

Lattice-Based Threshold-Changeability for Standard Shamir Secret-Sharing Schemes

Ron Steinfeld (Macquarie University, Australia)

(email: rons@ics.mq.edu.au)

Joint work with:

Huaxiong Wang (Macquarie University)

(email: hwang@ics.mq.edu.au)

Josef Pieprzyk (Macquarie University)

(email: josef@ics.mq.edu.au)

- (t,n)-Threshold Secret Sharing Schemes
 - Classical Shamir Scheme
- Changeable-Threshold Secret-Sharing Schemes
 - Drawbacks of previous solutions
- Our Approach: Lattice-Based Threshold-Changeability for Classical Shamir Scheme
 - Brief Review of Point Lattices
 - Method for increasing the threshold from t to t' > t
 - Lattice-based Decoding Algorithm & Correctness Analysis
 - Lattice-based Information-Theoretic Security Analysis

(t,n)-Threshold Secret Sharing

- Fundamental cryptographic scheme (Shamir, 1979)
 - Informal Definition:
 - A <u>Dealer</u> owning a secret s wishes to "distribute" knowledge of s among a group of n <u>shareholders</u> such that two conditions hold:
 - Correctness: Any subset of t shareholders can together recover s
 - <u>Security:</u> Any subset of <u>less than t</u> shareholders <u>cannot</u> recover s
- Many applications in information security especially for achieving <u>robustness</u> of distributed security systems:
 - Consider an access control system with n servers
 - System is called t-<u>robust</u> if security is maintained even against attackers who succeed in breaking into up to t-1 servers
 - Can be achieved by distributing the access control secret among the n servers using a (t,n)-threshold secret sharing scheme.

(t,n)-Threshold Secret-Sharing

Definition 1 (Threshold Scheme) A(t, n)-threshold secret-sharing scheme TSS = (GC, D, C) consists of three efficient algorithms:

- 1 GC (Public Parameter Generation): Takes as input a security parameter $k \in \mathcal{N}$ and returns a string $x \in \mathcal{X}$ of public parameters.
- 2 D (Dealer Setup): Takes as input $(k, x) \in \mathcal{N} \times \mathcal{X}$ and a secret $s \in \mathcal{S}(k, x) \subseteq \{0, 1\}^{k+1}$ and returns n shares $s = (s_1, \ldots, s_n)$, where $s_i \in \mathcal{S}_i(k, x)$ for $i = 1, \ldots, n$. We denote by

 $D_{k,x}(.,.): \mathcal{S}(k,x) \times \mathcal{R}(k,x) \to \mathcal{S}_1(k,x) \times \cdots \times \mathcal{S}_n(k,x)$ the mapping induced by algorithm D (here $\mathcal{R}(k,x)$ denotes the space of random inputs to D).

3 C (Share Combiner): Takes as input $(k, x) \in \mathcal{N} \times \mathcal{X}$ and any subset $\mathbf{s}_I = (s_i : i \in I)$ of t shares, and returns a recovered secret $s \in \mathcal{S}(k, x)$. (here $I \subseteq [n]$ is a subset of size #I = t).

(t,n)-Threshold Secret-Sharing

Classical Shamir Scheme (Shamir '79)

- 1. GC(k) (Public Parameter Generation):
 - (a) Pick a (not necessarily random) prime $p \in [2^k, 2^{k+1}]$ with p > n.
 - (b) Pick uniformly at random n distinct non-zero elements $\alpha = (\alpha_1, \dots, \alpha_n) \in D((\mathbf{Z}_p^*)^n)$. Return $x = (p, \alpha)$.
- 2. $\mathsf{D}_{k,x}(s,\mathbf{a})$ (Dealer Setup): To share secret $s\in \mathbf{Z}_p$ using t-1 uniformly random elements $\mathbf{a}=(a_1,\ldots,a_{t-1})\in \mathbf{Z}_p^{t-1}$, build the polynomial

$$a_{s,\mathbf{a}}(x) = s + a_1 x + a_2 x^2 + \ldots + a_{t-1} x^{t-1} \in \mathbf{Z}_p[x; t-1].$$

The *i*th share is $s_i = a(\alpha_i) \mod p$ for $i = 1, \ldots, n$.

