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Abstract

We present a class of designs for very large all optical wavelength routing net-

works. The designs use a relatively small number of components and can be imple-

mented distributively.

1 Introduction

This paper presents designs of large wavelength routing networks built with small wavelength

routing devices and minimal interconnections. The approach is analogous to designing large

switching networks from 2 x 2 components. We now define the desired functionality of the

networks.

Consider an optical system where the available bandwidth is divided into F frequency bands

numbered from 0 to F - 1. An N x N wavelength routing device, or an all optical network with

passive wavelength routing, can be specified by an N x N matrix S, where the (i, j)th element,

S(i, j), is the set of wavelengths connecting input i to output j. We say that the device or

network is connected if each input can reach every output on some wavelength, i.e. IS(i, j) l > 1

for all (i, j). A special case of a connected device is when the matrix S is a latin square. A latin

square is an N x N matrix where each element (i, j) is one of N symbols such that no symbol

appears in a row or column more than once. Two examples of a 4 x 4 Latin Router are shown in

tables la and lb. Notice that these squares are distinct, in the sense that there is no relabeling

(of columns, rows, or elements) that will turn table lb into table la. We call such a device a

Latin Router.

'Research supported by the Army Research Office under contract DAAL03-86-K-0171
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0 1 2 3 0 123

3 012 3 2 1 0

2 3 0 1 1 0 3 2

1 23 0 2 301

Table la Table lb

Table 1: Two Examples of 4 x 4 Latin Routers/Squares
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Figure 1: (2,2) ShuffleNet with conventional wavelength g

Figure 1: (2,2) ShuffieNet with conventional wavelength assignment

In a Latin Router, all F wavelengths can be simultaneously applied to each input without

any output contention. It has long been known that Latin Routers2 can be used to provide full

connectivity between F users with only F wavelengths. That is, a total of F2 sessions can be

accommodated simultaneously, [1, 2, 3, 4, 5]. Another use is as an F x F non-blocking switch

with an appropriate frequency assignment protocol.

Latin Routers also have applications in multihop lightwave networks. In particular, consider

the (p, k) ShuffleNet topology presented in [6] where p is the number of transceivers per user, k

is the number of stages, and N = kpk is the number of users. A (2, 2) example is shown in Fig.

1. If the underlying physical topology is an N x N broadcast star, then pN wavelengths are

required for full connectivity between connected transceivers without frequency sharing [6, 7].

2although never before given a name as far as the authors know
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Figure 4: Standard implementation of a Latin Router

This wavelength assignment is also shown in Fig. 1. However if N/p p x p star couplers are used

instead, the transceivers can be grouped such that only p2 wavelengths are used. This is shown

in Fig. 2 for the 8 node example of Fig. 1. Now, if the N/p star couplers are replaced by Latin

Routers, only p wavelengths are needed, see Fig. 3. This last fact has been previously reported

by [7].

A well known design for a Latin Router is the 2-stage network shown in Fig. 4. The first

stage consists of F frequency demultiplexers of size 1 x F each. The second stage consists of

F multiplexers of size F x 1 each. The demultiplexers separate the wavelengths {0, 1,...F - 1}

on each input fiber onto a unique output fiber. The interconnection between the stages consists

of F2 fibers connecting each of the F demultiplexers to each of the F multiplexers in the final

stage. By properly choosing the output and input ports of the demultiplexers and multiplexers

any Latin Router can be implemented. The design uses 2F devices and F2 interconnections. In

addition, as F grows the size of each device grows. For large F, this is not feasible.

For the rest of this paper, we use the terms device to mean a wavelength routing device

and network to mean an interconnection of devices. Our goal is to design large Latin Routing

networks from relatively few small devices. In addition, we will attempt to minimize the number

of interconnections. The following section describes the devices we will use and generalizes the

problem. Section 3 describes the network topologies, and then presents some necessary and

sufficient conditions on the devices for the network to be a Latin Router. Two designs, the

Coarse/Fine and Vernier are presented in section 4. An example is presented in section 5.

In section 6, we extend our results to networks with devices which operate on time/frequency

slots. After we have established the conditions under which the networks are Latin Routers, we
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analyze, in section 7, the number of components and interconnections required for our design

and show that the number of components can be made << F, with devices of size << F x F,

and only F interconnections.

2 Wavelength Routing Devices

We consider optical systems where the bandwidth is divided into frequency bands numbered

by non-negative integers. It is more convenient at this stage to assume an infinite number of

wavelengths. There is certainly no loss of generality since the number of wavelengths can always

be limited after the network has been designed.

