
Lattice-Based Approach to Building Templates for

Natural Language Understanding in Intelligent Tutoring

Systems

Shrenik Devasani
1
, Gregory Aist

1
, Stephen Blessing2,

Stephen Gilbert
1

1 VRAC, Iowa State University, 1620 Howe Hall, Ames, IA 50011, USA
2 University of Tampa, 401 W. Kennedy Blvd., Tampa, FL 33606, USA

shrenik@iastate.edu, aist@iastate.edu, sblessing@ut.edu, gilbert@iastate.edu

Abstract. We describe a domain-independent authoring tool, ConceptGrid, that

helps non-programmers develop intelligent tutoring systems (ITSs) that perform

natural language processing. The approach involves the use of a lattice-style

table-driven interface to build templates that describe a set of required concepts

that are meant to be a part of a student‟s response to a question, and a set of

incorrect concepts that reflect incorrect understanding by the student. The tool

also helps provide customized just-in-time feedback based on the concepts

present or absent in the student‟s response. This tool has been integrated and

tested with a browser-based ITS authoring tool called xPST.

Keywords: natural language processing, intelligent tutoring system, authoring

tool

1 Introduction

Interpreting textual responses from students by an Intelligent Tutoring System (ITS)

is essential if it can come close to matching the performance of a human tutor, even in

domains such as Statistics and Physics, since the use of language makes the learning

process more natural. Natural language has the advantage of being easy to use for the

student, as opposed to learning new formalisms.

Over the past decade, studies have been conducted that confirm the importance of

using language in both traditional learning environments and in intelligent tutoring

systems. Chi et al [1, 2] have showed that eliciting self-explanations enhances deeper

learning and understanding of a coherent body of knowledge that generalizes better to

new problems. Aleven et al [3] conducted studies with the PACT Geometry Tutor in

which students who provided explanations to solution steps showed greater

understanding in the post-test, compared to students who did not provide

explanations.

Many ITSs have successfully incorporated natural processing. The CIRCSIM

Tutor [4] is a language based ITS for medical students that uses word matching and

finite state machines to process students‟ natural language input. Rus et al [5] have

described an approach of evaluating answers by modeling it as a textual entailment

problem. Intelligent tutoring systems such as the AutoTutor [6] and Summary Street

[7] use Latent Semantic Analysis (LSA) [8] to evaluate student answers, a technique

that uses statistical computation and is based on the idea that the aggregate of all the

word contexts in which a word appears determines the similarity of meaning of words

to each other. The problem with LSA is that it does not encode word order and it

cannot always recognize negation. Another problem with LSA is that it scores

students‟ responses only based on how well it matches the ideal answer, and cannot

point out what exactly is wrong with an incorrect response.

Though ITSs today use a variety of techniques to provide support for natural

language understanding, user-programming of NLP in ITSs is not common with

authoring toolkits. The various techniques described here do not give sufficient power

to non-programmers as the NLP is left to expert developers or to machine learning

algorithms, and the user is more likely to focus on tutoring strategies. Our approach

addresses these issues.

2 The ConceptGrid Approach

ConceptGrid is intended to be used by tutor authors with little or no programming

experience. The most crucial aspect about developing an authoring tool that can be

used by non-programmers is managing the trade-off between its ease of use and its

expressive power. Keeping this in mind, ConceptGrid has been designed such that its

ease of use and expressiveness lie between that of simple word matching approaches

and complex approaches such as those that use complex machine learning algorithms.

The tutor author develops the natural language understanding component for a

tutor by breaking down the expected response to a question into specific concepts.

The author then builds templates that describe a set of required concepts (that are

meant to be a part of student‟s response to a question) and a set of incorrect concepts

(that reflect incorrect understanding by the student). Every template is mapped to a

single user-defined concept name. Since a student can describe a single concept in

various forms, several templates can be used to describe different representations of a

single concept, in order to recognize and provide feedback to a wider range of student

responses (both correct and incorrect). Thus, there is a one-to-many relationship

between concepts and templates.

A template consists of one or more atomic checktypes, or check functions, that

evaluate a student's input. These particular atomic checktypes are based on well-

known algorithms and distance measures. The word "atomic" refers to the fact that

these checktypes can be applied to a single word only. The set of atomic checktypes

have been described in Table 1.

Apart from these atomic checktypes, we have two more checktypes that help make

the template more expressive: Any(n1, n2) and Not(n, „direction‟, word_list). The

checktype "Any" matches any sequence of words that is at least n1 words long and at

most n2 words. It helps account for words that are not explicitly accounted for using

the other checktypes. The "Not" checktype takes care of negation. It makes sure that

the n words appearing to the left or right (specified by „direction‟) of the word

following the checktype do not match the words mentioned in "word_list".

