Latin Dances Revisited: New Analytic Results
of Salsa20 and ChaCha

Tsukasa Ishiguro, Shinsaku Kiyomoto, and Yutaka Miyake

KDDI R&D Laboratories Inc.,
2-1-15 Ohara, Fujimino, Saitama 356-8502, Japan
{tsukasa, kiyomoto,miyake}@kddilabs jp

Abstract. In this paper, we propose new attacks on 9-round Salsa20 and 8-round
ChaCha. We constructed a distinguisher of double-bit differentials to improve
Aumasson’s single-bit differential cryptanalysis. We searched for correlations us-
ing a PC, and found strong correlations in 9-round Salsa20 and 8-round ChaCha.
The complexities of the introduced attacks are 2'® in 9-round Salsa20 and 2 in
8-round ChaCha, which are much less than the complexities of an exhaustive key
search and existing attacks on those ciphers. The results show that an adversary
can distinguish keystream bits from random bits using a few input and output
pairs of an initial keys and initial vectors. This method has potential to apply to
a wide range of stream ciphers; a double-bit correlation would be found in case
that no single-bit correlation is found.

Keywords: Stream cipher, Salsa20, ChaCha, eSSTREAM.

1 Introduction

Efficient implementations of stream ciphers are useful in any application which requires
high-speed encryption, such as SSL[13] and WEP[14]. The stream cipher project of
ECRYPT(eSTREAM)[L1] was launched to identify new stream ciphers that realizes
secure and high-speed encryption. This project ended with a proposal of a list of new
eight algorithms in 2008, and one was removed from the list in 2009[2] due to a new
vulnerability of the cipher. Four algorithms are assumed to apply to software imple-
mentations, and remaining three are for lightweight hardware implementations.

Salsa20, one of algorithms for software implementations, was proposed by
Bernstein[5] in 2005, and the cipher is the finalist of the eSSTREAM. Salsa20 offers
a simple, clean, and scalable design and is suitable for software implementations. Bern-
stein advocated use of 8, 12 and 20 round versions of Salsa20. However, in eSTREAM,
the 12-round version was adopted due to the balance, combining a very nice perfor-
mance profile with what appears to be a comfortable margin for security.

More recently, he has proposed the ChaCha[3]], a new variant of the Salsa20 fam-
ily. ChaCha follows the same design principles as Salsa20, and a difference between
Salsa20 family and ChaCha is the core function; the core function of ChaCha realizes
faster diffusion than that of Salsa20 family. ChaCha achieves faster software speed than
Salsa20 in some platforms.

S. Qing et al. (Eds.): ICICS 2011, LNCS 7043, pp. 255 2011.
© Springer-Verlag Berlin Heidelberg 2011

256 T. Ishiguro, S. Kiyomoto, and Y. Miyake

Related work. There are many ciphers proposed in eSTREAM, and some have been
broken by distinguishing attacks. NLS proposed by Hawkes et al[[15]], is an extended
version of SOBER[16]. NLS is a software-oriented cipher based on simple 32-bit op-
erations (such as 32-bit XOR and addition modulo 23?), and is related to small fixed
arrays. This stream cipher was broken by a distinguishing attack[8]] and a Crossword
Puzzle Attack[7]] which is a variant of the distinguishing attack. LEX[6] has a simple
design and based on AES. A variant of the distinguishing attack[10] was found on LEX.
Yamb[17] is a synchronous encryption algorithm that allows keys of any length in the
range 80-256 bits and allows initial vectors IV of any length in the range 32-128 bits.
Yamb was broken by a distinguishing attack proposed by Wu et al.[18]]. Some other
stream ciphers have been broken by distinguishing attacks[[19/20].

Some independent cryptanalyses on Salsa20 have been published, to report key-
recovery attacks for its reduced versions with up to 8 rounds, while Salsa20 has a total
of 20 rounds. Previous attacks on Salsa20 used a distinguishing attack exploiting a trun-
cated differential over 3 or 4 rounds. The first attack was presented by Crowley[9], and
it was claimed that an adversary could break the 5-round version of Salsa20 within 316
trials using a 256-bit key. Later, a four round differential was exploited by Fischer et
al.[12]] to break 6 rounds in 2!’ trials and by Tsnunoo et al.[21]] to break 7 rounds in
about 2! trials.