Recall that an N x N wavelength routing device, or an all optical network with passive

wavelength routing, can be specified by an N x N matrix S, where the (i, j)th element, S(i, j),

is the set of wavelengths connecting input i to output j. Let J(i, f) be the set of output ports

reachable from input port i on wavelength f. Similarly, let I(j, f) be the set of input ports that

can reach output j on f. Specifically,

J(i,f) = {j f E S(i,j)} (1)

I(j, f) = {i: f E S(i, j)} (2)

We say that the device or network is connected if each input can reach every output on some

wavelength, i.e. IS(i,j)l > 1 for all (i,j). When IJ(i, f)l = 0, we say that f is blocked at i. If

IJ(i, f)l > 1 then input i can reach more than one output on a wavelength f. In this case we

say that f is split at i. Similarly, if two inputs can reach the same output j on f, then we say

that f is combined at j, i.e. II(j, f)l > 1.

A Latin Router is a device for which each input is connected to each output on exactly 1

wavelength, IS(i,j)l = 1 for all (i, j), and there is no splitting, combining, or blocking of any

wavelength f E [0, F). Such a situation provides full connectivity between the inputs and outputs

with the maximum re-use of wavelengths. Since there is no splitting and since IS(., *)I = 1, it

follows that there are F inputs and outputs.

DEF: 1 Latin Router:

An F x F wavelength routing network, or device, satisfying

1) IS(i,j)l = 1, V(i,j) E [0,F)2
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2) IJ(i, f) = tI(i,f)l = 1, Vi E [O,F),f E [0,F)

Equivalently, the matriz S is an F x F latin square.

Consider a Latin Router built by interconnecting smaller wavelength routing devices. Split-

ting within a device of the network is undesirable because only one output of the network is

connected to any input of the network on any wavelength in a Latin Router. Therefore any split

signal would either have to be recombined or blocked from reaching all but one output. 3 Devices

without splitting, combining, or blocking are called pure devices. In theory, pure devices can be

lossless even if they are single mode.

DEF: 2 Pure Wavelength Routing Device:

A device, S, is a pure wavelength routing device if

IJ(i, f)l = II(j, f)l = 1, for all i,j, and f (3)

That is, wavelengths are never split, combined, or blocked.

A device is periodic if there is an integer P such that f E S(i, j) implies f + nP E S(i, j)

for all integers n. The period of the device is defined to be the smallest integer P for which the

device is periodic. By convention we consider the set of wavelengths [nP, (n + 1)P) to be the

nth period. We limit our discussion to a particular kind of periodic pure device. The devices

are described below. Our motivation for using this type of device is two-fold: the devices are

practical [8, 9] and are easily described.

DEF: 3 Periodic Latin Router, (N, C, L): A periodic latin router is completely specified by

the triplet (N, C, L) where N is the device size, C is a positive integer, and L is an N x N latin

square. Also,

S(i,j) = { f I L(i,j) (mod N)} (4)

From eqn. (4), the device is periodic with period P = NC. Notice that if C = 1 and N = F,

the device is a Latin Router (def. 1). C represents the size of the passband and is called the

coarseness of the device. When C > 1, we say the device is coarse. If C = 1, we say the device

is fine.

3The first property is also undesirable since it would lead to multi-path.
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Figure 5: Periodic Latin Router Design

One possible implementation of a Periodic Latin Router is to use a design similar to Fig.

4. This design is shown in Fig. 5. Here, N periodic frequency demultiplexers and N periodic

frequency multiplexers are used in the first and second stages, respectively. Each have a period

of NC. The demultiplexers (multiplexers) are each of size 1 x NC (NC x 1). Each demultiplexer

is connected to each multiplexer with C fibers instead of 1. The design requires 2N components

and N 2C connections. We are not proposing this design, just pointing out that the device

assumptions are both feasible and more practical than Fig. 4. The design can probably be

made more compact.

A simple example of a fine router is a Mach Zehnder interferometer when the channels are

spaced to fall in the peaks and nulls of the frequency response. The Mach Zehnder is a 2 x 2 device

with power frequency response H(0, 0) = H(1, 1) = cos2 ( f) and H(O, 1) = H(1, 0) = sin2 ( f),

where H(i, j) is the power frequency response from input i to output j. Therefore, the Mach

Zehnder is a Periodic Latin Router characterized by N = 2, C = 1, L(1, 1) = L(O, 0) = 0, and

L(0, 1) = L(1, 0) = 1. The matrix S is given by

S(1,1)= S(0,0) = {0,2,4,...} (5)

S(1,0)= S(0,1) = {1,3,5,...} (6)

The Mach Zehnder can be generalized to create an (N, 1, L) Periodic Latin Router. Such devices

have been demonstrated by [8, 9] for various values of N, N < 20. The devices are compact as

they can be integrated onto silicon. Similar devices have also been demonstrated by [10] and
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[pNC,pNC+C) , p=0,1,2,...

0 ., ------- [pNC + C, pNC + 2C), p=0,1,2,.,.

1 - ..1 ............ [pNC + 2C,pNC + 3C), p=0,1,2,...

I

N-1 ' N-1

Figure 6: Periodic Diagonal Latin Router

[11] using a grating technique; however the grating frequency response limits the periodicity.

