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Abstract

At Eurocrypt 1998, Blaze, Bleumer and Strauss (BBS) presented a new primitive called proxy re-
encryption. This new primitive allows semi trusted proxy to convert a ciphertext for Alice into a
ciphertext for Bob without underlying message. Till now all the identity based proxy re-encryption
schemes are based on the number theoretic assumptions like prime factorization, discrete logarithm
problem etc. In this paper we propose a lattice based identity based proxy re-encryption scheme
in the random oracle model for the single bit as well as for the multi-bit. Both of our schemes are
anonymous, bidirectional and multi use. In these schemes, we have used Micciancio and Peikert’s
strong trapdoor [20] and this strong trapdoor is shown to be very efficient [6].

Keywords: Lattice, Identity Based Encryption, Proxy Re-encryption, Random Oracle Model, Learn-
ing With Error (LWE).

1 Introduction

The concept of identity-based cryptosystem was introduced by Adi Shamir in 1984 [24]. In this new
paradigm a user’s public key can be any string which uniquely identifies the user. For example an email
or phone number can be a public key. As a result, it significantly reduces system complexity and cost of
establishing public key infrastructure. Although Shamir constructed an identity-based signature scheme
using RSA function but he could not construct an identity-based encryption and this became a long-
lasting open problem. Only in 2001, Shamir’s open problem was independently solved by Boneh and
Franklin [8] and Cocks [12].
Lattice based cryptogrphy have bloomed in recent years because of the following advantages.

• Number-theoretic hard problems like prime factorization and discrete logarithm problem can be
solved in polynomial time by Shor’s algorithm [25]. But till now there is no polynomial time
quantum algorithm for lattice hard problems.

• Security of the cryptosystem depends on the hardness of the problem in the average case. Ajtai in
his seminal result [3] has shown that lattice based cryptosystems are secure on the assumption of
lattice based hard problems in the worst case. It gives strong hardness guarantee.

• Lattice based cryptosystems are efficient and parallelizable.

• Almost all the fully homomorphic encryption are based on lattice hard problems.
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Drawback of lattice based cryptosystem is that it has large key size and ciphertext size. Recently Regev
[23] defined the learning with error (LWE) problem and proved that it also enjoys similar average case
/ worst case equivalence hardness properties under a quantum reduction. A number of constructions of
lattice based identity based encryption is known [15, 10, 21, 1, 2].

At Eurocrypt 1998, Blaze, Bleumer and Strauss [7] presented a new primitive called proxy re-
encryption. This new primitive allows semi trusted proxy to convert a ciphertext for Alice into a cipher-
text for Bob without underlying message. This primitive have many useful applications. For example,
Director can authorize his secretary (proxy) to convert encrypted mail for Director into encrypted mail
for Dean whenever he is on leave. Then Dean can decrypt the encrypted mail using his secret key. Green
and Ateniese [16] presented first proxy re-encryption scheme in the identity based setting. There are
some other proxy re-encryption schemes [5, 9, 11, 19, 14, 17] in the context of public key encryption
and identity based encryption. There is only one lattice based proxy re-encryption scheme [26] based on
LWE assumption in the context of public key encryption.

Our Contribution: To the best of our knowledge, there does not exist any lattice based identity based
proxy re-encryption (IB-PRE) scheme. In this paper we construct a lattice based identity based proxy
re-encryption scheme in the random oracle model for the single bit as well as for the multi-bit. Our
scheme satisfies the following properties of proxy re-encryption.

• Anonymous: In anonymous scheme ciphertext does not reveal anything about the identity of the
receiver.

• Bidirectional: Bidirectional scheme permits proxy to convert a ciphertext for Alice to a ciphertext
for Bob and vice-versa without knowing the underlying message.

• Multi use: A multi use scheme permits the proxy to perform multiple re-encryptions on a single
ciphertext, e.g., re-encrypt from A to B, then re-encrypt the result from B to C, etc.