3. $C_{k,x}(\mathbf{s}_I)$ (Share Combiner): To combine shares $\mathbf{s}_I = (s_i : i \in I)$ for some $I \subseteq [n]$ with #I = t, compute by Lagrange interpolation the unique polynomial $b \in \mathbf{Z}_p[x;t-1]$ such that $b(\alpha_i) \equiv s_i \pmod p$ for all $i \in I$. The recovered secret is $s = b(0) \mod p$.

Changeable-Threshold Secret-Sharing

Motivation:

- In applications, choice of the threshold parameter t is a compromise between two conflicting factors:
 - Value of Protected System & Attacker Resources
 - → Pushing the threshold as high as possible
 - User Convenience and Cost
 - Pushing the threshold as low as possible
- Hence actual value of t will be an "equilibrium" value, which will change in time as the relative strength of the above conflicting factors change in time
- This motivates study of <u>Changeable-Threshold</u> <u>Secret-Sharing</u> schemes

- Drawbacks of previous solutions are at least one of:
 - Dealer Involvement after setup phase [eg. Blundo'93]
 - Dealer broadcasts a message to all shareholders to allow them to update their shares from a (t,n) to a (t',n) scheme
 - Implication: Dealer must communicate after setup!
 - Initial (t,n)-threshold scheme is non-standard [eg. Martin'99]
 - Simple example: Dealer gives each shareholder two shares of the secret, one for a (t,n) scheme, another for a (t',n) scheme
 - Implication: Dealer must plan ahead!
 - Shareholders privately communicate with each other [eg. Desmedt'97]
 - E.g. Shareholders re-destribute secret among themselves for a (t',n) scheme via secure computation protocol
 - Implication: Shareholders must communicate!
- Our scheme does not have any of these drawbacks!
 - Although we only achieve relaxed correctness/security

Changeable-Threshold Secret-Sharing

Basic idea of our approach

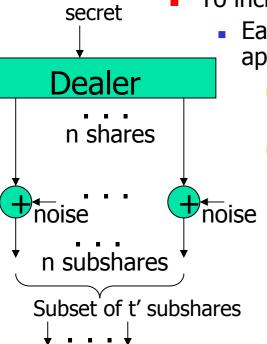
To increase threshold from t to t' > t,

Each Shareholder adds a random `noise' integer (of appropriate size) to his share, to obtain a subshare

Subshares contain only partial information on original shares

→ We expect that:

- Any t subshares are <u>not</u> sufficient to recover secret
- But t' subshares (for some t' > t depending on size of noise added) are sufficient to recover secret if we have an appropriate <u>`error-correction algorithm'</u>
- (e.g if noise bit-length = $\frac{1}{2}$ of share length, we expect that t' ~ 2t subshares uniquely determine the secret)
- The new `subshare combiner' algorithm is the error correction algorithm
- We construct this algorithm using lattice basis reduction! 8



Lattice-Based

secret

Subshare

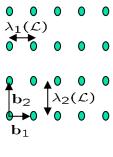
Combiner

Point Lattices (Brief Intro)

- <u>Definition (Lattice)</u>: Given a basis of \mathcal{N} linearly-independent vectors $\mathbf{b}_1, \ldots, \mathbf{b}_n$ in vector space \mathbb{R}^n , we call the set \mathcal{L} of all <u>integer</u> linear combinations of these vectors a <u>lattice</u> of dimension \mathcal{N}
- A basis matrix B of lattice $\mathcal L$ is an $n \times n$ matrix listing basis vectors in rows
- The determinant $\det(\mathcal{L})$ of lattice \mathcal{L} is $|\det(B)|$ where B is any basis matrix for \mathcal{L} .
 - Geometrically, $det(\mathcal{L})$ is equal to the <u>volume</u> of any <u>fundamental parallelpiped</u> (f.p.) of .
- We use infinity-norm $\|\cdot\|_{\infty}$ (max. abs. value of coordinates) to measure "length" of lattice vectors
- Define "Minkowski Minima" $\lambda_1(\mathcal{L}), \dots, \lambda_n(\mathcal{L})$ of lattice \mathcal{L} :
 - $\lambda_1(\mathcal{L})$ = shortest infinity-norm over all non-zero vectors of \mathcal{L}

