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LATTICE AND HEEGAARD FLOER HOMOLOGIES OF ALGEBRAIC LINKS

EUGENE GORSKY AND ANDRÁS NÉMETHI

ABSTRACT. We compute the Heegaard Floer link homology of algebraic links in terms of the

multivariate Hilbert function of the corresponding plane curve singularities. The main result of

the paper identifies four homologies: (a) the Heegaard Floer link homology of the local embed-

ded link, (b) the lattice homology associated with the Hilbert function, (c) the homologies of the

projectivized complements of local hyperplane arrangements cut out from the local algebra, and

(d) a generalized version of the Orlik–Solomon algebra of these local arrangements. In particu-

lar, the Poincaré polynomials of all these homology groups are the same, and we also show that

they agree with the coefficients of the motivic Poincaré series of the singularity.

1. INTRODUCTION

Complex analytic/algebraic plane curve singularities provide interesting connections be-

tween analytic theory of singularities and low dimensional topology, in particular, knot the-

ory. The rigidity properties of algebraic links help to compute the topological invariants via

analytic methods, while knot theory provides topological characterizations for certain ana-

lytic invariants (see e.g. [1, 9, 16] and references therein). E.g., in [4] Campillo, Delgado

and Gusein-Zade related the multi-variable Alexander polynomial of an algebraic link to the

multi-dimensional semigroup of the divisors of analytic functions. They also identified the co-

efficients of the Alexander polynomial with the Euler characteristics of certain projectivized

hyperplane arrangement complements associated with the ring of functions. In this paper, we

prove a “homological lift” of their theorem by identifying the Heegaard Floer link homology

of the local analytic link with the homology of these hyperplane arrangements, and providing

a concrete and computable description of them in terms of classical singularity invariants of

algebraic links (Hilbert function, or Alexander polynomial).

Usually, the identification of the Heegaard Floer link homology HFL− is very hard, and

very few concrete examples are known. For L–space links we propose a strategy, which makes

a conceptual simplification, however at this generality this strategy is also obstructed seriously

at several points. The strategy provides a spectral sequence converging to HFL−, whose E2

term is a lattice cohomology associated with certain weights, which are determined by the

Alexander polynomial. But for a general L–space link the collapse of the spectral sequence is

not guaranteed.

However, for algebraic links we eliminate all these obstructions as follows. Firstly, in [11]

we proved that algebraic links are L–space links, hence the strategy runs. Then, we identify

the HFL–weights needed for the E2 (lattice cohomology) term with the values of the Hilbert

function of the local algebra (where the multi–filtration is given by valuations induced by the

normalization). For this we need an ‘analytic inversion’ formula, which provides the Hilbert

function from the Alexander polynomial.

This Hilbert function is the central singularity invariant, it has a rich structure which will

be exploited deeply. Based on this, we analyze the properties of the lattice cohomology (de-

fined in [23] in a very general setup) associated with the Hilbert function weights, and we show

that it is isomorphic to the cohomology of certain hyperplane arrangements embedded in the
1
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2 EUGENE GORSKY AND ANDRÁS NÉMETHI

ring of functions. For this step we need to use and improve the Orlik–Solomon theory of the

cohomology of hyperplane arrangement complements. The next step exploits the structure of

Orlik–Solomon cohomology rings (determined by the rigid matroid properties of our Hilbert

function). We define a bigrading on the Orlik–Solomon complex and prove a vanishing result

which guarantees that the cohomology is supported on a line (with respect to this bigrading).

This intrinsic structure and vanishing will imply finally the collapse of the above mentioned

spectral sequence involving the HFL− theory (showing that all the higher differentials en-

dowed with the bigrading are necessarily trivial).

The final picture identifies the ranks of the following four graded homologies:

(a) The Heegaard Floer link homology of the local embedded link of the germ,

(b) The local lattice homology associated with the Hilbert function,

(c) The (simplicial) homologies of the projectivized complements of local hyperplane ar-

rangements cut out from the local algebra by valuations given by the normalizations of

irreducible components,

(d) A generalized version of the Orlik–Solomon algebra of these local arrangements.

In particular, the Poincaré polynomials of all these homology groups are the same, and we also

show that they agree with the coefficients of the motivic Poincaré series of the singularity germ

[6, 10, 18]. Since the homologies have no Z-torsion, the corresponding Poincaré polynomials

provide the complete description of the corresponding homologies.

It is important to mention that the above isomorphisms are defined separately for each

Alexander grading, which belongs to the lattice Zr (where r is the number of components of a

link). For each lattice point v ∈ Zr we define a separate topological space H(v) (which is ei-

ther empty or a complement to a hyperplane arrangement) and relate its homology to HFL−(v).
This recovers HFL− =

⊕
v HFL

−(v) as a Zr ⊕Z–graded vector space (for a comment regard-

ing coefficients, see Remark 2.1.2). Here the last Z-grading is the homological grading. (All

other homologies in the above list (a)–(d) are graded similarly.)

Some of the important structures present in HFL− are not immediately recovered with this

approach. In particular, the Heegaard Floer theory defines operators U1, . . . , Ur which act on

HFL− and shift the Alexander grading in various directions. It seems plausible that the action

of Ui is determined by the Hilbert function too, but we do not study this action in the present

paper – such a study would require a comparison of spaces H(v) for different v.

In order to realize the above program, we need to recall/improve several properties of Hee-

gaard Floer link homology of L–space links in section 2 and of local algebraic curve singulari-

ties (e.g. how to invert the Alexander polynomial to the Hilbert function) (section 3), to develop

the theory of lattice cohomology (associated with the Hilbert function weights) (section 4), and

to adjust and improve the theory of Orlik–Solomon algebras (section 5). Based on all these we

finish the main proof in section 6. Finally, in section 7 we explicitly compute the homologies

(a)-(d) for the Hopf link, corresponding to the singularity {xy = 0}.

1.1. The next subsections provide more details on the involved invariants and identifications

(for the precise definitions and statements see the next sections).

Trough the paper the following notations will be used. The number of link components will

be denoted by r. Set K0 = {1, . . . , r}. Let ei denote the i-th coordinate vector in Zr. For

a subset K ⊂ K0 we write eK =
∑

i∈K ei and e = eK0
=

∑
ei. Given v ∈ Z

r, we define

vK =
∑

i∈K viei. |K| denotes the cardinality of K. We set a partial order on Zr by

u � v ⇐⇒ ui ≤ vi for all i.
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1.2. The Hilbert series and the related singularity ‘package’. Let (C, 0) = (∪r
i=1Ci, 0) be

a reduced plane curve singularity at the origin in C2, where Ci are the irreducible components.

Let γi : (C, 0) → (Ci, 0) be the normalization of the components. We consider r valuations on

the C–algebra O = OC2,0 defined by vi(f) = ord (f (γi(t))), and a Zr-indexed filtration

J(v) = {f ∈ O | vi(f) ≥ vi for all i}.

The Hilbert function h : Zr → Z is defined by h(v) = dimO/J(v), while the multivariable

Hilbert series by H(t) =
∑

v h(v)t
v1
1 · · · tvrr , cf. 3.1.1. It guides most of the classical analytic

and topological invariants of the germ. For example, the multivariable Poincaré series satisfies

P (t) = −H(t) ·
∏

i(1− t−1
i ). By [4] P (t) is related to the multivariable Alexander polynomial

∆(t) as follows: ∆(t) = P (t) if r > 1, while ∆(t) = (1 − t)P (t) for r = 1. This shows

that ∆(t) is determined by the Hilbert series H(t). We prove an ‘Inversion Theorem’ 3.4.3

providing an explicit way to recover H(t) from ∆(t). (This explicit formula can be used to

define an analogue of H(t) for any non-algebraic link as well; this plays an important role in

the study of L-space links in Heegaard Floer link theory: it produces the weights of the lattice

complex whose lattice cohomology is the E2 term of the spectral sequence, cf. Theorem 1.5.1.)

Another objects determined by the valuations are the topological spaces

H(v) := {f ∈ O | vi(f) = vi for all i}

and their projectivizations PH(v). Although H(v) and PH(v) are infinite-dimensional, they

can be projected onto finite-dimensional varieties with affine fibers. Furthermore, H(v) =
J(v)\∪iJ(v+ei) (where ei are the base vectors), hence H(v) is either empty or a complement

of a central hyperplane arrangement, see section 3.6. It turns out that the Euler characteristic

of PH(v) is exactly the coefficient πv of tv in the Poincaré series P (t). Replacing the Euler

characteristic πv by the Poincaré polynomial πv(q) of the homology of PH(v) (or by the class

of PH(v) in the Grothendieck ring of algebraic varieties), we obtain the ‘motivic Poincaré

series’ P(t; q) =
∑

v πv(q)t
v [6, 10, 18].

1.3. The Orlik–Solomon theory. To describe the homology of H(v), we need some facts

from the theory of hyperplane arrangements. Let {H1, . . . , Hr} be a collection of hyperplanes

in a complex vector space V . Brieskorn in [3] proved that the de Rham cohomology of the

complement H := V \∪iHi is generated as an algebra by the classes of 1-forms zi =
dℓi
ℓi

, where

ℓi are the defining equations of Hi. Orlik and Solomon [24] gave an explicit combinatorial

description of the ideal of relations between zi in terms of linear dependencies between ℓi
(see 5.2). To connect the Orlik-Solomon theory with the Z–module structure of the lattice and

HFL− cohomologies, we prove the following improvement of their result (see Theorem 5.2.8).

Theorem 1.3.1. Consider the free anticommutative algebra E generated by zi. It is naturally

bigraded: a monomial ∧i∈Kzi has bidegree (|K|, ρ(K)), where ρ(K) := dim V/ ∩i∈K Hi.

(a) There is a differential ∂0 on E of bidegree (−1, 0) such that H∗(E , ∂0) ≃ H∗(H).
(b) There is a differential ∂U = ∂0 + U∂1 on E [U ] such that H∗(E [U ], ∂U ) ≃ H∗(PH).
(c) All classes in the homology of ∂U have U-degree 0 and can be presented as sums of

monomials α = ∧i∈Kzi such that the hyperplanes Hi∈K are independent.

Corollary 1.3.2. (a) The homology of ∂0 or ∂U inherits a bidegree, and for the nontrivial

generators |α| = ρ(α). Therefore, the bidegrees in non-trivial homology elements lie on a line.

(b) The U–action on H∗(E [U ], ∂U ) ≃ H∗(PH) is trivial.
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1.4. The lattice homology. This note introduces the lattice homology of (C, 0). Recall that in

[23] the lattice homology of a normal surface singularity was introduced via the lattice provided

by its resolution graph (or plumbing graph of the link). That invariant created a bridge between

the analytic invariants of the surface singularity and several topological invariants (like Seiberg–

Witten invariant and Heegaard Floer homology) of its 3–dimensional link. The goal of the

present construction is similar; nevertheless here we rely on the lattice Zr discussed above,

and the needed weight function is provided by the normalization of C, namely by the Hilbert

function h(v).
In short, the definition for an arbitrary weight function w : Zr → Z runs as follows. The

lattice complex L−
w is generated over Z[U ] by cubes � of all dimensions in Rr, with vertices in

the lattice Zr. For such a cube we define w(�) = maxx∈�∩Zr w(x). The differential is defined

as

∂U (U
m
�) = Um ·

∑

i

εiU
w(�)−w(�i)�i,

where �i are the oriented boundary cubes of �, and εi are the corresponding signs (as in the

boundary operator of the classical cubic homology). We define the homological degree of the

generators by deg(Um
�) = −2m+ dim(�)− 2w(�); ∂U decreases it by one.

