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Classical Shamir Scheme
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Lattice-based Decoding Algorithm & Correctness Analysis
Lattice-based Information-Theoretic Security Analysis
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(t,n)-Threshold Secret Sharing
Fundamental cryptographic scheme (Shamir, 1979)

Informal Definition:
A Dealer owning a secret s wishes to “distribute” knowledge of 
s among a group of n  shareholders such that two conditions 
hold:

Correctness: Any subset of t shareholders can together 
recover s
Security: Any subset of less than t shareholders cannot
recover s

Many applications in information security – especially for 
achieving robustness of distributed security systems:

Consider an access control system with n servers
System is called t-robust if security is maintained even against 
attackers who succeed in breaking into up to t-1 servers
Can be achieved by distributing the access control secret 
among the n servers using a (t,n)-threshold secret sharing 
scheme.
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(t,n)-Threshold Secret-Sharing
Formal Definition (algorithms)
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(t,n)-Threshold Secret-Sharing

Classical Shamir Scheme (Shamir ’79)
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Changeable-Threshold Secret-Sharing

Motivation:
In applications, choice of the threshold parameter t is a 
compromise between two conflicting factors:

Value of Protected System & Attacker Resources
Pushing the threshold as high as possible

User Convenience and Cost
Pushing the threshold as low as possible

Hence actual value of t will be an “equilibrium” value, which 
will change in time as the relative strength of the above 
conflicting factors change in time

This motivates study of Changeable-Threshold 
Secret-Sharing schemes
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Changeable-Threshold Secret-Sharing
Drawbacks of previous solutions are at least one of:

Dealer Involvement after setup phase [eg. Blundo’93]
Dealer broadcasts a message to all shareholders to allow them 
to update their shares from a (t,n) to a (t’,n) scheme
Implication: Dealer must communicate after setup!

Initial (t,n)-threshold scheme is non-standard [eg. Martin’99]
Simple example: Dealer gives each shareholder two shares of 
the secret, one for a (t,n) scheme, another for a (t’,n) scheme
Implication: Dealer must plan ahead!

Shareholders privately communicate with each other [eg. 
Desmedt’97]

E.g. Shareholders re-destribute secret among themselves for a 
(t’,n) scheme via secure computation protocol
Implication: Shareholders must communicate!

Our scheme does not have any of these drawbacks!
Although we only achieve relaxed correctness/security
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Changeable-Threshold Secret-Sharing
Basic idea of our approach

To increase threshold from t to t’ > t,
Each Shareholder adds a random `noise’ integer (of 
appropriate size) to his share, to obtain a subshare

Subshares contain only partial information on original 
shares 

We expect that:
Any t subshares are not sufficient to recover secret
But t’ subshares (for some t’ > t depending on size of 
noise added)  are sufficient to recover secret if we 
have an appropriate `error-correction algorithm’
(e.g if noise bit-length = ½ of share length, we 
expect that t’ ~ 2t subshares uniquely determine the 
secret)

The new `subshare combiner’ algorithm is the error correction 
algorithm
We construct this algorithm using lattice basis reduction!

Dealer
n shares

noise noise
. . . + +

. . . 

. . . 
n subshares

Lattice-Based 
Subshare
Combiner

Subset of t’ subshares
. . . 

secret

secret
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Point Lattices (Brief Intro)
Definition (Lattice): Given a basis of linearly-independent vectors     

in vector space      ,  we call the set of all integer
linear combinations of these vectors a lattice of dimension 

A basis matrix of lattice     is an              matrix listing basis 
vectors in rows
The determinant of lattice      is                where     is 
any basis matrix for    . 

Geometrically,             is equal to the volume of any  
fundamental parallelpiped (f.p.) of     .

We use infinity-norm         (max. abs. value of coordinates) to 
measure “length” of lattice vectors
Define “Minkowski Minima” of lattice     :

= shortest infinity-norm over all  non-zero vectors of      
= shortest infinity-norm bound over all    linearly-

independent vectors of 
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Point Lattices (Brief Intro)
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Point Lattices (Brief Intro)
The Closest Vector Problem (CVP)

Exact (and near-exact) version of CVP is hard to solve efficiently 
in theory (NP-hard)
But efficient Approximate-CVP algorithms exist

First polynomial-time algorithm [Babai ’86] suffices for us:



12

Threshold-Changeability for Classical 
Shamir Scheme - Algorithms

Increasing the threshold from t to t’ > t
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Threshold-Changeability for Classical 
Shamir Scheme - Algorithms

Noisy subshares decoding algorithm (subshare combiner)
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Threshold-Changeability for Classical 
Shamir Scheme - Correctness

Decoding algorithm correctness analysis (Main ideas):
By construction, the dealer’s secret polynomial

gives rise to a lattice vector  

which is “close” to the target vector  

That is,                          , so the approx. “close” lattice vector    
returned by          satisfies                                  .