9

• $\lambda_i(\mathcal{L})$ = shortest infinity-norm bound over all i linearly-independent vectors of \mathcal{L}



Point Lattices (Brief Intro)

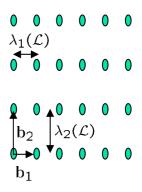
Theorem 1 (Minkowski's First Theorem) Let \mathcal{L} be a lattice in \mathbb{R}^n . Then

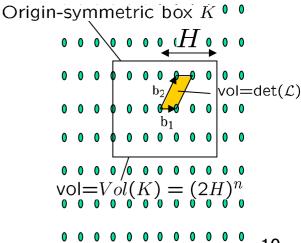
$$\lambda_1(\mathcal{L}) \leq \det(\mathcal{L})^{\frac{1}{n}}.$$

Theorem 2 (Minkowski's Second Theorem) Let \mathcal{L} be a lattice in \mathbb{R}^n . Then

$$(\lambda_1(\mathcal{L})\cdots\lambda_n(\mathcal{L}))^{1/n}\leq 2\det(\mathcal{L})^{1/n}.$$

Theorem. [Blichfeldt-Corput] Let \mathcal{L} be a lattice in \mathbb{R}^n and let K denote the origin-centered box $\{\mathbf{v} \in \mathbb{R}^n : \|\mathbf{v}\|_{\infty} < H\}$ of volume Vol(K) = $(2H)^n$. Then the number of points of the lattice \mathcal{L} contained in the box K is at least $2 \cdot Int\left(\frac{Vol(K)}{2^n \det(\mathcal{L})}\right) + 1$, where for any $z \in \mathbb{R}$, Int(z)denotes the largest integer which is strictly less than z.





Point Lattices (Brief Intro)

- The Closest Vector Problem (CVP)
 Given a basis for a lattice \mathcal{L} in \mathbb{Q}^n , and a "target" vector $\mathbf{t} \in \mathbb{Q}^n$, find a closest lattice vector $\mathbf{v} \in \mathcal{L}$ (i.e. $\|\mathbf{v} \mathbf{t}\|_{\infty} = \min_{\mathbf{u} \in \mathcal{L}} \|\mathbf{u} \mathbf{t}\|_{\infty}$).
- Exact (and near-exact) version of CVP is hard to solve efficiently in theory (NP-hard)
- But efficient Approximate-CVP algorithms exist An algorithm is called a *CVP approximation algorithm with* $\|\cdot\|_{\infty}$ -approximation factor γ_{CVP} if it is guaranteed to find a lattice vector \mathbf{v} such that $\|\mathbf{v} \mathbf{t}\|_{\infty} \leq \gamma_{CVP} \cdot \min_{\mathbf{u} \in \mathcal{L}} \|\mathbf{u} \mathbf{t}\|_{\infty}$.
- First polynomial-time algorithm [Babai '86] suffices for us:

$$\gamma_{Bab} = n^{1/2} 2^{n/2}$$

Increasing the threshold from t to t' > t

We use an efficient CVP approx. algorithm A_{CVP} with approx. factor γ_{CVP} . Let $\Gamma_{CVP} = \log(\lceil \gamma_{CVP} + 1 \rceil)$ (= O(t' + t) for Babai).

 $H_i(s_i)$ (ith Subshare Generation): To transform share $s_i \in \mathbf{Z}_p$ of original (t,n)-threshold scheme into subshare $t_i \in \mathbf{Z}_p$ of desired (t',n)-threshold scheme (t'>t) the ith shareholder does the following (for all $i=1,\ldots,n$):

- 1 Determine noise bound H for δ_c -correctness
- (a) Set $H = \max(\lfloor p^{\alpha}/2 \rfloor, 1)$ with
- (b) $\alpha = 1 \frac{1 + \delta_F}{(t'/t)} > 0$ (noise bitlength fraction)
- (c) $\delta_F = \frac{(t'/t)}{k} \left(\log(\delta_c^{-1/t'} nt) + \Gamma_{CVP} + 1 \right)$.
- 2 Compute $t_i = \alpha_i \cdot s_i + r_i \mod p$ for a uniformly random integer r_i with $|r_i| < H$.