The complex L−
w is naturally Zr-filtered: the subcomplex L−

w(v) is generated by the cubes

contained in the positive quadrant originating at v. One of our main theorems describes the

homology of the subcomplexes L−
w(v) and the associated graded complexes grv L

−
w for all v.

Theorem 1.4.1. (a) Ifw is non-decreasing (that is,w(v) ≤ w(u) for v � u), thenH∗(L−
w(v)) ≃

Z[U ] with a generator of homological degree −2w(v).
(b) In the algebraic case (that is, if w = h), the Poincaré polynomial Pgrv L−

h
(t) of the

homology of grv L
−
h agrees with the v–coefficient in the motivic Poincaré series:

Pgrv L−
h
(−t−1) = th(v)πv(t).

(c) The following (co)homologies are isomorphic:

H−2h(v)−∗(grv L
−
h ) ≃ H∗(PH(v)),

and both spaces are free Z-modules.

(d) The induced U–action on H∗(grv L
−
h ) is trivial.

We prove the parts of this theorem in Theorems 4.1.7, 4.2.1 and 5.3.1.

1.5. Heegaard Floer link homology. We relate the Heegaard Floer link homology HFL− of

an algebraic link to lattice homology of the corresponding plane curve singularity. (For the

definition of HFL− see [27, 28, 29, 30] and [33]).

Recall that an L-space is a 3-manifold with minimal possible rank of its Heegaard Floer

homology, and an L–space link is a link in S3 such that a sufficiently large surgery of S3 along

its components yield an L–space. Ozsváth and Szabó proved in [27] that the Heegaard Floer

homology of an L–space knot is determined by its Alexander polynomial. Hedden proved in

[12] than every algebraic knot is an L–space knot. As a consequence, Heegaard Floer homology

of an algebraic knot is determined by its Alexander polynomial. However, for L–space links is

not known if their Heegaard Floer link homology is determined by the multivariable Alexander

polynomial.

As a generalization of the above facts valid for knots, we propose the following program.

First, in [11] (motivated by the present manuscript), the authors observe that all algebraic links

are L-space links. Then, by the general theory of Ozsváth and Szabó of L–space links and
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by ‘Large Surgery Theorem’ of Manolescu and Ozsváth [15], such a link L ⊂ S3 provides a

function g : Zr → Z as follows (we call it HFL–weight function). The HFL− complex is a

Z[U1, . . . , Ur] module with Alexander filtration {A−(v)}v∈Zr , where Ui(A
−(v)) ⊂ A−(v+e1).

A−(v) is a subcomplex and a Z[U1, . . . , Ur] submodule. Its homology is a free rank one Z[U ]-
module (with U = U1). Then g(v) is essentially the homological degree of its unique generator

(similarly to Theorem 1.4.1(a)). The function g(v) is determined by the multi-variable Alexan-

der polynomial of L (Theorem 2.2.11). We prove the following (see Theorem 2.2.10).

Theorem 1.5.1. Let L be an L–space link and let g : Zr → Z be its HFL–weight function.

Then for each fixed v ∈ Zr there exists a spectral sequence with the following properties:

(a) The E1 page can be identified (as a Z[U ] module) with the lattice complex grv L
−
g

associated with g(v).
(b) The E2 page is isomorphic (over Z) to the local lattice homology associated with g(v).
(c) TheE∞ page is isomorphic (as graded Z-module, where the grading is the homological

one) to HFL−(L, v), the Heegaard Floer link homology of L with Alexander grading

v. Moreover, the spectral sequence collapses at Er page (or earlier).

(d) If r ≤ 3 then the spectral sequence collapses at the E2 page.

For algebraic links the following additional facts hold (cf. Theorems 6.1.2 and 6.1.3).

Theorem 1.5.2. If L is the link of a plane curve singularity (C, 0) then the HFL–weight

function g(v) coincides with the Hilbert function h(v). Moreover, the spectral sequence always

collapses at the E2 page.

Corollary 1.5.3. If L is the algebraic link of (C, 0) then for each fixed v ∈ Zr one has

HFL−(L, v) ≃ H∗(grv L
−
h ) ≃ H−2h(v)−∗(PH(v))

(isomorphism of graded Z modules). Moreover, the Poincaré polynomial of the Heegaard Floer

link homology is described by Theorem 1.4.1 by the coefficients of the motivic Poincaré series.

Furthermore, HFL−(L, v) 6= 0 if and only if v belongs to the semigroup of (C, 0).

Theorem 1.5.1 can be compared with [31, Theorem 1.1], where a similar spectral sequence

from a different form of lattice homology (associated with a plumbing graph) to Heegaard Floer

homology was considered. For the first part of Theorem 1.5.2 we use the ‘Inversion Theorem’

3.4.3, and in the proof of collapse we use some specific properties of the lattice homology and

Orlik–Solomon algebras established in Theorem 4.2.1 (cf. Corollary 1.3.2).
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2. HEEGAARD FLOER LINK HOMOLOGY

2.1. Review of Heegaard Floer link homology. In this subsection we recall certain basic

algebraic structures of Heegaard Floer link homology. For more see [15, 27, 28, 29, 30, 33].
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To every 3-manifold M with fixed Heegaard splitting one can associate a Heegaard Floer

complex CF−(M) of free Z[U ]-modules. The operator U has homological degree (−2), and

the differential d has degree (−1). This complex is not unique, but different choices (e.g.

of a splitting) lead to quasi-isomorphic complexes. Therefore the homology of CF−(M) is

an invariant of M called Heegaard Floer homology and denoted by HF−(M). For example,

HF−(S3) = Z[U ].
To a link L = L1 ∪ · · · ∪ Lr ⊂ S3 one can associate a Zr-filtered complex of Z[U1, . . . , Ur]-

modules, denoted by CFL−(L). If one ignores the filtration, then the complex is quasi-

isomorphic to the Heegaard Floer complexCF−(S3), where all the operators Ui are homotopic

to each other, cf. [29]. One can also consider this complex as a Z[U ]-module, where U = U1.

However, the filtration (called Alexander filtration) captures nontrivial information about

the link. For v ∈ Zr, we will denote the Alexander filtration by {A−(v)}v. Each A−(v) =
(⊕νA

−,ν(v), d) is a subcomplex of CFL−(L) (in [15] they are denoted by A−(v)) 1. The upper

index ν denotes the homological (or Maslov) grading. They satisfy

(2.1.1)
A−(v) ⊃ A−(u) for u ≻ v, and

A−(v) ∩ A−(u) = A−(max{v, u}).

The subcomplexes A−(v) are Z[U1, . . . , Ur]-submodules, the operators Ui have homological

degree (−2) and are homotopic to each other. Moreover, Ui(A
−(v)) ⊂ A−(v + ei).

The Heegaard Floer link homology is defined as the homology of the associated graded

pieces of A−(v):

HFL−(L, v) := H∗( (grA
−)(v) ), where (grA−)(v) := A−(v)/

∑

u≻v

A−(u).

For example, for r = 1 one has HFL−(L, v) = H∗(A
−(v)/A−(v + 1)).

Remark 2.1.2. At present, Heegaard Floer link homology is defined only for F2 coefficients,

hence, strictly speaking, all results of this section and the last section are valid only over F2.

Nevertheless, we believe that all the statements are true over Z as well, but the cautious reader

might take everywhere F2 instead of Z.

By [29, Proposition 9.2], the Euler characteristic of the Heegaard Floer link homology coin-

cides with the Reidemeister torsion, and it satisfies

(2.1.3)
∑

v∈Zr

χ(HFL−(L, v)) · tv =

{
∆(t) if r > 1,
∆(t)
1−t

if r = 1,

where ∆ is the multivariable Alexander polynomial of L.

2.2. L-space links. In [27] Ozsváth and Szabó introduced the notion of an L–space: a rational

homology 3–sphere M is an L–space if for any spinc–structure s one has rank ĤF (M, s) = 1
(or, equivalently, HF−(M, s) is a free Z[U ]–module of rank 1).

Definition 2.2.1. A link L ⊂ S3 is called an L-space link if a sufficiently large surgery on all

of its components is an L-space.

The following ‘Large Surgery Theorem’ shows the importance of the L-space property.

1For a more transparent match with the algebraic picture, we reverse the sign of v, thus reversing the direction

of the filtration as well.
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Theorem 2.2.2. ([15, Theorem 10.1], see also [31, Lemma 4.2]) If d1, . . . , dr are sufficiently

large integers, then the homology of A−(v) (considered as Z[U ]-module) is isomorphic to the

Heegaard Floer homology HF− of the 3-manifold S3
d1,...,dr

(L) obtained from S3 by di-surgery

along the components of the link Li (for a certain spinc–structure depending on v).

In particular, if L ⊂ S3 is an L-space link, then for any v ∈ Z
r the homology of A−(v) is a

free Z[U ]–module of rank 1.

Let g(v) denote the homological degree of the unique generator in H∗(A
−(v)).

Lemma 2.2.3. For all i and v ∈ Zr either g(v + ei) = g(v) or g(v + ei) = g(v) − 2.

Furthermore, the inclusion map A−(v + ei) →֒ A−(v) induces an injection on homology.

Proof. One has the following inclusions:

(2.2.4) A−(v) ⊃ A−(v + ei) ⊃ UiA
−(v) ⊃ UiA

−(v + ei).

By Theorem 2.2.2, H∗(A
−(v)/UiA

−(v)) andH∗(A
−(v+ei)/UiA

−(v+ei)) are free Z-modules

of rank 1 with generators of homological degrees g(v) and g(v + ei). Similarly to [27, Lemma

3.2] (see also [10]), from (2.2.4) one obtains the following alternative:

(2.2.5)

{
g(v + ei) = g(v) and dimH∗(A

−(v)/A−(v + ei)) = 0, or

g(v + ei) = g(v)− 2 and dimH∗(A
−(v)/A−(v + ei)) = 1.

The long exact sequence in the homology implies the injectivity of the inclusion. �

Motivated by Theorem 4.1.7 (valid for algebraic links) we introduce the following definition.

Definition 2.2.6. We define the HFL–weight function of an L-space link by

g(v) := −1
2
g(v).

Note that by Lemma 2.2.3 the values of g(v) have the same parity for all v, hence g(v) ∈ Z

or g(v) ∈ 1
2
+ Z for all v, hence g(v + ei)− g(v) ∈ {0, 1}.

Corollary 2.2.7. For all u � v the inclusion iuv : A−(u) →֒ A−(v) induces an injective map

on homology. If z(u) and z(v) are generators in H∗(A
−(u)) and in H∗(A

−(v)) respectively,

then

iuv,∗(z(u)) = Ug(u)−g(v)z(v).

Definition 2.2.8. Consider the “iterated cone” complex

K(v) :=
⊕

K⊂{1,...,r}

A−(v + eK), D = d+

r∑

i=1

ǫi,K∂i,

where d is a differential on A−, ∂i : A
−(v + eK) → A−(v + eK − ei) is the inclusion map

(i ∈ K), and the signs ǫi,K = ±1 are chosen such that D2 = 0.

It is useful to present K(v) as an r-dimensional cube with the complexes {A−(v + eK)}K at

vertices. The differential d acts in vertices, while ∂ :=
∑r

i=1 ǫi,K∂i acts along the edges. The

homological grading of a generator x ∈ A−,ν(v+eK), considered as a generator in K(v), equals

|K|+ ν. The differential d decreases ν by 1 and preserves |K|, the differential ∂ decreases |K|
by 1 and preserves ν, so both decrease the total grading by 1.

Lemma 2.2.9. The complexes (grA−)(v) and K(v) are quasi-isomorphic.
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Proof. We prove this by induction on r. For r = 1 it is clear that K(v) is just the cone of the

inclusion map A−(v+e1) → A−(v), so it is quasi-isomorphic to (grA−)(v) = A−(v)/A−(v+
e1).