In this scheme, we have used Micciancio and Peikert’s strong trapdoor [20] which is simpler, tighter,
faster and smaller than trapdoor used for lattices like in [15]. Micciancio and Peikert’s strong trapdoor is
shown to be very efficient in [6].

Paper Outline: Our paper is organized as follows. In section 2, we describe basic definitions, security
models, results and hard problems required to understand the rest of the paper. In section 3, we briefly
describe Micciancio and Peikert’s strong trapdoor for lattices [20]. In section 4, we describe our scheme
for single bit and in section 5, we describe our scheme for multi bit. In section 6 we give conclusion and
related open problems.

2 Preliminaries

2.1 Notation

We denote [ j] = {0,1, ..., j}, set of real numbers by R and the integers by Z. We assume vectors to be
written in column form. ‖S‖ denotes the Euclidean norm of the longest (maximum euclidean norm)
vector in matrix S, i.e. ‖S‖ := maxi‖si‖ for 1≤ i≤ k.
We say that negl(n) is a negligible function in n if it is smaller than the inverse of any polynomial function
in n for sufficiently large n.
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2.2 Identity-Based Bidirectional Proxy Re-Encryption Scheme (IB-BPRE)

IB-BPRE consists of six algorithms.

Setup(n): On input a security parameter n, this algorithm outputs the public parameters PP and master
secret key msk.

Extract(PP,msk, id): On input public parameters PP, a master secret key msk, and an identity id, this
algorithm outputs private key skid corresponding to an identity id.

Encrypt(PP, id,M): On input public parameters PP, an identity id, and a message m, this algorithm
outputs ciphertext Cid .

RKGen(PP,skidi ,skid j ): On input a secret key skidi and a secret key skid j , this algorithm outputs a re-
encryption key rki, j.

Re-encryption(PP,rki, j,Cidi): On input a ciphertext Cidi under identity idi and re-encryption key rki, j,
this algorithm outputs a re-encrypted ciphertext Cid j for an identity id j.

Decrypt(PP,skid ,Cid): On input public parameters PP, a private key skid = eid and a ciphertext Cid ,
this algorithm outputs message m.

Correctness. Identity Based Proxy Re-encryption is correct if suppose Cidi ← Encrypt(PP, idi,m),
rki, j ← RKGen(PP,skidi ,skid j) and Cid j ← Re-encryption(PP,rki, j,Cidi), then the following equation
holds.

• Decrypt (PP,skidi ,Cidi) = m.

• Decrypt (PP,skid j ,Cid j) = m.

2.3 Adaptive-ID Security Model for IB-BPRE Scheme (IND-pID-CPA) [16, 11]

We define adaptive-ID security model using a game that is played between the challenger and the ad-
versary. This property implies both semantic security and recipient anonymity. The game proceeds as
follows.

Setup: The challenger runs Setup (1n) and gives the public parameters PP to adversary and keeps
master secret key msk to itself. Here CU denote set of users for which adversary has made private key
query (corrupted users) and HU denote set of users for which adversary has not made private key query
(honest users).

Phase 1: The adversary can make following queries.

• The adversary can issue a private key query on the identity id, challenger runs the extract algorithm
and returns private key query did to adversary A . Adversary can repeat this polynomial times for
different identities adaptively.
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• The adversary can issue re-encryption key query rki, j corresponding to identities idi and id j such
that either idi, id j ∈ HU or idi, id j ∈CU . Adversary can repeat this polynomial times for different
pair of identities adaptivly.

• The adversary can issue re-encryption query corresponding to identities idi and id j such that either
idi, id j ∈ HU or idi, id j ∈CU . Challenger runs RKGen algorithm to obtain rki, j corresponding to
identities idi and id j then challenger generates ciphertext Cid j by running Re− encryption algo-
rithm.

Challenge: The adversary submits identity id∗ and message m. Identity id∗ should belong to set HU .
Challenger picks a random bit r ∈ {0,1} and a random ciphertext C. If r = 0 it sets the challenge
ciphertext to C∗ :=Encrypt(PP, id∗,m). If r = 1 it sets the challenge ciphertext to C∗ :=C. It sends C∗ as
challenge to the adversary.