Noisy subshares decoding algorithm (subshare combiner)

$$C'_{k,x}(\mathbf{t}_I)$$
 (Subshare Combiner): To combine subshares $\mathbf{t}_I = (t_i : i \in I)$ for some $I = \{i[1], \dots, i[t']\}$ with $\#I = t'$ (for δ_c -correctness):

1. Build the following $(t'+t)\times(t'+t)$ matrix $M_{Sha}(\alpha_I,H,p)$, whose rows form a basis for a full-rank lattice $\mathcal{L}_{Sha}(\alpha_I,H,p)$ in $\mathbb{Q}^{t'+t}$:

$$M_{Sha}(\alpha_{I}, H, p) = \begin{pmatrix} p & 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ 0 & p & \dots & 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & p & 0 & 0 & \dots & 0 \\ \alpha_{i[1]} & \alpha_{i[2]} & \dots & \alpha_{i[t']} & H/p & 0 & \dots & 0 \\ \alpha_{i[1]}^{2} & \alpha_{i[2]}^{2} & \dots & \alpha_{i[t']}^{2} & 0 & H/p & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_{i[1]}^{t} & \alpha_{i[2]}^{t} & \dots & \alpha_{i[t']}^{t} & 0 & 0 & \dots & H/p \end{pmatrix}.$$

Here
$$H = \lfloor p^{\alpha}/2 \rfloor$$
, $\alpha = 1 - \frac{1 + \delta_F}{(t'/t)}$, $\delta_F = \frac{(t'/t)}{k} \left(\log(\delta_c^{-1/t'}nt) + \Gamma_{CVP} + 1 \right)$.

- 2. Define $\mathbf{t}' = (t_{i[1]}, \dots, t_{i[t']}, 0, 0, \dots, 0) \in \mathbf{Z}^{t'+t}$.
- 3. Run CVP Approx. alg. A_{CVP} on lattice $\mathcal{L}_{Sha}(\alpha_I, H, p)$ with target vector \mathbf{t}' . Let $\mathbf{c} = (c_1, \ldots, c_{t'}, c_{t'+1}, \ldots, c_{t'+t}) \in \mathbb{Q}^{t'+t}$ denote the output vector returned by \mathbf{A}_{CVP} .
- 4. Compute recovered secret $\hat{s} = (p/H) \cdot c_{t+1} \mod p$.

Threshold-Changeability for Classical **Shamir Scheme - Correctness**

- Decoding algorithm correctness analysis (Main ideas):
 - By construction, the dealer's secret polynomial $a(x) = s + a_1 x + \dots + a_{t-1} x^{t-1}$
 - gives rise to a lattice vector

gives rise to a lattice vector
$$\mathbf{a}' = (\alpha_{i[1]}a(\alpha_{i[1]}) - k_1p, \dots, \alpha_{i[t']}a(\alpha_{i[t']}) - k_{t'}p, \frac{s}{p}H, \frac{a_1}{p}H, \dots, \frac{a_{t-1}}{p}H)$$

 $<(\gamma_{CVP}+1)H$ which is "close" to the target vector

$$\mathbf{t}' = (\alpha_{i[1]} a(\alpha_{i[1]}) - k_1 p + r_{i[1]}, \dots, \alpha_{i[t']} a(\alpha_{i[t']}) - k_{t'} p + r_{i[t']}, 0, 0, \dots, 0)$$

- That is, $\|\mathbf{a}' \mathbf{t}'\|_{\infty} < H \;$, so the approx. "close" lattice vector \mathbf{C} returned by A_{CVP} satisfies $\|\mathbf{c} - \mathbf{t}'\|_{\infty} < \gamma_{CVP}H$.
- By triangle inequality, the "error" lattice vector $\mathbf{z} = \mathbf{c} \mathbf{a}'$ is "short": $\|\mathbf{z}\|_{\infty} < (\gamma + 1)H$
- and our algorithm fails only if this "error" lattice vector is "bad" in the sense: $\frac{p}{H}c[t'+1] - \frac{p}{H}a'[t'+1] = \frac{p}{H}z[t'+1] \not\equiv 0 \pmod{p}$
- We use counting argument to upper bound number of public vectors α_I for which $\mathcal{L}_{Sha}(\alpha_I)$ contains "short" and "bad" vectors

