, knee, and

waist allowing to identify the human posture and gait phases

[69]. The benefits of gyroscopes compared to accelerome-

ters are smaller bias drift and measurements insensitivity to

shocks and gravity field impact.

C. MAGNETOMETER

The magnetometer measures the direction, strength, and rel-

ative change of a magnetic field [70]. In the context of

wearables, Earth’s magnetic field is observed relying on Hall

effect. Magnetometers can be beneficial in measuring the

absolute orientation of a subject for gait analysis [43]. The

sampling rate and Signal to Noise Ratio (SNR) resolution

of micromechanical magnetometers tends to be lower, 10-

100Hz and 8-12 bits respectively. Therefore magnetometers

are used as assistive motion sensor components.

D. COMBINED IMU

IMU is a combined sensor device that measures the linear

acceleration, angular speed, (absolute) orientation, and grav-

itational force of a subject using the combination of linear

accelerometer, gyroscope, and magnetometer [71]. Typically,

Mahony filter with a supplemental Kalman filter is used for

physical sensor fusion of triaxial IMU devices [72]. Some

devices, i.e. Bosch Sensortec chips directly output absolute

orientation in quaternions with the update rate of 100Hz.

Because of its tiny size and internal sensor fusion implemen-

tation, the IMU is the most popular and precise wearable

sensor type for developing gait analysis applications [73].
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FIGURE 3. Common applications of gait analysis.

E. BAROMETER

MEMS barometers (altimeters) are also used additionally to

IMU devices. Such sensors output altitude information and

are used for detecting up- or downstairs movements. How-

ever, barometric sensors are rarely deployed for gait analysis

due to rather slow reaction and inaccuracy.

F. FORCE AND STRAIN SENSORS

Force or pressure sensing is used in robotics, haptic sensing

including interactive toys, medical devices [74]–[76]. The

force sensors are divided into four main types: capacitive

force sensors, piezoelectric force sensors, resistive, and opti-

cal fibre bragg grating force sensors. The pressure force sen-

sor is widely used for gait analysis from simple by embedding

them in the shoes or soles [24]. In such case sensor measures

the Ground Reaction Force (GRF) [77]. By a simple case a

single force sensor is used for gait phase separation, for exam-

ple on foot-drop electrical stimulation devices. In sophisti-

cated cases whole pressure map of the footstep is derived by

the sensor. Sensoria footwear can be mentioned as a typical

commercial example here. Force (strain) sensors are also used

as goniometers for joint angle measurements [78]. There is

a tendency to move towards textile-based stretching strain

sensors [79]. Xenoma e-skin strain sensitive garment is a

typical product example of such sensors.

G. ELECTROMYOGRAPHY (EMG)

An EMG measures muscle activities such as the volun-

tary or involuntary contraction of muscles [80]. It can dis-

close muscle dysfunction, nerve dysfunction, and transmis-

sion problems between the nerve and muscle all causing

gait impairments [81]. EMG electrodes of the sensor capture

electrical signals used for muscle contraction [82]. After

acquisition, these signals can be further analyzed to detect

abnormalities. The EMG sensor uses two types of electrodes:

needle-like invasive electrodes for high dept and high sensi-

tivity measurements and non-invasive less sensitive skin sur-

face electrodes [83]. The surface EMG (sEMG) testing offers

an assessment of various gait-related features like changes

in muscle properties paresis and muscle stiffness and tension

[24].

Along with the above-mentioned wearables, there exist

various other wearable sensors with applicability in gait anal-

ysis such as electromagnetic tracking system (ETS) [43].

Nowadays, many studies are focusing on combining the

data of multiple sources as a sensor data fusion to improve

the performance of gait analysis. The sensor fusion could

be divided into homogeneous and heterogeneous solutions

[84], [85]. Homogeneous sensor fusion combines data from

the same type of sensors such as wearable-wearable, while

heterogeneous sensor fusion merges data from different sen-

sor types like wearable-vision. The performance of gait anal-

ysis is highly dependent on the underlying algorithms for

the analysis. Generally, different gait-based human activities

such as lying down, falling, jogging, and running are closely

related. The statistical approaches find it hard to classify

such activities accurately, especially noisy, nonlinear, and

complex data. The MLM proves to be an excellent alternative
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FIGURE 4. Examples of wearable sensors for gait analysis.

to provide high classification accuracy of gait parameters.

Therefore, we have only explored the MLMs in this review.

The comprehensive survey of gait analysis techniques based

on wearable sensors and MLMs is presented in next Section.

V. NARRATIVE REVIEW ON GAIT ANALYSIS USING

WEARABLE SENSORS AND ML

The aim of this paper is to present and analyse the recent

trends in gait analysis based on wearables and machine learn-

ing. Therefore, as mentioned earlier in Section II, a total

of 33 papers have been selected for the period 2015 to 2020.

A general overview of the selected papers along with key

findings and limitations is presented in Subsection V-A. This

is followed by a qualitative synthesis in Subsection V-B.

A. OVERVIEW OF SELECTED PAPERS

Wu and Wu [86]:

This paper aims the accurate identification of the gait.

Each participant performs a 10 m walk carrying a force plate

at the foot for data acquisition. The data values are further

normalized based on body weight and duration of gait. The

gait variability of six gait parameters is analyzed using the

coefficient of variation. Support Vector Machine (SVM) [87]

is used to evaluate the gait symmetry in this study. The

analysis is done using three different kernel types (Linear,

Polynomial, Gaussian Radial Basis Function) in SVM for

each dataset [88]. A 101-dimensional gait pattern is used

for SVM training. Finally, a six-dimensional cross-validation

scheme was proposed to evaluate the performance of SVM.

Key Findings:

The classification performance of SVM is maximumwhen

the gait parameters are obtained using PCA. The PCA

removes the redundant gait information that results in obtain-

ing accuracy (90%), sensitivity (90%), and specificity (88%).

These results are better than using a 101-dimensional gait

pattern (in which PCA is not used) with accuracy (87%),

sensitivity (86%), and specificity (85%). The second key

finding of this study is SVM with a non-linear kernel obtains

better intrinsic information hidden in gait parameters than

SVM with a linear kernel.

Limitations:

The authors use statistical learning algorithms to quantify

gait symmetry. However, statistical symmetry measures are

computationally expensive, and their explication is less clear

than discrete approaches.

Chen and Xue [89]:

This paper aims the recognition of different human activ-

ities using sensors. A mobile-based accelerometer is used to

acquire data from subjects while performing eight different

ADL.Additionally, an android based application is developed

to facilitate the data acquisition method. A modified CNN

that works on selecting the best number of epochs is used

for activity recognition. It includes three convolution layers

and three pooling layers. During this study, the width of the

convolutional kernel is set to two. The suggested CNN shows

better accuracy results than SVM and an 8-layer Deep Belief

Network (DBN) [90].

Key Findings:

The paper shows that CNN offers the highest HAR accu-

racy (93.8%) as compared to SVM (90%) and DBN (88%).

One more finding is that both the SVM and DBN show better

recognition accuracy when combined with FFT during the

extraction process. Lastly, the average accuracy of CNN is
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minimum (88.3%) during walking identification as compared

to falling, running, walking quickly, etc. This is because

of walking is sometimes confused with quick walking and

walking up/downstairs.

Limitations:

The proposed solution applies CNN to the entire dataset of

the sensor. It impacts the computational power and introduces

energy inefficiency for the mobile wearable device [91].

Zebin et al. [92]:

This paper’ aim is the the activity recognition of six differ-

ent and common daily life activities. In the study, five inertial

sensors are attached to the lower body for data collection. The

CNN [93] is used to identify the different ADL such as sitting,

standing, walking, laying down, walking upstairs andwalking

downstairs. Furthermore, Rectified Linear Unit (ReLU) and

soft-max pooling are used to improve the accuracy of the

recognition. During the data acquisition, the data is collected

in the form of vectors from sensors. The signals from the

accelerometer and gyroscope in the inertial sensor are pre-

processed and segmented in 128 different values. The perfor-

mance of CNN is compared against theMultilayer Perceptron

(MLP) [94] and SVM. The CNN shows better computational

load and classification accuracy as compared to the other

algorithms.