Note that these devices cannot be used as an (N, C, L) device with channel spacing reduce by

1/C since the closer channels will not necessarily fall in the peaks and nulls of the frequency

response of the (N, 1, L) device.

If the latin square describing the Periodic Latin Router has diagonals with constant elements

and the first row is L(O, i) = i (see table la), then we say the device is diagonal. The Mach

Zehnder and generalized Mach Zehnder are examples of diagonal Periodic Latin Routers. For a

diagonal Periodic Latin Router,

L(i,j) = (j - i) mod N , V(i,j) E [0, N) 2 (7)

J(i,f) = (i+6(f))modN , V(i,j) E [o, N) 2 (8)

I(j,f) = (j - 6(f)) mod N , V(i, j) e [0, N)2 (9)

where

6(f)= mod N (10)

This is shown pictorially in Fig. 6. We call 6(f) the deflection of wavelength f. Notice that

wavelengths 0,1, ... C - 1 pass through the device with 0 deflection, [C, 2C) pass through with 1

deflection, etc.

In the following sections we will be considering networks of Perodic Latin Routers. For such

networks, it may not be possible to express S explicitly. However, we are interested in finding

networks for which S is a Periodic Latin Router, i.e. there exists an (N, C, L) such that S is
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described by eqn. (4). The following theorem gives three conditions, which if all satisfied, insure

that S is a Periodic Latin Router.

Theorem 1 An N x N device, or network, St is a Periodic Latin Router with coarseness C iff

the following 3 conditions are satisfied

1. S is pure

2. S is periodic with period NC

3. S(i, j) n[o, NC) has at least C contiguous elements. Specifically, for each (i, j) E [O, N) 2

3f(i,j), such that [f(i,j),f(i,j)+C) C S(i,j)n[O,NC) (11)

If the conditions are satisfied, then S is a periodic Latin Router described by (N, C, L) where

Proof: If S is a Periodic Latin Router, (N, C, L), then by definition

S(i,j) = {f f L(i,j) (mod N) (12)

{f I =fmodNC =L(i,j)} (13)

U [pNC + L(i, j)C, pNC + L(i, j)C + C) (14)

It follows immediately that S must satisfy the three conditions.

S is an N x N Periodic Latin Router with coarseness C iff 3 an N x N latin square L,

such that S is described by eqn. (4). We show that 1.,2., and 3. imply that S is given by

eqn. (4) with L(i, j) = fi and that L is a latin square. Define So(i, j) = S(i, ji) n[, NC)

to be the restriction of S to the first period. From 3.,

[L(i,j)C + b(i,j),L(i,j)C + b(i,j)+ C) c_ So(i,j) ,(i,j) (15)

where b(i, j) = f(i, j) mod C. First we show that So(i, j) is given by the left hand side

of eqn. (15). To do this we show that ISo(i,j)l = C for all (i,j). Clearly, ISo(i,j)l > C.

Suppose ISo(i, j)l > C for some (i, j). Since the device is pure, each wavelength between

0 and NC - 1 reaches a single output J(i, f). There are N possible outputs and NC
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wavelengths in the first period. The average number of wavelengths per output is C.

Since ISo(i, j) > C, IS(i, j')l < C for some j'. Since ISo(i, j)l > C for all (i, j) it follows

that ISo(i,j)J = C for all (i, j). Therefore,

So(i,j) = [L(i,j)C + b(i,j),L(i,j)C + b(i,j) + C) (16)

Therefore, all that remains to be shown is that b(i,j) = 0 for all (i,j) and that L is a

latin square. First we show that b(i, j) = 0, i.e. that f(i, j) is divisible by C for all (i,j).

To do this, consider the wavelengths between 0 and NC - 1 not in So(i, j), i.e.

[O, L(i,j)C + b(i, j))U [(L(i,j) + 1)C + b(i, j), NC) (17)

These wavelengths, in groups of C, make up the N - 1 sets So(i, j'), for j' $ j. There are

at most

LL(i, j)C + b(i, j)J L(i,j) (18)

groups of C in the interval [0, L(i, j)C + b(i, j)) and at most

(N - L(i,j)- 1)C - b(i, j)J N - L(i,j)-l ifb(i,j)= 0

N-L(i,j)-2 else

groups of C in the other interval. Since there must be a total of N - 1 groups of C,

b(i, j) = 0. So So(i, j) is given by

So(i,j) = [L(i,j)C,L(i,j)C + C) (20)

= {f I [J =L(i,j)} (21)

And since S is periodic with period NC,

S(i,j) = f I [f (mod NC)] L(i,j)} (22)

= {f I I ]-- L(i,j) (mod N) (23)
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Now we show that L is a latin square. First notice that f(i, j) ! f(i, j') for j # j' since

the device is pure. Similarly f(i, j) $ f(i', j) for j # j'. Also, since [f(i, j), f(i, j)+ C) C

So,(i, j), it follows that 0 < f(i, j) < (N - 1)C. Therefore, if C divides f(i, j) for all (i, j),

L is a latin square. Since b(i, j) = 0 for all (i, j), C divides f(i, j) and L is a latin square.

