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Abstract. We describe a domain-independent authoring tool, ConceptGrid, that 

helps non-programmers develop intelligent tutoring systems (ITSs) that perform 

natural language processing. The approach involves the use of a lattice-style 

table-driven interface to build templates that describe a set of required concepts 

that are meant to be a part of a student‟s response to a question, and a set of 

incorrect concepts that reflect incorrect understanding by the student. The tool 

also helps provide customized just-in-time feedback based on the concepts 

present or absent in the student‟s response. This tool has been integrated and 

tested with a browser-based ITS authoring tool called xPST. 
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1   Introduction 

Interpreting textual responses from students by an Intelligent Tutoring System (ITS) 

is essential if it can come close to matching the performance of a human tutor, even in 

domains such as Statistics and Physics, since the use of language makes the learning 

process more natural. Natural language has the advantage of being easy to use for the 

student, as opposed to learning new formalisms. 

Over the past decade, studies have been conducted that confirm the importance of 

using language in both traditional learning environments and in intelligent tutoring 

systems. Chi et al [1, 2] have showed that eliciting self-explanations enhances deeper 

learning and understanding of a coherent body of knowledge that generalizes better to 

new problems. Aleven et al [3] conducted studies with the PACT Geometry Tutor in 

which students who provided explanations to solution steps showed greater 

understanding in the post-test, compared to students who did not provide 

explanations. 

Many ITSs have successfully incorporated natural processing. The CIRCSIM 

Tutor [4] is a language based ITS for medical students that uses word matching and 



finite state machines to process students‟ natural language input. Rus et al [5] have 

described an approach of evaluating answers by modeling it as a textual entailment 

problem. Intelligent tutoring systems such as the AutoTutor [6] and Summary Street 

[7] use Latent Semantic Analysis (LSA) [8] to evaluate student answers, a technique 

that uses statistical computation and is based on the idea that the aggregate of all the 

word contexts in which a word appears determines the similarity of meaning of words 

to each other. The problem with LSA is that it does not encode word order and it 

cannot always recognize negation. Another problem with LSA is that it scores 

students‟ responses only based on how well it matches the ideal answer, and cannot 

point out what exactly is wrong with an incorrect response.  

Though ITSs today use a variety of techniques to provide support for natural 

language understanding, user-programming of NLP in ITSs is not common with 

authoring toolkits. The various techniques described here do not give sufficient power 

to non-programmers as the NLP is left to expert developers or to machine learning 

algorithms, and the user is more likely to focus on tutoring strategies. Our approach 

addresses these issues.  

2   The ConceptGrid Approach 

ConceptGrid is intended to be used by tutor authors with little or no programming 

experience. The most crucial aspect about developing an authoring tool that can be 

used by non-programmers is managing the trade-off between its ease of use and its 

expressive power. Keeping this in mind, ConceptGrid has been designed such that its 

ease of use and expressiveness lie between that of simple word matching approaches 

and complex approaches such as those that use complex machine learning algorithms. 

The tutor author develops the natural language understanding component for a 

tutor by breaking down the expected response to a question into specific concepts. 

The author then builds templates that describe a set of required concepts (that are 

meant to be a part of student‟s response to a question) and a set of incorrect concepts 

(that reflect incorrect understanding by the student). Every template is mapped to a 

single user-defined concept name. Since a student can describe a single concept in 

various forms, several templates can be used to describe different representations of a 

single concept, in order to recognize and provide feedback to a wider range of student 

responses (both correct and incorrect). Thus, there is a one-to-many relationship 

between concepts and templates. 

A template consists of one or more atomic checktypes, or check functions, that 

evaluate a student's input. These particular atomic checktypes are based on well-

known algorithms and distance measures. The word "atomic" refers to the fact that 

these checktypes can be applied to a single word only. The set of atomic checktypes 

have been described in Table 1.  

Apart from these atomic checktypes, we have two more checktypes that help make 

the template more expressive: Any(n1, n2) and Not(n, „direction‟, word_list). The 

checktype "Any" matches any sequence of words that is at least n1 words long and at 

most n2 words. It helps account for words that are not explicitly accounted for using 

the other checktypes. The "Not" checktype takes care of negation. It makes sure that 



the n words appearing to the left or right (specified by „direction‟) of the word 

following the checktype do not match the words mentioned in "word_list". 

Table 1.  Atomic checktypes used in designing a template.  

Checktype Description 

Exact(word_list) Returns true if a literal character-by-character word match 

with any of the words in word_list is found 

Almost(word_list) Returns true if a literal match, after ignoring vowels, with 

any of the words in word_list is found 

Levenshtein(n, word_list) Returns true if the least Levenshtein distance between a 

word in word_list and matched word is <= n 

Hamming(n, word_list) Returns true if the least Hamming distance between a 

word in word_list and matched word is <= n 

Soundex(word_list) Returns true if a Soundex match with any of the words in 

word_list is found 

Synonym(word_list) Returns true if an exact match with any of the words in 

word_list or its synonyms (from WordNet) is found 

Stemmer(word_list) Returns true if a literal match with the stem of the matched 

word, with any of the words in word_list is found (uses 

Porter Stemmer) 

 

The checktypes Synonym and Stemmer can be nested within other atomic 

checktypes to make them more powerful. Levenshtein(Synonym(„interface‟),1), for 

example, captures the idea that any synonym of the word "interface" is fine, even if it 

has a spelling mistake. 