Key Findings:

The Deep Convolutional Neural Network (DCNN) offers

the highest HAR accuracy (97.01%) as compared to SVM

(96.4%) and MLP (91.7%). Similarly, the DCNN shows

better performance in terms of computational load that is

(3.53 seconds) as compared to SVM (10.6 seconds) andMLP

(6.7 seconds). One more finding is that increasing convolu-

tion layers reduces the complexity of derived gait features

that helps in distinguishing gait features accurately. However,

it also increases the computational load. Finally, it is observed

that wider kernel size and smaller pooling size improves the

recognition accuracy of DCNN.

Limitations:

The proposed approach requires less computational power

after training the data. However, the training cost of CNN is

high [95].

Ordóñez and Roggen [96]:

This paper targets human activity recognition using wear-

ables. Five different ADLs are recognized using this method.

Furthermore, this study targets different sporadic right

arm gestures. For data acquisition, 7 IMU sensors and

12 accelerometers are placed on the different parts of the

human body. The data is pre-processed using linear inter-

polation [97] for channel normalization in the interval [0,

1]. The dataset is acquired after 3 hours long recording in

which a subject is asked to repeat each gesture 70 times.

The overall dataset is divided into classes where each class

represents a feature. Furthermore, Skoda dataset [98] is used

to evaluate the presented method. The DeepConvLSTM [99],

consisting of 8 layers, is used for the recognition. In the

proposed method, the length of the sliding window is 500 ms,

and the step size is 250 seconds. The DeepConvLSTM yields

the class probability distribution for every timestamp (sliding

window). Finally, the F-measure [100] (a measure of correct

classification of each class) evaluates that targets the correct

classification.

Key Findings:

The DeepConvLSTM offers the maximum F1-score

(0.958) as compared to CNN (0.893). It is also able to

distinguish closely-related activities such as opening/closing

doors efficiently. One more observation is that the increasing

number of layers improves accuracy but also increases the

computational load.

Limitations:

The proposed study uses a Graphical Processing Unit

(GPU) that consumes high energy and is thus not feasible

for wearables devices. Secondly, the sample size is small

(4 subjects) that is not appropriate to accumulate and analyze

gait features.

Neverova [101]:

This paper’s objective is the biometric authentication based

on gait analysis. A time series is collected using the inertial

unit of smartphone. The obfuscation based regularization is

performed on the data to differentiate the notion of device and

user. Furthermore, data processing is performed to generate a

14-dimensional vector consisting of normalized coordinates,

magnitudes, and angles. The overall method consists of two

components: feature extraction pipeline and the biometric

model for the verification. A universal backgroundmodel and

scoring are used for continuous authentication. Dense Clock

Wise Recurrent Neural Network (DCWRNN) is proposed

and compared with CWRNN [102] and Recurrent Neural

Network (RNN) [103] in this study. The presentedDCWRNN

outperforms the other algorithms in feature learning and user

authentication.

Key Findings:

This paper shows that Conv-DCWRNN provides the max-

imum feature extraction and learning accuracy (69.41%)

as compared to Conv-LSTM (68.92%) and Conv-CWRNN

(68.83%). Similarly, Conv-DCWRNN outperforms the other

algorithms in terms of Equal Error Rate (EER) and Half Total

Error Rate (HTER). One more advantage of this scheme is

that it can be used for sequential analysis of data such as

gestural recognition from visual data. Limitations:

The performance of this scheme is highly dependent on the

smartphone. The overall performance can be compromised

with the orientation sensitivity and position of themotion sen-

sor. Additionally, data collection via continuous monitoring

in a dynamic environment for such long duration is challeng-

ing and thus difficult to perform/reproduce in practice?.

Zhen et al. [104]:

This paper aims to distinguish the ADL and fall events.

A total of 500 datasets are generated for ADL and fall events

via a mobile application using inertial sensors. For analysis,

the threshold-based algorithm is used along with the SVM.

It consists of four phases: data training, signature segment

generation, feature selection, and training. The proposed

model merges the angel with SVM to detect the fall. Finally,
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the mobile application generates the alarm in case of a fall to

notify the relent person.

Key Findings:

This paper’s key finding shows that acceleration-based

parameters alone achieve lower sensitivity (80%) and speci-

ficity (81.5%). In contrast, the combination of angle and

acceleration parameters results in better sensitivity (99%) and

specificity (96.5%).

Limitations:

The major limitation of this study is the low number of

subjects (5) for analysis. Generally, a larger dataset offers

better performance for feature analysis and classification.

Chen et al. [105]:

The objective of this paper is to recognize human activities

for a better understanding of human behavior. The dataset

provided by the Wireless Sensor Data Mining (WISDM) Lab

[106] is used for the analysis. The dataset is mainly obtained

using a mobile-based tri-axial accelerometer. The LSTM

[107] based cell structure is used for activity recognition. The

data is normalized with zero mean and standard variance for

the algorithm to remove the extra noise. After that, the data is

segmented using a sliding window of size 50 in the proposed

model. The LSTM generates the feature vectors based on the

accelerometer data that is then classified (by multi-classifier)

for activity recognition.

Key Findings:

This paper shows that the LSTM-based approach for fea-

ture extraction achieves an accuracy of 92.1%.

Limitations:

The training data used in this analysis have fluctuations due

to the small data-size and non-uniform distribution of data.

Furthermore, the LSTM confusion matrix indicates many

prediction errors in similar activities like jogging and walk-

ing upstairs. Therefore, this study requires more data, more

robust regularization, or fewer model parameters.

Camps et al. [108]:

This paper targets FoG detection in Parkinson’s Disease

(PD) patients. During data acquisition, an IMU collects a

9-channel signal from subjects. This study uses CNN with

eight layers for FoG detection. The CNN uses a window size

of 2.5 seconds to achieve more accurate results. Spectral win-

dow stacking (SWS) uses the information of two consecutive

9-channel signals and joins them in the spectral domain. The

SWS takes two arguments to analyze the window at a specific

time t and previous time t-1. After that, FFT is computed for

each window by keeping the first symmetric half of the win-

dow. Finally, both the windows are stacked together, resulting

in a new window of 64 × 18. Data augmentation transforms

the training dataset in reasonably coherent identical dataset

versions with a certain probability. The hypermeter tuning

process calculates such a probability to prevents overfitting.

In addition, data augmentation uses shifting and rotation to

distribute the same data in different parts of the sample. The

first convolution layer fuse this information using a 3 × 18

shape kernel. The same process is followed in the first four

layers with the difference in the kernel dimension. Fifth and

sixth layers are dense layers consisting of 32 neurons con-

nected with all the input and output cells. Finally, the output

layer consists of one neuron that is used for FoG detection.

Key Findings:

This study shows that the 1D-ConvNet achieves a better

GeometricMean (GM) between the sensitivity and specificity

(90.6). In contrast, the most efficient state of the art algorithm

based on SVM achieves a GM of 83.

Limitations:

The proposed scheme requires almost 25% more param-

eters for classifying one sample than SVM. It makes this

scheme computationally expensive and not energy efficient

for wearable sensors.

Gharani et al. [109]:

The goal of this paper is the identification of useful gait

features for estimating blood alcohol content (BAC). For

that, an iPhone application ‘‘DrinkTRAC’’ is developed to

collect the gait data using the inertial sensor in mobile. Drink-

Track application asks two questions from the users regarding

perceived intoxication and the number of consumed drinks.

After that, the users are asked to perform a 5 step gait task

via the application. Sensor fusion removes the gravitational

effect to yield linear acceleration. A sliding window extracts

noise free features such as mean, standard deviation, energy,

and correlation in time or frequency domain. Additionally,

the FFT [110] is used to compute the energy in the frequency

domain. MLP, along with Bayesian Regularization Neural

Network (BRNN), is used to model the relationship between

the input, gait, and output (BAC value). Furthermore, it solves

the overfitting problem of the data. The performance of the

MLP scheme is compared with SVM and linear regression.

Key Findings:

This paper shows that the BRNN outperforms SVM and

linear regression in terms of the correlation coefficient, MAE,

RMSE, relative absolute error, and root relative squared error.

Furthermore, the Bayesian regularization based training algo-

rithm outperforms the Conjugate-gradient and Levenberg-

Marquardt training algorithms. The Bayesian regularization

showsminimumMSE of 5.09e-06 as compared to Conjugate-

gradient (5.80e-04) and Levenberg-Marquardt (1.90e-05).