0

This theorem greatly simplifies proving if a given network is a Periodic Latin Router since

it is only necessary to show conditions 1.,2., and 3. In particular, we need not show that the C

contiguous elements are the only elements of the first period in S(i, j). Nor must we explicitly

show that L is a latin square.

3 Networks of Wavelength Routing Devices

The topology of the network is specified by the directed graph (K(, A), where the set of nodes, A/,

are the devices, network inputs, and network outputs. The set of arcs, A, are the interconnections

between the devices, network inputs and network outputs. For simplicity of notation, we define

our network such that all routing functions are performed within the devices. That is,

DEF: 4 Network: An interconnection of wavelength routing devices such that

1. Each device output is either a network output, or is connected to ezactly one device input.

2. Each device input is either a network input, or is connected to ezactly one device output.

These conditions do not restrict the networks we can consider because multiple or no connections

can be included in the device descriptions. An intuitively obvious result is that a network of

pure devices has no splitting, combining, or blocking of any wavelength. That is, a network of

pure devices is a pure network. This is shown in Appendix A.

Since we are designing Periodic Latin Routers, and since Periodic Latin Routers are pure

devices, it is natural to only consider networks of pure devices. In particular, we consider

networks of Periodic Latin Routers. We are interested in finding the conditions for which the

networks are Periodic Latin Routers. The topologies we consider are multi-stage interconnection

networks (MIN), where stage k consists of Mk, Nk X Nk, devices. The outputs of stage k are

connected only to the inputs of stage k + 1. For simplicity of notation, the inputs to the network

are considered to be the outputs of stage 0 and the outputs to be the inputs of stage n + 1, where
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n is the number of device stages. From def. 4, each output of a stage k device is connected to a

unique input of a stage k + 1 device and vice-versa. It follows that there are exactly Mk = N/Nk

devices in stage k, where N is the size of the network (the number of inputs and outputs).

We restrict our attention to MINs with the unique path property (UPMIN). That is for each

input i E [0, N) and each output j E [0, N) there is a unique path connecting i and j in the graph

(A/, A). For N a power of 2, a UPMIN of 2 x 2 Mach Zehnders can be used to make a Periodic

Latin Router. This is an easy generalization of the system considered [121 for demultiplexing.

Stage k of the design consists of 'T, 2 x 2, Mach Zehnders, each with a different period.

In our design, all devices in stage k are identical. In this case, a UPMIN built with Periodic

Latin Routers is completely described by the topology (A/, A), and (Nk, Ck, Lk) for k = 1, 2, ..., n

where n is the number of stages and (Nk, Ck, Lk) describe the routers in stage k.

Let pij be the unique path connecting input i to output j. Also, let ink(plj) be the unique

input port to the stage k device used in pij. Similarly let outk(pij) be the unique output port

to the stage k device used in Pij. The set of wavelengths connecting i to j is given by

n

S(i,j) = n Sk(ink(pij), outk(Pij)) (24)
k=1

where Sk(m, 1) is the set of wavelengths connecting input m to output I for a stage k device.

Using eqn. (4), S(i, j) is given by

S(ij) = {f [ -f dk(pj) (modNk) , Vk = 1,2,...,n} (25)

where dk(pij) = Lk(ink(Pij), outk(pij)). We are interested in the conditions on the topologies and

devices for which eqn. (25) defines a Periodic Latin Router. Since Periodic Latin Routers are

pure devices, any UPMIN of Periodic Latin Routers is a pure network by theorem 4 in Appendix

A. So all that remains is to find the conditions on (AN, A) and {(Nk, Ck, Lk) I k = 1,2,...,n}

such that conditions 2. and 3. of theorem 1 are satisfied. Using the structure of the UPMIN

and the definition of Periodic Latin Routers, we get the following equivalent conditions.

Theorem 2 An n-stage UPMIN of Periodic Latin Routers {(Nk, Ck, Lk) I k = 1, 2, ... , n} with

topology (K(, A) is a Periodic Latin Router of size N and coarseness C iff all of the following

are satisfied:
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2. C = min{C1 , C 2 , ..., C"}

3. NC = lcm(N 1 C 1, N 2C 2 ,..., NnC'), where lcm stands for least common multiple

4. gcd(C1 , C 2, ..., Cn) = min{C 1, C2 , ... , Cn}, where gcd stands for greatest common divisor

5. There ezists an f(d) for each d E [0, N 1) x [0, N 2) x ... x [0, N,) such that

f(d) dk ,k=1, 2, ... , n (26)

If 1.-5. are satisfied, then the network is an (N, C, L) Periodic Latin Router with

6. L(i,j) = [uJ, where dij = (dl(pij)d2(pij)...dn(pij))

Proof: First we show that the conditions are necessary.