Table 1. Atomic checktypes used in designing a template.

Checktype Description

Exact(word_list) Returns true if a literal character-by-character word match

with any of the words in word_list is found

Almost(word_list) Returns true if a literal match, after ignoring vowels, with

any of the words in word_list is found

Levenshtein(n, word_list) Returns true if the least Levenshtein distance between a

word in word_list and matched word is <= n

Hamming(n, word_list) Returns true if the least Hamming distance between a

word in word_list and matched word is <= n

Soundex(word_list) Returns true if a Soundex match with any of the words in

word_list is found

Synonym(word_list) Returns true if an exact match with any of the words in

word_list or its synonyms (from WordNet) is found

Stemmer(word_list) Returns true if a literal match with the stem of the matched

word, with any of the words in word_list is found (uses

Porter Stemmer)

The checktypes Synonym and Stemmer can be nested within other atomic

checktypes to make them more powerful. Levenshtein(Synonym(„interface‟),1), for

example, captures the idea that any synonym of the word "interface" is fine, even if it

has a spelling mistake.

When the student misses out on a subset of the required concepts, or mentions a

subset of incorrect concepts, customized feedback can be given that points out the

issue.

3 The ConceptGrid Interface

The web-based interface is designed to allow the user to create templates that describe

both required and incorrect concepts, and mention the feedback that needs to be

given.

To simplify the process of constructing templates, we have a lattice-style table-

driven interface for entering the template‟s checktypes and the corresponding

parameters (Figure 1). A new template is created either by entering the dimensions of

the table or by entering a sample response, from which a table is created and

initialized. The table consists of a sequence of multi-level drop-down menus that

represent the checktypes. The multiple levels help the author nest different

checktypes. Each drop-down menu is associated with a specific number of textboxes

that store the parameters associated with it. Each drop-down menu has several

textboxes below it that store the contents of the parameter "word_list" associated with

the corresponding checktype. The contingent approach of having the parameters

dependent on the specific checktype provides a mild form of just-in-time authoring

help. The user can navigate through the table just like a numerical spreadsheet and

add or delete new rows and columns.

There are two sets of templates; the first describes required concepts and the

second describes incorrect ones. Multiple templates can be mapped onto a single

concept. Consider the following question in a statistics problem: “Based on your

results, what do you conclude about the conditions of the music?” Let us assume that

the correct answer to the question is "Reject the null hypothesis. There is a significant

difference in memory recall between the rock music and no music conditions."

Some of the concepts that can be defined for the sample response mentioned above

are described in Table 2.

Table 2. Examples of concepts. Conclusion-Correct and Conclusion-Incorrect look at the

holistic response and the rest look at the sub-components of the response.

Concept Name Description

Rejection-Correct Matches responses that correctly mention whether the

null hypothesis has to be rejected or not

Rejection-Incorrect Matches responses that incorrectly mention whether

the null hypothesis has to be rejected or not

Significance-Correct Matches responses that correctly mention the

significance of the result of the statistical test

Significance-Incorrect Matches responses that incorrectly mention the

significance of the result of the statistical test

Ind-Variable-Mention Matches responses that explicitly mention the

independent variable (e.g. type of music)

Dep-Variable-Mention Matches responses that explicitly mention the

dependent variable (e.g. memory recall)

Conclusion-Correct Matches responses that have the correct conclusion of

the statistical test

Conclusion-Incorrect Matches responses that have the incorrect conclusion

of the statistical test

Fig. 1. The lattice-style table-driven interface of ConceptGrid. The template represents the

concept “Rejection-Correct”, described in Table 2.

The tutor author then can design a ternary truth table called the Feedback Table

(Figure 2) where he or she can enter the feedback that is to be given to the students,

based on the truth values of the concepts: true – concept present (green check), false –

concept absent (red X), or don‟t care (yellow dash). The author enters the values of

the truth table through tri-state checkboxes. Feedback can be entered for both the

absence of required concepts and presence of incorrect ones.

The Feedback Table helps provide feedback in a simple manner for seemingly

complicated issues, such as an inconsistent statement (the last row of the Feedback

Table in Figure 2) in the example discussed.

Fig. 2. Feedback Table

There is a provision to create user-defined variables that can be used while

building checktypes or mentioning the feedback. This approach helps re-use templates

for similar questions. The author can also enter a set of stop words that will be filtered

out from the student‟s response prior to being processed.

Once the templates are designed and the feedback tables are filled, the author can

test the templates with sample student responses. The output of the test mentions if

the student‟s response has matched the required concepts. If a match is not found,

then it displays the feedback associated with that response. It also displays the truth

values of all the concepts defined by the author.