For r > 1, we can write (using (2.1.1))

(grA−)(v) =
(
A−(v)/

r−1∑

i=1

A−(v + ei))
)/(

A−(v + er)/
r−1∑

i=1

A−(v + ei + er))
)
.

Each of these quotients can be realized as an iterated cone, and (grA−)(v) can be realized as a

cone of the natural map between them. �

The following theorem and its proof is similar to the main result of [31], although it ap-

pears in a different setup. The algebraic construction of the ‘iterated cone’ complex K can be

compared with the construction appearing in [31, Theorem 4.3].

For the definition of the lattice complex and cohomology see subsection 4.1 and section 4.

Theorem 2.2.10. Let L be an L-space link with r components. Let us fix a point v ∈ Z
r. There

exists a spectral sequence with the following properties:

a) Its E2 page is isomorphic (as graded Z module) to H∗(grv L
−
g ), where L−

g denotes the

lattice complex associated with the HFL–weight function g(v).
b) Its E∞ page is isomorphic (as graded Z module) to HFL−(L, v), the Heegaard Floer

link homology of L with Alexander grading v.

c) The spectral sequence collapses at Er page (or earlier).

d) If L has three or less components, then the spectral sequence collapses at E2.

Proof. One has two (anti)commuting differentials d and ∂ on the complex K(v), hence there

exists a spectral sequence which starts with the cohomology of d and converges to the coho-

mology of D = d+ ∂. By Lemma 2.2.9, its (multigraded) E∞ page is isomorphic to

E∞(v) = H∗(K(v), D) = H∗((grA
−)(v)) = HFL−(L, v).

On the other hand, by Theorem 2.2.2, the E1 page of this spectral sequence is isomorphic to

E1(v) = H∗(K(v), d) =
⊕

K

H∗(A
−(v + eK)) =

⊕

K

Z[U ] · z(v + eK),

where, as above, we denote the generator in the homology ofA−(u) by z(u). One can naturally

identify thisE1 page with the lattice complex (grv L
−
g , gr ∂U ), via the identification of z(v+eK)

by �(v,K). Note that the ν–grading of z(v+ eA) (in K(v)) equals g(v+ eK) = −2g(v+ eK),
hence the homological grading of Umz(v+eK) equals ν(Umz(v+eK))+|K| = −2m−2g(v+
eK) + |K|, in agreement with the definition of the homological degree in the lattice complex

in 4.1, see also (4.1.4). The next differential is induced by ∂, and by Corollary 2.2.7 it agrees

with the lattice differential for the weight function g(v). Indeed,

∂(z(v + eK)) =
∑

i∈K

±∂i(z(v + eK)) =
∑

i∈K

±Ug(v+eK )−g(v+eK−ei)z(v + eK − ei).

The differential dk in the spectral sequence decreases |K| by k and increases the ν-grading

(homological grading in vertices of the cube) by k − 1 (assuming that d = d0 and ∂ = d1).

In particular, for k > r the differential dk vanishes automatically. Moreover, the class of the

unique r-dimensional cube is not in the kernel of the lattice differential, so dr vanishes too.

Since the ν-gradings of all classes on E1 page has the same parity, dk can be nontrivial only

if k is odd. In particular, for r ≤ 3 we have d2 = d3 = 0, so E2 = E∞. �
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The next theorem expresses the function g(v) in terms of the Euler characteristic of the

HFL− homology (or, equivalently, in terms of multivariable Alexander polynomial).

Theorem 2.2.11. Let LK denote the sublink associated with K ⊂ K0. Then for every v ∈ Z
r

g(v) =
∑

K⊂K0

(−1)|K|−1
∑

0�u�vK−eK

χ(HFL−(LK , u)).

Proof. Since the Heegaard Floer complex is finitely generated as Z[U ]-module, there exists

N = (N1, . . . , Nr) large enough such that A−(v) ⊂ A−(−N) for any v. Hence

g(v) = g(max{v,−N}).

For a subset K = {i1, . . . , i|K|} ⊂ K0 consider a sublink LK := ∪i∈KLi. LK is also L–

space link (cf. [14, Lemma 1.6]), so it defines a HFL-weight function gK on the sublattice

of Zr supported on K. By [29, Proposition 7.1], the restriction of the filtration A−(v) to this

sublattice coincides with the filtration on the Heegaard Floer complex for the sublinkLK . Given

vi1 , . . . , vi|K|
, define

u(vi1, . . . , vi|K|
) :=

{
vj, j ∈ K,

−Nj , j /∈ K,

then A−(u(vi1, . . . , vi|K|
)) ≃ A−

LK
(vi1 , . . . , vi|K|

) and

(2.2.12) g(u(vi1, . . . , vi|K|
)) = gK(vi1 , . . . , vi|K|

).

At Euler characteristic level we obtain

(2.2.13) χ(HFL−(LK , v)) = χ
(
A−(v)/

∑

i∈K

A−(v + ei)
)
=

∑

M⊂K

(−1)|M |−1g(v + eM).

This is a linear system of equations for g(v), and by Theorem 3.4.3 (where 0 should be replaced

by −N) the function g(v) is defined uniquely by the equations (2.2.12) and (2.2.13) up to an

overall shift. �

3. THE HILBERT FUNCTION AND ITS RELATION WITH OTHER INVARIANTS

In this section we discuss the connections between the multi-variable Alexander polynomial,

three series (Poincaré, Hilbert and motivic Poincaré), and the semigroup associated with an

isolated plane curve singularity. All the statements, except those which involve the Alexan-

der polynomial, are valid for arbitrary (non necessarily plane) curve singularity germs. The

Alexander polynomial, by its very essence, is an invariant of the embedded topological type

(hence of the embedded link); in the algebraic case it connects the theory of links of S3 with

the above algebraic invariants.

3.1. The Hilbert series of the multi-index filtration. We fix a local reduced plane curve

singularity with r irreducible components Ci and normalizations γi : (C, 0) → (Ci, 0). Set the

valuations vi(f) = ordt (f (γi(t))) on O = OC2,0, and a Zr-indexed filtration

J(v) = {f ∈ O | v(f) � v}.

Note that the ideals J(v) are defined for negative values of v as well. The filtration is decreas-

ing: if u � v then J(u) ⊃ J(v).

Definition 3.1.1. The Hilbert series of the multi-index filtration J is

(3.1.2) H(t1, . . . , tr) =
∑

v

h(v) · tv11 · · · tvrr ∈ Z[[t1, t
−1
1 , . . . , tr, t

−1
r ]],
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where h(v) = dimC O/J(v). Note that

(3.1.3) h(v) = h(max{v, 0}).

Hence H is determined completely by H(t)|0�v :=
∑

0�v h(v)t
v.

3.2. The Poincaré series. If r = 1, then the Poincaré series of the graded ring ⊕vJ(v)/J(v+
e1) is P (t) = −H(t)(1− t−1). For general r, one defines the Poincaré series similarly

(3.2.1) P (t1, . . . , tr) = −H(t1, . . . , tr) ·
∏

i

(1− t−1
i ).

This means that the coefficient πv of P =
∑

v πv · t
v1
1 . . . tvrr satisfies

(3.2.2) πv =
∑

K⊂K0

(−1)|K|−1h(v + eK).

The space Z[[t1, t
−1
1 , . . . , tr, t

−1
r ]] is a module over the ring of Laurent power series, hence the

multiplication in (3.2.1) is a well-defined. One can check (using e.g. (3.1.3)) that the right hand

side of (3.2.1) is a power series involving only nonnegative powers of ti.

3.3. Poincaré series and the Alexander polynomial. The topological aspect and importance

of the Poincaré series is shown by the following theorem.

Theorem 3.3.1 ([4, 5]). Let ∆(t1, . . . , tr) be the multi-variable Alexander polynomial of the

link of C. If r = 1 then P (t)(1− t) = ∆(t), while P (t1, . . . , tr) = ∆(t1, . . . , tr) if r > 1.

The Alexander polynomial is symmetric in the following sense. For any i ∈ K0 let µi and δi
(respectively µ(C) and δ(C)) be the Milnor number and the delta invariant of Ci (respectively

of C), see [1, 16]. Let (Cj, Ci) be the intersection multiplicities at 0 (j 6= i). Then, cf. [16],

µi = 2δi, and µ(C) + r − 1 = 2δ(C). Define l = (l1, . . . , lr) by

li = µi +
∑

j 6=i

(Cj , Ci) (1 ≤ i ≤ r).

Then ∆(t−1) = t−µ(C)∆(t) for r = 1, and (e.g. by [9])

∆(t−1
1 , . . . , t−1

r ) =
(∏

t1−li
i

)
·∆(t1, . . . , tr) for r > 1.

By [7, 18], the Hilbert function also satisfies similar symmetry properties

(3.3.2) h(l − v)− h(v) = δ(C)− |v|,

where |v| =
∑r

i=1 vi. In particular, for v � l one has

(3.3.3) h(v) = |v| − δ(C).

3.4. The equivalence of the Poincaré series and the Hilbert series. For any subset K =
{i1, . . . , i|K|} ⊂ K0, K 6= ∅, consider the curve CK = ∪i∈KCi. As above, this germ defines

the Hilbert series HCK
of CK in variables {ti}i∈K :

HCK
(ti1 , . . . , ti|K|

) =
∑

v

hK(v) · t
vi1
i1
. . . t

vi|K|

i|K|
.

By the very definition, HCK
(ti1 , . . . , ti|K|

) = HC(t1, . . . , tr)|ti=0 i 6∈K ; or

(3.4.1) if vi = 0 for all i /∈ K, then hK(v) = h(v).
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Analogously, we also consider the Poincaré series of CK :

PCK
(ti1 , . . . , ti|K|

) =
∑

v

πK
v · t

vi1
i1
. . . t

vi|K|

i|K|
.

By definition, for K = ∅ we take π∅
v = 0.

By [36] the multi-variable Alexander polynomial (and hence by Theorem 3.3.1 the Poincaré

series P (t)) determines the embedded topological type ofC, in particular all the series {PCK
}K⊂K0

.

Nevertheless, the reduction procedure from P to PCK
is more complicated than the analogs of

(3.4.1) valid for the Hilbert series. Indeed, these formulae are of type (see [35]):

(3.4.2) PCK0\{1}
(t2, . . . , tr) = P (t1, . . . , tr)|t1=1 ·

1

(1− t
(C1,C2)
2 ) · · · (1− t

(C1,Cr)
r )

.

The next theorem inverts (3.2.2): we recover H from P . The fact that H can be recovered

from P was already proved in [17, Corollary 4.3]. However, we wish to present a more general

statement which also clarifies under what condition the inversion works, and which is applied

for certain coefficients provided by the Heegaard Floer link homology as well, cf. Theorem

2.2.10 and identity (2.2.13).

Theorem 3.4.3. Consider G(t1, . . . , tr) =
∑

v t
v1
1 . . . tvrr · g(v) ∈ Z[[t1, t

−1
1 , . . . , tr, t

−1
r ]] with

the following properties:

(a) g(v) = g(max{v, 0});
(b) g(0) = 0.

(c) Fix K ⊂ K0. We extend any v = (vi1 , . . . , vi|K|
) to a vector with entries indexed by K0

such that the entries indexed by K0 \K are zero. (In this way g(v) make sense.) Then, we also

require that the coefficients of g satisfy (for any K) the following identities:

πK
v =

∑

M⊂K

(−1)|M |−1g(v + eM ) for any v = (vi1 , . . . , vi|K|
).

Then G is uniquely determined by {PCK
}K (hence by P too), and it satisfies

(3.4.4) G(t1, . . . , tr)|0�v =
1∏r

i=1(1− ti)

∑

K⊂K0

(−1)|K|−1
(∏

i∈K

ti

)
· PCK

(ti1 , . . . , ti|K|
).