Limitations:

This study uses limited ecological momentary assessment

(EMA) data, almost 70%. Generally, the training with limited

data can lead to the wrong interpretation of results, less accu-

rate BAC detection in this scenario. Also, it involves only ten

participants, with the majority of white females, which limits

the generalizability of the solution. Therefore, this study does

not apply to young adults with light alcohol use. Additionally,

the difference in alcohol tolerance is not included in this study

that can affect the accuracy of the solution.

McGinnis et al. [111]:

This paper aims at the gait speed measurement in patients

suffering from a neurological disorder. The data is collected

from two groups (sample and control group) using accelerom-

eters. The control group consists of people with no gait

impairments. At the same time, the sample has a majority
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of multiple sclerosis (MS) and a few healthy persons. The

subjects for both groups perform a six-minute walk test on

the treadmill at three different speeds. Additionally, people

with MS also conducts the Postural Control Test (PCT) [112]

and complete an oral history and physical activity-related

questionnaire. The accelerometer data generates the six times

series from each device after applying low pass and band-pass

filtering. These time series are further divided into two series

with five seconds of non-overlapping windows to estimate

walking speed. A total of 32 features are extracted from each

window for analysis. The Support Vector Regression (SVR)

[113] is used to estimate the walking speed of the subjects.

The models are trained for seven combinations of sacrum

using supervised machine learning. The leave-one-subject-

out approach [114] is applied to improve the accuracy of the

model. Furthermore, Bland-Altman limits of agreement [115]

with 95% confidence interval, RMSE, and slope-intercept

model is generated to analyze the performance of walking

speed. Finally, the subjects are classified based on the com-

parison of truth values and walking speed.

Key Findings:

The paper shows that the gait speed estimation error and

impairment severity are not correlated. It also shows that the

data from multiple sensors and locations (sacrum, thigh, and

shank) yields better RMSE (0.12 m/s) and a 95% confidence

for the error of (-0.25, 0.22) m/s. In contrast, a single sensor

from sacrum achieves RMSE of 0.15 m/s and error of (-

0.31, 0.29) m/s. Furthermore, sensor fusion systematically

overestimates speed by only 0.01 m/s.

Limitations:

The major limitation of this study is data collection from

treadmill walking; therefore, it is not a generalized solution

for ambulation in natural environments. Also, the model

training is performed on the data of multiple groups such

as control and healthy groups. A specific MS patients based

model training has the potential to improve the results further.

Zhao and Zhou [116]:

This paper aims to improve gait recognition. Inertial sen-

sors in a smartphone are used for data acquisition. Addition-

ally, the proposed approach uses the image-based approach

using the time series of inertial sensors for gait recogni-

tion. The proposed scheme consists of four steps: gait detec-

tion, angle embedded gait dynamic image (AE-GDI), feature

extraction, and classifier. For gait starting position detection,

a grid-based greedy method is used. Quasi-equally spaced

grid is also used to overcome the peak rejection problems

[117] arises by the grid-based greedy method. The AE-GDI

is generated using inertial data that is composed of sliding

windows. The angle generated by the data in 3D spaced is

used as gait features. The AE-GDI provides the periodicity

of gait features and much richer 2D features. The CNN with

seven layers is used in the last two steps for the classification.

Convolution layer provides a D matrix called a feature map

based on the input of AE-GDI. For a richer representation of

the input, each convolutional layer produces multiple feature

maps. In seven layers, there are two max-pooling layers to

reduce the number of parameters and computation. Eventu-

ally, the full-length classifiers provide the required vector for

the classification.

Key Findings:

The proposed scheme uses a gait segmentation algorithm

based on greedy searching that results in avoiding the mis-

judgment of fraud/misleading gait cycles. The proposed solu-

tion shows an accuracy of 96.6% using two combined gait

cycles. This accuracy is 13.6% better as compared to Cosine

Similarity [118]. One more finding is that CNN, with non

zero paddings in each convolution operation, offers better

performance than zero paddings. The padding avoids the

shrinking of data (reduction in volume size) and allows more

space for the kernel to cover the data image, which helps in

the more accurate analysis.

Limitations:

TheAE-GDI is sensitive to sensor location and installation.

The complex and noisy data from a loosely installed sensor

can reduce the accuracy of the proposed scheme. Lastly, CNN

is computationally expensive.

Murad and Pyun [119]:

The goal of this paper is human activity recognition using

wearable sensors. Five publicly available datasets collected

by wearables are used for recognition purposes [120]–[124].

These datasets consist of the activities performed in dif-

ferent environments. The Deep Recurrent Neural Networks

(DRNN) is used for activity recognition. Data from mul-

tiple sensors is converted into windows and for the input

to the DRNN model. It calculates the prediction score of

each window that is fused with the softmax layer to pro-

duce the class membership probability. The DRNN model is

trained using 80% of data, while the remaining 20% data is

used for the testing. The mean cross-entropy [125] between

the ground truth values and the predicted output is used as

the cost function. It uses an optimization algorithm (Adam)

[126] to reduce the cost function by back-propagating the

gradient and updating the model parameters. Furthermore,

the dropout techniques resolve the overfitting of data [127].

There different DRNN methods are used in this study: unidi-

rectional DRNN, bidirectional DRNN, and cascaded DRNN.

But, the accuracy of each method varies with the datasets.

The proposed model is compared with variousMLMs such as

SVM, sequential Extreme Machine Learning (EML), CNN,

and Random Forest. DRNN shows the highest classification

accuracy and per-class precision.

Key Findings:

This paper shows that a four-layered unidirectional DRNN

model achieves the best accuracy (96.7%) for the UCI-HAD

dataset as compared to SVM (96%) and CNN (95.2%). The

same DRNN model shows the maximum accuracy of 97.8%

for the UCS-HAD dataset. In contrast, the three-layered

bidirectional DRNN model yields the best performance for

complex opportunity dataset. The cascaded DRNN model is

best for the Daphnet FOG dataset and the Skoda dataset. The

findings show that the introduction of sufficient deep layers

helps in extracting discriminative features effectively.
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Limitations:

The implementation of LSTM-based DRNN with various

deep layers and hyper parameters on low power devices

such as wearable sensors is a challenging task due to high

computational cost.

Dehzangi et al. [128]:

This paper aims to distinguish the human based on his

gait. It uses a total of 10 subjects, wearing five IMUs each,

for the data acquisition. After data acquisition, the statistical

approaches remove the noise from the data. Also, a 10th

order Butterworth bandpass filter [129] generates the desired

frequency elements from the IMUs data. Additional bandpass

filtering is applied to the data for cycle extraction and inter-

ference elimination. After that, FFT transforms the signal in

the frequency domain. The amplitude threshold is used to

overcome the irregularities in the signal. The data cycles gen-

erated from ankle sensors are used as a reference gait cycle.

After that, a time-frequency division block converts the input

signal to time and frequency space. A supervised DCNN

is proposed for motion-based gait authentication. It takes

a 3D image as input and converts it to predictive vectors.

A gradient descent method minimizes the softmax function

loss during training. The overall DCNN model is composed

of convolution, pooling, ReLU, and a fully connected layer.

In the convolution layer, a set of predefined filters perform the

convolution of the input. Pooling combines the closely asso-

ciated features by applying the chosen operator. ReLU layer

introduces the non-linearity in the data without changing the

dimension of data. Finally, the multi-sensor fusion based on

early and late fusion integrates the information from various

sensors to improve the gait authentication.

Key Findings:

The analysis shows that the angular velocity shows better

recognition accuracy than the acceleration data in the major-

ity of cases. It also finds that the gyroscope is more suitable

for the trunk while the accelerometer shows better results at

the lower limbs. Furthermore, it is observed that the early

and later fusion further increase the identification accuracy

to 93.36% and 97.06%, respectively.

Limitations:

This study lacks the tuning procedure for data of different

characteristics from multiples sensors and locations. Addi-

tionally, this study involves only ten participants that are not

suitable for the training of the model.