4 Algorithm and Implementation

The implicit sequencing in the lattice approach means that the resulting complex

checktypes are finite parsers. That is, progress through the lattice corresponds to

progress left-to-right in processing the input.

The templates are represented internally as and-or trees. The algorithm involves a

combination of recursion and memoization to efficiently process the input. Since the

algorithm might need to backtrack many times, memoization helps speed up the

processing by having function calls avoid repeating the calculation of results for

previously processed inputs.

Our tool has been integrated with the Extensible Problem Specific Tutor (xPST) -

an open source authoring tool that is intended to enable non-programmers to create

ITSs on existing websites and software [9]. Though xPST is a text-based authoring

tool, its syntax is not very-code like. ConceptGrid has been customized to generate

"code" that is compatible with xPST‟s syntax, based on the author's templates and

Feedback Table, which can be then be inserted into any xPST file.

5 Results: The xSTAT Project

The research question for this paper is whether ConceptGrid could enable an

instructor to create a tutor that would score students' free response answers as

accurately as he or she manually did. At this point, the question is purely a feasibility

issue: can it be done with the ConceptGrid tool? We tested this issue as a part of the

xSTAT project at University of Tampa, dedicated to developing an intelligent

homework helper for statistics students [10].

For the xSTAT effort, six authors (3 instructors and 3 undergraduates) created

multiple tutors each for college level statistics problems. The problems contained

real-world scenarios with actual data, followed up by several questions for the student

to answer. Each of the problems had a question at the end that asked students to enter

the conclusion of the statistics test. To assess these problems, 6 were chosen out of the

total pool of 74 and given to students as homework problems. All problems were

solved on-line using a standard web browser. Half of the students received feedback

on their answers via the xPST intelligent tutor (i.e., answers were marked as either

correct or incorrect, and hints and just-in-time messages were displayed), and half did

not (i.e., these students simply filled out the web-based form). It is worth noting that

these tutors were created without ConceptGrid, so that authors had to explicitly enter

the "xPST code" that represents the templates without a graphical user interface. Also,

in the absence of visualization through the Feedback Table, subsets of missing and

incorrect concepts had to be explicitly mentioned. This non-lattice approach was not

very usable by non-programmers. This difficulty motivated the creation of the

ConceptGrid lattice approach, which is computationally equivalent and designed to be

much more usable by non-programmers.

In all, 41 students solved a total of 233 instances of the six problems across the

homework. We built a corpus after collecting all student responses to the end question

(both those with tutoring and without). The corpus had 554 unique responses to this

final conclusion question across the six homework problems. This corpus includes

multiple incorrect responses by the same student to the same problem if they were in

the tutored condition. These responses were scored by an instructor and a teaching

assistant based on the presence or absence of the concepts defined in Table 2. Then, a

tutor author attempted to use ConceptGrid to produce templates that would score the

554 responses similar to those manual scores. The result of that work contained a total

of 10 templates common to all six problems, to cover all concepts, except “Ind-

Variable-Mention” and “Dep-Variable-Mention”. The concepts “In-Variable-

Mention” and “Dep-Variable-Mention” required a template each that was unique to

each of the six problems. In all, there were 22 templates across all six problems.

Since the manner in which a template tries to match a student‟s response – a

sequence of words is comparable to the manner in which a regular expression matches

a string, it might seem that the results have a lot of false negatives. But, since this

approach tries to "understand" responses by looking for smaller concepts and key

phrases with the help of checktypes rather than literal word matching, it is much more

expressive. The results in Table 3 confirm this observation.

Table 3. Results of the classification of 554 student responses using ConceptGrid

Concept False Positives False Negatives Accuracy

Rejection-Correct 1 34 0.9368

Rejection-Incorrect 6 5 0.9801

Significance-Correct 1 7 0.9856

Significance-Incorrect 12 1 0.9765

Ind-Variable-Mention 1 3 0.9928

Dep-Variable-Mention 4 3 0.9874

Conclusion-Correct 0 24 0.9567

Conclusion-Incorrect 6 0 0.9892

6 Conclusions and Future Work

We have described ConceptGrid, a tool that is intended to help non-programmers

develop ITSs that perform natural language processing. It has been integrated into an

ITS authoring tool called xPST. We tested it as a part of the xSTAT project and were

able to approach the accuracy of human instructors in scoring student responses.

We would like to conduct a study that helps demonstrate that the ConceptGrid tool,

a part of xPST, is actually feasible for non-programmers to use on a variety of tasks,

as we have done for xPST's core authoring tool [11].