Threshold-Changeability for Classical Shamir Scheme - Correctness

- Algorithm correctness analysis (continued)
 - Counting argument to upper bound number of public vectors α_I for which $\mathcal{L}_{Sha}(\alpha_I)$ contains "short" and "bad" vectors reduces to following algebraic counting lemma:

```
Lemma. Fix a prime p, positive integers (n, t, H), and a non-empty set A of polynomials over \mathbf{Z}_p of degree at least 1 and at most t. The number of vectors \alpha = (\alpha_1, \dots, \alpha_n) \in \mathbf{Z}_p^n for which there exists a polynomial a \in A such that \|a(\alpha_i)\|_{L,p} < H for all i = 1, \dots, n is upper bounded by \#A \cdot (2Ht)^n.
```

- We use this to obtain an upper bound on fraction of "bad" public vectors $(\alpha_1, \ldots, \alpha_n) \in (\mathbf{Z}_p)^n$ for which combiner may not always work
- This "bad" fraction δ_c can be made as small as we wish, for sufficiently large security parameter $k = O(\log \delta_c^{-1})$

- Security Analysis (Main Ideas):
 - We assume a uniform distribution on secret space \mathbb{Z}_p :
 - Secret entropy $H(s \in \mathbf{Z}_p) = \log p \in [k, k+1]$
 - We show that, for all choices of the public vector $\alpha_I \in D((\mathbf{Z}_p^*)^{t_s})$ except for a small "bad" fraction $\delta_s = O(1/k^{t'})$, the following holds:
 - For all subshare subsets $I \subseteq [n]$ of size $\#I = t_s \leq Int(f(k)(t'-t'/t))$ with $\lim_{k\to\infty} f(k) = 1$
 - and all values $\mathbf{s}_I = (s_{i[1]}, \dots, s_{i[t_s]})$ for the corresponding subshare vector,
 - the conditional probability distribution $P_{k,x}(\cdot|\mathbf{s}_I)$ for the secret given the observed subshare vector value \mathbf{s}_I is "close" to uniform: $P_{k,x}(s|\mathbf{s}_I) \leq 2^{\epsilon_s}/p$ for all $s \in \mathbf{Z}_p$ with $\epsilon_s(k) = O(\log k)$
 - Secret entropy loss is bounded as (for all I and \mathbf{s}_I) $\int L_{k,x}(\mathbf{s}_I) = |H(s \in \mathbf{Z}_p) H(s \in \mathbf{Z}_p|\mathbf{s}_I)| \le \epsilon_s(k)$

- Security analysis (cont.)
 - To derive bound $P_{k,x}(s|\mathbf{s}_I) \leq 2^{\epsilon_s}/p$ for all $s \in \mathbf{Z}_p$ we observe $P_{k,x}(s|\mathbf{s}_I) = \frac{\#S_{s,p}(\alpha_I,t,p,H,\mathbf{s}_I)}{\#S_{0.1}(\alpha_I,t,p,H,\mathbf{s}_I)}$,
 - where for integers $\widehat{s} \in \{0, s\}$ and $\widehat{p} \in \{1, p\}$ we define

$$S_{\widehat{s},\widehat{p}}(\alpha_I,t,p,H,\mathbf{s}_I) \stackrel{\mathsf{def}}{=} \{ a \in \mathbf{Z}_p[x;t-1] : \|\alpha_{i[j]}a(\alpha_{i[j]}) - s_{i[j]}\|_{L,p} < H \forall j \in [t_s]$$
 and $a(0) \equiv \widehat{s} \pmod{\widehat{p}} \}.$

- We lower bound $\#S_{0,1}$ (no. of dealer poly consistent with shares)
- We upper bound $\#S_{s,p}$ (no. of dealer poly consistent with shares and any fixed value S for the secret)

- Security analysis (cont.)
 - We first reduce the problem to <u>lattice point counting:</u>