By triangle inequality, the “error” lattice vector                   is 
“short” :   
and our algorithm fails only if this “error” lattice vector is “bad” in 
the sense: 
We use counting argument to upper bound number of public 
vectors     for which                contains “short” and “bad” vectors
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Threshold-Changeability for Classical 
Shamir Scheme - Correctness

Algorithm correctness analysis (continued)
Counting argument to upper bound number of public vectors      
for which                contains “short” and “bad” vectors reduces to 
following algebraic counting lemma:

We use this to obtain an upper bound on fraction of “bad” public 
vectors                                for which combiner may not always 
work 
This “bad” fraction      can be made as small as we wish, for 
sufficiently large security parameter 
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Threshold-Changeability for Classical 
Shamir Scheme - Security

Security Analysis (Main Ideas):
We assume a uniform distribution on secret space      :

Secret entropy 

We show that, for all choices of the public vector              
except for a small “bad” fraction                     , the following 
holds:
For all subshare subsets             of size                                    
with     
and all values                             for the corresponding subshare
vector,                                 
the conditional probability distribution                 for the secret 
given the observed subshare vector value    ,  is “close” to uniform:

Secret entropy loss is bounded as (for all I and   )
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Threshold-Changeability for Classical 
Shamir Scheme - Security

Security analysis (cont.)
To derive bound                                                 
we observe

where for integers                 and                 we define

We lower bound            (no. of dealer poly consistent with shares)

We upper bound          (no. of dealer poly consistent with shares 
and any fixed value    for the secret) 
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Threshold-Changeability for Classical 
Shamir Scheme - Security

Security analysis (cont.)
We first reduce the problem to lattice point counting:
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Threshold-Changeability for Classical 
Shamir Scheme - Security

Security analysis (cont.)
Now we use lattice tools to lower bound 
Note            is a “non-homogenous” counting problem: we need 
the number of lattice points in a box                           

centred on a 
(non-lattice)  vector
We reduce this non-homogenous problem to two simpler problems:

The homogenous problem of lower bounding the number of 
lattice points in an origin-centred box 

Upper bounding the largest Minkowski minimum
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Threshold-Changeability for Classical 
Shamir Scheme - Security

Security analysis (cont.)
Proof idea of reduction of “non-homogenous lower bound” to 
“homogenous lower bound” + upper bound on               
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Threshold-Changeability for Classical 
Shamir Scheme - Security

Security analysis (cont.)
Problem 1 (point counting in origin-symmetric box) is solved 
directly by applying Blichfeldt-Corput Theorem:

Problem 2 (upper bounding                   ) is solved by applying 
Minkowski’s Second Theorem to reduce it first to the problem of 
lower bounding the first Minkowski minimum(shortest vector norm) 

We lower bound the first Minkowski minimum                  
(except for a “small” fraction of “bad” public vectors               )     
by applying our algebraic counting lemma (using similar 
argument used in correctness analysis)
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Threshold-Changeability for Classical 
Shamir Scheme - Security
Security analysis (cont.)

This completes the results needed to lower bound 
Recall that we also need to upper bound                         
We reduce this problem also to lower bounding                with the 
following result:

And now we use our lower bound on                  again!  
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Conclusions

Presented lattice-based threshold 
changeability algorithms for Shamir
secret-sharing
Proved concrete bounds on correctness 
and security using classical results from 
theory of lattices


	Lattice-Based Threshold-Changeability for Standard Shamir Secret-Sharing Schemes
	Overview
	(t,n)-Threshold Secret Sharing
	(t,n)-Threshold Secret-Sharing
	(t,n)-Threshold Secret-Sharing
	Changeable-Threshold Secret-Sharing
	Changeable-Threshold Secret-Sharing
	Changeable-Threshold Secret-Sharing
	Point Lattices (Brief Intro)
	Threshold-Changeability for Classical Shamir Scheme - Algorithms
	Threshold-Changeability for Classical Shamir Scheme - Algorithms
	Conclusions