Proof. The identity (3.4.4) is equivalent to the following identity of the coefficients:

(3.4.5) g(v) =
∑

K⊂K0

(−1)|K|−1
∑

0�u�vK−eK

πK
u .

We will prove the identity (3.4.5) by a two-step induction: the first induction is by the number

of components r, and the second one (for fixed r) is over the norm |v| =
∑
vi.

If r = 1, then (d) implies πv = g(v+1)− g(v).Hence
∑

0≤u≤v−1 πu = g(v) since g(0) = 0.

Let us prove (3.4.5) for the case when at least one of coordinates vi vanish. We can assume

that vr = 0. By (3.4.1) and the induction assumption we get

g(v) = g(v1, . . . , vr−1, 0) =
∑

K⊂{1,...,r−1}

(−1)|K|−1
∑

0�u�vK−eK

πK
u .

On the other hand, in (3.4.5) for all K ⊂ K0 with r ∈ K we get the vacuous restriction

0 ≤ ur ≤ −1, hence we get a nontrivial contribution only from terms withK ⊂ {1, . . . , r−1}.

Suppose now that v has no vanishing coordinates and that we already proved (3.4.5) for

v − eK for all non-empty subsets K ⊂ K0. We can rewrite (d) as a linear equation on {g(v −
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eK)}K :

πv−e =
∑

K⊂K0

(−1)r−|K|−1g(v − eK).

By the induction assumption for K 6= ∅ we have

g(v − eK) =
∑

M⊂K0

(−1)|M |−1
∑

0�u�(vM−eK∩M−eM )

πM
u ,

and we should establish the same identity for K = ∅. Therefore we need to prove that

(3.4.6) πv−e =
∑

K⊂K0

∑

M⊂K0

(−1)r−|K|+|M |
∑

0�u�(vM−eK∩M−eM )

πM
u .

Let us fix M and u � v − e and sum the expression (−1)|K| over all sets K ⊂ K0 such that

ui ≤ vi − 2 for i ∈ K ∩M . This sum vanishes unless M = K0 and ui = vi − 1 for all i, when

it is 1. This proves (3.4.6). �

Corollary 3.4.7. (a) The Hilbert series satisfies the assumptions of the above inversion theo-

rem, hence G = H .

(b) The restricted Hilbert functionH(t)|0�v of a multi-component curve is a rational function

with denominator
∏r

i=1(1− ti)
2.

Proof. For (a) use identities (3.4.1) and (3.2.2) applied for CK , while for (b) Theorems 3.4.3

and 3.3.1. �

Remark 3.4.8. Let us reprove the identity (3.3.3) using (3.4.5). We analyze the different con-

tributions. For K = {i} we have
∑

0≤ui≤vi−1 π
K
u = vi − δ(Ci). For K = {i, j} (since PCK

is

a polynomial) we have
∑
π
{i,j}
u = PCK

(1, 1). This equals (Ci, Cj) by (3.4.2). By similar argu-

ment, for |K| > 2 the contribution is zero. Hence h(v) =
∑

i(vi − δ(Ci)) −
∑

i 6=j(Ci, Cj) =

|v| − δ(C).

3.5. The semigroup of C. Important information about the algebraic curve C is coded in its

semigroup. It is defined as S := {v ∈ Zr | there exists f ∈ O with v(f) = v}.

Lemma 3.5.1. The semigroup can be equivalently defined by the following condition:

S = {v ∈ Z
r
≥0 | h(v + ei) > h(v) for every i = 1, . . . , r}.

Next, fix any 0 � v and ei. Then h(v + ei) = h(v) + 1 if there is an element u ∈ S such that

ui = vi and uj ≥ vj for j 6= i. Otherwise h(v + ei) = h(v).
In particular, H and S determine each other.

Proof. If h(v + ei) > h(v) for all i, then there exist functions fi such that vi(fi) = vi and

vj(fi) ≥ vj for j 6= i. Therefore v(
∑r

i=1 λifi) = v for generic coefficients λi. For the second

part note that h(v + ei)− h(v) = dim J(v)/J(v + ei). This quotient space is trivial if there is

no function f such that vi(f) = vi and vj(f) ≥ vj for j 6= i. Otherwise it is one-dimensional.

Indeed, if vi(f1) = vi(f2) = vi then there exists λ 6= 0 such that vi(f1−λf2) > vi. If, moreover,

vj(f1), vj(f2) ≥ vj for all j 6= i, then vj(f1−λf2) ≥ vj too. Therefore f1−λf2 ∈ J(v+ei). �

Next we establish the ‘matroid properties’ of the function h.

Lemma 3.5.2. (a) Assume that h(v) = h(v + ei) for some fixed i ∈ K0. Then h(v + eK) =
h(v + eK + ei) for any K with K 6∋ i.

(b) Suppose that K1, K2 ⊂ K0 and v ∈ Zr. Then

h(v + eK1
) + h(v + eK2

) ≥ h(v + eK1∩K2
) + h(v + eK1∪K2

).
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FIGURE 1. Values of the Hilbert function for A3

(c) For any base vector ei and n ≥ li one has h(v + (n+ 1)ei)− h(v + nei) = 1.

Proof. (a) Use J(v + eK + ei) = J(v + eK) ∩ J(v + ei).
(b) Replacing v by v + eK1∩K2

, we can assume that K1 ∩K2 = ∅. Therefore, J(v + eK1
) ∩

J(v + eK2
) = J(v + eK1∪K2

). Hence h(v + eK1
) + h(v + eK2

) − h(v) − h(v + eK1∪K2
) =

dim J(v)/(J(v + eK1
) + J(v + eK2

)) ≥ 0. For (c) use (3.3.3) and Lemma 3.5.1. �

Remark 3.5.3. It turns out (using e.g. (3.3.3) and Lemma 3.5.1) that l is the conductor of S, in

particular v ∈ S whenever v � l.

Example 3.5.4. Consider the singularity A2n−1 defined by the equation x2 − y2n = 0. Its

Poincaré series equals 1+ t1t2+ · · ·+(t1t2)
n−1, and the Poincaré series of both its components

equals 1/(1− t). The Hilbert series is given by the following equation:

H(t1, t2)|0�v =
1

(1− t1)(1− t2)

(
t1

1− t1
+

t2
1− t2

− t1t2(1 + . . .+ (t1t2)
n−1)

)
.

Therefore, for non-negative integers (v1, v2) one has

h(v) =

{
max(v1, v2), if min(v1, v2) < n,

v1 + v2 − n, otherwise.

Figure 1 illustrates this formula for the Hilbert function for A3 singularity. The points corre-

sponding to the semigroup S are marked in bold.

Example 3.5.5. Consider the singularity D5 defined by the equation y · (x2 − y3) = 0. Then

P (t1, t2) = 1 + t1t
3
2, P1(t1) =

1

1− t1
, P2(t2) =

1− t2 + t22
1− t2

.

One can check that h(v1, v2) for non-negative v1 and v2 is given by the following formula:

h(v1, v2) =





v1, if v2 < 3, v1 > 0

v1 + 1, if v2 = 3, v1 > 0

v2 − 1, if v1 < 2, v2 ≥ 2

v1 + v2 − 3, if v1 ≥ 2, v2 ≥ 4

0, 1, 1, if v1 = 0 and v2 = 0, 1, 2.

Figure 2 illustrates the Hilbert function and the semigroup of D5.
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FIGURE 2. Values of the Hilbert function for D5

3.6. The local hyperplane arrangements. For any fixed v let us consider the set

H(v) := {f ∈ O : v(f) = v} = J(v) \
⋃

i

J(v + ei).

Since J(v + ei) is either J(v) or one of its hyperplanes (cf. 3.5.1), H(v) is either empty or

it is a hyperplane arrangement in J(v). This can be reduced to a finite dimensional central

hyperplane arrangement

H′(v) :=
J(v)

J(v + eK0
)
\
⋃

i

J(v + ei)

J(v + eK0
)
,

since H(v) ≃ J(v + eK0
) × H′(v). Note that both H′(v) and H(v) admit a free C∗–action

(multiplication by nonzero scalar), hence one automatically has the two projective arrange-

ments PH′(v) = H′(v)/C∗ and PH(v) = H(v)/C∗ as well. The following proposition can be

deduced from (3.2.2) and inclusion-exclusion formula (see e.g. [4, 5] and Lemma 3.7.1 below).

Proposition 3.6.1. The Euler characteristic of PH(v) (and of PH′(v)) equals πv, the coeffi-

cient of the Poincaré series P (t) at tv.

3.7. Motivic Poincaré series. The series P(t1, . . . , tr; q) ∈ Z[[t1, . . . , tr]][q] is defined in [6]

as a refinement of P (t) as follows. By definition, the coefficient of tv11 . . . tvrr is the (normalized)

class of PH′(v) in the Grothendieck ring of algebraic varieties. It turns out that the class of a

central hyperplane arrangement can always be expressed in terms of the class L of the affine

line. Indeed, one has:

Lemma 3.7.1. V be a vector space and let H = {H1, . . . ,Hr} be a collection of linear hyper-

planes in V . For a subset K we define the rank function by ρ(K) = codim∪i∈KHi. Then in

the Grothendieck ring of varieties (by the inclusion-exclusion formula) one has

[V \ ∪r
i=1Hi] =

∑

K⊂K0

(−1)|K| [∩α∈KHα] =
∑

K⊂K0

(−1)|K|
L
dimV−ρ(K).

Since [C∗] = L− 1, one also has [(V \ ∪r
i=1Hi)/C

∗] = [V \ ∪r
i=1Hi]/(L− 1).

Corollary 3.7.2. The class of the (finite) local hyperplane arrangement H′(v) equals

[H′(v)] = (L− 1)[PH′(v)] =
∑

K⊂K0

(−1)|K|
L
h(v+eK0

)−h(v+eK).
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Replacing L−1 by a new variable q, one can define (following [6]) the motivic Poincaré series

P(t; q) =
∑

v πv(q)t
v by

πv(q) := L
1−h(v+eK0

)[PH′(v)]
∣∣∣
L−1=q

=
1

1− q

∑

K⊂K0

(−1)|K|qh(v+eK) =

∑

K⊂K0

(−1)|K| ·
qh(v+eK) − qh(v)

1− q
.

Note that limq→1P(t; q) = P (t). In [10, 18] several properties of P(t1, . . . , tr; q) are proved,

e.g. it is a rational function with denominator
∏r

i=1(1− tiq). We will need the following.

Lemma 3.7.3. The support of P(t; q) is exactly S. That is, πv(q) 6= 0 if and only if v ∈ S.

Proof. If v 6∈ S, then there exists i ∈ K0 such that h(v+ei) = h(v) (cf. 3.5.1), hence πv(q) = 0
by 3.5.2(a). If v ∈ S, then h(v + ei) = h(v) + 1 for all i and h(v + eK) ≥ h(v) + 1 for all

subsets K, hence πv(q) = qh(v)+ higher order terms. �

By Theorem 3.4.3, P(t; q) and P (t), in fact, determine each other.

3.8. Conclusion. By the above discussions, the following objects associated with a plane

curve singularity carry the same amount of information: the multi-variable Alexander polyno-

mial ∆(t), the semigroup S, the Hilbert series H(t), the Poincaré series P (t) and the motivic

Poincaré series P(t; q). The role of the spaces H(v) will be crucial in the next parts: we will

compute their homology using the Orlik–Solomon algebras of hyperplane arrangements. This

will connect two other objects: the local lattice homology (associated with the weight function

h) and the Heegaard Floer link homology of the link of C. This connection and the ‘matroid

properties’ (3.5.2) of the weight function h are responsible for the collapse of a spectral se-

quence connecting the Heegaard Floer link homology with the lattice homology.