To see 1.: Notice that the right hand side is the number of paths leading out from any

user i and the left hand side is the number of outputs. The result follows from the unique

path property.

To see 2.: Consider the wavelengths [0, C) from any input. These wavelengths all reach

the same output. By the unique path property, each wavelength must follow the same

path. Therefore, min{C 1,..., Cn} > C. If C < min{C, ... , C,}, then the C+ 1 wavelengths

f = 0,1, 2,...C would have the same path for any input, so C = min{C 1, C 2 ,..., Cn}.

To see 3.: By definition, NC is the smallest period of the Periodic Latin Router. There-

fore, each device period must divide NC. The smallest such number is lcm(NlC1, ... , N,C,).

To see 4.: If C does not divide Ck for some k, then there exists an integer a such that

the wavelengths [aC, (a + 1)C) are divided in some device. Specifically, let a = LCk/CJ,

f = aC, and f' = Ck. Then Jk(i, f) # Jk(i, f') for any i since Lf/CkJ = 0 and Lf'/CkJ =

1. Therefore f and f' take different paths through the network from any input. This is a

contradiction.

To see 5.: From theorem 1 and eqn. (25), if S is a Periodic Latin Router then

C]f dk(pij) (mod Nk) (27)

has at least C contiguous solutions in [0, NC). Define dij = (dl(pij), d2(pij),...,d,(pij)).

dij $ dij, since pij 5 pij and hence Pij and Pij, split in some device. Therefore, for each
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i, {dij I j = 0, 1,...N - 1} = {(dl, d2 , ... , d) I dk E [0, Nk)}. 5. is necessary since eqn. (26)

must have at least C contiguous solutions for each d, so trivially it must have at least 1

solution.

Now we show sufficiency.

From theorem 1, the network is a Periodic Latin Router if S is pure, periodic with

period NC, and

3f(i,j) s.t. [f(i,j), f(i,j) + C) e So(i,j) V(i,j) (28)

where S,(i,j) = S(i, j) n[O, NC). S is pure since it is a network of pure devices. It is

periodic since all the devices are periodic. So S is a Periodic Latin Router iff the period

is NC, i.e. iff NC = lcm(NiC1, N 2C 2,..., N,Cn), and for all (i, j), there are at least C

contiguous solutions in [0, NC) to the system of congruences

LC - dk(pij) (mod Nk) , k=1,2,...,n (29)

where dk(pij) = Lk(ink(pij),outk(Pij)) as before.

If f(d) is a solution to eqn. (26), then so is Lf(d)/CJ C since Ck is a multiple of C for

each k. Also since Ck is a multiple of C,

[ C[kc dk (mod Nk) (30)

for I = 0, 1, ..., C - 1. So if eqn. (26) has one solution for each d, it has C contiguous

solutions for each d. Since for any (i,j), dk(pij) E [0, Nk), if eqn. (26) has at least

C contiguous solutions in [0, NC) for any d, then eqn. (29) has at least C contiguous

solutions in [0, NC).

Now 6. follows from the last statement of theorem 1. o

Therefore, in order to determine if an n-stage UPMIN of Periodic Latin Routers is a Periodic

Latin Router, only the device specifications are needed. That is, the important parameters are

contained in the set D = {(Nk, Ck) I k = 1, 2,...n}. The topology is irrelevant as long as it is

a UPMIN and the matrices L 1, L 2 , ..., L,- can be arbitrary latin squares. We call D the design.

The system of equations are independent of any ordering, so we will assume without loss of
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generality that C1 > C2 _ ... > C,. Let /V be the family of designs that produce a Periodic

Latin Router (i.e. those D which satisfy the first five conditions in theorem 2).

In Appendix B, we show that for a 2-stage design, conditions 1.-4. imply condition 5. This

enables us to determine all 2-stage designs. For n > 2, conditions 1.-4. are not sufficient. Two

counter examples are presented in Appendix B.

Now we are led to the conclusion that all (N, 1, L) designs are (N, C, L) designs and vice-

versa. In other words, if a UPMIN of Periodic Latin Routers is a Periodic Latin Router with

coarseness C, then the network formed by dividing the coarseness of all devices by C is a Periodic

Latin Router with coarseness 1. Similarly, if a UPMIN of Periodic Latin Routers is a Periodic

Latin Router with coarseness 1, then the network formed by multiplying the coarseness of all

devices by C is a Periodic Latin Router with coarseness C. This is shown in the following

corollary

Corollary 3 D = {(Nk, Ck)} I D iff D' = {(Nk, CCk)} E V.