The best attack is proposed by Aumasson et al.[22]] so far, and it covers the 8-round
version of Salsa20 with an estimated complexity of 22°!. Regarding the 128-bit key,
Aumasson proposed key-recovery attacks for reduced versions with up to 7 rounds[22].
Priemuth-Schmid proposed a distinguishing attack using slid pairs[23]], but Bernstein
showed that time complexity of the attack is higher than brute force attack[4].

For ChaCha, Aumasson attacked the 6-round version with an estimated complexity
of 2'% and the 7-round version with an estimated complexity of 2243 using a 256-bit
key. Regarding the 128-bit key, Aumasson proposed key-recovery attacks for reduced
versions with up to 7 rounds with an estimated complexity of 2'°7[22]].

These attacks are single-bit differential attacks, a type of correlation attacks. In this
method, an adversary chooses the input pair X, X’ and observes the output pair Z, Z’,
where there is a differential in one bit between X and X’. Then, the adversary collects
many output pairs by changing input pair and observes the one bit differential from the
output pair. If the position of the input differential correlates strongly with the position
of output differential, the adversary could distinguish real keystream from a random bit
stream. Additionally, it was indicated a strong correlation from his experimental results.

Contribution. In this paper, we propose a new attack on 9-round Salsa20 and 8-round
ChaCha. We construct a distinguisher using double-bit differentials to improve Aumas-
son’s method, called single-bit differential cryptanalysis[1]. In our attack, the adversary
chooses the input pair X, X’ with a one-bit differential in the same way for a single-
bit differential. Then, the adversary collects many output pairs by changing the input
pair and observing the double-bit difference from the output pair. Finally, the adversary
observes a correlation of the double-bit of the output pair and distinguishes keystream
from the random bits. We searched correlations to compute 2-3 days using a PC, and

Latin Dances Revisited: New Analytic Results of Salsa20 and ChaCha 257

found strong correlations in 9-round Salsa20 and 8-round ChaCha. This results suggest
that the double-bit differential cryptanalysis is more powerful attack than the single-bit
differential cryptanalysis and it reduces total cost of attacks on Salsa20 and ChaCha.
The double-bit differential cryptanalysis has potential to apply a wide range of stream
ciphers; a double-bit correlation may be found in case that even if no single-bit correla-
tion is found.

The rest of the paper is organized as follows; in section 2, we describe specifications
of Salsa20 and ChaCha. Next, we define the scenario of a distinguishing attack and
explain details of the distinguishing attack in section 3. Then, we demonstrate that the
attack achieves a reasonable level of efficacy from the experimental results in section 4.
Finally, we conclude this paper in section 5.

2 Latin Dances

In this section, we describe the specifications of Salsa20[3] and ChaCha[3].

2.1 Salsa20

Algorithm [1l shows Salsa20 algorithm. The stream cipher Salsa20 operates on 32-bit
words, takes as input a 256-bit key k = (ko, k1, ,k7) or 128-bit key k = (ko, k1, ,k3)
and a 64-bit nonce v = (vg, v1), and produces a sequence of 512-bit keystream blocks.
The i-th block is the output of the Salsa20 function that takes as input the key, the nonce,
and a 64-bit counter ¢ = (fy, t;) corresponding to the integer i. This function acts on the
4 X 4 matrix of 32-bit words written as:

X0 X1 X2 X3 To ko k1 k2
X4 X5 X X7 k3 T1 Vo V1
X = =|. . or,
Xg X9 Xio X1 lo i1 T2 ks
X12 X13 X14 X15 ks ke k7 T3
X0 X1 X2 X3 (o)) k(’) k’l ké
X = X4 X5 Xo X7 _ k'% g1 Vo Vi
Xg Xo X10 X1 io i1 o2 ki |
X12 X13 X14 X15 k'1 ké k'3 a3

where o and 7 are constants dependent on the key length.
Then a keystream block Z is defined as:

Z=X+Xx%,

where X" = Round’(X) with the round function of Salsa20 and + is word-wise addi-
tion modulo 232, If Z = X + X, it is called “r-round Salsa20”. A round function is
called a doubleround function, and it consists of a columnround function followed by a
rowround function. The doubleround function of Salsa20 is repeated 10 times. A vector
(x0, X1, X2, x3) of four words is transformed into (zo, 71, 22, z3) by calculating as:

258 T. Ishiguro, S. Kiyomoto, and Y. Miyake

Algorithm 1. Algorithm of Salsa20

INPUT: Initial matrix X, » € N
OUTPUT: Z=X+X"

I: X «X

2: for/=0upto 5 do
30 (xp, X}, x5, X3) « quarterround(xg, x1, X5, x3) /* 3-6:Colmnround */
4 (x5, x5, X5, x) < quarterround(x, xg, x5, X))
5: (Xg> X115 Xg» Xg) < quarterround(x;,, x|, Xg, X4)
6 (x5, X5, X3, X],) < quarterround(x|s, x\,, X\5, X},)
7 (x4, X}, X5, X1,) < quarterround(xg, X}, xg, x1,) /* 7-10:Rowround */
8 (x5, x5, X5, X}) < quarterround(xs, x4, X5, X|)

. / / / J J J J a
9: (X]gs X145 X5, Xg) quarterround(xlo, X140 X5 Xg)
10: (x5, xES, X, x|,) < quarterround(x,s, xES, X5, x,)

11: end for

12: return X + X’

21 =X1 D ((x0 + x3) < 7)
2=x®(z1 +x) K9)
3 =530 (22 +21) < 13)
20 = X0 ® ((z3 + 22) < 18)

This nonlinear operation is called a quarterround function and it is a basic part of the
columnround function where it is applied to columns (xo, x4, X3, X12), (X5, X9, X3, X1),
(X105 Y14, ¥2, Y6) and (y15, ¥3, ¥7, ¥11), and then rowround function transforms rows (xo, x1,
X2, X3), (X4, X5, X, X7), (X8, X9, X10, X11), and (x12, X13, X14, X15).

2.2 ChaCha

Algorithm[2lshows ChaCha algorithm. ChaCha is similar to Salsa20 except the follow-
ing two points. First, the composition of the quarterround function is defined as below.

0=2+2, B3=B®H, =2 <KI16,
=0+, U=0®n, =7 K12,
0=z0+21, B3=13®0, B=KS,
D=2+B, A=0®n, =1 K7

Second, the composition of the initial matrix defined as below.

00010203 To T1 T2 T3
Ky ki ok k| ko ko ko ks
KKKy K|k ks ke
Vo V1 lop U1 VoVi o 1

Latin Dances Revisited: New Analytic Results of Salsa20 and ChaCha 259

Algorithm 2. Algorithm of ChaCha

INPUT: Initial matrix X, r € N
OUTPUT: Z=X+X"

3

1:
2:
3:
4:
5:
6.
7
8

9:
10:
11:
12:

/ «— X
for /=0upto 5 do
(xo,x4,x8,x12) « quarterround(x;, X, xg, x;,) /* 3-6:Colmnround */
(X7, x5, X4, X13) < quarterround(x}, X5, Xg, X{5)
(x5, x5, X1, X14) < quarterround(x), xg, X\, X;,)
(x5, x5, x|, X|5) « quarterround(x}, x5, x{,, X|5)
(X, X5, X1, X15) « quarterround(xg, x5, X}, x15) /* 7-10:Rowround */
(x7, x5, X}, X},) < quarterround(x, xg, X\, X},)
(x5, x5, x5, X13) < quarterround(x}, x5, xg, X{5)
(x5, x, x5, x1,) « quarterround(x}, X}, X;, X1,)
end for
return X + X’

Attack on Latin Dances

In this section, we discuss a distinguishing attack on Salsa20 and ChaCha. First, we de-
fine the semi-regular distinguisher and explain construction of the distinguisher. Next,
we propose a distinguishing attack using double-bit differentials. Finally, we analyze the
attack based on experimental results using a PC and estimate the number of keystream
bits required for the attack and time complexity of the attack.