Phase 2: Phase 1 is repeated except that for private key query on the identity id 6= id∗ should not be
part of re-encryption key query and re-encryption query of phase 1.

Guess: Finally, the adversary outputs a guess r′ ∈ {0,1} and wins if r = r′.

We refer an adversary A as an IND-pID-CPA adversary. We define the advantage of the adversary A
in attacking an IB-PRE scheme ξ as

Advξ ,A(λ ) = |Pr[r = r′]−1/2|

Definition 1. We say that an IB-PRE scheme is IND-pID-CPA if for all probabilistic polynomial time
algorithm A and negligible function ε , Advξ ,A(λ )≤ ε .

2.4 Adaptive-ID Security Model for IB-UPRE Scheme (IND-pID-CPA)

In the above security model if we allow re-encryption query rki, j corresponding to identities idi and id j

such that idi ∈CU and id j ∈ HU then it will be security model for identity based unidirectional proxy
re-encryption scheme.

2.5 Integer Lattices ([13])

A lattice is defined as the set of all integer combinations

L(b1, ...,bn) =

{
n

∑
i=1

xibi : xi ∈ Z for 1≤ i≤ n

}

of n linearly independent vectors b1, ...,bn ∈ Rn. The set of vectors {b1, ...,bn} is called a basis for the
lattice. A basis can be represented by the matrix B = [b1, ...,bn] ∈ Rn×n having the basis vectors as
columns. Using matrix notation, the lattice generated by a matrix B ∈ Rn×n can be defined as L(B) =
{Bx : x ∈ Zn}, where Bx is the usual matrix-vector multiplication. The determinant of a lattice is the
absolute value of the determinant of the basis matrix det(L(B)) = |det(B)|.
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Definition 2. For q prime, A ∈ Zn×m
q and u ∈ Zn

q , define:

Λq(A) := {e ∈ Zm s.t. ∃s ∈ Zn
q where AT s = e (mod q)}

Λ
⊥
q (A) := {e ∈ Zm s.t. Ae = 0 (mod q)}

Λ
u
q(A) := {e ∈ Zm s.t. Ae = u (mod q)}

2.6 Gram Schmidt Orthogonalization:

S̃ := {s̃1, ..., s̃k} ⊂ Rm denotes the Gram-Schmidt orthogonalization of the set of linearly independent
vectors S = {s1, ...,sk} ⊂ Rm. It is defined as follows: s̃1 = s1 and s̃i is the component of si orthogonal to
span(s1, ...,si) where 2≤ i≤ k . Since s̃i is the component of si so ‖s̃i‖ ≤ ‖si‖ for all i.
We refer to ‖̃S‖ as the Gram-Schmidt norm of S.

2.7 Discrete Gaussian

Let L be a subset of Zm. For any vector c ∈ Rm and any positive parameter σ ∈ R> 0, define:
ρσ ,c(x) = exp(−π

‖x−c‖
σ2 ) : a Gaussian-shaped function on Rm with center c and parameter σ ,

ρσ ,c(L) = ∑x∈L ρσ ,c(x) : the (always converging) ρσ ,c over L,
DL,σ ,c : the discrete Gaussian distribution over L with parameters σ and c,

∀y ∈ L , DL,σ ,c =
ρσ ,c(y)
ρσ ,c(L)

The distribution DL,σ ,c will most often be defined over the Lattice L = Λ⊥q for a matrix A ∈ Zn×m
q or over

a coset L = t +Λ⊥q (A) where t ∈ Zm.

Lemma 1 (Lemma 7.1 of [13]). Let Λ be an m-dimensional lattice. There is a deterministic polynomial-
time algorithm ToBasis(S,B) that, given an arbitrary basis B of Λ and a full-rank set S = {s1, ...,sm} in
Λ, returns a basis T of Λ satisfying

‖T̃‖ ≤ ‖S̃‖ and ‖T‖ ≤ ‖S‖
√

m/2

.