The Poincaré polynomials of all these cohomologies will be identified with the coefficients

of the motivic Poincaré series.

Remark 3.8.1. In the above definition OC2,0 can be replaced by OC . In this way, one can extend

all the above definitions of H(t), P (t), P(t; q), S to the case of any (not necessarily plane)

reduced curve singularity. The topological embedded–link invariant ∆(t) has no analogue in

this general case. It is a nice challenge to find the analogue of the HFL–theory (via (H(t) as

in this note) applied for a (non–planar) curve singularity.

4. LATTICE HOMOLOGY

Lattice homology associated with the intersection lattice of a resolution of a normal surface

singularity was introduced in [23], as a topological invariant of negative definite plumbed 3–

manifolds. For a possible generalization to algebraic knots, see the recent manuscript [32].

In this section we introduce another homology theory associated with curve singularities,

where the lattice and the corresponding weight function have a different nature. In order to

make a distinction between the two cases we will call the present theory lattice homology of

curve singularities via their normalizations. In fact, the definitions below extend identically

to any, not necessarily plane curve singularity, that is, even if (C, 0) does not have any local

embedded link in the 3–sphere.
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4.1. The general theory: lattice complex, filtrations, lattice homology.

In this subsection we present the general theory of lattice homology associated with an arbi-

trary weight function. This will be specialized for the function h in subsection 4.2, and for the

HFL–weight function g given by Heegaard Floer link theory in section 6 (see also section 2).

We will use the cubes in R
r with vertices in the lattice points Zr. Every such cube �(v,K),

where v ∈ Zr and K ⊂ K0, is defined as

� = �(v,K) = {x ∈ R
r : v � x � v + eK}, dim�(v,K) = |K|.

We consider � with its natural orientation (as a subset of Rr). In the classical cubical homol-

ogy, the chain complex is a free Z-module with generators � = �(v,K) corresponding to the

cubes �(v,K), and the differential can be written as ∂(�) =
∑

i εi�i, where �i are oriented

codimension 1 faces of the cube �. 2

Definition 4.1.1. Let us choose a function w : Zr → Z, which will be called weight function.

We define the weight of a cube by

w(�) = max{w(v) : v ∈ � ∩ Z
r}.

If w(v) is non-decreasing (that is, w(u) ≤ w(v) whenever u � v), then, in fact, w(�(v,K)) =
w(v + eK).

Definition 4.1.2. The lattice complex L−
w associated with a weight function w is a free Z[U ]-

module generated by all cubes � = �(v,K) with the following Z[U ]–linear differential:

(4.1.3) ∂U (�) =
∑

i

εiU
w(�)−w(�i)�i.

One verifies that ∂2U = 0. We set degU = −2 and we introduce the homological grading of

a generator by

(4.1.4) deg(Um
�) = −2m+ dim(�)− 2w(�).

The differential ∂U decreases the homological grading by 1.

Remark 4.1.5. It is clear that the weight functions w(v) and w(v) + const define isomorphic

lattice complexes. However, the shift of w by a constant induces a shift in the homological

degree (4.1.4) as well.

Definition 4.1.6. We define a Zr-indexed filtration on the complex L−
w as follows: the subcom-

plex L−
w(u) (u ∈ Zr) is generated over Z[U ] by all the cubes �(v,K) with v � u.

It is easy to see that ∂U preserves the filtration, so L−
w(u) is a subcomplex of L−

w for all u. The

next theorem shows that the homologies of different subcomplexes, and the homology of L−
w

itself, is simple (compatibly with facts from Heegaard Floer link theory, cf. Theorem 2.2.2).

Theorem 4.1.7. Assume that w is non-decreasing. Then the following facts hold.

(a) The homology of L−
w(u) is isomorphic to Z[U ] (as Z[U ]–module). It is generated by the

class �(u, ∅) of homological degree −2w(u).
(b) If additionally w(v) = w(max{0, v}), then the inclusion L−

w(0) ⊂ L−
w induces an iso-

morphism at the level of homology. In particular, the homology of L−
w is Z[U ].

Note that the assumptions on w are satisfied by the Hilbert function h of a curve, see (3.1.3).

2Note that here and below a full square � denotes a geometric object (|K|–dimensional solid cube in Rr),

while a hollow square � denotes the corresponding abstract generator in a chain complex.
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Proof. (a) For every k ≥ w(u) let us define the topological space Sk(u) :=
⋃

�(v,K) ⊂ Rr,

where the union is over cubes �(v,K) with v � u and w(�(v,K)) = w(v + eK) ≤ k. Note

that �(u, ∅) satisfies the requirements, hence Sk(u) is non-empty, it contains u.

Similarly to [23, Theorem 3.1.12], we show the following isomorphism of Z–modules for

any q ∈ Z:

(4.1.8) Hq(L
−
w(u)) =

⊕

k≥w(u)
q′−2k=q

Hq′(Sk(u),Z).

This can be proved as follows. Let C∗(Sk(u)) be the usual cubical chain complex of Sk(u).
⊕k≥h(u)C∗(Sk(u)) is their direct sum (as chain complexes), where we prefer to write (k, α)
for an element of the k-th component. We define the Z–linear morphism Φ : L−

w(u) →
⊕k≥h(u)C∗(Sk(u)) by U l

�(v,K) 7→ (l + w(v + eK),�(v,K)), where the latter cube �(v,K)
is considered in C|K|(Sk(u)), positioned in the component k = l+w(v+eK). This is a linear iso-

morphism with inverse (k,�(v,K)) 7→ Uk−w(�(v,K))
�(v,K). Moreover, Φ(∂U (U

l
�(v,K))) =

∂Φ(U l
�(v,K)) (where ∂ means the direct sum of usual boundary operators of C∗(Sk(u))).

Furthermore, multiplication by U in L−
w(u) corresponds to the operator (k,�) 7→ (k +

1, i(�)), where i is induced by the inclusion Sk →֒ Sk+1 at the level of ⊕k≥w(u)C∗(Sk(u)).
Hence, Φ induces a morphism at the level of homology. If the homological degree −2l +

|K| − 2w(v + eK) of U l
�(v + eK) is denoted by q, then its homological class is sent by Φ∗

into Hq′(Sk), where q′ = |K| and 2k = 2(l + w(v + eK)) = |K| − q = q′ − q. Hence (4.1.8)

follows.

Next, we prove that Sk(u) is contractible for all k. Indeed, since w is non–decreasing, if

�(v,K) ⊂ Sk(u), then the set Sk(u) contains the whole parallelepiped {x : u � x � v+ eK}.

Such a space can be contracted to the lattice point u.

In particular, in (4.1.8) q′ should be zero, q = −2k and k ≥ w(u), while H0(Sk(u)) = Z.

This means that Hq(L
−
w(u)) is zero unless q = −2w(v)− 2l for l ≥ 0, and in this case it is Z

corresponding to the generator �(u, ∅) considered in Sw(u)+l; or, in the homology of L−
w(u), to

the class of U l
�(u, ∅). Hence

H∗(L
−
w(u)) = Z[U ] ·�(u, ∅).

(b) For 1 ≤ p ≤ r we define the sub-complex L−
w,p of L−

w generated over Z[U ] by cubes

�(v,K) with v = (v1, . . . , vr), vi ≥ 0 for 1 ≤ i ≤ p. Then L−
w,r = L−

w(0) and we also set

L−
w,0 := L−

w . We show that L−
w,p ⊂ L−

w,p−1 is a homotopy equivalence, hence (b) follows by

induction on p.

Let (Qp−1, ∂
Q) be the quotient complex L−

w,p−1/L
−
w,p. It is generated by cubes �(v,K) with

vi ≥ 0 for 1 ≤ i ≤ p− 1 and vp < 0. Note that for such a lattice point one has w(v) = w(v +
ep). Therefore, (Qp−1, ∂

Q) is a tensor product of two complexes (Rp−1, ∂
R)⊗ (T, ∂T ), where

(T, ∂T ) is the quotient lattice complex R/R≥0 associated with the constant zero weight (this

corresponds to the p-th coordinate). More precisely, T is generated by 0–cubes an := �(n, ∅)
and 1–cubes αn := �(n, {1}) for n ∈ Z<0, and ∂T (αn) = an+1−an (with the notation a0 = 0).

It is easy to check that the homology of (T, ∂T ) is trivial, hence H∗(Qp−1, ∂
Q) = 0 too. �

The point is that the really interesting information is codified in the associated graded ver-

sions and in the pages of the corresponding spectral sequences converging to H∗(L
−
w).

Definition 4.1.9. We define the multi-graded direct sum complex grL− = ⊕v grv L
−, where

grv L
− = L−(v)/

∑r
i=1L

−(v + ei)
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with induced boundary operator gr ∂U . The graded homology group HL− = ⊕v HL
−(v), where

HL−(v) := H∗(grv L
−, grv ∂U),

is called the local lattice homology associated with the weight function w. It has an induced

Z[U ] module structure.

Remark 4.1.10. Consider the filtration {Fn}n∈Z, where the sub-complex Fn of L−
w is generated

over Z[U ] by cubes �(v,K) with |v| ≥ n. Then Fn/Fn+1 = ⊕|v|=n grv L
−
w , and ⊕nFn/Fn+1 =

grL−
w . Therefore, there exists a spectral sequence

E1 = H∗(grL
−
w) ⇒ E∞ = H∗(L

−
w).

Remark 4.1.11. The bigrading of L−
w. The following bigrading helps to enlighten some

hidden structure of the lattice homology (cf. part (3) of Theorem 4.2.1 and the proof after it).

We define the following improvement of the homological grading (4.1.4)

bdeg(Um
�) = (−2m− 2w(�), dim(�)) ∈ Z

2.

Then the boundary operator ∂U has bidegree (0,−1). In particular, HL−(v) is also bigraded.

Let HL−
a,b(v) denote the corresponding (a, b)–component of HL−(v).

4.2. The case of algebraic curves. Given a curve singularity C with Hilbert function h(v),
one can consider the lattice complex with the weight function v 7→ h(v) (which is non-

decreasing). In this case we will abbreviate the notation to L− = L−
C := L−

h .

Theorem 4.2.1. (1) Consider the motivic Poincaré series ofC, P(t; q) =
∑

v πv(q)t
v. Then the

Poincaré polynomial of HL−(v), namely PL−

v (t) :=
∑

i t
i rankHi(grv L

−, grv ∂U), satisfies

(4.2.2) PL−

v (−t−1) = th(v) · πv(t).

In particular, (−1)h(v) · πv(−q) is a polynomial in q with non-negative coefficients.

Moreover, the Euler characteristic PL−

v (−1) =
∑

i(−1)i rankHi(grv L
−) equals πv(1) =

πv, the v–coefficient of the Poincaré series.

(2) Furthermore,H−2h(v)−p(grv L
−, grv ∂U ) ≃ Hp(PH′(v),Z), where PH′(v) is the comple-

ment of the projective hyperplane arrangement defined in 3.6.

(3) If Ha,b(grv L
−, grv ∂U) 6= 0 then necessarily a + 2b = −2h(v) (or, deg = −2h(v)− b).

(4) The U–action on H∗(grv L
−, grv ∂U ) is trivial.

We postpone the proof of Theorem 4.2.1 till subsection 5.4, where we will use hyperplane

arrangements and their Orlik-Solomon algebras. The surprising similarities between the Orlik–

Solomon complex and the lattice complex will be used deeply. Nevertheless, here we will show

how (4.2.2) can be deduced from (3). This also shows that (4.2.2) is not the output of a merely

homological manipulation, but it reflects a deeper vanishing property of the Orlik-Solomon

algebras.