3.1 Types of Distinguisher

Three types of a distinguisher are known[24] as below.

1.

Regular Distinguisher.

The adversary selects a single key/I'V randomly and produces keystream bits, seeded
by the chosen key/IV, which is long enough to distinguish it from a random bit
stream with a high probability.

Prefix Distinguisher.
The adversary uses many randomly chosen key/I'V’s rather than a single key and a
few specified bytes from each of the keystream bits generated by those key/IV’s.

Hybrid Distinguisher.
The adversary uses many key/IV’s and for each key/IV the adversary collects long
keystream bits.

In this paper, we define the Semi-regular Distinguisher as follows;

Semi-regular Distinguisher. An adversary uses a single random key and enough ran-
domly chosen IVs to distinguish keystream from random bits with a high probability.
The adversary’s ability is intermediate between a regular distinguisher and prefix dis-
tinguisher.

260 T. Ishiguro, S. Kiyomoto, and Y. Miyake

3.2 Construction of Distinguisher

The adversary chooses a key at random. Then the adversary randomly generates IV
and inputs matrix X, X’ that has a difference of i-th bit. The number of inputs is m.

Output sequences are {zo, ,zm 1},1%), -, 1}, where z;, z; € {0, 1}. After that, the
adversary observes #; = z; ® 7, (0 < i < m), where & is exclusive-or.
If{zo, .zm 1}.{zp» .z, ;} were random bit sequences, the probabilities:

Pr[t; = 1] = Pr[t; = 0]

1
= _,0<i<
) O<i<m)
are hold.
If {zo, ,zm 1} and {z,, .z, ;} were keystream bits from a stream cipher, we
obtain the following equations:
1
Pr[r; = 1] = 2(1 +&4)
1
Pr[; = 0] = 2(1 £4),0<i<m)

In this instance, the number of keystream bits required for a distinguishing attack is
O(e dz), where g, is the differential bias explained in Section[3.3] If g, is large enough,
an adversary can distinguish keystream bits from random bit sequences. For example &4
is sufficiently large for 7-round Salsa20 to distinguish keystream bits[22]]. We propose
a double-bit distinguisher for 9-round Salsa20 and 8-round ChaCha in the later section.

3.3 Distinguishing Attack Using Double-Bit Differentials

In this section, we propose a distinguishing attack using double-bit differentials, which
extends the single-bit distinguishing attack in[22]. Let x;, x] be the i-th word of the
initial matrix X, X’, and j-th bit of x; is denoted [x;];. Then, let [47]; be a differential of
Jj-th bit of i-th word after » rounds, where [A?] j = [xil; @ [x}];. In[22], the differential of
r rounds output under [A?] j = lis denoted ([A;]qI[A?]) , and a single-bit differential
is defined by

1
Pr([471,11471)) = , L+ lasd)

The bias &, represents the strength of the correlations between one bit in input and one
bit in output. If a keystream bit is pseudorandom, £; must come close to 0. Aumasson
indicated significant differentials between keystream bits and random bit sequences in
8 rounds of Salsa20 and 7 rounds of ChaCha. However, he could not find a significant
differential, where there were more than 9 rounds and 7 rounds.

! This notation is different from [22] in a precise sense. We defined the reduced version as X + X"
where r is the number of rounds.