2.8 The LWE Hardness Assumption ([23, 1])

The LWE (learning with error) hardness assumption is defined by Regev [23].

Definition 3. LWE: Consider a prime q, a positive integer n, and a Gaussian distribution χm over Zm
q .

Given (A,As+ x) where matrix A ∈ Zm×n
q is uniformly random and x ∈ χm.

LWE hard problem is to find s with non-negligible probability.

Definition 4. Decision LWE: Consider a prime q, a positive integer n, and a Gaussian distribution χm

over Zm
q . The input is a pair (A,v) from an unspecified challenge oracle O, where A ∈ Zm×n

q is chosen
uniformly. An unspecified challenge oracle O is either a noisy pseudo-random sampler Os or a truly
random sampler O$. It is based on how v is chosen.
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1. When v is chosen to be As+ e for a uniformly chosen s ∈ Zn
q and a vector e ∈ χm, an unspecified

challenge oracle O is a noisy pseudo-random sampler Os.

2. When v is chosen uniformly from Zm
q , an unspecified challenge oracle O is a truly random sampler

O$.

Goal of the adversary is to distinguish between above two cases with non-negligible probability.
Or we say that an algorithm A decides the (Zq,n,χ)-LWE problem if |Pr[AOs = 1]−Pr[AO$ = 1]| is
non-negligible for a random s ∈ Zn

q .

Above decision LWE is also hard even if s is chosen from the Gaussian distribution rather than the
uniform distribution [4, 18].

Definition 5. Consider a real parameter α = α(n) ∈ {0,1} and a prime q. Denote by T = R/Z the
group of reals [0,1) with addition modulo 1. Denote by ψα the distribution over T of a normal variable
with mean 0 and standard deviation α/

√
2π then reduced modulo 1. Denote by bxe= bx+ 1

2c the nearest
integer to the real x ∈ R. We denote by ψα the discrete distribution over Zq of the random variable
bqXemod q where the random variable X ∈ T has distribution ψα .

Theorem 1 ([23]). If there exists an efficient, possibly quantum algorithm for deciding the (Zq,n,ψα )-
LWE problem for q > 2

√
n/α then there exists an efficient quantum algorithm for approximating the

SIVP and GapSVP problems, to within O(n/α) factors in the l2 norm, in the worst case.

2.9 Small Integer Solution (SIS) Assumption

SIS and ISIS hard problems were proposed by Ajtai [3] in 1996.

Definition 6. Given an integer q, a matrix A ∈ Zn×m
q and real β , find a short nonzero integer vector

x ∈ Zm
q such that Ax = 0 mod q and x≤ β .

OR find a nonzero integer vector x ∈ Zm
2 such that Ax = 0 mod q.

2.10 Inhomogeneous Small Integer Solution (ISIS) Assumption

Definition 7. Given an integer q, a matrix A∈ Zn×m
q , a syndrome u∈ Zn

q and real β , find a short nonzero
integer vector x ∈ Zm

q such that Ax = u mod q and x≤ β .
OR find a nonzero integer vector x ∈ Zm

2 such that Ax = u mod q.

3 Strong Trapdoors for Lattices

We briefly describe Micciancio and Peikert’s strong trapdoor for lattices which are simpler, tighter, faster
and smaller [20]. In this method, there is a gadget matrix G for which inversion ( f−1

G and g−1
G ) is easy.

We know that f−1
A and g−1

A are hard without trapdoor as short basis. In this method strong trapdoor is
matrix R not the short basis. So to invert using strong trapdoor matrix R first f−1

A and g−1
A are converted

to f−1
G and g−1

G for gadget matrix G and then we know that f−1
G and g−1

G are easy. Detail description is
as follows.
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3.1 Gadget G and Inversion( f−1
HG and g−1

HG) Algorithms

Let q ≥ 2 be an integer modulus and k ≥ 1 be an integer dimension. Vector g = (g1, ...,gk) ∈ Zk
q is

called primitive vector if gcd(g1, ...,gk,q) = 1. Let matrix Sk ∈ Zk×k
q is a basis of lattice Λ⊥(gt), i.e,

gt .Sk = 0 ∈ Z1×k
k . A matrix G is a primitive matrix if its columns generate all of Zn

q i.e. G.Zm = Zn
q .