Steffan et al. [130]:

The objective of the paper is to identify the stable and

unstable body postures using the optimal combination of the

sensors. During the data acquisition, different combinations

of 6 inertial sensors are tested from 34 possible sensors place-

ment. Also, a multi-marker motion capture system obtains the

normalized motion of different subjects. The Master Motor

Map (MMM) provides body data for motion analysis. Various

MLMs (as defined in TABLE 8) are trained and evaluated

using up to six sensors to find the optimal classification set

and sensors set. Finally, the F1-score is used to determine the

optimal number of sensors along with the classifier.

Key Findings:

The first key observation is that using data from more

sensors do not always lead to better results. In reality, using

only relevant sensors reduce the dimension of useless data

and improves the outcomes. Secondly, a specific sensor loca-

tion is not always optimal for every algorithm, where each

algorithm offers the best performance for different places.

Therefore, the best solution is based on the combination of

an algorithm and sensor. A multilayer perceptron with six

sensors achieves the highest F1-score of 82% as compared

to SVC, Bayes, KNN.

Limitations:

This work computationally emulates the IMU data;

therefore, it does not consider the noise, calibration

issues, and other IMU parameters that limit the solution’s

generalizability.

Almaslukh [131]:

This paper targets human activity recognition with high

accuracy and low computational cost. The inertial sensor

(of the smartphone) collects the data from subjects while

performing six different ADLs. The median filter [132]

removes the noise from the data. Furthermore, the But-

terworth low-pass filter [129] is applied to separate the

accelerometer signals. The Stacked Auto Encoder (SAE)

is applied to distinguish different ADLs. The proposed

SAE consists of two autoencoders on top of each other

along with a softmax layer. Overall 70% subject’s data is

used for training while 30% is for testing. There are two

training phases: unsupervised pre-training and supervised

fine-tuning. The fine-tuning of the model is done using

a different number of hidden layers, the number of neu-

rons in each layer, and the max epoch to perform the task

efficiently.

Key Findings:

The SAE shows better recognition accuracy of 97.5 %

as compared to multiclass linear SVM (96.4 %), AdaBoost

(94.33 %) and CNN (95.75 %). Furthermore, the aver-

age recognition time of the proposed work is 0.0375 ms,

which is better than the SVM time

of 0.2724 ms.

Limitations:

The training of the proposed method is performed on an

offline computer; therefore, it is not practical to measure and

analyze gait features dynamically. Additionally, the method

requires tuning the model parameters to enhance the accuracy

further.

Cheng et al. [133]:

This paper aims to monitor the mobility and gait for the

early detection of PD patients. The mobile-based accelerom-

eter cumulates data from patients and control group over

24 weeks. The data is further processed with the Euclidean

norm to remove 14% of passive monitoring data [134]. For

activity recognition, this study uses a nine layered DNN

[135]. It results in distinguishing the gait activities from

stationary activities and profile the gait and balance segments

with high accuracy.

167844 VOLUME 8, 2020



A. Saboor et al.: Latest Research Trends in Gait Analysis Using Wearable Sensors and ML: A Systematic Review

Key Findings:

This study shows that passive data collection using a smart-

phone provides insights into daily functioning. The correla-

tion of mobility features with the proposed system evaluates

the PD severity in clinics. Additionally, the proposed model

distinguishes gait activities from stationary activities with an

accuracy of more than 98%.

Limitations:

The passive monitoring of data requires extensive time

periods, such as 24 weeks in this case. Therefore, it is very

exhaustive and time consuming for participants and well as

researchers. Similarly, DNN is computationally expensive.

Zdravevski et al. [136]:

This paper seeks to identify the intended jogging periods

automatically. Also, it investigates the system’s performance

using single and multiple sensors. The data is extracted from

the subjects using single and multiple accelerometers. The

data is segmented using two sliding windows that result in

obtaining the time and frequency features. After that, the fea-

ture algorithms are applied to reduce the number of features

in the dataset. Four different MLMs (SVM, Random Forest,

Logistic regression, Extremely Randomized Trees) are used

and compared in terms of the accuracy of correctly recog-

nized instances.

Key Findings:

This paper shows that the identification accuracy depends

on the model and feature set. For non-overlapping small

segmentation window, the accelerometer placed on the hip

shows better accuracy. In contrast, for large overlapping seg-

mentation window, the ankle based accelerometer gives bet-

ter performance. Nevertheless, both the approaches achieve

accuracies of more than 99%. One more key finding of this

paper is that the combined sensors do not provide significant

improvement as compared to a single sensor. Furthermore,

it finds that the logistic regression offers better performance

as compared to SVM, RF and Extremely Randomized Trees

(ERT).

Limitations:

The dataset is specific to fifteen years old participants.

Therefore, it most likely not be able to identify jogging

periods accurately in older participants.

Abdulhay et al. [137]:

This paper aims to diagnose PD patients using gait anal-

ysis. The gait reading is collected from patients and healthy

subjects using force sensors. Eight different force sensors are

placed below their shoes to measure Vertical GRF (VGRF)

using a two-minute walking test. The VGRF is plotted against

the time that gives various time-domain features such as

the gait pattern of the subject. The time is distributed in

different points to distinguish the stride phases. Furthermore,

the VGRF values are passed through a Chebyshev high pass

filter to remove the extra noise. The analysis shows that the

gait pattern of PD patients is considerably different from

normal persons. For example, the duration of stance time is

longer in PD patients. Similarly, the PD patients touch the

heel and toe at the same time, which is different from the

normal gait pattern. Finally, an FFT is applied to the signal

in the frequency domain to classify the tremor and severity of

the PD.

Key Findings:

The paper finds that a healthy person exerts more heal force

on the ground as compared to toe force. In contrast, toe fore

is greater than the heel force for a PD person. Additionally,

it shows that the relation between the frequency distribution

and tremor severity. For a PD patient, the frequency peak

starts shifting towards lower frequency as the disease pro-

gressed. This scheme achieves an average accuracy of 92.7

% for PD diagnose using gait analysis.

Limitations:

This paper is using general gait parameters such as stance

and swing time. However, only general parameters cannot

capture full information in the gait signal, which reduces the

identification accuracy [138].

Gadaleta and Rossi [139]:

This paper targets authentication based on the walking

style. Smartphone-based inertial sensors collect the motion

data for analysis. The data is gathered over six months using

five-minute sessions in variable conditions. An android appli-

cation is developed to save the data from sensors and to

transfer it to the cloud for further processing. After that,

the cubic Spline interpolation [140] is applied to represent the

data in evenly spaced points. Furthermore, a Finite Impulse

Response (FIR) filter [141] helps removing motion artefacts

and noise. Template-based matching is also applied to pre-

cisely assess the walking cycles regardless of the different

orientation of the smartphone. In this study, CNN helps in

feature extractions after the pre-processing of the data that

results in the first convolution layer CL1. In CL2, the class

variant and discriminant features are identified, and max-

pooling is applied to reduce the dimension of the features

further. Finally, the fully connected layers (FL1 and FL2) use

the output of CL2 and neurons to generate the output vector

that is used for authentication.

Key Findings:

This paper shows that a reliable authentication only needs

fewer than five gait cycles in 80% of the cases. Furthermore,

this scheme achieves a misclassification rate of less than

0.15 for gait based authentication.

Limitations:

The orientation and sensitivity of the smartphone-based

inertial sensor can affect accuracy. Moreover, deep learning

algorithms require high processing power.

Xia et al. [142]:

The topic of this paper is FoG assessment in PD patients.

On-body accelerometers collect the data for analysis. Three-

sigma-rule [143] helps removing the outliers, in which the

mean is replaced with a median. This study uses CNN for

FoG detection. For the training, the time series is divided

into sliding windows of the optimal lengths. The overall

detection process is divided into five portions. In the first

three portions, the features are extracted using different kernel

sizes and scales (with max-pooling and ReLU activation). All
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the learned features in the previous layers are fused in the

fourth section using two schemes. The first scheme performs

the fusion by flatting and concatenating features map of each

signal. The second scheme uses a convolution operator for

features abstraction from the time series. Finally, section

five converts the latent features in the form of vectors to

distinguish different classes. Furthermore, a 10-fold classifi-

cation is used on CNN that divides the data into 10 sets. One

subset is used for testing, while the rest of the subsets are

used for training and validation. This process is repeated ten

times (using each subset for testing) to improve the detection

accuracy.