Currently, ConceptGrid does not support a dialogue between the student and tutor.

It only evaluates student responses and gives just-in-time feedback. To support more

extensive knowledge-construction dialogues, ConceptGrid responses would need to

provide information required by the dialogue manager.

Our current approach is non-structural, i.e., it is focused on words and numerical

analysis, rather than grammar and logic. The advantage with this approach is that it

very simple for non-programmers to use, and is very effective in domains such as

statistics where the student responses are expected to follow a general pattern.

However, the ConceptGrid approach is domain-independent, one of its biggest

advantages.

ConceptGrid could be extended to be structural as well, but that achievement might

come at the cost of usability by non-programmers. To include structural matching,

either the templates could nest by invoking other templates, or the atomic checktypes

could include some checktypes that invoked structural matching. For nested concepts,

we could define a concept and then use it within more complex concepts, in the

following manner.

GreaterThan(X,Y) = X – "bigger" or "more"or "greater" – "than" – Y

WellFormedConclusion = GreaterThan("weight of the log", "weight of the twig")

This way, the framework can be extended to more powerful natural language

processing using a similar approach to the processing that context-free grammars

allow. Alternately, the set of ConceptGrid atomic checktypes could be extended to

enable structurally-oriented checktypes that would match a nonterminal from a

context-free grammar, such as an NP with "twig" as the head in a syntactically

oriented grammar, or match the semantics of a section of the utterance.

Acknowledgments. This work is done with the support of the U.S. Air Force Office

of Scientific Research.

References

1. Chi, M.T.H, de Leeuw, N., Chiu, M.H., LaVancher, C.: Eliciting Self-Explanations

Improves Understanding. Cognitive Science. 18, 439--477 (1994)

2. Chi, M.T.H., Bassok, M., Lewis, M.W., Reimann, P., Glaser, R.: Self-explanations: How

Students Study and Use Examples in Learning to Solve Problems. Cognitive Science. 13,

145--182 (1989)

3. Aleven, V., Koedinger, K., Cross, K.: Tutoring Answer Explanations Fosters Learning With

Understanding. Proceedings of Artificial Intelligence in Education, AIED ‟99. pp. 199--206

(1999)

4. Glass, M.: Processing Language Input in the CIRCSIM-Tutor Intelligent Tutoring System.

In: Moore, J.D. et al. (eds.), Artificial Intelligence in Education. pp. 210--221 (2001)

5. Rus, V., Graesser, A.: Deeper Natural Language Processing for Evaluating Student Answers

in Intelligent Tutoring Systems. American Association for Artificial Intelligence. (2006)

6. Graesser, A., Wiemer-Hastings, P., Wiemer-Hastings, K., Harter, D., Person, N., TRG.:

Using Latent Semantic Analysis to Evaluate the Contributions of Students in AutoTutor.

Interactive Learning Environemnts. pp. 149--169 (2000)

7. Steinhart, D.: Summary Street: An Intelligent Tutoring System for Improving Student

Writing Through the Use of Latent Semantic Analysis. Ph.D. dissertation, Dept.

Psychology, University of Colorado, Boulder (2001)

8. Landauer, T.K., Foltz, P.W., Laham, D.: Introduction to Latent Semantic Analysis.

Discourse Processes. 25, 259-284 (1998)

9. Blessing, S., Gilbert, S., Blankenship, L., Sanghvi, B.: From SDK to xPST: A New Way to

Overlay a Tutor on Existing Software. Proceedings of the Twenty-Second International

FLAIRS Conference. (2009)

10. Maass, J., Blessing, S.B.: xSTAT: An Intelligent Homework Helper for Students. Submitted

to the 2011 Convention of the Southeast Psychological Association, Jacksonville, FL.

11. Gilbert, S., Blessing, S. B., Kodavali, S.: The Extensible Problem-Specific Tutor (xPST):

Evaluation of an API for Tutoring on Existing Interfaces. In: Dimitrova, V. et al. (eds.),

Artificial Intelligence in Education. pp. 707--709. IOS Press, Brighton (2006)

12. Boonthum, C., Levinstein, I.B., McNamara, D.S., Magliano, J.P., Millis, K.K.: NLP

Techniques in Intelligent Tutoring Systems. IGI Global (2009)

13. Glass, M.S., Evens M.W.: Extracting Information From Natural Language Input to an

Intelligent Tutoring System. Far Eastern Journal of Experimental and Theoretical Artificial

Intelligence. 1(2), 87--125 (2008)

14. Popescu, Octav.: Logic-Based Natural Language Understanding in Intelligent Tutoring

Systems. PhD Thesis, Language Technologies Institute, Carnegie Melon University (2005)