Matrix G = In⊗gt ∈ Zn×nk
q and basis of Λ⊥(G) S = In⊗Sk ∈ Znk×nk. Matrix G, basis of Λ⊥(G) i.e. S are

the direct sums of n copies of gt and Sk respectively. Let gG(s,ε) = stG+ et and fG(x) = Gx mod q. gG

and fG can be inverted in polynomial time. These inversions are parallelizable and offline. Inverting the
functions gG and fG are summarized in the following theorem.

Theorem 2 (Theorem 4.1 of [20]) For any integers q ≤ 2, n ≤ 1, k = log2q and m = nk, there is a
primitive matrix G ∈ Zn×m

q such that

• The lattice Λ⊥(G) has a known basis S ∈ Zm×m with ‖S̃‖ ≤
√

5 and ‖S̃‖ ≤ max{
√

5,
√

k}. More-
over, when q = 2k, we have S̃ = 2I (so ‖S̃‖= 2) and ‖S‖=

√
5.

• Both G and S require little storage. In particular, they are sparse (with only O(m) nonzero entries)
and highly structured.

• Inverting gG(s,ε) = stG+ et can be performed in quasilinear O(n.logc n) time for any s ∈ Zn
q

and any e ∈ P1/2(q.B−t), where B can denote either S or S̃. Moreover, the algorithm is perfectly
parallelizable, running in polylogarithmic O(logc n) time in n processors. When q = 2k, the poly-
logarithmic term O(logc n) is essentially just the cost of k additions and shifts on k-bit integers.

• Preimage sampling for fG(x) = Gx mod q with Gaussian parameter s ≥ ‖S̃‖.w
√

(log n) can be
performed in quasilinear O(nlogc n) time, or parallel polylogarithmic O(logcn) time using n pro-
cessors. When q = 2k, the polylogarithmic term is essentially just the cost of k additions and shifts
on k-bit integers, plus the (offline) generation of about m random integers drawn from DZ,s.

3.2 G↔ A

First matrix G is converted into semirandom matrix A′ = [A|HG], where A ∈ Zn×m
q is chosen at random

and H ∈ Zn×n
q is the desired tag. Now this semi random matrix A′ is converted into random matrix A by

applying random unimodular transformation T =

(
I −R
O I

)
where matrix R∈ Zm×w is ”short” trapdoor

matrix which is chosen from Gaussian distribution D.

A = [A|HG]

(
I −R
O I

)
= [A|HG−AR]

Definition 8. Let A ∈ Zn×m
q and G ∈ Zn×w

q be matrices m ≥ w ≥ n. A G-trapdoor for A is a matrix

R ∈ Zm−w)×w such that A
(

R
I

)
= HG for some invertible matrix H ∈ Zn×n

q . Matrix H is referred as the

tag of the trapdoor.

3.3 f−1
A ,g−1

A to f−1
HG,g

−1
HG:

g−1
A to g−1

HG: Given a trapdoor of R for A ∈ Zn×m
q and an LWE instance bt = stA+ et mod q for some

short error vector e ∈ Zm. We compute b̂t = bt
(

R
I

)
= stA

(
R
I

)
+ et

(
R
I

)
= st(HG)+ et

(
R
I

)
.
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If et
(

R
I

)
is in [−q/4,q/4) then g−1

A is reduced to g−1
HG.

f−1
A to f−1

HG: For f−1
A , given syndrome u ∈ Zn

q , we sample a Gaussian z from Λ⊥u (G) such that HGz = u.