Proof. (3)⇒ (4.2.2). For an bigraded Z–module {Ha,b}a,b set the virtual Poincaré polynomial

P vir
bdeg(t) :=

∑
a,b(−1)bta rankHa,b. In particular, this applied to grv L

−, and counting the bi-

degrees of the cubes {Um
�(v,K)}m≥0, K⊂K0

, we get

P vir
bdeg(t)(grv L

−) =
∑

K⊂K0

(−1)|K| ·
t−2h(v+eK )

1− t−2
= πv(t

−2).
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Since the differential ∂U has bi-degree (0,−1), the virtual Poincaré polynomials of the complex

and its homology coincide and we get P vir
bdeg(t)(HF

−(v)) = P vir
bdeg(t)(grv L

−), hence

(4.2.3)
∑

a,K

(−1)|K|ta · rank HL−
a,|K|(v) = πv(t

−2).

Then (4.2.2) is equivalent to
∑

a,K

(−1)|K|ta · rank HL−
a,|K|(v) =

∑

a,K

(−1)|K|t2a+2h(v)+2|K| · rank HL−
a,|K|(v).

But this is true, since a = 2a+ 2h(v) + 2|K| whenever HL−
a,|K|(v) 6= 0 by (3). �

Corollary 4.2.4. v ∈ S if and only if HL−(v) 6= 0. For any v ∈ S one has PL−

v (−t−1) =
t2h(v)+ higher order terms. (This shows that the class of �(v, ∅) does not vanish in HL−(v).)

In particular, PL−

v (t) and πv(q) determine each other.

Proof. Use Lemma 3.7.3 (and its proof) and the identity (4.2.2). �

4.3. Example. The case of a curve with one component.

Suppose that r = 1. We will abbreviate �(v, ∅) = av, �(v, {1}) = αv. If v 6∈ S then

(grv ∂U )(αv) = av, hence HL−(v) = 0. If v ∈ S then (grv ∂U )(αv) = Uav, hence HL−(v) =

Z〈av〉 of homological degree −2h(v). Hence for v ∈ S one has PL−

v (t) = t−2h(v) compatibly

with P(t; q) =
∑

v∈S q
h(v)tv.

Furthermore, the spectral sequence from Remark 4.1.10 satisfies E1 ≃ E∞ ≃ Z[U ] as Z-

modules. Nevertheless, E1 6≃ E∞ as Z[U ] modules: E1 has trivial U–action, while in E∞

the U–action sends the generator of a semigroup element to the generator of the consecutive

semigroup element.

Remark 4.3.1. (The U = 0 (or “hat”–) version.) (a) It is interesting to consider the com-

plex L−
U=0 too (obtained from L− via substitution U = 0), generated over Z by the cubes and

boundary operator given by (4.1.3) with substitution U = 0. Then H∗(L
−
U=0) = Z (gener-

ated by the class of a0). Moreover, the filtration F ′
n := Fn|U=0 induces a spectral sequence

{Ek
U=0}k. F ′

n/F
′
n+1 is generated over Z by all av and αv, and the only non-trivial components

of the boundary map are the isomorphisms Z〈αv〉 → Z〈av〉 for any v 6∈ S. Hence E1
U=0 is

⊕v∈SZ〈av, αv〉 of homological degrees −2h(v) and −2h(v) − 1 repectively. The non-trivial

components of the d1 : E1
U=0 → E1

U=0 operator are the isomorphisms Z〈αv〉 → Z〈av+1〉
whenever both v and v + 1 are elements of S. Hence, the E2

U=0 term is

E2
U=0(v) =





Z〈av, αv〉 if v ∈ S, v − 1 6∈ S, v + 1 6∈ S,
Z〈av〉 if v ∈ S, v − 1 6∈ S, v + 1 ∈ S,
Z〈αv〉 if v ∈ S, v − 1 ∈ S, v + 1 6∈ S,
0 otherwise.

The parity of the homological degree provides a Z2 grading {E2
U=0}ǫ ofE2

U=0, where ǫ ∈ {0, 1}
has the same parity as the homological degree. Then, since ∆(t) = (1− t)

∑
v∈S t

v,
∑

v,ǫ

(−1)ǫ rank(E2
U=0(v)ǫ) t

v+ǫ = ∆(t).

Since for irreducible plane curves S and ∆ classifies the topological type of the knot of C, cf.

[36], both E1
U=0 and E2

U=0 terms contain the complete information about the local topological

type of C. Note also that E2
U=0 is supported in [0, µ], where µ = 2δ is the Milnor number of C,

and v 7→ µ− v − 2ǫ is a symmetry of E2
U=0,ǫ which preserves the ǫ–degree.
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The E∞
U=0 term is H∗(L

−
U=0) = Z.

(b) The short exact sequence of complexes 0 → L− U
−→ L− → L−

U=0 → 0 induces a long

exact sequence connecting the groups HL−(v) with the ‘U = 0’–counterparts, whose explicit

description is left to the reader.

4.4. Example. The case of a curve with two components.

We will abbreviate �(v, ∅) = av, �(v, {1}) = αv �(v, {2}) = βv and �(v, {1, 2}) = Γv.

By the general theory, if v 6∈ S then HL−(v) = 0. If v ∈ S there are two cases.

a) h(v) = h(v + e1 + e2)− 1; αv 7→ Uav , βv 7→ Uav , Γv 7→ αv − βv, then HL−(v) = Z〈av〉
of homological degree −2h(v). (In this case, PH(v) =point.)

b) h(v) = h(v + e1 + e2) − 2; αv 7→ Uav , βv 7→ Uav , Γv 7→ Uαv − Uβv, then HL−(v) =
Z〈av, αv−βv〉 of homological degrees −2h(v),−1−2h(v). (Cf. with PH(v) = P1 \2 points.)

In case (b) the Euler characteristic of HL−(v) (and the corresponding coefficient in the

Alexander polynomial) vanishes, but the homology and the coefficient in the motivic Poincaré

series do not vanish. This case appears, for example, for all v in the conductor of C.

Using Figures 1 and 2, one can compute the HL− for the singularities of types A3 and

D5. The analogous computation for the two-component singularity A2n−1 agrees with the

computations of the Heegaard Floer link homology in [29]. An explicit computation in the

case A1 is given in section 7.

4.5. Application to the theory of deformations of singularities.

In this subsection we consider deformations of plane curve singularities. ¿From topological

point of view, they induce cobordisms between the corresponding links in the three-sphere,

hence maps between their Heegaard Floer link homologies. We present here the analogous

maps in lattice homology, under the restriction that the central fiber of the deformation is irre-

ducible (while the generic fiber is allowed to have several components).

We wish to emphasize that semicontinuity results for different singularity invariants are cru-

cial in the deformation theory of singularities, since they might provide more information about

the (open) problem of adjacencies of singularity types.

Proposition 4.5.1. Let (C ′, 0) be a curve singularity with r irreducible components, and as-

sume that it is a deformation of an irreducible germ (C, 0). Then hC′(v) ≥ hC(|v|) for every

v ∈ Zr.

Proof. 3 By Corollary 3.4.7, the Hilbert function is determined by the topological type of a

singularity. Consider the family of curves Ct with the central fiber C0 = C and the generic

fiber Ct topologically equivalent to C ′. Let us fix v ∈ Zr. One can assume that hCt
(v) is

constant for small enough (but nonzero) t.
We get a family of subspaces JCt

(v) in O (or rather in a sufficiently large jet space jNO)

of fixed codimension hCt
(v) = hC′(v). Since the Grassmannian Gr(hC′(v), jNO) is compact,

this family has a well defined limit J0(v) = limt→0 JCt
(v).

Let us prove the inclusion J0(v) ⊂ JC(|v|). Indeed, every function g in this limiting subspace

is a limit of a sequence of functions gt intersecting Ct with multiplicity at least |v|, so by the

semicontinuinty of the intersection multiplicity g should intersectC with multiplicity at least |v|
too. Therefore J0(v) ⊂ JC(|v|) and hC(|v|) = codim JC(|v|) ≤ codim J0(v) = hC′(v). �

3We thank Maria Pe Pereira and Patrick Popescu-Pampu for noting a gap in the first version of the proof of this

proposition.
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After the first version of this paper appeared on arXiv, Borodzik and Livingston [2] gave an

alternative proof of this proposition (only for δ–constant deformations) using Heegaard Floer

theory.

Theorem 4.5.2. Suppose that a (possibly reducible) curve C ′ is a deformation of an irre-

ducible curve C. Then there exists a natural chain map φ : L−
C′ → L−

C , with φ(�(v, ∅)) =
UhC′ (v)−hC (|v|)

�(|v|, ∅) and φ(L−
C′(v)) ⊂ L−

C(|v|) for any v ∈ Z
r. Moreover, for any v, the

induced map

φ∗(v) : H∗(L
−
C′(v)) → H∗(L

−
C(|v|))

is the multiplication by UhC′ (v)−hC(|v|) : Z[U ]〈�(v, ∅)〉 → Z[U ]〈�(|v|, ∅)〉, hence it is injective.

Proof. Let us define a map φ acting on the generators of the lattice complex as follows. For a

0− or a 1− dimensional cube in Zr one can define its natural projection onto Z by

p(�(v, ∅)) := �(|v|, ∅); p(�(v, {i})) := �(|v|, 1).

Then for an arbitrary cube � define

φ(�) :=

{
UhC′ (�)−hC(p(�))p(�) if dim� ≤ 1,

0 if dim� > 1.

By Lemma 4.5.1 the power of U above is nonnegative, hence φ is well-defined. It preserves the

filtration on L− and it commutes with the differentials (by a straightforward computation left

to the reader). The injectivity of φ∗(v) follows from Theorem 4.1.7. �

We plan to study deformation theoretical applications in more details in the future.

5. CENTRAL HYPERPLANE ARRANGEMENTS

5.1. Matroids and rank functions.

Definition 5.1.1. (a) ([34]) LetK0 be a finite set. A function ρ, assigning a non-negative integer

to any subset K ⊂ K0, is called a rank function, if

(1) 0 ≤ ρ(K) ≤ |K|.
(2) If K1 ⊂ K2 then ρ(K1) ≤ ρ(K2).
(3) For every pair of subsets K1 and K2 one has

ρ(K1 ∩K2) + ρ(K1 ∪K2) ≤ ρ(K1) + ρ(K2).

(b) A matroid M = (K0, ρ) is a finite set K0 with a rank function ρ defined on it.

(c) The characteristic polynomial of a matroid M = (K0, ρ) is defined as

χM(t) =
∑

K⊂K0

(−1)|K|tρ(K0)−ρ(K).

Remark 5.1.2. Some authors define the characteristic polynomial using the Möbius function

of a matroid. This definition is equivalent to the present one, see e.g. [34, Theorem 2.4].

Let h(v) denote the Hilbert function of a plane curve singularity. Let us fix K0 = {1, . . . , r}
and for every v consider the following function on subsets of K0:

ρv(K) := h(v + eK)− h(v) = dim J(v)/J(v + eK).

Then Lemmas 3.5.1 and 3.5.2 show that for every v the function ρv is a rank function on K0.

We will call ρv the rank function for a the local matroid Mv. In the space J(v) we have r
subspaces J(v + ei) of codimension 0 or 1. If v ∈ S, then the set of functions with valuation
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v can be represented as a complement of a hyperplane arrangement (cf. [18], or 3.6 here). If

v 6∈ S, then J(v) = J(v+ei) for some i (cf. Lemma 3.5.1), hence J(v+eK) = J(v+eK +ei)
for any K with K 6∋ i by 3.5.2. Therefore, in this case, by pairwise cancelation, χMv

(t) = 0.

5.2. Some general facts on central hyperplane arrangements. Let V be a vector space

and let H = {H1, . . . ,Hr} be a collection of linear hyperplanes in V . For a subset K of

K0 = {1, . . . , r} we define ρ(K) = codim∩i∈K Hi. One can check that ρ is a rank function

on K0. Let us denote by χH(t) its characteristic polynomial.

