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Overview

= (t,n)-Threshold Secret Sharing Schemes
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= Changeable-Threshold Secret-Sharing Schemes
= Drawbacks of previous solutions

= Our Approach: Lattice-Based Threshold-Changeability
for Classical Shamir Scheme
= Brief Review of Point Lattices
= Method for increasing the threshold fromttot' > t
» Lattice-based Decoding Algorithm & Correctness Analysis
= Lattice-based Information-Theoretic Security Analysis



(t,n)-Threshold Secret Sharing

= Fundamental cryptographic scheme (Shamir, 1979)
= Informal Definition:

= A Dealer owning a secret s wishes to “distribute” knowledge of
samong a group of n shareholders such that two conditions
hold:

Correctness: Any subset of ¢ shareholders can together
recover S

Security: Any subset of less than ¢ shareholders cannot
recover s
= Many applications in information security — especially for
achieving robustness of distributed security systems:
= Consider an access control system with 1 servers

= System is called t-robust if security is maintained even against
attackers who succeed in breaking into up to t-1 servers

= Can be achieved by distributing the access control secret
among the n servers using a (t,n)-threshold secret sharing
scheme.




(t,n)-Threshold Secret-Sharing

Definition 1 (Threshold Scheme) A (t,n)-threshold
secret-sharing scheme TSS = (GC, D, C) consists of three
efficient algorithms:

1 GC (Public Parameter Generation): Takes as input
a security parameter k € N and returns a string
x € X of public parameters.

2 D (Dealer Setup): Takes as input (k,z) € N xX and
a secret s € S(k,x) C {0,1}¥* and returns n shares
s = (s1,...,8,), Where s; € Si(k,x) fori=1,...,n.
We denote by

Di2(.,.) : S(k,x) x R(k,z) — S1(k,z) X -+ X Sp(k,x)

the mapping induced by algorithm D (here R(k,x)
denotes the space of random inputs to D).

3 C (Share Combiner): Takes as input (k,z) € N x X
and any subset s; = (s; : © € I) of t shares, and
returns a recovered secret s € S(k,x). (here I C [n]
is a subset of size #1 =1t).



i (t,n)-Threshold Secret-Sharing

= Classical Shamir Scheme (Shamir 79)
1. GC(k) (Public Parameter Generation):

(a) Pick a (not necessarily random) prime p €
[2F 2k+1] with p > n.

(b) Pick uniformly at random n distinct non-zero
elements a = (ai,...,an) € D((Z,)"). Return
z = (p,a).

2. Di.(s,a) (Dealer Setup): To share secret s € Z, us-
ing t—1 uniformly random elements a = (a1,...,a;-1) €
Z)~', build the polynomial

asa(x) = s+arx+ax®+...+ap 127t € Zpla; t —1].
The ith share is s; = a(o;) mod p for i =1,...,n.

3. Ciq(sr) (Share Combiner): To combine shares s; =
(s; 11 € I) for some I C [n] with #1I = t, compute
by Lagrange interpolation the unique polynomial b €
Z,[x;t—1] such that b(«a;) =s; (mod p) foralli e I.
The recovered secret is s = b(0) mod p.



Changeable-Threshold Secret-Sharing

= Motivation:
= In applications, choice of the threshold parameter t is a
compromise between two conflicting factors:

= Value of Protected System & Attacker Resources
-> Pushing the threshold as high as possible

= User Convenience and Cost
- Pushing the threshold as low as possible

= Hence actual value of t will be an “equilibrium” value, which
will change in time as the relative strength of the above
conflicting factors change in time
= This motivates study of Changeable-Threshold
Secret-Sharing schemes




Changeable-Threshold Secret-Sharing

= Drawbacks of previous solutions are at least one of:

= Dealer Involvement after setup phase [eg. Blundo93]

= Dealer broadcasts a message to all shareholders to allow them
to update their shares from a (t,n) to a (t’,n) scheme

= Implication: Dealer must communicate after setup!
= Initial (t,n)-threshold scheme is non-standard [eg. Martin"99]

= Simple example: Dealer gives each shareholder two shares of
the secret, one for a (t,n) scheme, another for a (t',n) scheme

= Implication: Dealer must plan ahead!

= Shareholders privately communicate with each other [eg.
Desmedt’97]

= E.g. Shareholders re-destribute secret among themselves for a
(t’,n) scheme via secure computation protocol

= Implication: Shareholders must communicate!