Lemma. Let $\mathcal{L}_{Sha}(\alpha_I, t, p, H, \widehat{p})$ denote the lattice with basis matrix

$$M_{Sha}(\alpha_{I},t,p,H,\widehat{p}) = \begin{pmatrix} p & 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ 0 & p & \dots & 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & p & 0 & 0 & \dots & 0 \\ \widehat{p}\alpha_{i[1]} & \widehat{p}\alpha_{i[2]} & \dots & \widehat{p}\alpha_{i[t_{s}]} & 2H/(p/\widehat{p}) & 0 & \dots & 0 \\ \alpha_{i[1]}^{2} & \alpha_{i[2]}^{2} & \dots & \alpha_{i[t_{s}]}^{2} & 0 & 2H/p & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha_{i[1]}^{t} & \alpha_{i[2]}^{t} & \dots & \alpha_{i[t_{s}]}^{t} & 0 & 0 & \dots & 2H/p \end{pmatrix} \longleftarrow \mathbf{b}_{t_{s}+t}$$

and define the vector $\hat{\mathbf{s}}_I \in \mathbb{Q}_{t_s+t}$ by

$$\widehat{\mathbf{s}}_{I} \stackrel{\mathsf{def}}{=} \left(s_{i[1]} - \widehat{s}\alpha_{i[1]}, \dots, s_{i[t_{s}]} - \widehat{s}\alpha_{i[t_{s}]}, H(1 - \frac{1 + 2\widehat{s}}{p}), H(1 - \frac{1}{p}), \dots, H(1 - \frac{1}{p}) \right).$$

Then the sizes of the following two sets are equal:

$$S_{\widehat{s},\widehat{p}}(\alpha_I,t,p,H,\mathbf{s}_I) \stackrel{\text{def}}{=} \{ a \in \mathbf{Z}_p[x;t-1] : \|\alpha_{i[j]}a(\alpha_{i[j]}) - s_{i[j]}\|_{L,p} < H \forall j \in [t_s] \text{ and } a(0) \equiv \widehat{s} \pmod{\widehat{p}} \},$$

and

$$V_{\widehat{\mathbf{s}},\widehat{p}}(\alpha_I,t,p,H,\widehat{\mathbf{s}}_I) \stackrel{\mathsf{def}}{=} \{ \mathbf{v} \in \mathcal{L}_{Sha}(\alpha_I,t,p,H,\widehat{p}) : \|\mathbf{v} - \widehat{\mathbf{s}}_I\|_{\infty} < H \}.$$

Proof idea: We define a 1-1 and onto map from $V_{\widehat{s},\widehat{p}}$ to $S_{\widehat{s},\widehat{p}}$ by mapping vector

$$\mathbf{v} = k_1^{\mathbf{v}} \mathbf{b}_1 + \dots k_{t_s}^{\mathbf{v}} \mathbf{b}_{t_s} + k^{\mathbf{v}} \mathbf{b}_{t_s+1} + a_1^{\mathbf{v}} \mathbf{b}_{t_s+2} + \dots + a_{t-1}^{\mathbf{v}} \mathbf{b}_{t_s+t}$$

$$a_{\mathbf{v}}(x) = \lfloor \hat{s} + k^{\mathbf{v}} \hat{p} \rfloor_{p} + \lfloor a_{1}^{\mathbf{v}} \rfloor_{p} x + \ldots + \lfloor a_{t-1}^{\mathbf{v}} \rfloor_{p} x^{t-1}$$

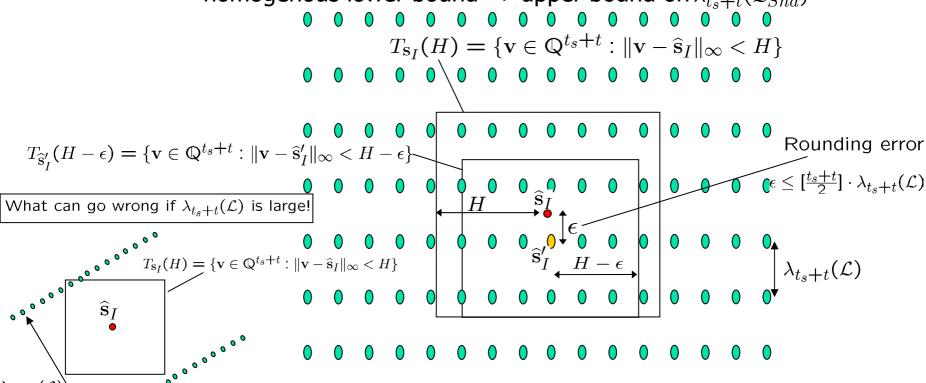
- Security analysis (cont.)
 - Now we use lattice tools to lower bound $\#V_{0,1}$
 - Note $\#V_{0,1}$ is a "non-homogenous" counting problem: we need the number of lattice points in a box $T_{\mathbf{s}_I}(H) = \{\mathbf{v} \in \mathbb{Q}^{t_s+t} : \|\mathbf{v} \widehat{\mathbf{s}}_I\|_{\infty} < H\}$ centred on a (non-lattice) vector $\widehat{\mathbf{s}}_I$
 - We reduce this non-homogenous problem to two simpler problems:
 - The <u>homogenous</u> problem of lower bounding the number of lattice points in an <u>origin-centred</u> box