Now A
(

R
I

)
z = u and

(
R
I

)
z lies in Λ⊥u (A). Since G = A

(
R
I

)
so A

(
R
I

)
z = u and y =

(
R
I

)
z lie in

Λ⊥u (A). However the distribution of y is non-spherical. This leaks information about the trapdoor R. This
is corrected using convolution technique from Peikert [22]. Specifically, a Gaussian perturbation p ∈ Zm

having covariance s2−
(

R
I

)
∑G[RtI]. Syndrome v = u−Ap is adjusted. For this syndrome v, Gaussian

z is sampled from Λ⊥u (G) such that Gz = v. Now A
(

R
I

)
z = v and y =

(
R
I

)
z ∈ Λ⊥u (A). Distribution of

y is non-spherical but distribution of x = y+ p is spherical and Ax = u. Output x.

4 Lattice Based Identity Based Proxy Re-Encryption Scheme in the Ran-
dom Oracle Model

Our scheme is the extension of lattice based identity based encryption scheme of Gentry et al [15] and
scheme of Xagawa et al [26].

Setup(n): On input a security parameter n, we set the parameters q = poly(n) and k = O(log q) =
O(log n) accordingly. We choose one hash function K : {0,1}∗ → Zn

q . We choose a Gadget ma-
trix G ∈ Zn×m

q with tag H ∈ Zn×n
q . Gadget matrix G is converted into random matrix A ∈ Zn×m

q by
A = [A|HG−AR], where A ∈ Zn×m

q is chosen at random and R is ”short” trapdoor matrix chosen from
Gaussian distribution D. So master public key mpk = A and master secret key msk = R.

Extract(mpk,R, id): Let u = K(idi) then return skidi = short vector x ∈ {0,1}m×1 such that Ax =
u mod q (or x← f−1

A (u)).

Encrypt(mpk, idi,b): To encrypt a bit b ∈ {0,1}, we do the following.

• We choose s← Zn
q uniformly.

• Compute p = AT s+ e, where e← χm. Here χm is error (Gaussian) distribution.

• Compute cidi = uT s+bbq
2c+ e, where e← χ . Here χ is error (Gaussian) distribution.

• Output the ciphertext Cidi = (p,cidi) ∈ (Zm
q ×Zq).

RKGen(PP,skidi ,skid j ): Outputs rki, j = skidi− skid j .

Re-Encrypt(PP,rki, j,Cidi): (p,cidi) =Cidi . We compute

cid j = cidi− rkT
i, j p

= uT
idi

s+bbq
2
c+ e− (skT

idi
− skT

id j
)(AT s+ e)

= uT
id j

s+bbq
2
c+ e′
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where e′ = e− (skT
idi
− skT

id j
)e.

New error e′ may be greater than e but error after decrypting Cid j will be around same as error after
decrypting Cidi .

Decrypt(PP,xid j ,Cid j ): To decrypt Cid j = (p,cid j), we do the following.

• We compute b′ = cid j − skT
id j

p.

• If b′ is closer to 0 than bq
2c mod q output 0 otherwise output 1.

Correctness: cid j − skT
id j

p = bbq
2c+ e− skT

id j
e and cidi− skT

idi
p = bbq

2c+ e′− skT
idi

e
Or cid j − skT

id j
p = bbq

2c+ error1 and cidi− skT
idi

p = bbq
2c+ error2. Since e,e′ and skid are short vectors so

with proper choice of the parameters one can make error1 and error2 less than q/4 with high probability.
Hence the above IB-PRE scheme is correct.

Above scheme can be extended to encrypt k = poly(n) bits by the following two ways.

1. We can repeat the encryption for k bits. In this case for k different bits, we will have k different s
values but with same public key u. Size of ciphertext = O(k(mlog n+ log n)) = Õ(km)1 and size
of public key = O(mlog n) = Õ(m).