= Our scheme does not have any of these drawbacks!
= Although we only achieve relaxed correctness/security 7




Changeable-Threshold Secret-Sharing

= Basic idea of our approach
= To increase threshold fromttot’ > t,

secret N
l = Each Shareholder adds a random noise’ integer (of
appropriate size) to his share, to obtain a subshare
Dealer Subshares contain only partial information on original

shares
n shares > We expect that:
Any t subshares are not sufficient to recover secret
noise

toise But t’ subshares (for some t’ > t depending on size of
noise added) are sufficient to recover secret if we

n subshares have an appropriate " error-correction algorithm’
(e.g if noise bit-length = /2 of share length, we

S”bset tof ¢ S“bShares expect that t' ~ 2t subshares uniquely determine the

Lo

pr—— secret)

Sibjschea-rease = The new "subshare combiner’ algorithm is the error correction

Combiner algorithm

| secret = We construct this algorithm using lattice basis reduction! g



Point Lattices (Brief Intro)
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Definition (Lattice): Given a basis of 71 linearly-independent vectors
b4, ..., by invector space R", we call the set £ of all integer
linear combinations of these vectors a lattice of dimension 7

A basis matrix B of lattice £ is an 70 X 70 matrix listing basis
vectors in rows

The determinant det(£) of lattice £ is |det(B)| where B is
any basis matrix for [ .

= Geometrically, det(£) is equal to the volume of any
fundamental parallelpiped (f.p.) of

We use infinity-norm || - ||ococ(max. abs. value of coordinates) to
measure “length” of lattice vectors
Define “Minkowski Minima” \1(£), ..., \(£) of lattice L:

= A1(£) = shortest infinity-norm over all non-zero vectors of [,

= )\;(£) = shortest infinity-norm bound over all 4 linearly-
independent vectors of [




Point Lattices (Brief Intro)

Theorem 1 (Minkowski’s First Theorem) Let

L be a lattice in R™. Then 000000
A (L)
1 <>
A (L) < det(L)n. 000000
040 0 0 0
Theorem 2 (Minkowski’s Second Theorem) by I,\Q(c)
Let L be a lattice in R"™. Then 0000

(AL(L) - A (L™ < 2det(L) /.

Theorem.[Blichfeldt-Corput] Let £ be a lat- 0 oNo 00 H oo o
tice in R™ and let K denote the origin-centered 0000000 olo o
box {v e R": ||v|]jeo < H} of volume Vol(K) = T ob% \go'fdet(ﬁ)
n .

(2H)"*. Then the number of points of the 000000000l
lattice £ contained in the box K is at least /

Vol(K oooooooooooo
2-Int (W&(%))‘H’ where for any z € R, Int(z) vol= (K):(QH n
denotes the largest integer which is strictly less 00 00000000
than z. 000000000000

10



Point Lattices (Brief Intro)

= The Closest Vector Problem (CVP)

Given a basis for a lattice £ in Q", and a ‘“tar-
get” vector t € Q", find a closest lattice vector
veL(i.e. [|[v—tlloo=minyer|[u—t|).

= Exact (and near-exact) version of CVP is hard to solve efficiently
in theory (NP-hard)

= But efficient Approximate-CVP algorithms exist
An algorithm is called a CVP approximation al-

gorithm with || - ||c-approximation factor vyov p
if it is guaranteed to find a lattice vector v

such that ||[v —t|lc < vovp - Minger [ — t]|co.
= First polynomial-time algorithm [Babai '86] suffices for us:
_ . 1/2 2
YBab — T / 2n/

11



Threshold-Changeability for Classical
Shamir Scheme - Algorithms

= Increasing the threshold fromttot' > t

We use an efficient CVP approx. algorithm
Acyp with approx. factor yoyp. Let IToyp =
0g([vcvp + 11) (= O(t' +t) for Babai).

H;(s;) (¢ith Subshare Generation): To trans-
form share s; € Z, of original (¢,n)-threshold
scheme into subshare ¢; € Z,, of desired (¢',n)-
threshold scheme (¢ > t) the ith shareholder
does the following (for all i =1,...,n):

1 Determine noise bound H for §.-correctness
(a) Set H = max(|p*/2],1) with
(b)) a=1— %3—/?; > 0 (noise bitlength frac-
tion)
(c) 8 =2 (10g(sc "ty + Tovp+1).

2 Compute t; = «; - s; + r; mod p for a uni-
formly random integer r; with |r;| < H.




Threshold-Changeability for Classical
Shamir Scheme - Algorithms

= Noisy subshares decoding algorithm (subshare combiner)

C'kz(t;) (Subshare Combiner): To combine
subsharest; = (t; : ¢ € I) forsome I = {i[1],...,i[t']}
with #I =t (for §.-correctness):

1. Build the following (¢'+¢) x (t'+t) matrix Mg, (o, H, p),
whose rows form a basis for a full-rank lattice Lg.(ar, H, p)

in Qt"H:
0 p ... O 0 0O ... 0
o o ... p 0O 0 .. O
Msnalon, Hip) = | o, oy ... oy H/p O ... O
afyy Xy - % O H/p 0

Here H = [p/2], o = 1%, op = /2 (log (s, /"nt) + Fovr +1).