Key Findings:

The study finds that there is a significant difference

in normal walking and FoG gait. Also, it shows that the

results from the patient dependent dataset are much better

those from the patient independent dataset. The proposed

scheme using the patient dependent data set and softmax

classifier achieves the sensitivity of 99.85 % and specificity

of 99.99 %.

Limitations:

One drawback of this paper is the limited dataset based on

ten patients. Also, some of the PD patients maintain regular

gait, similar to healthy subjects. Therefore, it would be better

to add more participants for data acquisition and divide them

into various groups based on disease, age, etc.

Asuncion et al. [144]:

The aim of this paper is the use of gait in human authentica-

tion. Two independent inertial sensors are placed at the thighs

for data acquisition using a 7 m walk. The dataset is divided

into 40-48 gait cycles with roll, pitch, and yaw angles. After

that, it is plotted in the form of a scalogram, as a function

of time and frequency. This study uses CNN to classify each

person based on the pitch, roll, and yaw. The CNN model

accepts [152×300x3] images and requires four hyperparam-

eters and pooling layers. The pooling layer helps reducing

the dimension of the data set. The ‘‘TrainNetwork’’ function

from MATLAB is used for the data training. Additionally,

stochastic gradient descent with momentum (SGDM) opti-

mizer speeds up the training process [145]. During the cross-

validation, 20% of the data is used for validation, while 80%

is used for training in every kth fold. A total of four datasets

are considered in which three sets are used to separately

train the parameters (roll, pitch, yaw). Finally, a total of 40

(10×10) confusion matrices are generated by using left thigh

yaw data that help in calculating the precision, false discovery

rate (FDR), accuracy, and misclassification rate (MR) of the

data.

Key Findings:

The paper shows that the combined data from pitch-roll-

yaw (PRY) shows better precision and accuracy than individ-

ual parameters. The PRY data achieves 96.70% precision and

93.02 % accuracy from the left thigh. The achieved precision

is 2.88%, and the achieved accuracy is 3.48% higher than the

best individual parameter yaw. The same trend is observed

from the data of the left thigh.

Limitations:

PRY data training is more than three times longer as com-

pared to the training time of the individual parameter. Also,

the placement of the smartphone on thighs is not feasible for

daily use applications.

Huang et al. [146]:

This paper targets acoustic-based gait recognition. The

gait characteristics are measured using a microphone. The

subjects perform a 60-70 seconds walk in the circle of seven

feet diameter. The microphone detects the footstep peaks and

generates a time series for analysis. The time series generates

a vector consisting of mean, SD, skewness, and kurtosis. For

gait recognition, multiple ML classifiers are applied, such as

SVM, KNN, AdaBoost, and random forests. Finally, the less

informative features are removed using feature analysis.

Key Findings:

This paper shows that each MLM offers advantages and

disadvantages based on the features. For example, random

forest and linear SVM offers the maximum mean score

(almost 80%). Contrarily, random forest and the extra tree

provides the maximum cross-validation score (0.815) using

five folds. Furthermore, this study shows that the number

of folds in classification algorithms can make a significant

change in classification accuracy.

Limitations:

The limitation of this paper is that the acoustic-based anal-

ysis is prone to environmental noise. Minor background noise

can decrease the recognition accuracy. Therefore, this solu-

tion is only applicable in controlled/laboratory environments.

Aicha et al. [147]:

This paper aims to develop an early risk detection system

using wearable sensors to prevent falls. A triaxial accelerom-

eter is used for data acquisition from a cohort aged between

65 and 99 years. Furthermore, the questionnaire and physi-

cal tests generate additional datasets. The locomotion bouts

with acceleration in three dimensions are analyzed using a

classification algorithm [148]. This study uses a combination

of the recurrent and convolutional model called ConvLSTM

for the detection. In the experiments, 90% of the data is used

for training, while 10 % is used for testing. A total of five

experiments are performed in this research. The first experi-

ment compares the performance of DNN with the state of the

art technologies. In the second experiment, the performance

of DNN in fall prediction is measured. The third experiment

explores the model improvements based on learning to iden-

tify the people depending on their gait. The fourth experiment

investigates the person-specific information and its impact on

model improvement. The last experiment focuses on cleaning

the data to improve the overall prediction.

Key Findings:

This paper finds that deep learningmodels provide a higher

fall risk prediction accuracy than biomechanical models. One

more finding is that the ConvLSTM model is significantly

faster than the LSTM model. Also, the results show that

the use of general characteristics such as age and weight as

auxiliary output improves the accuracy of the ConvLSTM
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model. Furthermore, it is observed that the pre-processing of

data improves the performance of the model.

Limitations:

The authors do not extract the gait features during the pre-

processing step [149]. Furthermore, this study does not use

the angle or angular velocity, which limits its accuracy.

Rescio et al. [150]:

This paper aims to pre-fall detection reliably and effi-

ciently by improving the mean lead time before the impact.

The data is collected using sEMGs located at the lower

limbs of the subjects. For the risk assessment, the data set

is generated from four different ADLs. The data is passed

through the bandpass filter to remove the noise. Furthermore,

the sEMG data is processed by full-wave rectification by

passing through a Butterworth filter. After that, a calibration

phase is performed to reduce the inter-individual variability

of sEMG signals between different users. Finally, Markov

RandomField (MRF) based Fisher-Markov selector and LDA

are performed for features selection and classification of the

pre-impact event.

Key Findings:

This paper shows that inertial based systems act slower

to recognize the fall risk as compared to the sEMG-based

proposed solution. Hence, the proposed solution shows the

potential to detect an imminent impact due to unbalance gait

faster. However, the inertial based solution provides better

sensitivity and specificity (both in the range of 90-100 %) as

compared to the proposed solution. The sEMG based solution

achieves a specificity of 89.5 % and a sensitivity of 91.3 %.

Limitations:

This paper examines the advantages of sEMG for fall

detection in a controlled environment, which limits its appli-

cability. Furthermore, incorrect placement of sEMG probes

leads to false results. Therefore, an efficient sEMG based

wearable solution is required for realtime applications.

Hsieh et al. [151]:

This paper’s aim is to identify the fall characteristics to

develop a strategic plan for fall prevention. Participants per-

form seven different falls and six ADLs for data acquisition

wearing an accelerometer. The pre-processing of data is done

using a sliding window that also helps in segmenting ADL

data frames. A hierarchical fall detection consisting of a

threshold-based approach and a machine learning approach is

used for fall detection. The threshold-based approach aims to

identify falls and ADLs. The SVM is used in a machine learn-

ing approach to train fall events classifiers using a kernel-

based on radial basis function (RBF) [152]. Finally, the fall

direction identification is used on the identified fall events.

Key Findings:

The proposed scheme achieves high sensitivity (99.83 %),

specificity (98.44 %), precision (98.67 %), negative pre-

dictive value (98.44 %), and accuracy (99.19 %) for fall

detection. The same trend is also visible in fall direction iden-

tification. It shows that the highest fall direction identification

error is in the backward and left lateral direction, and the

lowest error is in the forward direction.

Limitations:

This study is unable to distinguish the fall and lying activity

efficiently. Therefore, it generates a high percentage of false-

positive results (16.67%) for lying activity.

Putra et al. [153]:

This paper aims to align the falls with the characteristic

features of the fall stages for the better identification of falls.

Additionally, this paper addresses the multi-peak problem

using event-triggered machine learning approach EvenT-ML.

The EvenT-ML approach consists of the initial buffer, peak

detection, sample gathering, and multi-peak detection. The

data is acquired using an accelerometer from the subjects

while doing falls and various ADLs. Additionally, a second

dataset is obtained from young adults in which each person

performs several falls and ADLs. Finally, different classifiers

such as CART, k-NN, LR, and SVM are used for training and

testing, while the F-score is used to analyze the algorithm’s

performance.

Key Findings:

The paper shows that features such as acceleration expo-

nential moving average, velocity, and energy expenditure

after aligning with fall stages improve the fall detection rate

and computational cost. Additionally, the proposed EvenT-

ML achieves better precision, recall, and F-score value as

compared to the fixed-size non-overlapping sliding window

(FNSW) and fixed-size overlapping sliding window (FOSW)

approaches. Also, the LR combined with EvenT-ML achieves

the best results as compared to KART, KNN, and SVM.