Latin Dances Revisited: New Analytic Results of Salsa20 and ChaCha 261

In a distinguishing attack using double-bit differentials, the bias €, of the output
differential is defined by

1
Pr(([4y]4 @ [47); = DI[A71) = o+ ledl)

When ¢; is zero, pairs of (p, q), (s,t) have no significant single-bit differentials. That
means zero and one appear with a probability of ; In other words, a single-bit differ-
ential only indicates a frequency of [4},], = 1. There is a possibility that a correlation
exists between cases of [A;,]q = 1 and [4%], = 1. If the bias &4 # 0, a double-bit differ-
ential indicates such correlations.

In concrete terms, an adversary chooses [A?] ;j from a nonce v or a counter i; therefore,
i and j for Salsa20 are chosen within the ranges 7 < i < 11,0 < j < 32. In ChaCha, i
and j are chosen within the ranges 12 <i < 16,0 < j < 32. The bias g, is dependent on
keys k, and it is difficult to calculate all values of &; due to huge time complexity. The
value g4 can be guessed as a median value 8; as follows;

1
Pr (4], @ [47), = DILA]]) = L+)

4 Experimental Results

In this section, we discuss the experimental results for distinguishing attacks using
double-bit differentials. In Section 4.1, we present an algorithm searching for the maxi-
mum double-bit differential. Then, we demonstrate efficacy of our method using exper-
imental results.

4.1 Algorithm

In a distinguishing attack using double-bit differentials, the adversary previously has
obtained the positions of the maximum double-bit differential in order to distinguish
keystream bits from random bits. First, the adversary chooses a key K at random and
fixes it. Then, the adversary generates many input pairs which have a one-bit differential
each other. After the calculation of the output pair corresponding to each input, the
adversary searches all combinations of output positions for double-bit differentials, and
calculate the median value to collect these differentials. Finally, the adversary calculates
the averages of each median value with randomly changing keys.

Algorithm 3] shows details of the search algorithm. This algorithm requires r, & and
B € N, where r is a number of round, « is the number of trials required to calculate
the average, and 3 is the number of trials required to calculate the median. The balance
between the precision of outputs and the time complexity depends on these parameters.
We discuss the balance and our adoptions in section 4.2. After the choice of K at step 3,
the chosen key is used for the next loop (from step 4 to step 15). In the loop, we calculate
the median values of the double-bit differential for fixed key K are calculated. Values

262 T. Ishiguro, S. Kiyomoto, and Y. Miyake

Algorithm 3. Search for double-bit differentials

INPUT: r,a,feN

OUTPUT: Average of double-bit differential of » round
1: Initialize all count by zero
2: for /=0 up to a do

3: Choose key K at random

4: fork=0uptosdo

5 for all [4°]; such that i, j in controllable value do

6: Choose X, X’ at random where X & X’ = [A?]j =1

7: Z—X+X

8: 7 X +X"

9: for all [4}], such that 0 < p < 16,0 < g <32 do
10: for all [4"], such that 0 < 5 < 16,0 < ¢ < 32 do
11 county q,s[j] < ([45]: @ [4},],)

12: end for

13: end for

14: end for

15: end for

16: mediany, g, [i] < median value of count, g, for all (p,q,r, s)
17: end for

18: average,,,, < average of median,, 4, [i] for all i, (p,q, 1, s)
19: return average, .

[A?] j for all i, j of controllable value have to be chosen at step 5, where controllable
values are nonce or counter in the initial matrix (see Section 2, Section 3.2). Hence, in
the case of Salsa20, we choose i and j within the ranges 7 < i < 11,0 < j < 32, orin
ChaCha, we choose them within the ranges 12 < i < 16,0 < j < 32. From step 6 to step
13, we calculate the double-bit differential using XOR operation; the computational cost
of these steps is dominant in the whole algorithm. The time complexity of the step is
(2°)2/2 = 2!7. Remaining computational costs of the algorithm is calculated as follows;
the number of iterations of the loop from step 5 is 27 and the number of iterations of
the loop from step 2 and 4 is a8. Thus, the total cost of the algorithm is @8 22*.