To an arrangement H one associates the corresponding Orlik-Solomon algebra as follows.

Consider the anticommutative algebra E generated by the variables z1, . . . , zr corresponding to

hyperplanes. For any set K = {i1, . . . , ik} ⊂ K0 we consider the monomial zK = zi1 ∧ · · · ∧
zik ∈ E . We can equip E with the natural differential ∂ sending zi to 1, namely

∂(zK) =
k∑

j=1

(−1)j−1zK\{ij}.

The natural degree of zK is |K|. Hence ∂ has degree −1.

Definition 5.2.1. We call the set K dependent, if the linear equations of the corresponding

hyperplanes are linearly dependent. Otherwise K is called independent.

The Orlik-Solomon ideal I is the ideal in E generated by the elements ∂zK for all dependent

sets K. The Orlik-Solomon algebra is the quotient A = E/I.

Theorem 5.2.2. ([24, Theorem 5.2]) The integral cohomology ring of the complement V \
∪r
i=1Hi is isomorphic to the Orlik-Solomon algebra E/I. It has no torsion, and its Poincaré

polynomial is given by the formula

P (H, t) = (−t)ρ(K0) · χH(−t
−1) =

∑

K⊂K0

(−1)|K|(−t)ρ(K).

As a corollary, we conclude that the homology of V \ ∪r
i=1Hi is defined by its class in the

Grothendieck ring, cf. Lemma 3.7.1. The same is true for its projectivization (see below). (This

property of hyperplane complements explain why the coefficients of the motivic Poincaré series

can guide the complete cohomological information.)

Later we will define a distinguished homological degree in E , such that the above isomor-

phism will preserve the corresponding gradings.

First, we consider the following ‘deformation of the differential on E’.

Definition 5.2.3. Let us define the following operator:

∂U : E [U ] → E [U ], ∂U(zK) =

k∑

j=1

(−1)j−1Uρ(K)−ρ(K\{ij})zK\ij ,

where U is a formal variable and K = {i1, . . . , ik}.

Note that ρ(K)−ρ(K \{ij}) ∈ {0, 1}, hence ∂U decomposes into a sum of two components

(5.2.4) ∂U = ∂0 + U∂1, with ∂0 + ∂1 = ∂.

Lemma 5.2.5. The operator ∂U is a differential on E [U ], that is, ∂2U = 0. In particular, the

following identities hold:

∂20 = ∂21 = 0, ∂0∂1 + ∂1∂0 = 0.

Proof. Straightforward. �
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Let J and J ⊥ denote the subspaces of E spanned by the elements zK for all dependent,

respectively independent subsets K. Clearly E = J ⊕ J ⊥.

Lemma 5.2.6. The following statements hold:

(a) ([24, Lemma 2.7], [25, Lemma 3.15]) I = J + ∂J .

(b) ∂0J
⊥ = 0, hence Im ∂0 = ∂0J .

(c) ∂1J ⊂ J , hence I = J + ∂J = J + ∂0J .

(d) ker ∂0 = J ⊥ + Im ∂0.

(e) There exist subspaces A ⊂ J , B ⊂ J ⊥ such that Im ∂0 = A⊕ B.

Proof. The claims (b) and (c) are clear. Let us prove (d). The inclusion J ⊥ + Im ∂0 ⊂ ker ∂0
is also clear, hence we need to prove that if ∂0(φ) = 0 then there exists φ̃ ∈ J ⊥ such that

φ− φ̃ ∈ Im(∂0).
Let us call zi essential in a monomial zi ∧ zK , if ρ({i} ⊔ K) = ρ(K) + 1, and redundant

otherwise. Let us decompose φ = z1∧φ1+z1∧φ2+φ3, where z1 is essential in every monomial

of z1 ∧ φ1, redundant in every monomial of z1 ∧ φ2, and φ3 contains no z1. Then

0 = ∂0(φ) = z1 ∧ ψ + φ2 + ∂0(φ3)

for some ψ, and neither φ2 nor ∂0(φ3) contain z1. Hence φ2 = −∂0(φ3). Since z1 is redundant

in every monomial in z1 ∧ ∂0(φ3), it is redundant in every monomial in z1 ∧ φ3 too. Therefore

∂0(z1 ∧ φ3) = φ3 − z1 ∧ ∂0(φ3) + z1 ∧ η,

where z1 is essential in every monomial of z1∧η. Indeed, if ij ∈ K, zij is redundant inK∪{1}
and essential in K, then z1 is essential in K ∪ {1} \ {ij}. We conclude that

φ− ∂0(z1 ∧ φ3) = z1 ∧ (φ1 − η)

and z1 is essential in every monomial in the right hand side. Now, 0 = ∂0(φ) = −z1∧∂0(φ1−η),
hence ∂0(φ1 − η) = 0. Then we can repeat the procedure inductively replacing φ by φ1 − η,

and z1 by z2, etc. At the end we reduce φ modulo Im(∂0) to an element of E where all zi are

essential; such an element belongs to J ⊥.

Next, we prove (e). Recall that Im ∂0 = ∂0J and K is dependent iff ρ(K) < |K|. If the

monomial zK ′ appears in ∂0(zK) then ρ(K) = ρ(K ′) and |K ′| = |K| − 1. Therefore, with K
dependent, ∂0(zK) ∈ J ⊥ if ρ(K) = |K| − 1, and ∂0(zK) ∈ J otherwise. �

Lemma 5.2.7. (cf. [25, Lemma 3.42], [8, 1.46]) Let ∂A1 be the differential induced by ∂1 on

A = E/I. Then ∂A1 is acyclic, that is, im ∂A1 = ker ∂A1 .

Proof. In the proof we always refer to the points (a)–(e) of Lemma 5.2.6. Suppose that the class

[α] ∈ A = E/I belongs to the kernel of ∂A1 , so ∂1(α) ∈ I. By (c) we can assume that α ∈ J ⊥.

Then ∂(α) = ∂1(α) ∈ I ∩ J ⊥. By (c)-(e) I ∩ J ⊥ = (J + A⊕B) ∩ J ⊥ = B ⊂ ∂0J , hence

there exists α1 ∈ J such that ∂1(α) = ∂0(α1). Furthermore, ∂0∂1(α1) = ∂1∂0(α1) = 0, hence

∂1(α1) ∈ ker ∂0 ∩ ∂1J . But again by (c)-(d)-(e) one has ker ∂0 ∩ ∂1J ⊂ (J ⊥+A⊕B)∩J =
A ⊂ ∂0J . Hence there exists α2 ∈ J with ∂1(α1) = ∂0(α2). Again, ∂1(α2) ∈ ker ∂0 ∩ ∂1J .

This procedure can be repeated to provide α3 ∈ J with ∂1(α2) = ∂0(α3), and, in fact, a

sequence αi ∈ J with ∂0(αi) = ∂1(αi−1) (α0 = α).

Note that ρ(αi) = ρ(α)− i, so this process eventually stops. Now

∂(α − α1 + α2 − . . .) = ∂1(α)− ∂0(α1)− ∂1(α1) + ∂0(α2) + ∂1(α2)− . . . = 0.

Since ∂ is acyclic on E , there exists β such that ∂(β) = α− α1 + α2 − . . .. Let us decompose

β = β ′ + β ′′, where β ′ ∈ J ⊥ and β ′′ ∈ J , then by (b),

α = ∂1(β
′) + ∂(β ′′) + α1 − α2 + . . . ≡ ∂1(β

′) mod I,
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hence [α] belongs to the image of ∂A1 . �

The following theorem determine the homology of the complexes (E , ∂0) and (E [U ], ∂U).

Theorem 5.2.8. (1) The homology of the differential ∂0 is isomorphic to the Orlik-Solomon

algebra A = E/I. This fact together with Theorem 5.2.2 provide

H∗(E , ∂0) ≃ A ≃ H∗ (V \ ∪r
i=1Hi) .

(2) The homology of the differential ∂U is isomorphic (as Z–module) to the homology of the

projectivized arrangement:

H∗(E [U ], ∂U) ≃ ker ∂A1 ≃ H∗ (PV \ ∪r
i=1PHi) ,

and it can be generated by a set of elements of type UmzK , with m = 0 and K independent.

In particular, the induced U–action on H∗(E [U ], ∂U) is trivial.

(3) E is bi-graded: one can assign |K|, respectively ρ(K), to zK . ∂0 decreases the first grad-

ing by 1 and preserves the second one, hence H∗(E , ∂0) is bi-graded too. Nevertheless, the two

gradings on H∗(E , ∂0) agree, and the isomorphisms from (1) and (3) are graded isomorphisms

(whereH∗ (V \ ∪r
i=1Hi) andH∗ (PV \ ∪r

i=1PHi) have their natural cohomological gradings).

Proof. (1) By Lemma 5.2.6 one has ker ∂0 = J ⊥ + Im ∂0 and Im ∂0 = ∂0J , hence

H∗(E , ∂0) = (J ⊥ + ∂0J )/∂0J ≃ J ⊥/(∂0J ∩ J ⊥) ≃ E/(J + ∂0J ).

The last identity follows from the splitting in Lemma 5.2.6(e). Then use Lemma 5.2.6(c).

(2) Since ∂U = ∂0 + U∂1, there exists a spectral sequence starting with H∗(E [U ], ∂0) and

converging to H∗(E [U ], ∂U ). The E1 page is ((H∗(E [U ], ∂0), U∂
A
1 )) = (A[U ], U∂A1 ), and by

Lemma 5.2.7 the E2 page has a form:

H∗(E [U ], ∂U) ≃ H∗(A[U ], U∂A1 ) ≃ ker ∂A1 .

Since this homology is concentrated in the lowest U-degree, all higher differentials vanish.

This shows the first isomorphism of (2). For the second one see [8, Theorem 1.50].

(3) ¿From the proof of part (1) follows that H∗(E , ∂0) can be identified with a quotient of

J ⊥. Since J ⊥ is spanned by the independent monomials, the gradings induced by |K| and

ρ(K) coincide on H∗(E , ∂0). The isomorphisms from the already cited [24, Theorem 5.2] and

[8, Theorem 1.50] are compatible with this grading. �

Remark 5.2.9. (Cf. [25, Corollary 3.58]) Since V \ ∪r
i=1Hi = C∗ × (PV \ ∪r

i=1PHi), the

Poincaré polynomials P (H, t) and P (PH, t) of the cohomologies of the complements of the

linear and projective arrangements satisfies (1 + t) · P (PH, t) = P (H, t).

Example 5.2.10. Consider the arrangement of r lines through the origin in V = C2. Then

∂U (1) = 0, ∂U(zi) = U, ∂U (zi ∧ zj) = U(zi − zj) = U∂(zi ∧ zj),

∂U(zK) = ∂(zK) for |K| ≥ 3.

The homology of ∂U is spanned by 1, z1 − z2, . . . , z1 − zr. On the other hand, PV \ PH is the

complement to r points in CP
1, homotopically equivalent to the bouquet of (r − 1) circles.
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5.3. The Orlik-Solomon complex and the lattice complex for curve singularities.

Consider a curve singularity C, the associated lattice complex (cf. Section 4) and the collec-

tion of local hyperplane arrangements H(v) (cf. 3.6). We wish to compare the Orlik-Solomon

complex (E [U ], ∂U) associated with the local hyperplane arrangement H(v) and the lattice

complex (grv L
−, grv ∂U ).

Theorem 5.3.1. (a) For any fixed v one has an isomorphism

H−2h(v)−b(grv L
−, grv ∂U ) = Hb(E [U ], ∂U ).