Limitations:

The study uses a binary classification for fall activities that

results in identifying the near-fall event as a fall event, which

decreases fall detection accuracy.

Ghazali et al. [154]:

The goal of this paper is to identify various sports activities

using IMU. For data collection, the participants are asked

to perform walking, running, jumping, and sprinting. The

data is pre-processed and labeled based on activities with a

sliding window of 2.56 seconds. Finally, a total of 24 features

are extracted based on accelerometer data. Finally, different

classifiers such as DTs, SVM, discriminant analysis, KNN,

and ensemble classifiers are used and compared in terms of

correctly identifying the sports activities.

Key Findings:

This paper shows that the cubic SVM achieves the highest

accuracy (91.2 %) for sports activity recognition as compared

to DT, DA, KNN, where this accuracy is less than 90 %.

Limitations:

The major limitation of this study is the confusion between

the jogging and sprinting activities, reflected by a high per-

centage (20%) of false-negative results for sprinting activity.

Rastegari et al. [155]:

This paper aims at finding the optimal gait features to

improve the assessment and diagnosis of gait. For analysis,

the data is collected using accelerometers from the healthy

elderly, mild PD patients, and geriatrics. The subjects perform

a 10 meters normal walk without any hindrance four times.
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The data represents the stride level features as well as the

overall gait sequence. Statistical approaches have been used

to remove the noise from the data. The maximum information

gain minimum correlation (MIGMC) approach is used to

achieve the appropriate gait features. Also, pair-wise Pearson

correlation analysis identifies the highly correlated features

[156]. For the features selection, ANOVA and Tukey posthoc

comparison tests are used [157], [158]. Finally, different

MLMs ( SVM, Random Forest, Bagging, and AdaBoost) are

compared using 5-fold cross-validation.

Key Findings:

This paper emphasizes selecting the optimal gait features

to reduce the data dimension and computational cost. It shows

that AdaBoost provides the best classification accuracy (100

%) among all the available models based on standardized

feature vectors, whereas Bagging offers the second-best accu-

racy of 96.7 %. In contrast, SVM achieves the best perfor-

mance for non-standardized feature vectors.

Limitations:

A small scale dataset is used in this study, which is prone

to overfitting during training. Additionally, other efficient

feature selection schemes are not compared with MIGMC.

Gurchiek et al. [159]:

The goal of this paper is to detect asymmetric gait pat-

terns in patients recovering from anterior cruciate ligament

reconstruction [160]. The data is collected from the patients

using the three axis-accelerometer and surface EMG. The

overall analysis consists of three steps: stride segmentation,

stride biomechanical analysis, and walking identification. For

walking identification, the accelerometer data is divided into

four windows to extract 11 time and frequency features.

These features act as an input to SVM to identify walking

spell. For training, the data is collected from healthy subjects

to distinguish the walking pattern of patients.Welch’s method

[161] is used to estimate the power spectral density for stride

segmentation. For biomechanical analysis, the principal com-

ponent of acceleration time-series is used. The SEMG data

and acceleration data is resampled as stride percentage and

categorized into two groups. The statistical analysis of both

groups is capable of detecting gait asymmetries for early post-

surgery.

Key Findings:

This paper observes that the symmetry between the

affected and unaffected legs is significantly less during

slow walking for early post-surgery group T1 (range:1.1 –

5.3 weeks) than later group T2 (range:14.3 – 19.1 weeks).

In contrast, fast walking shows no significant difference in

gait symmetry of both groups.

Limitations:

The incorrect placement of sEMG probes leads to false

results and affect the accuracy of the scheme. Additionally,

this study includes a limited dataset based on only eight

patients.

Zhang et al. [162]:

This paper aims to improve the accuracy of gait analysis

using wearables. SportSole consisting of two insole modules

and a data logger collects the data. Each module comprises

an IMU, a logic unit, and a piezo-resistive sensor. This study

includes only healthy subjects who perform a 10-minute

warm-up. After that, the persons walk/run on a treadmill with

variable speed to measure the average preferred speed. Then

the subjects perform two sessions consisting of running and

walking. After each session, the insole module is detached to

record the data. The optical motion capture system combines

with force plates to provide the ground truth values. For

example, the force plates calculate the stride length of each

person. Similarly, piezo-resistive sensors measure the timing

of heel strike and toe-off. Multivariate linear regression with

the least absolute shrinkage and selection operator (LASSO)

helps avoid the overfitting of data [163]. The SVR is applied

to estimate the gait specific parameters. For data training,

subject-specific and generic training methods are used. In the

subject-specific model, SVR and LASSO models are trained

independently for each subject. Contrarily, in the generic

model, both the models are trained subject by subject, using

the data from all the subjects. Additionally, intraclass correla-

tion coefficients (ICC) [164] is used to measure the reliability

of the test.

Key Findings:

This paper shows that the subject-specific method offers

higher accuracy and reliability than the generic methods.

Additionally, the SVR outperforms the LASSO models in

terms of accuracy and validity, especially while using generic

models.

Limitations:

This study includes only fourteen young adults (age

23.1 ± 4.0 years), and their features are extracted using

a treadmill. Hence, it limits the generalizability of the

system. For the real-life applicability of this solution,

it is essential to include more participants from different

age ranges, and analysis should be done in a dynamic

environment/ground.

Abujrida et al. [165]:

The paper’s aim is to distinguish the PD patients and

the severity of the disease based on the gait. A smart-

phone’s sensors (accelerometer and gyroscope) collects the

data from different sets of patients. Participants stand and

walk for thirty seconds each, and accelerometer data is

sampled at 100 Hz. Additionally, surveys filled out by the

patients gather additional lifestyle data. The data signals

are divided into five seconds intervals, and averaging helps

smoothing the results. The peaks in the signals estimate

the walking segment steps. After pre-processing, the gait

features are extracted from the gathered data. Furthermore,

the time features are calculated directly while frequency

features are calculated using FFT and power spectral den-

sity (PSD) [166]. A supervised classification using 10-

fold cross-validation measures the precision and accuracy

of the data. For assessment, multiple ML classifiers are

applied, such as Binary Tree, weighted KNN, logistic regres-

sion, fine tree, quadratic discriminant, random forest, and

cubic SVM.

167848 VOLUME 8, 2020



A. Saboor et al.: Latest Research Trends in Gait Analysis Using Wearable Sensors and ML: A Systematic Review

Key Findings:

The paper shows that random forest provides the best

accuracy of 93% in the classification of PD patients and

detecting walking balance severity. In contrast, Bagged trees

give the maximum accuracy in identifying FoG (98%) and

shaking tremor severity (95%). Furthermore, it is observed

that lifestyle features improve classification results.

Limitations:

The introduction and analysis of various signal segmenta-

tion strategies, such as bayesian segmentation, can improve

the proposed solution’s performance.

Kim et al. [167]:

This paper deals with FoG assessment in PD patients.

During this study, inertial sensors in the smartphone acquire

the data from samples. Videos are also recorded using a

smartphone for FoG assessment and posterior referral review.

Moreover, two more smartphones compare detection perfor-

mance. A mobile application using socket communication is

developed to synchronize the timing of all the smartphones.

The subjects perform three meters walk tests. Furthermore,

to provoke FoG, subjects also perform other activities such as

opening a door, and turning around and entering it. The data is

sliced in 2.5 seconds and converted into the frequency domain

using FFT. The CNN consisting of 2 layers and 20 filters,

is used for FoG detection. 10-folded cross-validation is per-

formed in which 90% of the data is used for the training. The

first layer uses a convolution filter of 1 × 50 size. The max-

pooling layer after the convolutional layer achieves spatial

invariance. A kernel of 6 × 25 fuses the data from various

sensors. ReLU, in all the convolution layers, removes the

negative outputs. The Softmax classifier in the final layer

classifies the final output. Finally, the performance of CNN

is compared with random forest, MLP, DT, SVM, and NB.

Key Findings:

This paper shoes that CNN outperforms the rest of the

algorithms in terms of F1-score (91.8%), sensitivity (93.8%),

and specificity (90.1%) in detecting FoG. The second best

algorithm (random forest) provides a F1-score of 73.5%, sen-

sitivity of 70.8%, and specificity of 89.1%. The second key

finding is that the sensor placement the waist as a reference

provides the highest precision and specificity compared to the

placement in a pocket or at the ankle.