4.2 Results

In the distinguishing attack using double-bit differentials, we need to find the maximum
values of ;. Accordingly, we conducted an experiment shown in Algorithm [3/to find
the maximum values for Salsa20 and ChaCha. We input @ = 2'2 and 8 = 2!2. The
total time complexity of the experiment is 2*%: the space of IV is 128 bits(=2"), the
combination of output is 218/2 = 217 and the number of trials is 22*. A Intel Core i7
3.3GHz PC requires 2 days computation for the experiment.

We sampled 22* output pairs for each per one input pair. Let o be the variance
of samples, N be the average and N’ is the population mean of [47]; & [A;,]q, where

o ~ VN. The confidence interval is [N’ 6, N’ + 6] and 6 ~ 2 '2, where the confidence

Latin Dances Revisited: New Analytic Results of Salsa20 and ChaCha 263

Table 1. Salsa20 Distinguisher

Round key length [4%]; (], 40 e

9 256 [A%7 [A]s (47,12 0.003112
256 [A%7 [43] (4115 0.003112
256 [451n1 [45)i6 (4515 0.002292
256 [A90n [49]s [43]16 0.002292
256 [0 [471ss (47,115 0.001832
256 [0 [43]is [47]26 0.001832
256 [A9013 [A]i6 (43124 0.001216
256 [4%; (491 [40116 0.001216
256 [44 (4301 (4315 0.000619
256 (A0 [431s (43110 0.000619
128 [4%10 [43,]1s (43112 0.003657
128 [A%110 47112 [433]1s 0.003657
128 [49]e [4},]10 [475111 0.002112
128 [43ls [47,]11 47,110 0.002112
128 [AS1s [47, 16 [43115 0.001287
128 [4%s [43)is [49,16 0.001287
128 [4%); [47116 [47;1as 0.000756
128 (4217 [43;1as (47116 0.000756
128 [40)14 [42,111 [49,]s 0.000251
128 [A0114 [4],]25 [4)5]1 0.000251

N=RNeR=JNo N RN JNo JiNe BNe e BN A A= INc ENc I\ BNo Ao

coefficient is 95%. In our experiment, 8; is larger than 2 12. thus, the results obtained
from the experiment are reliable.

The results for the maximum values of 8; are shown in table [T and table 2] In
Salsa20, the maximum value of &) is 0.003112. In[24], the number of streams for the
distinguisher was estimated as N = 0 4624 M2, where 1\1/1 =Plz;®z;] é Therefore,
if the adversary obtains 2! keystreams bits in Salsa20, the keystream bits can be dis-
tinguished keystream from random bit sequences. The adversary can also distinguish
keystream bits from random bit sequences using only two bits of keystream in case of
ChaCha.

We compare our results with existing results in Table[3] The best attack was proposed
by Aumasson et al.[22] and it covers the 8-round version of Salsa20 using a 256-bit key
with an estimated complexity of 22!, Regarding the 128-bit key, Aumasson proposed
key-recovery attacks for the reduced versions with up to 7 rounds[22] with an esti-
mated complexity of 2!!''. For ChaCha, Aumasson attacked the 6-round version with an
estimated complexity of 2'* and the 7-round version with an estimated complexity of
228 using a 256-bit key. Regarding the 128-bit key, Aumasson proposed key-recovery
attacks for the reduced versions with up to 7 rounds with an estimated complexity of
2197[22]]. Our results show that our distinguishing attacks are lower cost (i.e. time and
memory complexity) than the above results of existing researches. In both Salsa20 and
ChaCha, an adversary could attack more rounds version with lower cost. Especially, for
ChaCha, we estimated that an adversary only required 2 input pairs for a distinguisher.