When the student misses out on a subset of the required concepts, or mentions a 

subset of incorrect concepts, customized feedback can be given that points out the 

issue. 

3   The ConceptGrid Interface 

The web-based interface is designed to allow the user to create templates that describe 

both required and incorrect concepts, and mention the feedback that needs to be 

given. 

To simplify the process of constructing templates, we have a lattice-style table-

driven interface for entering the template‟s checktypes and the corresponding 

parameters (Figure 1). A new template is created either by entering the dimensions of 

the table or by entering a sample response, from which a table is created and 

initialized. The table consists of a sequence of multi-level drop-down menus that 

represent the checktypes. The multiple levels help the author nest different 

checktypes. Each drop-down menu is associated with a specific number of textboxes 

that store the parameters associated with it. Each drop-down menu has several 



textboxes below it that store the contents of the parameter "word_list" associated with 

the corresponding checktype. The contingent approach of having the parameters 

dependent on the specific checktype provides a mild form of just-in-time authoring 

help. The user can navigate through the table just like a numerical spreadsheet and 

add or delete new rows and columns. 

There are two sets of templates; the first describes required concepts and the 

second describes incorrect ones. Multiple templates can be mapped onto a single 

concept. Consider the following question in a statistics problem: “Based on your 

results, what do you conclude about the conditions of the music?” Let us assume that 

the correct answer to the question is "Reject the null hypothesis. There is a significant 

difference in memory recall between the rock music and no music conditions." 

Some of the concepts that can be defined for the sample response mentioned above 

are described in Table 2. 

Table 2.  Examples of concepts. Conclusion-Correct and Conclusion-Incorrect look at the 

holistic response and the rest look at the sub-components of the response. 

Concept Name Description 

Rejection-Correct Matches responses that correctly mention whether the 

null hypothesis has to be rejected or not  

Rejection-Incorrect Matches responses that incorrectly mention whether 

the null hypothesis has to be rejected or not 

Significance-Correct Matches responses that correctly mention the 

significance of the result of the statistical test 

Significance-Incorrect Matches responses that incorrectly mention the 

significance of the result of the statistical test 

Ind-Variable-Mention Matches responses that explicitly mention the 

independent variable (e.g. type of music) 

Dep-Variable-Mention Matches responses that explicitly mention the 

dependent variable (e.g. memory recall) 

Conclusion-Correct Matches responses that have the correct conclusion of 

the statistical test 

Conclusion-Incorrect Matches responses that have the incorrect conclusion 

of the statistical test 

 

 

Fig. 1. The lattice-style table-driven interface of ConceptGrid. The template represents the 

concept “Rejection-Correct”, described in Table 2. 
 



The tutor author then can design a ternary truth table called the Feedback Table 

(Figure 2) where he or she can enter the feedback that is to be given to the students, 

based on the truth values of the concepts: true – concept present (green check), false – 

concept absent (red X), or don‟t care (yellow dash). The author enters the values of 

the truth table through tri-state checkboxes. Feedback can be entered for both the 

absence of required concepts and presence of incorrect ones. 

The Feedback Table helps provide feedback in a simple manner for seemingly 

complicated issues, such as an inconsistent statement (the last row of the Feedback 

Table in Figure 2) in the example discussed. 

 

Fig. 2. Feedback Table 

 

There is a provision to create user-defined variables that can be used while 

building checktypes or mentioning the feedback. This approach helps re-use templates 

for similar questions. The author can also enter a set of stop words that will be filtered 

out from the student‟s response prior to being processed. 

Once the templates are designed and the feedback tables are filled, the author can 

test the templates with sample student responses. The output of the test mentions if 

the student‟s response has matched the required concepts. If a match is not found, 

then it displays the feedback associated with that response. It also displays the truth 

values of all the concepts defined by the author. 

4   Algorithm and Implementation 

The implicit sequencing in the lattice approach means that the resulting complex 

checktypes are finite parsers. That is, progress through the lattice corresponds to 

progress left-to-right in processing the input. 

The templates are represented internally as and-or trees. The algorithm involves a 

combination of recursion and memoization to efficiently process the input. Since the 

algorithm might need to backtrack many times, memoization helps speed up the 

processing by having function calls avoid repeating the calculation of results for 

previously processed inputs. 

Our tool has been integrated with the Extensible Problem Specific Tutor (xPST) - 

an open source authoring tool that is intended to enable non-programmers to create 



ITSs on existing websites and software [9]. Though xPST is a text-based authoring 

tool, its syntax is not very-code like. ConceptGrid has been customized to generate 

"code" that is compatible with xPST‟s syntax, based on the author's templates and 

Feedback Table, which can be then be inserted into any xPST file. 