Limitations:

The computation cost of the proposed solution for testing

and detection is too high for a smartphone and therefore

requires the use a remote server for data processing.

Wang et al. [168]:

This paper aims to reduce the knee adduction movement

(KAM) using wearables. This study uses two IMUs for data

acquisition from the subjects with Body Mass Index (BMI)

less than 35. The IMU sensors transmit the data directly

to the mobile application that is then sent to the cloud for

processing. Furthermore, the low pass filter and Butterworth

filter refine the IMU signals. The IMU built-in model is used

to compensate for the zero drift error. Moreover, a real-time

segmentation algorithm helps removing the extra noise in the

data. The ANN and XGBoost algorithms are implemented to

estimate the KAM. Both the algorithms are compared with

the measurements from a laboratory setup. The proposed

ANN uses ten layers with 256 neurons in the first six layers,

128 neurons in the 7th and 8th layers, and 64 neurons in the

last two layers. The RMS optimizer is used for data training

with a learning rate of 0.001 [169]. In this study, 80% of the

data is used for training, while 10% data is responsible for

validation and 10% for testing.

Key Findings:

This paper shows that the ANN is slightly more accurate in

KAMestimation than the XGBoost model. The ANN shows a

regression fitness values of 0.956 as compared to the 0.947 of

XGBoost. The second key finding of this paper is that the

sensors’ stability is affected by its battery level.

Limitations:

Issues related to chosen data communication architec-

ture: the gait training system of the proposed approach is

based on theMessage Queuing Telemetry Transport (MQTT)

server. The MQTT server always requires a stable and robust

internet connection to provide real-time feedback. Addition-

ally, it only incorporates the foot progression angle for KAM

estimation that limits its efficiency. The combination of other

gait parameters, such as trunk leaning and knee thrust gait,

can improve the performance of the system.

These papers are further analyzed based on various param-

eters such as the distribution by years, venue type, appli-

cations, and suitable algorithm for the desired application.

A qualitative synthesis of the selected papers is given in

Section V-B.

B. QUALITATIVE SYNTHESIS

A qualitative synthesis of the selected papers is presented in

this section.

1) YEARLY DISTRIBUTION

We aim to highlight the latest trends in the domain of gait

analysis. Therefore, we have only considered the papers from

2015 onward. The key search of gait analysis on google

scholar shows 167,00 entries. It highlights that a lot of

researchers are showing interest in this domain. However,

we are specifically interested to study the interplay of ML,

gait analysis and the role of wearable devices. Our initial find-

ings show a total of 754 papers based on the title, as shown in

Section II. However, the papers meeting our criteria are only

33, which is only 4.37% of pre-screening results. Therefore,

the gait analysis using ML and wearable sensors require

further attention of the researchers. The primary reason for

such a solution is its applicability in an inclusive environment.

Furthermore, MLMs prove to be more accurate for gait-based

applications, especially in classification and identification

applications. The yearly distribution of the publications is

presented in Figure 5. There are a total of 33 selected studies

in this domain, with an average of 5.5 papers per year. The

figure shows that the highest percentage of selected papers

belongs to the years 2017 and 2018, i.e., approximately 60%.
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FIGURE 5. Yearly distribution of selected papers.

The year 2019 show a relatively lower interest in wearable

sensors with ML as compared to 2017 and 2018, yet it is

comparable to 2016. At the time of writing (May 2020), it is

not possible to comment on 2020 since the actual number of

related publications can only be confirmed once the year is

over.

2) PUBLICATION TYPE DISTRIBUTION

We have only selected conference and journal papers for

this review. Therefore, other publications such as posters,

abstracts, and patents have been removed during the screen-

ing process. The distribution percentage based on the confer-

ence/journal format is presented as a pie chart in Figure 6.

The figure shows that most of the selected papers belong to

the journal category (63.64%).

FIGURE 6. Publication distribution in conference and journal.

3) VENUE DISTRIBUTION

This section presents the distribution of selected papers in

terms of publication venue in Figure 7. The studies are pub-

lished in IEEE, Elsevier, MDPI, Hindawi, PLOS One, and

other venues such as Taylor & Francis andMary Ann Liebert.

From the figure, it is clear that most of the publications belong

to IEEE (37%) andMDPI (21%). Therefore, these two venues

are suitable for the publication of gait analysis, wearable

sensors, and applications. The most frequent venue in our

analysis is MDPI’s sensor journal with six studies. Therefore,

it is recommended to consider this journal to submit such

manuscripts.

4) DISTRIBUTION BASED ON ML

One of main aims of the paper is to review, structure and

classify research studies involving gait analysis driven by

MLMs. Therefore, it is vital to highlight the most frequently

used MLMs. The percentage distribution of selected learning

algorithms is presented in Figure 8. From the figure, it is clear

that most of the papers are using SVM or CNN. The main

advantage of SVM is that it works well with unstructured data

[155]. It also works well in the presence of a small dataset.

The majority of studies in our analysis lack a significant

amount of participants. Hence, such studies use SVM due

to its ability to work well in the presence of a small sample

size [151], [159]. Lastly, the SVM is computationally less

expensive and generates faster results as compared to deep

learning approaches. Because of that, it is frequently used

in fall detection and prevention systems. In contrast, CNN

is computationally expensive but generates more accurate

results. So, it is often used in intricate and closely related gait

patterns where accuracy is essential such as authentication
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FIGURE 7. Publication distribution based on venue.

FIGURE 8. Frequency of MLMs in selected papers.
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and HAR. However, there is also a good interest in RNN,

Random forest, LDA, and LSTM.

5) APPLICATION SCENARIOS

Gait analysis provides applications in the domain of health,

fitness, and security. The applicability of selected papers is

highlighted in TABLE 5.

TABLE 5. Application domain of selected papers.

As mentioned in Section III, these applications are subdi-

vided into specific groups such as HAR, disease diagnosis,

gait classification, and injury avoidance. TABLE 6 lists the

publications according to their applicability and percentage

of papers. The Table shows that roughly 50% of the works

are related to authentication, HAR, and disease diagnosis.

Additionally, TABLE 7 presents the applications with the

widely used MLMs, types of wearable sensors, and their

placements, based on a careful analysis of the papers.

6) SAMPLE SIZE DISTRIBUTION

MLMs require a dataset for training. For that, each study used

different data based on the application; for example, the dis-

ease identification dataset generally involves two groups:

patient group and control group. The overall distribution

of the number of participants in each study is illustrated

in Figure 9. Thirty-four percent of studies use a maximum of

ten participants for the training and testing of their solution.

Similarly, 25% of the publications include participants in the

TABLE 6. Classification of papers based on potential applications.

TABLE 7. Most frequently used parameters for a specific application.

range of 11-30. Generally, large datasets improve decision-

making accuracy. However, the analysis shows that most of

the studies fail to accumulate enough participants. Therefore,

the datasets used in these studies are not optimal, as already

pointed out in some studies.

Figure 10 further highlights the sample size against the

designed application. For example, authentication studies

generally require smaller data sets for the training. In 57% of

the authentication studies, the dataset consists of ten or less

than ten samples. Similarly, fall detection applications are

also designed using less than 50 sample size. In contrast,

the gait improvement studies often use a sample size of 51-

100. This figure presents a generic overview of the sample

size distribution for each application. However, we cannot

conclude that such data sizes are optimal for each application.
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FIGURE 9. Sample size distribution.

The reason is a limited number of studies in our review and

fewer participants for the dataset in most of the studies.

Furthermore, we aim to highlight the latest research trends

in wearable andML that narrow down the selection of papers.

An overview of critical parameters of studies such as sam-

pling rate, wearable sensors, number of sensors, performance

parameters, and simulation tool is given in TABLE 8.

VI. FUTURE DIRECTIONS

This section presents the open research challenges and possi-

ble future direction in the domain of gait analysis.

A. SECURITY

Gait based authentication is attracting various researchers

[96], [144], [146]. Having said that, it is still relatively less

explored domain, as illustrated in TABLE 5. Gait analysis

can further improve the security and authentication using

the fusion of gait and other biometrics such as voice, retina,

and face. In this context, the authors in [170] improves the

authentication rate by combining the gait and face biometrics.