Proof: Notice that

- =4dk (mod Nk) = C dA, (mod Nk) (31)

Also that

f dk (mod N,) = L['Ca dkg (modNk)=' dk (modNk)(32)

4 Designs

Two n-stage solutions are the Coarse/Fine solutions and the Vernier Solutions. These are

described in the following two sections. All 2-stage designs are determined in Appendix B. In

addition, Appendix B presents an efficient algorithm to determine if a given design is a Periodic

Latin Router.
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4.1 Coarse/Fine Periodic Latin Router

The n-stage Coarse/Fine design is valid for any N that can be factored into n inte

an N and n, write N as N 1N 2 ... N,, where Nk is the device size in stage k. Let C, 

Ck equal to the period of the next stage, specifically let Ck = Ck+lNk+l for k =

Since N = N 1N 2... Nn, it follows that

Ck = , for k= 1,2,...,n

where P = NC. Each f E [0, NC) has a unique expansion,

n

f = a+EakCk
k=l
n

= a + E akC(Nk+lNk+2 ... Nn)
k=1

where a < C. For instance, if C = Nk = 2 for all k then aa,_l... al is the binary expansi Nq

f. 

It is an easy matter to check that 1.-4. of theorem 2 are satisfied. All that remains to s1

is that for any d, a solution to the system of congruences is

f(d) = E dk Ck ,for I= 0, 1, ... C - 1 (3t
k=1

To see this notice that

[(Ad)] = mld + di [L = C'ij (37)
mi=1 i=m+l

m-1 C

= dm+ di C (38)
i=l m

since

n C. n d- 1

di N.- 2i-g2 < (3 9)
i=m+l m i=m+l 
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Now taking both sides of eqn. (38) modNm, we get the desired result because

= Ni+lNi+2 ... Nm for i < m. (40)
Cm

4.2 Vernier Latin Router

The n-stage Vernier design is valid only for those N such that N = N 1N 2... N,n and the Nk are

relatively prime. For those N and n, pick Ck = C for k = 1, 2, ... n and let Nk be the device size

in stage k. Again it is trivial to check that 1.-4. of theorem 2 are satisfied. Given d, f must

satisfy

LJf J dk (modNk) ,fork=1,2,...n (41)

Let z = [Lj. By the Chinese Remainder Theorem [13], each n-tuple has a unique solution z(d)

in [0, N). This solution can be found by solving for a in

N --a d, (mod N,) (42)

for each k = 1, 2, ... n. Let ak be the solution to the kth congruence. Then z(d) is given by

' N
x(d) = E a,- Nk (mod N) (43)

Thus f(d) = x(d)C is a solution to eqn. (41).

5 A Useful Example

Although the sufficiency conditions from theorem 2 are independent of the UPMIN topology,

(A/, A), this section will describe a particularly useful n-stage topology for which the mapping

from (i, j) to the vector d is simple.

Since NlN2 ... Nk-lNk+l...Nn = N/Nk, we can uniquely label the Mk = N/NA devices in

stage k by the modified n-tuple (il, i 2, ..., ikl, *, ik+l, ..., in) for il E [0, N1 ), I = 1, 2,...k - 1, k +

1, ... n. Label the ith input to device (il, i2, ... , ik-1, *, ik+l, ... , in) by replacing the * with i. Since

i E [0, Nk), there is exactly one n-tuple per input (output). An arbitrary device in stage k is

shown in Fig. 7.
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Device label: (il, i2, ... , ik1, *, ik+1, ... , in)

(il, i2, ... ik-l, 0, ik+l, ... in) (il, i2 ... ik-l, O, ik+l, .. in)

(il,i2, ...i-l,1,ik+, ... i) - (il,i2, ,i-1 ,ikl... ii)

(ili2,... ik-l, Nk- lik+l, ... , 7in (tl,i2, .,--h-1,Nk - 1, ik+l, ,in)

Figure 7: Single device of stage k

Connect each output of stage k to the unique input of stage k + 1 with a matching label, for

k = 1, 2, ... n - 1. A 2-stage example is shown in Fig. 8 and redrawn in Fig. 9 with N1 = 5 and

N2 = 3. This design seems very attractive for packaging relatively small size routers. A 3-stage

example, with the device labels shown, for N1 = 2 , N 2 = 3, and N 3 = 2 is drawn in Fig. 10.

The inputs and outputs of each device can be thought of as lying on the integer points in n

dimensional rectangle with sides [0, Nk - 1] in the kth dimension. A line of the rectangle in the

kth dimension is defined to be (il, i..., ie..., i, i i+ 1 , ..., in) where i varies from 0 to Nk - 1. For

instance, if n = 2, a line is a column or row. Since there are N points and Nk points per line

in the k th dimension, the solid is divided into a total of N/Nk lines. Let i = (il, i 2, ..., i,) and

j = (jl, 2,j, i.,jn). Then the unique path from i to j is the Manhattan walk where the kth stage

changes only the kth component. Therefore,

in(Pij)k = ik (44)

out(pij)k = jk (45)

so that dk(pij) = L(ik, ji.). Therefore, for the Coarse/Fine Latin Router, the C wavelengths

connecting input i to output j in [0, NC) are

n

f = EL(ik, ik)Ck + I , I = 0,1,.., C- 1 (46)
k=l

For the Vernier, the C wavelengths are x + I, I = 0, 1, ..., C - 1, where x is the unique solution
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(Ni-1,0) (0, N2-1)