2. Define t' = (t;i1y,- -, i1, 0,0,...,0) € ZFFT,

3. Run CVP Approx. alg. Acyp oOn  lattice
Lsno(ar, H,p) with target vector t'. Let ¢ =
(1. sCoyCogt, .- copr) € QT denote the output
vector returned by Acyp.

4. Compute recovered secret s = (p/H) - cp+1 mod p.



Threshold-Changeability for Classical
Shamir Scheme - Correctness

= Decoding algorithm correctness analysis (Main ideas):

= By construction, the dealer’s secret polynomial
a(z) =s+ajz+- -+ a_q2t71

= gives rise to a lattice vector

C
H _
<Yove a’ = (ozi[l]a(ozi[l])—k;lp, PN ai[t/]a(ai[t/])—kt/p, EI{, ﬂI‘I, N *t 1H)
t/ p D p
% <Oove+1Hyg which is “close” to the target vector

< 1;\{ t/ — (ozi[l]a(ozi[l])—klp—l—ri[l], c oy O‘i[t’]a(ai[t’])_kt’p+ri[t’]7 O, O, ceey O)

°, = Thatis, ||a’ — t/||cc < H , SO the approx. “close” lattice vector C

a returned by Acyp satisfies ||c — t/||oco < Yo pH -

= By triangle inequality, the “error” lattice vector z = c — a’ is
“short” : Izllec < (v +1)H

= and our algorithm fails only if this “error” lattice vector is “bad” in
the sense: Zc[t/+1]-La'[t/+1] = Lz[t'+1] 20 (mod p)

= We use counting argument to upper bound number of public

vectors o7 for which £¢;,,(a;) contains “short” and “bad” vectors
14



Threshold-Changeability for Classical
Shamir Scheme - Correctness

= Algorithm correctness analysis (continued)

= Counting argument to upper bound number of public vectors o
for whichLsna(e1) contains “short” and “bad” vectors reduces to
following algebraic counting lemma:

Lemma. Fix a prime p, positive integers (n,t, H),
and a non-empty set A of polynomials over
Z, of degree at least 1 and at most ¢t. The
number of vectors a = (ay,...,an) € Z; for
which there exists a polynomial a € A such
that ||la(o;)||L, < H for all i =1,...,n is upper
bounded by #A .- (2Ht)".

= We use this to obtain an upper bound on fraction of “bad” public
vectors (a1,...,an) € (Zp)™ for which combiner may not always
work

= This “bad” fraction 6. can be made as small as we wish, for

sufficiently large security parameter k = O(log . 1)
15



Threshold-Changeability for Classical
Shamir Scheme - Security

= Security Analysis (Main Ideas):

We assume a uniform distribution on secret space Z :
=« Secretentropy H(s € Zp) = logp € [k, k + 1]
We show that, for all choices of the public vector &1 € D((Z3)")

except for a small “bad” fraction 6s = O(1/k") , the following
holds:

For all subshare subsets | C [n] of size #1 =t < Int(f(k)(¥' —t'/t))
with limg_oo f(k) =1

and all valuess; = (s, ..., s;,) for the corresponding subshare
vector,

the conditional probability distribution Py, ,.(-|sy) for the secret
given the observed subshare vector value s is “close” to uniform:

Py (s|sp) < 2%/p for all s € Zpwith es(k) = O(log k)
- Secret entropy loss is bounded as (for all I and Sy )

16



Threshold-Changeability for Classical
Shamir Scheme - Security

= Security analysis (cont.)
= To derive bound Pk (s|sy) < 2%/p for all s € Z,
we observe #Ssp(ay,t,p, H,sy)
Pa(slsr) = Zosplar D,
#5S0.1(ag,t,p, H,s1)
= Wwhere for integers 5 € {0,s} and p € {1,p} we define

def .
Ssp(ar, t,p, H,sp) = {a € Zplx;t - 1] : leyaleyg)) = sillnp < HYG € [ts]

and a(0) =s (mod p)}.

= We lower bound #50,1 (no. of dealer poly consistent with shares)

= We upper bound #S5s,p (no. of dealer poly consistent with shares
and any fixed value S for the secret)

17



Threshold-Changeability for Classical
Shamir Scheme - Security

= Security analysis (cont.)
= We first reduce the problem to lattice point counting:

Lemma. Let Lg;,(ap,t,p, H,p) denote the lat-
tice with basis matrix

p O .. O 0 0 ... 0 \ebs
0 P e 0 0] 0] ... 0
Mgpo(ay,t,p, H,p) = ﬁo‘i[l] ;50%[2] . ﬁai[ts] 2H/(p/D) 0 . 0 , -
2
N YRl o %l 0 2H/p ... O
t: t: " . t: H : ., :
i) Y2 it 0 0 ... 2H/p |« by,

and define the vector 857 € Q4 by

.. def 1425

s = (Si[l] — §OA,&-[1], ceey S’L'[ts] — §O‘z‘[ts]>H(1 —

>,H(1—1),...,H(1—1)>.
P P

Then the sizes of the following two sets are
equal: Proof idea: We define a 1-1 and onto map
Ss (o, t.p. H,s) def {a € Zplw;t — 1] ¢ |oypyalayp) — sigyllnp < HYF € [ts] from V5 to S;5 by mapping vector

and a(0) =5 (mod p)}, v =kYby+...k by, +k b, +1+aYbs 40+ .. +al_1bs 4
and to polynomial
Vsplar.t.p, H,81) El (v € Lopalar t.p, H, D) © |[v=51lloc < H}. av(z) = |84+ KYPlp+ |aY]pz + ... + |a)_1 pzt 1

18



Threshold-Changeability for Classical
Shamir Scheme - Security

= Security analysis (cont.)
= Now we use lattice tools to lower bound #V0.1

= Note #V0,1 is a “non-homogenous” counting problem: we need
the number of lattice points in a box
Ts,(H) = {v € QT ||v—8|lc < H} centred on a
(non-lattice) vector Sy

= We reduce this non-homogenous problem to two simpler problems:

= The homogenous problem of lower bounding the number of
lattice points in an origin-centred box

To(H —€) = {veQblstl:||v|oo < H—¢} Where e< (“;rt) s+t (L5ha)

= Upper bounding the largest Minkowski minimum A¢;+¢t(£sha)

We show #V; 5. > #{v € To(H — ) N LorT} 19




Threshold-Changeability for Classical

Shamir Scheme - Security

= Security analysis (cont.)

= Proof idea of reduction of “non-homogenous lower bound” to
“homogenous lower bound” + upper bound on X,y (£sxa)

O 0 6 6 000060 0 0 0 0 0 0 O
Te,(H) = (v € QF ¢ [|v —§]|oc < H}
O 0 6 0 0\O 0 0 O 0 0 0 0 0 O O

O 0 0 0 O
Ty(H—e)={ve Qs ||[v — 8 ]loo < H — €}~

0 0 0 O

0 0 0 O

o/@m%] (L)

What can go wrong if A, (L) is large!

o’ 0 0 0 O

Jo® Ts;(H) = {v € @t ||v —5||oo < H}

o 0 0 0 O

00’ 0 0 0 O

00 0 0

Rounding error

I A+t (L)

20



Threshold-Changeability for Classical
Shamir Scheme - Security

= Security analysis (cont.)

= Problem 1 (point counting in origin-symmetric box) is solved
directly by applying Blichfeldt-Corput Theorem:

F#{v € LopaNTo(H —€)} > 2Int (2‘2904lrg7c;%(t?12_;;33)>

= Problem 2 (upper boundingA¢,+:(Lsha) ) is solved by applying
Minkowski’s Second Theorem to reduce it first to the problem of
lower bounding the first Minkowski minimum(shortest vector norm)

Dtstt det(Lgp,)
>‘t3—|—t(£5ha) < /\1(£Sha)t‘9+t_a1

= We lower bound the first Minkowski minimum X\ (Lgp,,)
(except for a “small” fraction of “bad” public vectors (a1....,an))
by applying our algebraic counting lemma (using similar
argument used in correctness analysis)

21



Threshold-Changeability for Classical
Shamir Scheme - Security

= Security analysis (cont.)
= This completes the results needed to lower bound #1541
= Recall that we also need to upper bound #Vs,p

= We reduce this problem also to lower bounding \; (£g;,,) With the
following result:

0000 0] O Lemma. For any lattice £ in R", vector s &€
010(0]0| 0| O

R™ and H > 0, we have
2H "
S
#{veLl:|v-—s| <H}§[ —|—1] :
0o]0]0]0]0lnw > A (L)

ololololo]| o “—— Upper bound total vol of small boxes #V x AT
by volume of large box (2H + A1(£))"

— 2H 4 A (L) —

= And now we use our lower bound on A1 (£Lgy,) again!
22



i Conclusions

= Presented lattice-based threshold
changeability algorithms for Shamir
secret-sharing

= Proved concrete bounds on correctness
and security using classical results from
theory of lattices

23



	Lattice-Based Threshold-Changeability for Standard Shamir Secret-Sharing Schemes
	Overview
	(t,n)-Threshold Secret Sharing
	(t,n)-Threshold Secret-Sharing
	(t,n)-Threshold Secret-Sharing
	Changeable-Threshold Secret-Sharing
	Changeable-Threshold Secret-Sharing
	Changeable-Threshold Secret-Sharing
	Point Lattices (Brief Intro)
	Threshold-Changeability for Classical Shamir Scheme - Algorithms
	Threshold-Changeability for Classical Shamir Scheme - Algorithms
	Conclusions