However, this is just an initial attempt in this domain. Further

analysis of other single andmultiple biometrics with gait is an

exciting future challenge. Besides authentication, the design

of a secure mechanism for gait analysis is also required to

prevent external attacks such as spoofing [171].

B. SENSOR FUSION

Sensor fusion aims to combine the data frommultiple sources

into one data. The resulting dataset is more accurate as it

merges the features of numerous sources [172], [173]. Sensor

fusion is further divided into homogeneous fusion and hetero-

geneous fusion. Homogeneous sensor fusion uses the same

type of sensors (wearable-wearable). In contrast, heteroge-

neous sensor fusion merges data from different types of sen-

sors (wearable-vision) [174], [175]. Both fusion approaches

can improve the effectiveness of the data leading to better

decision accuracy. Therefore, sensor fusionwould be efficient

in the development of gait based applications.

C. COVARIATES

The latest vision-based schemes have significantly improved

the efficiency of gait recognition. However, the accuracy of

the recognition based algorithm starts decreasing in the pres-

ence of external covariates such as clothes, shoes, and bags

[176]. Therefore, the design of the covariate aware scheme

to improve gait recognition is an exciting research topic. For

example, a random subspace method is presented in [177]

for clothing-invariant gait recognition. However, the maxi-

mum achieved accuracy in the presented study is 80%. More

efficient methodologies are required to resolve the covariate

issue with high efficiency.

D. OPTIMAL POSITION OF WEARABLE SENSORS

Gait analysis provides information about human locomotion

employed in various domains such as health, fitness, and

security. It aims to maximize the interpretable information

using wearable sensors. However, multiple factors such as the

movement of cloths, vibration, and placement of sensors in

pocket induce interference leading to degrading the quality

of data [178], [179]. Therefore, it is mandatory to investigate

the sensor’s optimal location to improve the quality of the

acquired data. In this context, the authors in [180] find the

optimal foot location for the IMU placement to enhance the

quality of the data. However, the location of wearable varies

to the application requirements. Therefore, further research is

needed for optimal placement of wearables for applications

such as fall detection, fall prevention, and fitness monitoring.

E. ENERGY EFFICIENCY

The significant advantage of the wearable sensor is the abil-

ity to provide continual monitoring. However, the constant

tracking, computing, and, especially continuous (wireless)

data transfer, result in depletion of light-weight device bat-

teries. It can affect the overall Quality of Life (QoL) in

critical scenarios. Therefore, the design of energy-efficient

ML frameworks for microcontrollers and energy efficient raw

data processing is an excellent future direction. For example,

an adaptive framework based on selective sensing is pre-

sented in [181] to improve the system’s energy efficiency.

However, the given scheme reduces the number of samples

that can affect the accuracy of the application. Therefore,

more energy and performance efficient algorithms should

be designed to address this problem, especially on sensing

devices. Additionally, the use of energy harvester is a promis-

ing solution to resolve energy crises in wearable sensors

[182]–[184].

F. CONTEXT AWARENESS

Different locomotion parameters such as stride length, stance

time, and velocity are examined during gait analysis. How-

ever, the condition of the walking surface significantly affects
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FIGURE 10. Sample size distribution for applications.

the gait parameters [185]. For example, the uneven surface

reduces the velocity and step length of the older population

[186], [187]. Therefore, context awareness is an essential

requirement for the applicability of gait analysis in the out-

door environment. In this context, the authors of [188] show

the awareness of the slippery surface leading to a cautious

gait and resulting in fewer falls. However, further research

is required to analyze the locomotion pattern on various

surfaces such as steep surface, sandy surface, and uneven

surface.

VII. OVERVIEW OF KEY PARAMETERS

A. WEARABLE DESIGN

Wearable sensors aim to measure gait parameters in outdoor

as well as indoor places. Generally, these sensors are worn for

a more extended duration of time. In some cases, the proto-

type consists of multiple units, such as sensors, electrodes,

and controllers. Therefore, such solutions are not optimal

for a user’s perspective. Ideally, a wearable needs to provide

comfort to the user [189], [190]. This aspect is often neglected

during prototype development. Therefore, one future chal-

lenge is to work on a wearable designs that are comfortable

and aesthetically pleasing. For example, [191] targets the

design of the wearable system based on closed-loop control

of the gait restoration system by functional electrical stimu-

lation. But, this design is specific to the sensor’s placement at

a single leg. The analysis shows that various other locations

such as waist and lower back results in better accuracy for a

few applications. Hence, the comfortable and usable design

of such prototypes that requires multiple sensors placements

is an interesting future challenge.

B. PREPARATION OF DATASETS

The gait analysis mainly depends on the kinematics data.

Each dataset differs based on feature extraction and loco-

motion pattern. The large datasets result in improving the

accuracy of gait analysis. One major limitation of most

studies, as mentioned earlier, is the limited dataset. There-

fore, the preparation of large public datasets using differ-

ent walking patterns is a possible future direction. Addi-

tionally, the researchers can compare or fuse the results of

these datasets with their datasets to improve the performance

of their study. The use of Generative Adversarial Network

(GAN) is also an interesting methodology to improve the

dataset when real data is not enough [192].

C. LIGHTWEIGHT ALGORITHMS

Generally, the wearable sensors offer limited computing,

memory, and energy resources that cannot be easily increased

[193]. The use of the cloud for processing the wearable data

is one solution [194]. However, it adds extra latency that is

not optimal for the design of critical applications such as fall

prevention. Therefore, the design of a lightweight processing

and classification algorithm is an important future challenge.
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In this context, a lightweight deep learningmodel is presented

for HAR in [195]. However, further work is required for time-

critical applications such as fall prevention.

D. WEARABLE DEVICES CONNECTIVITY

Institute of Electrical and Electronics Engineers (IEEE) and

European Telecommunications Standards Institute (ETSI)

have presented communication standards for vital moni-

toring using sensors. A few notable standards are IEEE

802.15.6 Wireless Body Area Network (WBAN) and ETSI

smartBAN [196]–[198]. These standards support lightweight

sensors to improve the Quality of Service (QoS) connectivity

parameters such as energy efficiency and throughput [199],

[200]. However, to the best of our knowledge, there is no

existing such standards compatible device. Therefore, one

important future research direction is to design and develop

these standard compatible devices to improve the perfor-

mance of remote gait analysis. Furthermore, there are other

limitations of BANs such as interference, security, error cor-

rection, and re-transmission strategies requiring attention in

the future.

E. SMARTPHONE APPLICATIONS AND USER INTERFACE

(UI)

With the increase in the use and processing power of the

smartphone, a mobile-based gait analysis is performed in

most of the studies [201], [202]. Therefore, the development

of smartphone applications for gait measurements is a pos-

sible future direction. Having said that, most of the users

are old and less technology aware. Furthermore, doctors are

also using such mobile devices for remote health monitoring.

Therefore, the design of the application user interfaces with

excellent usability and visibility is also an exciting future

aspect.

VIII. CONCLUSION

Gait analysis facilitates the design of various applications

in the domain of healthcare, security, sports, and fitness.

Wearable sensors are widely used to collect gait parameters

because of their size, price, and ability to operate in the

external environment. This paper explores the latest trends

in gait analysis using wearable sensors and MLMs. At first,

an overview of gait analysis and wearable sensors is pre-

sented. It discusses crucial gait parameters, wearables, and

their applicability in gait analysis. Secondly, a detailed anal-

ysis of the recent studies is performed, highlighting each

publication’s key points and weaknesses. The analysis also

includes the publication details, MLMs, and potential appli-

cation of selected papers. Additionally, it lists the key param-

eters of the publications, such as the algorithm, location of

wearable, sample size, performance parameters, wearable

type, and quantity. A few common problems found during

analysis are the availability of data (small sample size), less

computing power, energy efficiency, and generalizability.

Thirdly, it suggests the widely used algorithms, wearable

sensors, and location for a specific application. Similarly,

it shows the relationship between the sample size by distribut-

ing it according to the target application. The paper highlight

the need to collect user gait data using optimal sample size to

limit data bias and ensure statistical rigour. Lastly, this paper

presents some open research challenges for the researchers

working in this domain.
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