264 T. Ishiguro, S. Kiyomoto, and Y. Miyake

Table 2. ChaCha Distinguisher

Round key length [4°]; (47, 40 £

8 256 %115 [4] [45,]a 0.890259
256 [4%]115 [45, 1 [43]56 0.890259
256 [A%11 [43]17 (4515 0.878544
256 40,1 [4% 105 (4517 0.878544
256 [A?3]15 [Ag]lg [A?4]26 0.878052
256 (A% 45,1 (4315 0.878052
256 [4%]15 [43116 [45,1hs 0.871461
256 [A%]15 [45,]y [45]16 0.871461
256 [4% 114 (43157 (45,105 0.871338
128 [A%]05 [45,]10 [45,], 0.781044
128 [A%]55 [45,]) [45,]0 0.781044
128 [4%]14 [43,]1s [4%]12 0.761928
128 4001 [45]00 [45,]1s 0.761928
128 [A%1y [45,]) [4%]15 0.741681
128 [40,10 145,11 [4%,], 0.741681
128 [A0]y [4%,]s (45104 0.739875
128 [y [4%,] [45,]5 0.739875
128 [0 [4%] (48], 0.720158
128 [0y [45]; [45,] 0.720158

OO0 00 00 OO0 OO0 OO0 OO0 OO0 OO OO0 OO OO0 OO0 OO0 OO0 OO OO o0

Table 3. Time complexity

Type Round/Key length time complexity Reference

Salsa20 5/256 248 o1
Salsa20 6/256 2139 221
Salsa20 7/256 2151 221
Salsa20 8/256 251 [22]
Salsa20 9/256 216 This work
Salsa20 8/128 21 [22]
Salsa20 9/128 216 This work
ChaCha 6/256 2139 221
ChaCha 7/256 2248 221
ChaCha 8/256 2 This work
ChaCha 6/128 2107 [22]
ChaCha 8/128 2 This work

5 Concluding Remarks

We proposed new distinguishing attacks on 9-round Salsa20 and 8-round ChaCha,
which uses double-bit differentials. The complexities of the introduced attacks are 2'¢ in
9-round Salsa20 and 2 in 8-round ChaCha, which are much less than the complexities of
an exhaustive key search and existing attacks. Our attacks could not be directly applied
to the full-round Salsa20 and the full-round ChaCha due to computational complexities

Latin Dances Revisited: New Analytic Results of Salsa20 and ChaCha 265

for finding double-bit differentials; thus, these ciphers are not presently under threat.
Obviously, the distinguishing attack using double-bit differentials can be extended to
distinguishing attacks using a triple-bit differential or more-bit differentials. We will
improve the applicability of our method to extend the number of bits for differentials in
our future research.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Aumasson, J.P,, Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New Features of Latin

Dances: Analysis of Salsa, ChaCha, and Rumba. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 470-488. Springer, Heidelberg (2008)

Babbage, S., Canniere, C.D., Canteaut, A., Cid, C., Gilbert, H., Johansson, T., Parker, M.,
Preneel, B., Rijmen, V., Robshaw, M.: The estream portfolio (rev. 1). eSSTREAM, ECRYPT
Stream Cipher project (2008),

http://www ecrypt eu org/stream/portfolio revisionl pdf

Bernstein, D.J.: ChaCha, a variant of Salsa20. In: The State of the Art of Stream Ciphers
SASC 2008 (2008), http://cr yp to/ChaCha html

Bernstein, D.J.: Response to ”’Slid pairs in Salsa20 and Trivium” (2008),

http://cr yp to/snuffle/reslid 20080925 pdf

Bernstein, D.J.: The Salsa20 Family of Stream Ciphers. In: Buell, D. (ed.) New
Stream Cipher Designs. LNCS, vol. 4986, pp. 84-97. Springer, Heidelberg (2008),
http://cr yp to/salsa2® html

Biryukov, A.: A new 128-bit key stream cipher LEX. eSTREAM, ECRYPT Stream Cipher
project (2005), http://www ecrypt eu org/stream/nls html

Cho, J.Y., Pieprzyk, J.: Crossword puzzle attack on NLS. Cryptology ePrint Archive, Report
2006/049 (2006), http://eprint iacr org/

Cho, J1.Y., Pieprzyk, J.: Linear distinguishing attack on NLS. In: eSSTREAM The ECRYPT
Stream Cipher Project, No. 2006/044, pp. 285-295 (2006)