2. We can include k independent syndroms u1, ...,uk in the public key. Now we can use same s for
encryption of all k− bits. In this case size of the ciphertext = O(mlog n+ klog n) = Õ(k+m)
and size of public key = O(kmlog n) = Õ(km)[15]. Based on this, we present multi-bit proxy
re-encryption scheme in next section.

So there is trade-off between size of the ciphertext and size of the public key to encrypt multi bit.

Theorem 3. If hash function K is modeled as random oracle, then lattice based identity based proxy
scheme is IND-pID-CPA (semantic) secure assuming the LWEq,χ is hard or AdvB,LWEq,χ (n) = Advχ,A(n).

Proof: Here proof is similar to proof of theorem 7.2 of [15] and proof of theorem 15.3.3 of [26].
We now show semantic security of IB-PRE in the random oracle model. We will show that if there exist
a PPT adversary A that breaks IB-PRE scheme with non-negligible probability then there must exist a
PPT challenger B that solves LWE hard problem with non-negligible probability by simulating views
of A . Here CU denotes set of users for which adversary has made private key query (corrupted users)
and HU denotes set of users for which adversary has not made private key query (honest users). For our
proof, we make following assumptions.

1. We assume that for CU , adversary will directly ask (not like hash then private key query) private
key query and challenger will return private key with hash of the identity of the user.

2. For HU , adversary will ask only hash query of the identity of the user.

Challenger (adversary B) sets the master public key mpk = A and a public key u∗ ∈ Z∗q for IB-PRE.
Challenger B chooses an index i← [Qhash] uniformly at random and simulates the views of A as follows.

1A function g(n) is in Õ( f (n)) if there exist constants a,c≥ 0 such that g(n)≤ a f (n)logc f (n) for all sufficiently large n
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• Hash Queries: We describe how challenger B answers the hash queries of the adversary for honest
users. When adversary asks first hash query on id1, challenger generates h1 ← Zn

q uniformly.
Adversary returns h1 to the adversary and stores (id1,h1) in a hash table (UHT ). Now challenger
generates re-encryption key r1→ j ∈ Zm

q for j = 2, ...,Q and stores in re-encryption table. When
adversary asks second hash query on id2, challenger will return h2 = h1−Ar1→2 and store (id2,h2)
in UHT . Subsequently when adversary asks ith hash query, challenger will return hi = h1−Ar1→i

and stores (idi,hi) in UHT .

• Whenever A submits a user secret key query for identity id j ∈CU , challenger B randomly choose
a short vector e j from Gaussian distribution D and computes u j = Ae j. Challenger B returns e j

as secret key and u j as hash value of the identity id j and stores the tuple (id j,u j,e j) in key table
(KT ).

• Challenger B answers the re-encryption key query for the the identities in two ways.

1. Whenever A submits a re-encryption key query for the the identities id j and idk such that
id j, idk ∈ HU , challenger B retrieves the values r1→i and r1→ j from re-encryption table and
returns ri→ j = r1→ j− r1→i to adversary A .

2. Whenever A submits a re-encryption key query for the the identities id j and idk such that
id j, idk ∈CU , challenger B retrieves the values e j and ek from table KT and return e j−ek to
the adversary A .

Challenge ciphertext: Now adversary A produces a challenge identity id∗ and message m. Challenger
B will retrieve the hash value u∗ of challenge identity id∗ from table UHT . Since matrix A and vector
u∗ are statistically close to uniform, so (A, p = AT s+ x) simply consists of m samples from LWE and
c∗ = u∗s+ x is one LWE sample.
Challenger B obtains the m LWE samples from LWE oracle for matrix A and which is parsed as (A, p =
AT s+ x). Similarly B again obtains the one LWE sample from LWE oracle for matrix u∗ and is parsed
as (u∗,c = u∗s+ x). Now challenger B computes c∗ = c+bbq

2c and sends C∗ = (p,c∗) to adversary A .

Phase 2: Adversary can ask query with some restriction same as in phase one.