$$T_0(H - \epsilon) = \{ \mathbf{v} \in \mathbb{Q}^{t_s + t} : \|\mathbf{v}\|_{\infty} < H - \epsilon \} \quad \text{where } \epsilon \le \left(\frac{t_s + t}{2}\right) \lambda_{t_s + t}(\mathcal{L}_{Sha})$$

• Upper bounding the <u>largest</u> Minkowski minimum $\lambda_{t_s+t}(\mathcal{L}_{Sha})$

We show
$$\#V_{\widehat{s},\widehat{p}_0} \ge \#\{\mathbf{v} \in T_0(H-\epsilon) \cap \mathcal{L}_{CRT}\}$$

- Security analysis (cont.)
 - Proof idea of reduction of "non-homogenous lower bound" to "homogenous lower bound" + upper bound on $\lambda_{t_s+t}(\mathcal{L}_{Sha})$



20

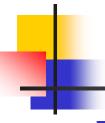
- Security analysis (cont.)
 - Problem 1 (point counting in origin-symmetric box) is solved directly by applying Blichfeldt-Corput Theorem:

$$\#\{\mathbf{v}\in\mathcal{L}_{Sha}\cap T_{\mathbf{0}}(H-\epsilon)\}\geq 2Int\left(\frac{Vol(T_{\mathbf{0}}(H-\epsilon))}{2^{t_s+t}\det(\mathcal{L}_{Sha})}\right)$$

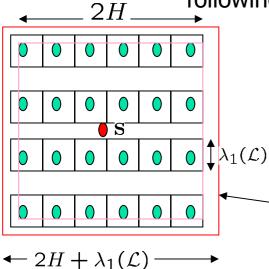
• Problem 2 (upper bounding $\lambda_{t_s+t}(\mathcal{L}_{Sha})$) is solved by applying Minkowski's Second Theorem to reduce it first to the problem of lower bounding the first Minkowski minimum (shortest vector norm)

$$\lambda_{t_s+t}(\mathcal{L}_{Sha}) \leq \frac{2^{t_s+t}\det(\mathcal{L}_{Sha})}{\lambda_1(\mathcal{L}_{Sha})^{t_s+t-1}}$$

• We lower bound the first Minkowski minimum $\lambda_1(\mathcal{L}_{Sha})$ (except for a "small" fraction of "bad" public vectors $(\alpha_1,\ldots,\alpha_n)$) by applying our algebraic counting lemma (using similar argument used in correctness analysis)



- Security analysis (cont.)
 - This completes the results needed to lower bound $\#V_{0,1}$
 - Recall that we also need to upper bound $\#V_{s,p}$
 - We reduce this problem also to lower bounding $\lambda_1(\mathcal{L}_{Sha})$ with the following result:



Lemma. For any lattice \mathcal{L} in \mathbb{R}^n , vector $\mathbf{s} \in \mathbb{R}^n$, and H > 0, we have

$$\#\{\mathbf{v} \in \mathcal{L} : \|\mathbf{v} - \mathbf{s}\|_{\infty} < H\} \le \left[\frac{2H}{\lambda_1(\mathcal{L})} + 1\right]^n.$$

Upper bound total vol of small boxes $\#V \times \lambda_1^n$ by volume of large box $(2H + \lambda_1(\mathcal{L}))^n$

• And now we use our lower bound on $\lambda_1(\mathcal{L}_{Sha})$ again!

Conclusions

- Presented lattice-based threshold changeability algorithms for Shamir secret-sharing
- Proved concrete bounds on correctness and security using classical results from theory of lattices