Crowley, P.: Truncated differemtial cryptanalysis of five round Salsa20. In: The State of the
Art of Stream Ciphers SASC 2006, pp. 198-202 (2006)

Englund, H., Hell, M., Johansson, T.: A note on distinguishing attacks. IEEE Trans. on Info.
Theory, 1-4 (2007)

eSTREAM. Ecrypt stream cipher project, http://www ecrypt eu org/stream

Fischer, S., Meier, W., Berbain, C., Biasse, J.-F., Robshaw, M.J.B.: Non-randomness in eS-
TREAM Candidates Salsa20 and TSC-4. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 2-16. Springer, Heidelberg (2006)

Freier, A.O., Kocher, P., Kaltorn, P.C.. The SSL protocol version 3.0 draft,
http://home netscape com/eng/ssl3/draft302 txt

Hawkes, P., Paddon, M., Rose, G., Wiggers de Vries, M.: Primitive specification for NLS.
eSTREAM, ECRYPT Stream Cipher project (2005),

http://www ecrypt eu org/stream/nls html

Khazaei, S.: Neutrality-Based Symmetric Cryptanalysis. PhD thesis, Lausanne EPFL (2010)
Kunzli, S., Meier, W.: Distinguishing attack onMAG. eSTREMA report, Report 2005/053
(2005), http: //www ecrypt eu org/stream/papersdir/053 pdf

Lebedev, A.N., Ivanov, A., Starodubtzev, S., Kolchkov, A.: Yamb LAN crypto submission to
the ecrypt stream cipher project. In: eSSTREAM The ECRYPT Stream Cipher Project, No.
2005/034 (2005)

Paul, S., Preneel, B., Sekar, G.: Distinguishing Attacks on the Stream Cipher Py. In: Rob-
shaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 405-421. Springer, Heidelberg (2006)

http://www.ecrypt.eu.org/stream/portfolio_revision1.pdf
http://cr.yp.to/ChaCha.html
http://cr.yp.to/snuffle/reslid-20080925.pdf
http://cr.yp.to/salsa20.html
http://www.ecrypt.eu.org/stream/nls.html
http://eprint.iacr.org/
http://www.ecrypt.eu.org/stream
http://home.netscape.com/eng/ssl3/draft302.txt
http://www.ecrypt.eu.org/stream/nls.html
http://www.ecrypt.eu.org/stream/papersdir/053.pdf

266

19.

20.

21.

22.

23.

24.

T. Ishiguro, S. Kiyomoto, and Y. Miyake

Priemuth-Schmid, D., Biryukov, A.: Slid Pairs in Salsa20 and Trivium. In: Chowdhury, D.R.,
Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 1-14. Springer, Hei-
delberg (2008)

Rose, G.G.: A Stream Cipher Based on Linear Feedback Over GF(2%). In: Boyd, C., Dawson,
E. (eds.) ACISP 1998. LNCS, vol. 1438, pp. 135-146. Springer, Heidelberg (1998)

IEEE Computer Society. Wireless lan medium access control (MAC) and physical layer
(PHY) speciffications. IEEE Std802.11 (1999)

Tsunoo, Y., Saito, T., Kubo, H., Shigeri, M.: Cryptanalysis of Mir-1, a T-function based
stream cipher (2006)

Tsunoo, Y., Saito, T., Kubo, H., Suzaki, T., Nakashima, H.: Differential cryptanalysis of
Salsa20/8. In: The State of the Art of Stream Ciphers SASC 2007 (2007)

Wu, H., Preneel, B.: Distinguishing attack on stream cipher Yamb. In: eSTREAM The
ECRYPT Stream Cipher Project, No. 2005/043 (2005)

	Latin Dances Revisited: New Analytic Results
of Salsa20 and ChaCha
	Introduction
	Latin Dances
	Salsa20
	ChaCha

	Attack on Latin Dances
	Types of Distinguisher
	Construction of Distinguisher
	Distinguishing Attack Using Double-Bit Differentials

	Experimental Results
	Algorithm
	Results

	Concluding Remarks
	References