In the left hand side the homological degree is the one defined in (4.1.4), while in the right hand

side is induced by deg(zK) = |K|, cf. 5.2. (This is a Z module isomorphism; since U acts on

H∗(E [U ], ∂U ) trivially, cf. 5.2.8, it acts on H∗(grv L
−, grv ∂U) trivially as well.)

(b) Assume that the Ha,b(grv L
−, grv ∂U ) 6= 0, where (a, b) is the bi-grading introduced in

4.1.11. Then (a, b) = (−2h(v)− 2|K|, |K|) for some K.

Proof. Define ψ : grv L
− → E [U ] by ψ(Um

�(v,K)) = UmzK . One verifies that it is an

isomorphism, and ∂U ◦ ψ = ψ ◦ grv ∂U . Hence induces an isomorphism at homological level

too. By Theorem 5.2.8(3) for the generators we can assume thatm = 0 and ρv(K) = |K|. Then

the homological degree of �(v,K) is deg = −2h(v+eK)+ |K| = −2h(v)−2ρv(K)+ |K| =
−2h(v) − |K|, while the degree of zK is |K|. For (b) note that the bi-degree of such �(v,K)
is (−2h(v)− 2|K|, |K|). �

5.4. Proof of Theorem 4.2.1. Assume v 6∈ S and fix i ∈ K0 such that h(v) = h(v + ei)
(cf. Lemma 3.5.1), hence h(v + eK) = h(v + eK + ei) for any K with K 6∋ i by 3.5.2. Let

φ : grv L
− → grv L

− be defined by

φ(�(v,K)) =

{
�(v,K ∪ i0) if i0 6∈ K,
0 if i0 ∈ K.

Then φ realizes a homotopy between the identity and the zero map: ∂U φ + φ ∂U = id on

grv L
−. Hence H∗(grv L

−) = 0. On the other hand, H(v) = ∅, hence H∗(PH(v)) = 0 too.

If v ∈ S then parts (2) and (3) follow from Theorems 5.3.1 and 5.2.8(2). A possible second

proof of part (1) is the following (for the first proof see 4.2):

PL−

v (t−1)
5.3.1
= t2h(v)P (E [U ], ∂U , t)

5.2.8(3)
= t2h(v)P (PH(v), t)

5.2.9
=

t2h(v)

1 + t
P (H(v), t)

5.2.2
=

t2h(v)

1 + t
·
∑

K⊂K0

(−1)|K|(−t)ρv(K) =
(−t)h(v)

1 + t
·
∑

K⊂K0

(−1)|K|(−t)h(v+eK ).

6. HEEGAARD FLOER LINK HOMOLOGY FOR ALGEBRAIC LINKS

6.1. We can now apply the results of the previous sections to the computation of the Heegaard

Floer homology of algebraic links using the following result.

Theorem 6.1.1. ([11]) All algebraic links are L-space links.

Proposition 6.1.2. If L is an algebraic link then its HFL-weight function coincides with the

Hilbert function h(v) up to an additive constant.

Proof. By Theorem 3.3.1 the Poincaré series coincides with the Alexander polynomial, hence

with the Euler characteristic of HFL−. The statement now follows from Theorems 3.4.3 and

2.2.11. �



26 EUGENE GORSKY AND ANDRÁS NÉMETHI

Theorem 6.1.3. Let L be an algebraic L-space link corresponding to a plane curve singularity

C. Then the spectral sequence defined in Theorem 2.2.10 collapses at E2 page for all v:

HFL−(L, v) ≃ HL−(L, v) = H∗(grv L
−
C) (as graded Z modules).

Proof. By Proposition 6.1.2 theHFL-weight function forL coincides with the Hilbert function

ofC. Consider the spectral sequence of Theorem 2.2.10. ItsE2 page coincides withH∗(grL
−).

We consider the bi-grading on H∗(grv L
−), cf. 4.1.11, and we use the notations of the proof

of Theorem 2.2.10. Note that the bi-grading (a, b) coincides exactly with (ν, |K|). Hence, by

Theorems 5.3.1 on the E2 page all the non-trivial entries are on the line ν +2|K|+2h(v) = 0,

while the differential dk has bi-degree (k − 1,−k), hence two elements of this line are never

connected by dk whenever k ≥ 2. Hence dk = 0. �

Remark 6.1.4. A similar spectral sequence was defined in the context of the subspace arrange-

ments by Jewell [13], who also proved its degeneration at E2 page.

Corollary 6.1.5. By Corollary 4.2.4, the set of v such that HFL−(L, v) 6= 0 coincides with

the semigroup of C. In particular, the support of HFL− determines the topological type of the

algebraic link completely.

It is well known [27] that for L-space knots (hence for all algebraic knots) the dimension of

the Heegaard Floer homology with given Alexander grading is at most 1. For algebraic links

we get the following generalization of this result (it was independently proven in [14, Theorem

1.15] for general L-space links).

Corollary 6.1.6. If L is an algebraic link, then rankHFL−(L, v) ≤ 2r−1 for all v ∈ Zr. For v
large enough (v � l in the notations of section 3.3) rankHFL−(L, v) = 2r−1.

Proof. It is clear from Theorem 5.2.8 that the total dimension of the homology of the com-

plement to r hyperplanes cannot exceed 2r and equals 2r if and only if the hyperplanes are

independent. By the same theorem, projectivization of the arrangement halves the total dimen-

sion of its homology. It remains to note that by (3.3.3) the hyperplanes in the local arrangement

H(v) are independent for v � l. �

7. EXAMPLE. THE HOPF LINK

7.1. We illustrate the main results of the paper for the positive Hopf link, the link of the A1

singularity {xy = 0}. Its Alexander polynomial equals ∆(t1, t2) = 1.

A. Hyperplane arrangements. Let us describe the spaces H(v) explicitly. A function g ∈
C[x, y] has order 0 on one of the components if and only its constant term is nonzero, and

hence its order on the second component also equals 0. Therefore

H(0, 0) = {α + higher order terms |α 6= 0} ∼ C
∗, H(a, 0) = H(0, a) = ∅ for a > 0.

Furthermore, for a, b > 0 the space H(a, b) is

{αxb + βya + terms of type γxiyj with (i, j) ≥ (1, 1), or (b+ 1, 0), or (0, a+ 1) |α, β 6= 0},

Therefore H(a, b) ∼ (C∗)2, and

(7.1.1) H∗(PH(a, b)) =





H∗(point) = Z if a = b = 0,

0 if ab = 0, (a, b) 6= (0, 0)

H∗(C∗) = Z⊕ Z if a, b > 0.
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FIGURE 3. Values of the Hilbert function for A1 singularity

Note that for a, b > 0 the Euler characteristic of PH(a, b)) vanishes, so
∑

a,b∈Z2

ta1t
b
2 χ(PH(a, b))) = 1 = ∆(t1, t2).

B. Local lattice homology. The Hilbert function of the A1 singularity is (cf. Example 3.5.4):

h(a, b) =

{
max(a, b), if min(a, b) = 0,

a+ b− 1, otherwise.

It is shown in Figure 3. Let us compute the local lattice homology with the weight h(v). For

all v = (a, b) the local lattice complex has 4 generators av, αv, βv,Γv over Z[U ]. Here av can

be identified with the point v, αv and βv can be identified with the east- and northward pointing

segments starting at v and Γv can be identified with the square with minimal vertex v. The

differential is given by the equation:

∂(av) = 0, ∂(αv) = Uh(a+1,b)−h(a,b)av, ∂(βv) = Uh(a,b+1)−h(a,b)av,

∂(Γv) = Uh(a+1,b+1)−h(a+1,b)αv − Uh(a+1,b+1)−h(a,b+1)βv.

For v = (0, 0) one has ∂(αv) = ∂(βv) = Uav, ∂(Γv) = αv − βv,, so the homology is spanned

by av. For v = (a, 0), a > 0 one has ∂(αv) = Uav, ∂(βv) = av, ∂(Γv) = αv − Uβv, and

the homology vanishes (similarly as for v = (0, a)). Finally, for v = (a, b), a, b > 0 one has

∂(αv) = ∂(β) = Uav, ∂(Γv) = U(αv − βv) and the homology is spanned by av and αv − βv,

in agreement with (7.1.1). The homological degrees are −2(a+ b)+2 and −2(a+ b)+1. Note

that U acts by 0 on the homology in all cases.

C. Link Floer homology. Similarly to [29, Section 12], one can check that the minimal

Heegaard Floer complex CFL− has four Z[U1, U2]-generators α, β, γ, δ of Alexander grad-

ings (0, 0), (1, 0), (0, 1), (1, 1) and homological degrees 0,−1,−1,−2. The differential is

Z[U1, U2]–linear given by the formula:

d(β) = U1α + δ, d(γ) = U2α+ δ, d(α) = d(δ) = 0.

The filtered subcomplex A−(v) is spanned by all elements of Alexander grading greater than

or equal to v. By definition, HFL−(v) is the homology of the associated graded complexe

grA−(v). For v = (0, 0) the complex grA−(0, 0) is generated over Z by a single element α.

For a > 0 the complex grA−(a, 0) is generated over Z by Ua
1α, U

a−1
1 β, with the differential

dgr(U
a−1
1 β) = Ua

1α.
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Therefore grA−(a, 0) (and similarly grA−(0, a)) is acyclic. Finally, for a, b > 0 the complex

grA−(a, b) is generated by Ua
1U

b
2α, U

a−1
1 U b

2β, Ua
1U

b−1
2 γ and Ua−1

1 U b−1
2 δ, with the differential

dgr(U
a−1
1 U b

2β) = dgr(U
a
1U

b−1
2 γ) = Ua

1U
b
2α.

Its homology (in agreement with (7.1.1)) equals

HFL−(a, b) = H∗(grA−(a, b)) ≃ Z〈Ua−1
1 U b−1

2 δ, Ua−1
1 U b

2β − Ua
1U

b−1
2 γ〉.

D. Filtered subcomplexes. Let us also compute the homology of A−(v) for various v. The

complex A−(0, 0) coincides with CFL− and its homology has the form

H∗(A−(0, 0)) = Z[U1, U2]〈α〉/(U1α = U2α) ≃ Z[U ]〈α〉.

For a > 0 the complex A−(a, 0) is generated over Z[U1, U2] by Ua
1α, U

a−1
1 β, Ua

1 γ and Ua−1
1 δ.

One can check that

H∗(A−(a, 0)) ≃ Z[U ]〈Ua−1
1 δ〉,

and its generator has homological degree −2a. Similarly, H∗(A−(0, b)) ≃ Z[U ]〈U b−1
2 δ〉 gen-

erated at degree −2b. Finally, for a, b > 0 the subcomplexA−(a, b) is generated over Z[U1, U2]
by Ua

1U
b
2α, U

a−1
1 U b

2β, U
a
1U

b−1
2 γ and Ua−1

1 U b−1
2 δ. One can check that

H∗(A−(a, b)) ≃ Z[U ]〈Ua−1
1 U b−1

2 δ〉,

and its generator has homological degree −2a − 2b + 2. Therefore for all v the subcomplex

A−(v) is a free Z[U ]-module of rank 1, and its generator has homological degree −2h(v).
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[17] J.J. Moyano-Fernández. Poincaré series for plane curve singularities and their behaviour under projections.

J. Pure Appl. Algebra 219 (2015), no. 6, 2449–2462.

http://arxiv.org/abs/1305.2868
http://arxiv.org/abs/1403.3143
http://arxiv.org/abs/1409.0075
http://arxiv.org/abs/1011.1317


LATTICE AND HEEGAARD FLOER HOMOLOGIES OF ALGEBRAIC LINKS 29
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[27] P. Ozsváth, Z. Szabó. On knot Floer homology and lens space surgeries. Topology 44 (2005), no. 6, 1281–

1300.
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