(0,1) (1,0)

(1,1) -. 1, 

(N,-1, N2:-) _ (Ni-1, N2-1

Figure 8: 2 Stage Design

N 1 (0,) (0,0)
(1,0)

(2,0)

(4,1) (4,1)

(4,2) :i(4,2)

N 2

Figure 9: 2-stage design,Ni = 5, N2 = 3
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'00 00'
00o 001

100 00+

001 010

101 011

010 020

110 021

*1 200 1 to10

01110

020 '20 110

120

121 1 2

Figure 10: 3-stage design,N 1 = 2, N 2 = 3, N 3 = 2

(mod N) to

x _ L(ik, jk) (mod Nk) , k = 1,2,...n (47)

Recall that a Periodic Latin Router is diagonal if L(i,j) = j -i (mod N). If all the devices

in the network are diagonal, then eqns. (46) and (47) simplify to

n

f = E((jk-ik) modNk)Ck + , l= 0,1,...,C-1 (48)
k=1

z - jk-ik (modNk) , k = 1,2,...n (49)

6 TDM Implementation

Let 0, 1,...T - 1 represent periodic time slots. All the definitions made in this paper can be

generalized to time slots, or for that matter time/frequency slots. Call each time/frequency

slot a channel. A channel routing device is described by a matrix S, where S(i, j) is the set of

channels connecting input i to output j. The definitions of splitting, combining, Latin Router,

and Periodic Latin Router immediately generalize. We have so far assumed a frequency im-

plementation. However, it should be kept in mind that except for the specific devices used to

implement the design, everything generalizes to channels. A particularly interesting design for

a time/frequency slot Periodic Latin Router is the 2-stage design, see Figs. 8 and 9, where the

first stage devices are wavelength Periodic Latin Routers and the second stage devices are time

slot Periodic Latin Routers.
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7 Number of Components and Connections

Recall that there are Mk = N/Nk devices in stage k and there are exactly N interconnections

between each stage. The maximum device size, total number of devices, and total number of

fibers (interconnections) used are

Size = maxNk (50)

n N
Devices = N (51)

Fibers = nN (52)

A lower bound to the number of devices under the constraint 1In = Nk = N is obtained by

minimizing eqn. (51) neglecting integer and relative primeness constraints. The minimum is

achieved when Nk = N 1/" for all k. In this case,

Size = N 1 /" (53)

Devices > nN nn (54)
Size

Fibers = nN (55)

The number of devices grows with n. The minimum occurs with n = 1 in which only one N x N

device is needed. For n = 2, only about 2v"N devices are needed, each of size v/I. This is a

vast improvement over the standard design of Fig. 4. As n grows, the number of devices grows

and the device size shrinks. Notice that for moderate n, the growth in the number of devices

becomes relatively slow, however, the device size shrinks dramatically. Therefore, it may be

appropriate to increase the number of devices for the benefit of decreasing device size.

Notice that there are N fibers used in each interconnection stage, or equivalently N number

of connections between stages. This is the minimum possible. The reason is each fiber can

support at most NC sessions per period, and the Latin Router can support N 2 C sessions per

period. Therefore, there must be at least N fibers connecting any two stages.



8 CONCLUSIONS 22

8 Conclusions

It is possible to build large Latin Routers in time and frequency from a relatively small number

of practical devices. The UPMIN can be implemented distributively with the minimum growth

in the number of interconnections, F per stage, possible. This is a dramatic improvement over

the well known design which requires F2 interconnections. In addition, the device size can be

reduced to Fl/n x Fl/n where n is the number of stages. This is also a dramatic decrease over

the well known 2-stage design (Fig. 4) which requires 1 x F and F x 1 devices. For instance, if

F = 1000, only around 66, 33 x 33, devices are needed for a 2-stage UPMIN.

The Latin Routers are built from devices called Periodic Latin Routers. Periodic Latin

Routers can, in turn, be build from smaller Periodic Latin Routers. A particularly convenient

n-stage topology as well as two designs were presented.

In addition, a computationally efficient algorithm to determine if a given set of device pa-

rameters is a design for a Periodic Latin Router is presented in Appendix B.

9 Appendix A

In this section we show that under only the assumptions of def. 4, a network of pure devices is

a pure network. The network need not be a UPMIN, and may include loops.

Theorem 4 A network of pure devices is a pure network.