Now adversary A outputs that challenged ciphertext is a valid ciphertext then challenger will output
that oracle O as pseudo-random LWE oracle. If adversary A outputs random ciphertext then adversary
will output random LWE oracle. In other words if adversary A terminates with some output then chal-
lenger B terminates with same output and ends the simulation. So if adversary A breaks the scheme
then there exists challenger B which solves LWE hard problem.
AdvB,LWEq,χ (n) = Advχ,A(n). Hence our scheme is semantically secure.

5 Lattice Based Identity Based Multi-bit Proxy Re-encryption Scheme in
the Random Oracle Model

We can include l independent syndroms u1, . . . ,ul in the public key. Now we can use same s for encryp-
tion of all l- bits. In this way size of the ciphertext is less than l times the size of the ciphertext for single
bit but size of the public key is l-times size of the public key for single bit.
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Setup(n): On input a security parameter n, we set the parameters q = poly(n) and k = O(log q) =
O(log n) accordingly. We choose one hash function K : {0,1}∗→ Zn×l

q where l is the message length.
We choose a Gadget matrix G ∈ Zn×m

q with tag H ∈ Zn×n
q . Gadget matrix G is converted into random

matrix A ∈ Zn×m
q by A = [A|HG−AR], where A ∈ Zn×m

q is chosen at random and R is ”short” trapdoor
matrix chosen from Gaussian distribution D. So master public key mpk = A and master secret key
msk = R.

Extract(mpk,R, id): Let U = (u1, . . . ,ul) = K(idi) ∈ Zn×l
q then secret key SKid corresponding to the

identity id is collection of l short column vector xi’s such that Axi = ui mod q for all 1 ≤ i ≤ l (or
x← f−1

A (ui)). Return SKid ∈ Zm×l
q .

Encrypt(mpk, idi,b): To encrypt a message m ∈ {0,1}l , we do the following.

• We choose s← Zn
q uniformly.

• Compute p = AT s+ e, where e← χm. Here χm is error (Gaussian) distribution.

• Compute cidi =UT s+mbq
2c+ e, where e← χ l . Here χ l is error (Gaussian) distribution.

• Output the ciphertext Cidi = (p,cidi) ∈ (Zm
q ×Zl

q).

RKGen(PP,SKidi ,SKid j ): Outputs RKi, j = SKidi−SKid j .

Re-Encrypt(PP,RKi, j,Cidi): (p,cidi) =Cidi . We compute

cid j = cidi−RKT
i, j p

=UT
idi

s+mbq
2
c+ e− (SKT

idi
−SKT

id j
)(AT s+ e)

=UT
id j

s+mbq
2
c+ e′

where e′ = e− (SKT
idi
−SKT

id j
)e.

New error e′ may be greater than e but error after decrypting Cid j will be around same as error after
decrypting Cidi .

Decrypt(PP,SKid j ,Cid j ): To decrypt Cid j = (p,cid j), we do the following.

• We compute b = cid j −SKT
id j

p ∈ Z1×l
q . We parse b as b1, . . . ,bl .

• If bi is closer to 0 than bq
2c mod q then bi = 0 else bi = 1.

• Output b = b1, . . . ,bl .

Theorem 4. If hash function K is modeled as random oracle, then lattice based identity based multi-
bit proxy scheme is IND-pID-CPA (semantic) secure assuming the LWEq,χ is hard or AdvB,LWEq,χ (n) =
Advχ,A(n).

Proof: Here proof is similar to proof of previous theorem 3.
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6 Conclusion

In some cases adversary already may have private keys of users ID’s of his choice. So security must
be strengthened a bit. Security must allow the adversary to obtain the private key associated with any
identity ID of his choice then adversary can declare the identity to be challenged. The scheme which
is secure against this kind of attack is called adaptive-ID (IND-pID-CPA) secure scheme [8]. We have
proved our scheme to be semantically secure in adaptive-ID (IND-pID-CPA). Construction of adaptively
secure lattice-based unidirectional proxy re-encryption scheme in the context of public key encryption
as well as in the identity based encryption is an open problem.
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