5   Results: The xSTAT Project 

The research question for this paper is whether ConceptGrid could enable an 

instructor to create a tutor that would score students' free response answers as 

accurately as he or she manually did. At this point, the question is purely a feasibility 

issue: can it be done with the ConceptGrid tool? We tested this issue as a part of the 

xSTAT project at University of Tampa, dedicated to developing an intelligent 

homework helper for statistics students [10]. 

For the xSTAT effort, six authors (3 instructors and 3 undergraduates) created 

multiple tutors each for college level statistics problems. The problems contained 

real-world scenarios with actual data, followed up by several questions for the student 

to answer. Each of the problems had a question at the end that asked students to enter 

the conclusion of the statistics test. To assess these problems, 6 were chosen out of the 

total pool of 74 and given to students as homework problems. All problems were 

solved on-line using a standard web browser. Half of the students received feedback 

on their answers via the xPST intelligent tutor (i.e., answers were marked as either 

correct or incorrect, and hints and just-in-time messages were displayed), and half did 

not (i.e., these students simply filled out the web-based form). It is worth noting that 

these tutors were created without ConceptGrid, so that authors had to explicitly enter 

the "xPST code" that represents the templates without a graphical user interface. Also, 

in the absence of visualization through the Feedback Table, subsets of missing and 

incorrect concepts had to be explicitly mentioned. This non-lattice approach was not 

very usable by non-programmers. This difficulty motivated the creation of the 

ConceptGrid lattice approach, which is computationally equivalent and designed to be 

much more usable by non-programmers. 

In all, 41 students solved a total of 233 instances of the six problems across the 

homework. We built a corpus after collecting all student responses to the end question 

(both those with tutoring and without). The corpus had 554 unique responses to this 

final conclusion question across the six homework problems. This corpus includes 

multiple incorrect responses by the same student to the same problem if they were in 

the tutored condition. These responses were scored by an instructor and a teaching 

assistant based on the presence or absence of the concepts defined in Table 2. Then, a 

tutor author attempted to use ConceptGrid to produce templates that would score the 

554 responses similar to those manual scores. The result of that work contained a total 

of 10 templates common to all six problems, to cover all concepts, except “Ind-

Variable-Mention” and “Dep-Variable-Mention”. The concepts “In-Variable-

Mention” and “Dep-Variable-Mention” required a template each that was unique to 

each of the six problems. In all, there were 22 templates across all six problems. 

Since the manner in which a template tries to match a student‟s response – a 

sequence of words is comparable to the manner in which a regular expression matches 



a string, it might seem that the results have a lot of false negatives. But, since this 

approach tries to "understand" responses by looking for smaller concepts and key 

phrases with the help of checktypes rather than literal word matching, it is much more 

expressive. The results in Table 3 confirm this observation. 

Table 3.  Results of the classification of 554 student responses using ConceptGrid 

Concept False Positives False Negatives Accuracy 

Rejection-Correct 1 34 0.9368 

Rejection-Incorrect 6 5 0.9801 

Significance-Correct 1 7 0.9856 

Significance-Incorrect 12 1 0.9765 

Ind-Variable-Mention 1 3 0.9928 

Dep-Variable-Mention 4 3 0.9874 

Conclusion-Correct 0 24 0.9567 

Conclusion-Incorrect 6 0 0.9892 

6   Conclusions and Future Work 

We have described ConceptGrid, a tool that is intended to help non-programmers 

develop ITSs that perform natural language processing. It has been integrated into an 

ITS authoring tool called xPST. We tested it as a part of the xSTAT project and were 

able to approach the accuracy of human instructors in scoring student responses. 

We would like to conduct a study that helps demonstrate that the ConceptGrid tool, 

a part of xPST, is actually feasible for non-programmers to use on a variety of tasks, 

as we have done for xPST's core authoring tool [11].  

Currently, ConceptGrid does not support a dialogue between the student and tutor. 

It only evaluates student responses and gives just-in-time feedback. To support more 

extensive knowledge-construction dialogues, ConceptGrid responses would need to 

provide information required by the dialogue manager.  

Our current approach is non-structural, i.e., it is focused on words and numerical 

analysis, rather than grammar and logic. The advantage with this approach is that it 

very simple for non-programmers to use, and is very effective in domains such as 

statistics where the student responses are expected to follow a general pattern. 

However, the ConceptGrid approach is domain-independent, one of its biggest 

advantages. 

ConceptGrid could be extended to be structural as well, but that achievement might 

come at the cost of usability by non-programmers. To include structural matching, 

either the templates could nest by invoking other templates, or the atomic checktypes 

could include some checktypes that invoked structural matching. For nested concepts, 

we could define a concept and then use it within more complex concepts, in the 

following manner. 

GreaterThan(X,Y) = X – "bigger" or "more"or "greater" – "than" – Y 

WellFormedConclusion = GreaterThan("weight of the log", "weight of the twig")  



This way, the framework can be extended to more powerful natural language 

processing using a similar approach to the processing that context-free grammars 

allow. Alternately, the set of ConceptGrid atomic checktypes could be extended to 

enable structurally-oriented checktypes that would match a nonterminal from a 

context-free grammar, such as an NP with "twig" as the head in a syntactically 

oriented grammar, or match the semantics of a section of the utterance. 
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