Proof: By contradiction. Suppose the network was not pure. Let S describe the

network. Then at least one of the following is true,

(1) 3 a row of S that uses a wavelength twice

(2) 3 a column of S that uses a wavelength twice

(3) 3 a frequency f that is blocked from an input i or an output j

(1) leads to a contradiction: Consider the row S(i, *). Let f be used twice in the row,

i.e. 3j, j', j : j' s.t. f E S(i,j) and f E S(i,j'). Let p be a path from network input i

to network output j. Suppose that p contains n(p) devices. Let ink(p) and outk(p) be the

input and output ports of the kth device in p. The set of wavelengths connecting input i
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to output j on p is given by

n(p)

S(p) = n Sp,k(ink(p),outk(p)) (56)
k=1

where Sp,k(m, 1) is the set of wavelengths connecting input m to output I for the kth device

in p. If f E S(p) we say that p supports f. The the set of wavelengths connecting i to j,

S(i, j), is the set of frequencies supported by some path between i and j. Therefore, if

Pij is the set of paths connecting i and j,

n(p)

S(i,j) = U S(p) = U n sp,k(ink(p),outk(p)) (57)
pEPis PEPiji =1

Since f E S(i, j), there must be some path p E Pij which supports f. Similarly, there

must be a path p' from i to j' that support f. Since p 5 p', the two paths must split

somewhere. Suppose they split in the kth device common to p and p'. They at least have

one common device since input i is connected to at most one device input. Let ink be the

common input port to the k device for p and p'. Also let out/, and out'k be the distinct

output ports of the two paths. Then

f E Sp,k(ink, outk) n Sp,,k(ink, out'k) (58)

and since Sp,k = Sp,,k, the device is not pure, which is a contradiction. so (1) is not

true

(2) leads to a contradiction: The proof follows the same line as proof of (1).

Consider the column S(*, j). Then f E S(i, j) and f E S(i', j) for some i 5 i'. Then there

exists two paths p E Pij and p' E Pi,j which must join at some device. So that device is

not pure which is a contradiction. so (2) is not true

(3) leads to a contradiction: Any blocking must occur within a device since each

device output (input) is connected to a device input (output). But each device is pure.

so (3) is not true

Hence, we have a contradiction. C
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10 Appendix B

10.1 General Solutions

We show that for a 2-stage design, conditions 1.-4. imply condition 5. This enables 3.s to

determine all 2-stage designs. However, for n > 2, conditions 1.-4. are not sufficient. A counter

example is D = {(2, 12), (3,8), (4, 1)}. In fact any D such that NiCi = NjCj for j # i violates

condition 5. Another counter example is D = {(2, 6), (3,8), (4, 1)}. Notice that NiCi y NjCj

for j 0 i.

First we need a lemma which we reproduce here without proof from [13].

Lemma 5 The congruence

kx - I (modm) (59)

has a unique solution (mod m) iff k and m are relatively prime.

Then the following theorem holds.

Theorem 6 Let V 2 be the set of 2-stage designs in DZ. Then Z)2 can be ezplicitly written as

V 2 = {(Nil,bC),(ab,C) I gcd(Nl,a) = 1 and b > 1} (60)

Proof: Assume without loss of generality that C1 > C 2 = C. Now if, D E V 2, then

from 1.-3. of theorem 2

N 1N 2 C = 1cm(N1Cl,N 2C) (61)

From 4. of theorem 2, C1 = bC for some b > 1. Plugging this into eqn. (61) and pulling

out the C on both sides of the equation,

N 1N 2 = lcm(Nib,N 2 ) (62)

so b divides N 2 . Write N 2 = ab, for some a > 1. Plugging this into eqn. (62)

N1 ab = 1cm(Nlb, ab) (63)
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So a and N 1 are relatively prime, that is gcd(a, N1) = 1. We have shown that if D E V 2,

then D is of the form

D = {(Nl,bC),(ab, C) gcd(Nl,a) = 1, b > 1} (64)

We now show that if D is of the form given in eqn. (64), then D E V 2 . Or, in other words

when n = 2, conditions 1.-4. imply condition 5. in theorem 2. Using corollary 3, it is

sufficient only to consider the C = 1 case. Consider the equations,

fi] -dl (mod N1 ) (65)

IfJ - d2 (mod ab) (66)

The second equation has solutions of the form f = nab + d2. Plugging this into the first

equation,

nab + = na + L= - d1 (mod NI) (67)

So

na -d,- -d-L1 (mod N 1) (68)

which has a solution from the lemma since gcd(a, N 1 ) = 1. C]

Notice that the a = 1 designs are the Coarse/Fine designs and the b = 1 designs are the Vernier

designs.

10.2 Algorithm

Testing whether or not a given D is in D can be done in O(N) time for any C. The algorithm

is trivial and makes use of corollary 3.

Instance: D = {(Nk, Ck): k = 1, 2, ... n}

Question: Is D E D ?

Check necessary conditions 1.-4. in theorem 2. If not satisfied, STOP. D ' D. If satisfied

and n = 2, stop D E 7). If satisfied and n > 3, initialize g(d) = FALSE for all F values of
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d = (di d2s ... 94)-

FOR f = O, 1, ... N- 1, DO

Calculate d, where dk = l7J

IF g(d) = TRUE then STOP. D O V

ELSE set g(d) = TRUE

NEXT f

The storage requirements of the algorithm are O(N) since there are N possible values of d.
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